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Controllable Rydberg atom arrays have provided new insights into fundamental properties of quantum
matter both in and out of equilibrium. In this work, we study the effect of experimentally relevant positional
disorder on Rydberg atoms trapped in a 2D square lattice under antiblockade (facilitation) conditions. We
show that the facilitation conditions lead the connectivity graph of a particular subspace of the full Hilbert
space to form a 2D Lieb lattice, which features a singular flat band. Remarkably, we find three distinct
regimes as the disorder strength is varied: a critical regime, a delocalized but nonergodic regime, and a
regime with a disorder-induced flat band. The critical regime’s existence depends crucially upon the
singular flat band in our model, and is absent in any 1D array or ladder system. We propose to use quench
dynamics to probe the three different regimes experimentally.
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Recently, programmable Rydberg quantum simulators
have attracted significant interest because they can provide
insights into quantum matter’s fundamental properties.
With the rapid development of quantum technologies,
synthetic arrays of Rydberg atoms with individual control
are already available in one [1], two [2,3], and three
dimensions [4]. Recent experiments on 1D Rydberg atom
arrays have shed light on various phenomena, including
nonequilibrium quantum many-body dynamics [5], the
Kibble-Zurek mechanism [6], and quantum many-body
scars [5,7]. The strong Rydberg-Rydberg interactions can
also be used to realize quantum gates [8], making such
systems promising platforms for quantum information
processing [9,10].

Meanwhile, flat-band systems are conceptually impor-
tant in condensed matter physics and can harbor both
nontrivial topological properties [11-14] and strongly
correlated phases arising from the enhanced interaction
effects [15-22]. Recent work on twisted graphene hetero-
structures and circuit quantum electrodynamics (QED)
opens up new venues for flat bands, enabling, respectively,
the study of correlated insulators and superconductivity
[23-26] and of quantum systems in hyperbolic space
[27,28]. One particular direction of interest concerns the
effect of disorder on flat-band eigenstates. It has been
shown that such flat bands, when coupled to disorder, can
lead to critical and multifractal phenomena absent in
conventional Anderson localization [29-37].

In this work, we demonstrate that the physics of flat
bands coupled to disorder can be naturally realized and
probed using Rydberg atoms trapped in a 2D square lattice.
We consider the so-called facilitation (antiblockade)
mechanism, where the excitation of a Rydberg atom is
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strongly enhanced in the vicinity of an already excited atom
[38—40]. Under such conditions, the full Hilbert space can
effectively split into subspaces separated from one another
by large energy scales. We focus on the manifold of states
that can be created near-resonantly starting from a single
Rydberg excitation. Within this subspace, the system can
effectively be described by a single-particle hopping on a
2D Lieb lattice [40], which features a singular flat band in
the clean limit. Although the Lieb lattice has been exper-
imentally realized for photons [41-45], atoms [46,47], and
electrons [48], the effect of disorder on flat-band states has
not yet been systematically studied. We find that the
interplay between positional disorder of Rydberg atom
arrays and the synthetic flat-band states gives rise to a rich
phase diagram, including a critical phase, a nonergodic
extended phase, and a phase with a disorder-induced flat
band. We show that these intriguing properties are essen-
tially related to the singular flat band on the Lieb lattice and
are absent in 1D and quasi-1D arrays.

Antiblockaded Rydberg atom array and mapping to Lieb
lattice.—We consider the following Hamiltonian describ-
ing interacting Rydberg atoms trapped in a 2D L x L
square lattice with spacing Ry:

of — A
1 i=1

Hgyq = n; +

2O

N

N
Z V(dij)nin;, (1)
i#j=1

N[ =

L

where i and j run over sites of the square lattice [see
Fig. 1@, of = |g:)(ri| + [ri){gil, |9:) (|r;)) denotes the
ground (Rydberg) state of the ith atom, and n; = |r;)(r;|.
The parameters € (Rabi frequency) and A (detuning)
characterize coherent driving fields, while V(d,;) 1/ d?j
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FIG. 1. (a) Under the antiblockade conditions, the connectivity
graph of the subspace containing single isolated Rydberg
excitations and single nearest-neighbor pairs thereof maps to a
2D Lieb lattice shown in (b). The black and white dots indicate
atoms in Rydberg and ground states, respectively. Each unit cell
of the Lieb lattice contains three sites: A, B, and C. (b) The flat-
band eigenstates include compact localized states (CLSs), two
noncontractible loop states (NLSs), and one noncompact state
(NCS) shown in (c¢). The +1 indicate the relative wave function
amplitudes for these states. (d) The band structure of the clean
Lieb lattice, which contains two dispersive bands and one
singular flat band.

quantifies the van der Waals interactions between atoms in
Rydberg states at sites i and j (separated by distance d;;).
The antiblockade (facilitation) condition is obtained by
setting A = V(Ry), so that an isolated excitation makes the
excitation of its nearest-neighbor resonant [38—40]. We
work in the limit |A| > Q where the unfacilitated excita-
tions are sufficiently off resonant. We additionally require
V(V2R,).V(2R,) > Q, so that a pair of neighboring
Rydberg excitations is unable to further facilitate the
excitation of any neighboring site. Hereafter we take
V(Ry) = 300Q.

Under these conditions, the Hilbert space effectively
splits into subspaces that are separated by energy scales
much larger than Q [39]. Here we focus on the simplest
nontrivial subspace, whose degrees of freedom are hardcore
bosons consisting of either a single Rydberg excitation or a
pair of neighboring Rydberg excitations. One can readily
see that the connectivity graph of states in this subspace
forms a 2D Lieb lattice [see Figs. 1(a)-1(b)]. The
Hamiltonian (1) thus reduces to a single-particle hopping
on this lattice. The Lieb lattice contains three sites per unit

cell, where the A site corresponds to a single Rydberg
excitation in the original model, while the B and C sites
correspond, respectively, to horizontal and vertical pairs
of neighboring Rydberg excitations [see Supplemental
Material (SM) for more details [49]].

Flat band on the Lieb lattice.—The single-particle
hopping Hamiltonian on the Lieb lattice takes the form

HLieb = ZQC:C] + H.C., (2)
(i.j)
where (i, j) denotes nearest-neighbor sites on the

Lieb lattice, as shown in Fig. 1(b). The energy spec-
trum of Hamiltonian (2) contains two dispersive bands

E (k)= j:Q\/cosz(kx) + cos?(k,) and one flat band

E =0 [see Fig. 1(d)]. The zero-energy flat band touches
the two dispersive bands at k, = k, = x/2, leading to a
threefold degeneracy at this point. As shown in
Refs. [50,51], the band touching in this model is in fact
irremovable, which signals a singularity in the Bloch wave
function. The £ = 0 band of Hamiltonian (2) in this case is
known as a singular flat band. The singularity of the flat
band has important consequences on the eigenstates within
the band. Generically, the eigenstates of a flat band are
localized in real space; hence, the name compact localized
states (CLSs) [see Fig. 1(b) for the Lieb lattice]. When the
flat band is nonsingular, such CLSs form a complete basis
of the flat band. By contrast, when the flat band is singular,
the set of all CLSs is not linearly independent. For the Lieb
lattice, there exist three additional extended eigenstates of
the flat band: two noncontractible loop states (NLSs)
[Fig. 1(b)] and one noncompact state (NCS) [Fig. 1(c)].

Positional disorder.—Small deviations of atomic posi-
tions from the centers of the corresponding traps can
significantly affect the atom-atom interaction. The thermal
distribution of atomic positions can be described as a
Gaussian with width ¢ (measured in units of Rj) [10,39].
Ignoring atomic motion during the experiment (frozen-gas
approximation) [39], such randomness enters Eq. (1) via
the interaction term: V(R) = V(Ry+ 6R) =~ V(R,) + 6V,
where 6V is a random time-independent shift potential
caused by the displacement. This position-disordered
interaction manifests itself on the effective Lieb lattice
as random, but correlated, on-site potentials for the B and C
sublattices. Since the position disorder only affects
Rydberg-Rydberg interactions, the A sublattice sites, which
represent single Rydberg excitations, do not couple to
disorder. Therefore, while the CLSs and NLSs are sup-
ported on B and C sublattices and hence are no longer exact
eigenstates of the disordered Hamiltonian, the noncompact
state in Fig. 1(c) remains unaffected by disorder.

To study the effect of disorder on the singular flat band,
we numerically diagonalize the Lieb lattice Hamiltonian (2)
in real space with positional disorder on an L x L square
lattice. We focus on the middle one third of eigenstates in
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FIG. 2. (a) Level-spacing ratio r versus the rescaled eigenstate
label # and disorder strength . (b) r as a function of disorder
strength for two cuts, shown by dashed lines in (a), along
E =0 and p = 0.3 for different system sizes. The error bars
(not shown) are smaller than the plot markers. (c) Fractal
dimension D, versus ¢, for states at representative points in
(a: M (p=0,log;po=-6), N (f=03,loggo=-4), P
(#=0,logjgo =-2), O (f=0.3,log;go =-2), as well as
the noncompact zero-energy eigenstate (NCS) for arbitrary
disorder strength. Inset: Scaling of IPR as a function of the
Hilbert-space dimension. (d) Probability distribution of the
unfolded level spacings P(s) for states in regime I for different
system sizes [52].

the spectrum, which corresponds to the flat-band states in
the clean limit. We rank order the eigenstates according to
their energies E; > E;_; and introduce a rescaled label
p=1i-N/2)/(N/3)] € (-0.5,0.5), where N is the
Hilbert-space dimension and i € (N/3,2\/3). We probe
ergodicity versus localization using the level-spacing ratio
r, = min(5i,5,~+])/ max(5,~,5i+]), where 6,’ = Ei+l - Ei'
Ergodic and localized phases are characterized by a
Wigner-Dyson (WD) distributed spectrum with mean 7 =
0.53 and a Poisson distributed spectrum with 7= 0.39,
respectively. Figure 2(a) shows the eigenstate-resolved r as
the disorder strength ¢ varies. We find a rich phase diagram
featuring three distinct regimes: a critical regime I, a
nonergodic extended regime II, and a regime III, in which

a disorder-induced flat band emerges (see Table I for the
main features). Below, we discuss each regime in detail.

Regime I: Criticality.—Let us first focus on the weak-
disorder regime, where the level-spacing statistics are
intermediate between WD and Poisson, with the band-
edge states [near the top and bottom of Fig. 2(a)] being
more localized. As one can see from Fig. 3(a), while the
wave function is extended in real space, it appears less
ergodic than a perfectly delocalized state. Moreover, the
wave function is mainly supported on the B and C
sublattices [inset of Fig. 3(a)] [49], indicating that the
flat-band states do not couple strongly to the original
dispersing bands at weak disorder. To characterize the
wave functions more quantitatively, we study the inverse
participation ratio (IPR) 1,(8) = (>°; [w¥[*?), where y¢ is
the amplitude of the ath wave function on site i and the
average is taken over disorder realizations and over a fixed
number of states o around f# [53]. It is in general expected to
scale as I, ~ N/ ~Dy(4-1) | where D, is known as the fractal
dimension, with D, = 1 for ergodic states and D, = 0 for
localized states. If D, depends on g, as occurs, for example,
at the critical point of the Anderson transition [53-57], the
eigenstates are called multifractal. Figure 2(c) shows
the exponent D, extracted from the IPR for point M in
Fig. 2(a), which indeed exhibits a ¢ dependence, signaling
multifractality and nonergodicity of the wave functions in
this regime [58,59].

Besides delocalization and nonergodicity of the wave
functions, another interesting feature in regime I is that the
level-spacing statistics is intermediate between WD and
Poisson and shows almost no dependence on system size
[Fig. 2(b)]. This is also clear from Fig. 2(d), where we plot
the distribution P(s) of the level spacing s, after spectral
unfolding [29,60], for the states shown in Fig. 2(a), i.e., the
middle one third of the states. This suggests that the level
statistics remain intermediate between WD and Poisson in
the thermodynamic limit; such statistics are called critical
[29,36,59,61-63]. The statistics also show little depend-
ence on disorder strength, suggesting that the entire regime
I is critical even for extremely weak disorder [29,36]. This
is in contrast to the standard Anderson [53] and many-body
[55] localization transitions, which involve a single critical
point. The origin of the criticality in regime I lies in the
singular nature of the flat band in Hamiltonian (2). As
shown in Ref. [29], for a flat band with a singular band
touching, the real-space matrix elements of the projection
operator onto the flat band (R|P|R + r) decay as [r|~in d

TABLE I. Main features of three distinct localization regimes.
Wave function Support Feature
Regime I Critical, multifractal B, C Original flat band
Regime II Multifractal A, B, C Hybridization with dispersive bands
Regime IIT Localized (|E| 2 0), multifractal (E ~0) A Disorder-induced flat band

013603-3



PHYSICAL REVIEW LETTERS 128, 013603 (2022)

10 O(a) Regime I (M) (b)

Regime II (N)
OO |

3 3
3
3
$

80

60

y

40
20

0

0 20 40 60 80 100 0 40 60

X X
1oo(c) Regime 111, E ~ 0 (Q) (d) RegimeIIL E >0 (P)
,,,,, .

20 40

X

FIG. 3. (a)-(d) Amplitudes of the real-space wave functions for
representative points M (a), N (b), Q (c¢), and P (d) in Fig. 2(a).
(e) The amplitudes of the wave function for the noncompact
eigenstate. Each inset shows an enlarged view locally. (f) The
integrated density of states as a function of energy, for different
disorder strengths.

dimensions. States originating from such flat bands are
generically critical in the presence of weak disorder. On the
other hand, for nonsingular flat bands (e.g., in 1D ladder
systems), (R|P|R +r) decays exponentially with r and
one can use the detangling method [39,40,47] to observe
conventional Anderson localization.

Regime II: Hybridization with dispersive bands.—
Similarly to regime I, the level-spacing statistics in regime
II are also intermediate between WD and Poisson, as shown
in Fig. 2(a). However, the physics in these two regimes
is drastically different. To see this, let us first look at a
representative real-space eigenstate in regime II, shown
in Fig. 3(b) [49]. Although the wave function is again
extended but nonergodic, it now has support on all three
sublattices [inset of Fig. 3(b)], indicating that the original
flat band strongly hybridizes with the dispersive bands as
the disorder strength increases. Moreover, the fractal
dimension D, again exhibits a g dependence, indicating
multifractality in this regime. Nonetheless, regime II no

longer appears critical, as can be seen from the noticeable
but subtle system size dependence of the level statistics in
Fig. 2(b) [49].

Regime III: Disorder-induced flat band.—In the strongly
disordered regime, one expects that most of the eigenstates
become localized, as is indeed confirmed by the level-
spacing statistics in Fig. 2(a). The real-space wave function
shown in Fig. 3(d) and the fractal dimension D, ~0 in
Fig. 2(c) are also consistent with the states being localized.
However, we find that in the middle of the spectrum where
the energies are very close to E = 0, the eigenstates are
delocalized [see Fig. 3(c)]. The fractal dimension of these
delocalized states exhibits a ¢ dependence [see Fig. 2(c)],
indicating multifractality. Moreover, the integrated density
of states in Fig. 3(f) shows a sharper jump near £ =0
compared to the more weakly disordered regime II and,
counterintuitively, becomes sharper with increasing disorder.
This indicates the presence of a flat band in the strong-
disorder regime. This disorder-induced flat band is physi-
cally distinct from the original flat band of Hamiltonian (2)
in the clean limit [solid curve in Fig. 3(f)]. As can be seen
from Figs. 3(c) and 3(d), the flat-band states in the strong-
disorder regime have dominant support on sublattice A [49],
whereas the original flat-band states are supported on
sublattices B and C instead [see Fig. 3(a)].

To understand this disorder-induced flat band, we can
write down the eigenvalue equation for the single-particle
hopping Hamiltonian in real space (see SM [49] for the
details of the analysis in this paragraph). By eliminating
sublattice A [64], one arrives at a single-particle hopping
model on the B and C sublattices only, which form a planar
pyrochlore lattice. As shown in Refs. [29,51], the planar
pyrochlore lattice also hosts a singular flat band at E = 0 in
the clean limit, and the flat band eigenstates become
multifractal states with E =~ 0 in the presence of weak
disorder [see also Fig. 2(a)]. That the wave functions have
dominant support on sublattice A in regime III (and
dominate support on B and C sublattices in regime I)
can also be understood using the elimination procedure.

We stress that the disorder-induced flat band in regime
IIT only arises in the Rydberg atom setup, where disorder
naturally couples to sublattices B and C only. In contrast,
when disorder is present on all sublattices, as is usually the
case, the density of states will instead have a broad
distribution and no flat band is formed [49].

Quench dynamics.—The three regimes discussed above
have distinct dynamical features in quantum quench experi-
ments (see SM [49] for numerical results). We choose three
different types of initial states, including a CLS, a state with
nearest-neighbor Rydberg excitations, and a state with a
single excitation, all of which can be prepared in experi-
ments [40]. The Rydberg excitation probabilities have
initial-state-dependent distinct features under time evolu-
tion by the 2D disordered Lieb-lattice Hamiltonian in the
three respective regimes.
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Conclusions and outlook.—We have studied the effect
of disorder on 2D Rydberg atom arrays in the antiblock-
ade regime and uncovered rich localization phenomena
depending on the disorder strength. In contrast to previous
works [29-37], our study originates from an interacting
Rydberg system, and our predictions hold even in the full
quantum many-body system (see SM [49]). Besides the
Rydberg system, our results are also relevant to general
disorder types [49] in other Lieb-lattice implementations,
e.g., optical [41-45] and microwave [27] photons, cold
atoms [46,47], and electrons [48,65]. By changing the
antiblockade conditions, our study can be extended to a
wide variety of synthetic graphs. Moreover, our construc-
tion generically leads to single-particle hopping models on
effective graphs that are subdivisions of the graph corre-
sponding to the physical lattice. We expect the nonergodic
extended states uncovered in this work and disorder-
induced flat bands to be generic for graphs with singular
flat bands under this construction. Another interesting
direction is to consider 3D generalizations of our study
involving the interplay of conventional Anderson locali-
zation with a mobility edge and the degenerate singular
bands. Finally, it would be interesting to consider sub-
spaces with multiple excitations, where there can be non-
trivial interplay of antiblockade conditions and many-body
interactions [66—68] (or blockade constraints) in the syn-
thetic lattice.
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