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Abstract—This work presents NchooseK, a unified program-
ming model for constraint satisfaction problems that can be
mapped to both quantum circuit and annealing devices through
Quadratic Unconstrained Binary Operators (QUBOs). Our map-
ping provides an approachable and effective way to program both
types of quantum computers. We provide examples of NchooseK
being used.

I. MOTIVATION

Quantum computing has the potential to provide a perfor-

mance advantage over classical computing, but as a practical

technology it is newly emerging. The two main quantum

computational models, quantum annealing and the quantum

gate model, are distinct from each other as well as from

classical programming and lead to different performance and

engineering trade-offs.
To program a quantum annealer, one encodes a prob-

lem as either a classical, 2-local Ising-model Hamiltonian

or a quadratic unconstrained binary optimization (QUBO)

problem—the two are isomorphic—and the system uses quan-

tum effects to solve for the two-level (Boolean) inputs that

minimize overall energy. To program a gate-model quantum

computer, one encodes the problem as a sequence of unitary

transformations applied to an input state, and a final measure-

ment projects the result to a vector of Booleans.
The disconnect between these two computing models, as

well as the potential of quantum computing, has inspired us

to create a new programming model that enables programs to

run on quantum annealers, circuit-based quantum computers,

and classical computers. This model, called NchooseK, is

designed to express a particular type of constraint-satisfaction

problem. NchooseK strives to strike a balance between ease

of programmability and performance. An early investigation

into the use of NchooseK [1] was based on Grover’s search

algorithm. This paper reports on an improved implementation

approach based instead on the quantum approximate optimiza-

tion algorithm (QAOA) [2].

II. NCHOOSEK OVERVIEW

NchooseK is a constraint-based programming model and a

specific type of Integer Linear Programming (ILP). Programs

consist of Boolean variables and a set of constraints applied to

them. Each constraint takes the form, “Given a collection of

variables of cardinality N, a subset of them with cardinality K
must be true”.

Definition 1 (Variable collection): A variable collection

comprises a number of Boolean variables in which variables

can be repeated, but order does not matter. Its cardinality is the

number of elements (which can exceed the number of unique

variables due to repetitions).

Definition 2 (Selection set): A selection set comprises a set

of disjoint whole numbers, none of which can be greater than

the cardinality of a corresponding variable collection.

Definition 3 (NchooseK constraint): An NchooseK con-

straint, written as nck({N},{K}), consists of a variable col-

lection N and a selection set K. It is satisfied if the cardinality

of the variable collection whose variables are true equals one

of the numbers in the selection set:

nck(N,K)≡
(

∑
n∈N

n

)
∈ K,

where n ∈ Z2 and we associate false with 0 and true with 1.

Definition 4 (NchooseK program): An NchooseK pro-

gram is a conjunction of NchooseK constraints, notated

nck({N1},{K1}) ∧ nck({N2},{K2}) ∧ ·· · ∧ nck({Nn},{Kn}).
The result of executing a program is either an assignment

of Boolean values to all variables appearing in all variable

collections such that every NchooseK constraint is honored or

an indication that no such assignment exists.

Constructing NchooseK constraints involves focusing on the

relationships among variables. Consider a variable collection

{a,b}. If a and b must have different values, the constraint

is expressed as nck({a,b},{1}). This indicates that exactly

one of a and b must be true and therefore the other false. If

they need to have the same value, instead nck({a,b},{0,2})
would be used: either zero variables are true (so both false) or

two variables are true (so both true). As additional examples,

nck({a,b},{1,2}) constrains at least one of a and b to be true,

and nck({a,b},{0,1}) constrains at least one to false.

The same variable can appear in the variable collection of

multiple constraints in an NchooseK program. In this case, the

variable takes the same value in both constraints. For example,
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nck({a,b},{1})∧nck({b,c},{1}) is satisfied when both a and

c are true while b is false or when both a and c are false and

b is true but no other combinations.

III. CASE STUDIES

To clarify how one could express a computational problem

as an NchooseK program we consider two case studies. Sec-

tion III-A discusses the exact-cover problem, and Section III-B

discusses the map-coloring problem. Each of these presents a

concrete example of a problem and discusses the steps needed

to formulate this example in terms of NchooseK constraints.

A. Exact Cover

As an example on how to form a problem with NchooseK,

consider the exact cover problem: Given a set E =
{e1,e2, . . . ,en} of n elements and a set S = {s1,s2, . . . ,sm}, of

m subsets of E, i.e.,si ⊆ E, the goal is to find some subset of S
that includes every element of E exactly once—or report that

no such cover exists. We call a subset of S that includes every

element of E a “cover”. The “exactly once” condition makes

this subset an exact cover. Consider the following problem:

E = {a,b,c,d,e, f ,g}
S = {s1,s2,s3,s4,s5,s6}

s1 = {b,c,e, f}
s2 = {a,d,e}
s3 = {a,d,e,g}
s4 = {a,g, f}
s5 = {c, f}
s6 = {b,g}

In this case, one solution is the subset {s2,s5,s6} of S
because this subset contains each of a, b, c, d, e, f , and g
exactly once, making it an exact cover. An example of a non-

solution is the subset {s1,s3}, which covers E—it includes

all seven elements of E—but is not an exact cover because

element e occurs twice. The subset {s1,s2} is also not a

solution because it is missing element g, implying that {s1,s2}
does not cover E.

Given that a solution to the exact-cover problem indicates

which subsets are in the cover, we include one variable in

the corresponding NchooseK problem per element of set S.

Specifically, an NchooseK variable vi is true if and only if

its associated subset si belongs to the cover. The requirements

of a valid solution are that (1) each element of E must be

included in the cover and (2) no element of E may be in

the cover more than once. Because element e of E must be

included exactly once, we must constrain exactly one of the

variables associated with a subset containing e to true. That

is, we will include one NchooseK constraint per element of

E. These variables and constraints are all that are needed to

express the exact cover.

In our example problem, the NchooseK constraint for the

element a is

nck({v2,v3,v4},{1})

because subsets s2, s3, and s4 are the ones that contain element

a, and exactly one of them needs to be in the cover. The

complete NchooseK program is

nck({v2,v3,v4},{1})∧ � a
nck({v1,v6},{1})∧ � b
nck({v1,v5},{1})∧ � c
nck({v2,v3},{1})∧ � d
nck({v1,v2,v3},{1})∧ � e
nck({v1,v4,v5},{1})∧ � f
nck({v3,v4,v6},{1}) � g

These constraints and variables are illustrated graphically in

Figure 1.

B. Map Coloring

Another example of solving a problem with NchooseK is

the map coloring problem. Given a map of territories, some

of which share borders, the map should be colored such that

no two territories with a common border have the same color.

An NchooseK solution of the map-coloring problem con-

strains which territories are colored with which color. This is

not a binary choice, unlike the exact cover in which the only

question is whether a subset is part of the cover or not. When

the solution covers multiple dimensions—in this case, n and

m, where n is the number of territories and m is the number

of colors—the NchooseK variables have to defined to reflect

those dimensions. For the map-coloring problem, this means

there are n ·m variables, one variable per territory per color.

Consider the simple case of two territories, P and Q, and four

colors, red, orange, green, and blue. (It can be shown that any

two dimensional map can be colored with only four colors [3],

[4], which is why we use four colors in this example.) In this

case, eight variables are needed: Pred, Porange, Pgreen, Pblue, Qred,

Qorange, Qgreen, and Qblue.

Ultimately, each territory can be assigned only a single

color. Hence, a constraint is needed for each territory, indicat-

ing that only one color can be true (assigned). For territory P
in our example, this NchooseK constraint is expressed as

nck({Pred,Porange,Pblue,Pgreen},{1}). An analogous constraint

is specified for territory Q.

Requiring that no bordering territories share a color requires

additional constraints, namely one constraint per border per

color, indicating both cannot be true (i.e., cannot be colored

identically). For the border between territory P and Q, this

NchooseK constraint is expressed as

nck({Pred,Qred},{0,1})∧nck({Porange,Qorange},{0,1})
∧nck({Pblue,Qblue},{0,1})∧nck({Pgreen,Qgreen},{0,1}).

The selection sets in the above must include both 0 and 1

because neither territory may be a given color. For example,

nck({Pred,Qred},{0,1}) allows for either P or Q to be red or

for neither P nor Q to be red. The only case that is prohibited

is both P and Q being red.

This example is illustrated in Figure 2. A map with more re-

gions would follow the same pattern but with a corresponding

increase in the number of constraints.
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Fig. 1: A visualization of the exact cover example problem represented in NchooseK. Each circle corresponds to one of the

variables in the NchooseK problem or subset in the original problem. The colors are for convenience only, to help distinguish

the arrows. The boxes represent NchooseK constraints. Within each box, the small squares represent the variable collection—

containing the variables pointing to them—and the text indicates the selection set. In this case the selection set is {1} for each

constraint. Parenthesized letters underneath each box indicate the element of set E in the original problem.
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Fig. 2: A visualization of the map coloring example problem represented in NchooseK. Each circle corresponds to one of

the variables in the NchooseK problem or combination of territory and color in the original problem. The boxes represent

NchooseK constraints. Within each box, the small squares represent the variable collection—containing the variables pointing

to them—and the text indicates the selection set.

IV. IMPLEMENTATION

The NchooseK model is intended to be portable to both

gate-model quantum computers and quantum annealers as well

as to admit a classical solution. Our current implementation

uses a quadratic unconstrained binary optimization (QUBO)

formulation as the intermediate representation of an NchooseK

program. We first discuss the translation to QUBOs and

then describe how these QUBOs are executed on quantum

computers.

A QUBO problem can be expressed as the argument mini-

mum of a quadratic pseudo-Boolean function. That is, given

f (x) =
n−1

∑
i=0

n−1

∑
j=i

ai, jxix j (1)

with variables xi ∈ Z2 and constants ai, j ∈ R, we seek the x
values that minimize f (x):

argmin
x

f (x) . (2)

The first step in our NchooseK implementation is to translate

an NchooseK problem to QUBO form such that the values

returned by Equation 2 satisfy all of the NchooseK constraints.

Consider the NchooseK program from Section II of

nck({a,b},{1})∧nck({b,c},{1}). We translate the constraint

nck({x0,x1},{1}) to

f (x0,x1) = 2x0x1 − x0 − x1 , x0,x1 ∈ Z2 (3)

because this f is minimized when exactly one of x0 and x1

has a value of 1. QUBO problems are additive; the solution

to a sum of QUBOs is the intersection of the solutions to

its constituent QUBOs as long as this intersection is non-

empty. Hence, f (a,b)+ f (b,c) = (2ab−a−b)+(2bc−b−c)
is minimized over the same values of a, b, and c that satisfy

nck({a,b},{1})∧nck({b,c},{1}).
We have implemented the NchooseK model in a domain-

specific language (DSL) embedded in Python. Figure 3 shows

how one could express nck({a,b},{1})∧ nck({b,c},{1}) in

this DSL.

112

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 20,2022 at 17:32:28 UTC from IEEE Xplore.  Restrictions apply. 



import nchoosek

from nchoosek.solve import ocean

env = nchoosek.Environment()

a = env.register port(’a’)

b = env.register port(’b’)

c = env.register port(’c’)

env.nck([a, b], {1})

env.nck([b, c], {1})

print(ocean.solve(env))

Fig. 3: The NchooseK program nck({a,b},{1}) ∧
nck({b,c},{1}) expressed as an embedded domain-

specific language in Python. The code creates an execution

environment, registers variables with that environment,

establishes a pair of NchooseK constraints, and solves for

the variables using the Ocean library [5]. Typical output is

{’a’: False, ’b’: True, ’c’: False}.

Our DSL compiler first converts each NchooseK constraint

to a quadratic pseudo-Boolean function of the form shown in

Equation 1. It does so by expressing each constraint in terms of

a Boolean satisfiability problem and uses the Z3 satisfiability

modulo theories (SMT) solver [6] to find coefficients for the

corresponding quadratic pseudo-Boolean function, such as the

one shown in Equation 3, for example. It then sums all of the

functions for all of the constraints into a single function to be

solved as a QUBO problem.

The compiler can use either a classical or a quantum

computer to solve for the variables that minimize the QUBO.

The classical solution relies once again on the Z3 SMT

solver. The solution on a quantum annealer, whose native

input form is essentially a QUBO, uses D-Wave’s Ocean

library [5]. The solution on a gate-model quantum computer

uses the QAOA [2] implementation from IBM’s Qiskit li-

brary [7] to search for suitable variable assignments. QAOA

is a hybrid quantum-classical method that (approximately)

solves optimization problems. It utilizes a classical optimizer

to determine some of its parameters over tens of jobs on

a quantum computer. We use Qiskit’s default COBYLA [8]

optimizer, but any other optimizer supported by Qiskit could

have been used instead.

The approach outlined here is different from that employed

by Khetawat et al. [1], which scaled poorly, was not fully

automated, and did not have a way to create circuits that com-

bined multiple NchooseK constraints. The trade off relative to

our approach is that QAOA requires running multiple circuits,

while Khetawat creates a single, complicated circuit solved

with a Grover search [9].

V. NCHOOSEK VS. QUBO

NchooseK, as we have implemented it, converts a problem

to a QUBO before running it on the various architectures.

Quantum annealers, at the lowest level, minimize the energy of

a classical, 2-local, Ising-model Hamiltonian function, which

is almost identical to solving a QUBO problem. (The former

uses variables x ∈ {−1,+1} while the latter uses variables

x ∈ {0,1}.) Hence, in order to run on a quantum annealer, the

conversion to QUBO/Ising would need to be done at some

point. For quantum devices following the gate model, exten-

sive prior work has been conducted to convert optimization

problems, of which NchooseK is an example, to quantum

circuits. Because our implementation already needs to convert

an NchooseK program to a QUBO to run it on a quantum

annealer, we decided to use this same approach for the gate

model as well. The Qiskit library even provides a “quadratic

program” interface, which can solve QUBO problems in a

number of different ways.

The fact that we convert an NchooseK program to a

QUBO before running it on either type of machine raises

the following question: Why not skip NchooseK and create
QUBOs directly from the problem? Our answer is twofold.

First, it is often easier to set up a problem with NchooseK

than to determine QUBO coefficients directly. Second, it is

easier to read and comprehend the semantics of a program

written with NchooseK than it is to interpret a QUBO. To

illustrate the difference between programming in NchooseK

versus programming directly to QUBOs, we compare several

NchooseK problems to their equivalent QUBOs in the follow-

ing discussion.

A. XOR

XOR is a common binary operation. How can A⊕B = C
be represented in both NchooseK and QUBO notation? To

start investigating simple problems like this, it is often useful

to create a truth table. The truth table for A⊕B = C is as

shown in Table I. A quick inspection of this table uncovers

A B C

0 0 0
1 0 1
0 1 1
1 1 0

TABLE I: The truth table for A⊕B = C (XOR). As in the

rest of this paper, 0 corresponds to false, and 1 corresponds

to true.

an easy conversion to NchooseK. Each row contains either

zero or two true values, and each combination of three values

not appearing as a row in Table I contains either one or three

true values. The NchooseK constraint that represents this XOR

problem is therefore nck({A,B,C},{0,2}).
The QUBO creation is trickier. Recall that a QUBO with

n binary terms takes the form shown in Equation 2. When

creating a QUBO, the challenge is posed by deciding the

values to assign to each ai, j in Equation 1. Because 02 = 0 and

12 = 1, we can simplify ai,ix2
i to aixi. The XOR truth table tells

us that we need to select factors such that all four states have

the same, lowest energy. This results in the following system
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of equations as each constraint must have the same (minimal)

value:

A B C A ·B A ·C B ·C
aA ·0+aB ·0+aC ·0+aA,B ·0 ·0+aA,C ·0 ·0+aB,C ·0 ·0 =
aA ·1+aB ·0+aC ·1+aA,B ·1 ·0+aA,C ·1 ·1+aB,C ·0 ·1 =
aA ·0+aB ·1+aC ·1+aA,B ·0 ·1+aA,C ·0 ·1+aB,C ·1 ·1 =
aA ·1+aB ·1+aC ·0+aA,B ·1 ·1+aA,C ·1 ·0+aB,C ·1 ·0 .

To match Table I, the preceding equations use A, B, and C as

coefficient indices instead of 0, 1, and 2 as in Equation 1.

By multiplying and removing each zero term, these equali-

ties are simplified to

0 = aA +aC +aA,C = aB +aC +aB,C = aA +aB +aA,B.

which also implies ai, j =−ai −a j.

Because the rows of Table I must not only be equal to each

other when used as xs in Equation 1’s f (x) but must also be

less than f applied to any other row, we must additionally

consider a system of inequalities for all rows not appearing in

the table:

A B C A ·B A ·C B ·C
aA ·0+aB ·0+aC ·1+aA,B ·0 ·0+aA,C ·0 ·1+aB,C ·0 ·1 > 0

aA ·0+aB ·1+aC ·0+aA,B ·0 ·1+aA,C ·0 ·0+aB,C ·1 ·0 > 0

aA ·1+aB ·0+aC ·0+aA,B ·1 ·0+aA,C ·1 ·0+aB,C ·0 ·0 > 0

aA ·1+aB ·1+aC ·1+aA,B ·1 ·1+aA,C ·1 ·1+aB,C ·1 ·1 > 0.

From the first three inequalities we conclude that

aC > 0

aB > 0

aA > 0 .

Combining the fourth inequality with the observation made

above that ai, j =−ai −a j results in the inequality

aA +aB +aC +(−aA −aB)+(−aA −aC)+(−aB −aC)> 0

and therefore that

aA +aB +aC < 0 .

But this results in a contradiction: We saw above that aA, aB,

and aC must each be greater than zero, but we now see that

their sum must be less than zero. This proves that a quadratic

pseudo-Boolean function for XOR cannot be constructed with

three variables.

To construct a pseudo-Boolean function for XOR we intro-

duce an ancillary variable, D, whose purpose is to increase

the degrees of freedom when solving for the Equation 1

coefficients but whose value is ultimately ignored. Essentially,

we extend Table I with an additional column to produce

Table II. It is difficult in the general case to determine values

with which to populate the ancillary columns—more than

one may be required for a given truth table—in order to

make the system of equalities and the system of inequalities

A B C D

0 0 0 0
1 0 1 0
0 1 1 0
1 1 0 1

TABLE II: The truth table for A⊕B =C (XOR) with ancillary

variable D. The addition of column D makes it possible to

express this truth table as a quadratic pseudo-Boolean function.

solvable [10], [11]. The specific values used in Table II lead

to the quadratic pseudo-Boolean function

f (A,B,C,D) = A+B+C+4D+2AB−2AC−4AD

−2BC−4BD+4CD , (4)

which is minimized on any row of Table II. As a QUBO, we

search for the A, B, C, and D that minimize the function but

disregard the value of D that is found.

This example illustrates why finding a QUBO for even a

simple problem can be quite difficult, much more so than con-

structing an NchooseK constraint. It also shows how difficult

it can be to determine the function of a QUBO relative to

the function of an NchooseK constraint: it is non-obvious that

Equation 4 corresponds to an XOR or that one of its variables

is not part of the solution being sought.

B. Exact Cover and Map Coloring

Let us next consider the exact-cover and map-coloring

problems, which we investigated previously (Section III), from

the perspective of a QUBO. Both of these problems are

relatively simple to solve using QUBOs. The exact cover

problem can be divided into parts based on the elements of E.

Because only one subset in the cover is allowed to contain

any given elements, we can set up a QUBO for each element

e ∈ E of the form ((
∑

i
vi

)
−1

)2

,

where vi = 1 if and only if subset si is part of the cover.

This ensures that exactly one of the si will be included in

the cover. (An expression (x−1)2 is minimized when x = 1.)

Aggregating all of these per-element QUBOs results in a

single QUBO that describes the problem. This is a straight-

forward problem setup but essentially required constructing an

NchooseK problem—identifying that exactly one of the sets

of vi must be true—before turning it into a series of QUBOs.

The map-coloring problem is also straightforward to express

as a QUBO and has been well explored in the context

of QUBO problems and quantum annealing [12], [13]. The

corresponding top-level QUBO is slightly more complicated

than that for the exact-cover problem in that it comprises two

different types of QUBOs. One type ensures that each territory

has exactly one color, and the other ensures that two territories

sharing a border have different colors. Let us denote a variable

Ti, j for each territory i and color j.
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The first type of QUBO resembles the expressions in the

exact cover problem, where we ensure that each territory can

have only one color. Aggregating these results gives

∑
i

((
∑

j
Ti, j

)
−1

)2

.

The second type of QUBO is the one involving borders. To

ensure that the two adjacent territories do not share a color,

we add a QUBO for each pair of territories i and k with a

common border. This QUBO is simply Ti, jTk, j, which has a

nonzero value—and is therefore not minimized—if and only if

both Ti, j and Tk, j are true (i.e., both have color j). Aggregating

all QUBOs of both types results in a QUBO expression of the

map-coloring problem.

Once again, to set up this problem as a QUBO we first

construct the problem in such a way that it would have been

trivial to create an NchooseK problem from it: one color per

territory must be true; and for each color, zero or one of a

pair of adjacent territories must have that color. We noted

the two requirements and created a different type of QUBOs

to handle each, just as we did with NchooseK constraints in

Section III-B.

These examples indicate that expressing a problem with

NchooseK tends to be simpler than expressing the same

problem as a QUBO. In fact, establishing NchooseK-like

constraints is sometimes the first step in constructing a QUBO.

An NchooseK problem also tends to be easier to interpret

than the corresponding QUBO problem because the need for

ancillary variables is hidden from the programmer and because

NchooseK constraints directly express the number of variables

that must be true rather than indirectly encoding such tallies

in terms of sums of squared differences, sums of sums, and

other formulations.

VI. RESULTS

We ran a variety of exact-cover and map-coloring problems

on one of IBM’s gate-based machines, ibmq guadalupe, and

one of D-Wave’s annealing machines, Advantage 1.1. We

observed the correct final results each time we ran any of

the problems. In the case of the IBM machine, running the

problem includes running multiple circuits 1024 times each,

calculating a single result. The D-Wave machine runs a single

circuit multiple times, in this case 100. The result which

occurs most often is returned, but the energy for each result

is calculated. This can be inspected to find multiple correct

solutions if such exist, or to check to ensure that the most

common result also has the lowest energy. In the map-coloring

problems, the D-Wave machine found multiple correct results

while QAOA on the IBM machine terminates after a single

result is found.

Some results on the gate-based machine are shown in

Table III. QAOA alternates submitting a job to the quantum

computer and feeding the measured output to a classical opti-

mizer, which prepares the next job to submit to the quantum

computer. The process repeats until a convergence criterion is

met. We found no significant trend in the relationship between

Type Vars Cons Qubits Jobs Depth CNOTs

Exact 6 7 6 31 70 61
Exact 6 8 6 28 52 48
Exact 8 8 8 33 130 171
Exact 10 10 14 30 122 256
Map 8 6 8 31 90 112
Map 12 16 15 36 130 281
Map 16 20 16 33 168 403
Map 16 24 16 31 173 388

TABLE III: Problem setups and results on IBM’s

ibmq guadalupe 16-qubit gate-model machine. The table

indicates the problem type (exact cover/map coloring), the

number of variables of interest, the number of NchooseK

constraints, the number of qubits used for them, the number

of jobs run as part of the QAOA, the depth of the circuits

within the QAOA, and the number of CNOT gates per circuit.

Each job comprised 1024 shots (quantum circuit executions).

the complexity of the problem and the number of individual

jobs needed to be run on IBM’s machine until convergence

was reached, not even when the machine was using all 16 of

its qubits.

The data plotted in Figure 4 shows how the circuit depth

of the circuits and the number of CNOT gates used both rise

as the number of NchooseK variables increases. The circuit

Fig. 4: Graph of the circuit depth (+) and the number of CNOT

gates (×) as a function of the number of NchooseK variables

in the program.

depth—the number of time steps needed for the circuit to

complete—is an important metric because it indicates how

long the qubits will need to remain active, which correlates

with both execution time and susceptibility to errors. The

CNOT count is important because (two-qubit) CNOT gates are

an order of magnitude more susceptible to errors than single-

qubit gates. For these results, we considered every job except

the last in a QAOA iteration sequence. All jobs but the last

one are run to find the circuit parameters (rotational angles)

that minimize the corresponding QUBO, and they make up
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the bulk of the work. The final job represents only a post-

processing step.

The increases in depth and CNOT count indicate an increase

in complexity. Not only do qubits likely need to interact via

CNOTs if they share any constraints, but they also likely

need to be swapped in order to affect each other due to the

hardware interconnect topology. These swaps are constructed

from CNOT gates, also contributing to the increase in CNOT

count. Any increase in gate count has the potential to increase

the circuit depth; CNOTs are especially likely to do so, as

gates which affect multiple qubits can force some qubits to

wait for others to finish other operations before interacting.

Results for the quantum annealer are shown in Table IV.

Both the IBM and D-Wave quantum computers provide only

Type Vars Cons Correct (%) Qubits

Exact 6 7 57 7
Exact 6 8 71 7
Exact 8 8 53 12
Exact 10 10 44 16
Map 8 6 100 8
Map 12 16 91 17
Map 16 20 91 22
Map 16 24 70 25

TABLE IV: Problem set-ups and results on a D-Wave Ad-

vantage quantum-annealing machine. The tables indicates the

problem type (exact cover/map coloring), the number of vari-

ables of interest, the number of NchooseK constraints, the

percentage of runs which returned the correct results, and the

number of qubits used. Each problem was run 100 times. In

all cases, the statistical mode corresponds to the correct result,

even when the overall percentage of runs returning the correct

result was relatively small.

sparse qubit connectivity. Entangling qubits that are non-

adjacent in the hardware topology requires extra time on

a gate-based quantum computer such as IBM’s, which is

achieved via a sequences of swap operations. However, it

requires extra space on an annealing-based quantum computer

such as D-Wave’s, which comes in the form of “chaining”

multiple physical qubits into a logical qubit to increase ef-

fective connectivity. This effect is visible in Table IV as the

required number of qubits increases not only with the number

of NchooseK variables, as was the case with the gate-based

system, but also with the number of constraints, as seen in

particular in the final two rows of the table.

The map-coloring problems used in the final two rows

of the table both involve four territories and four colors.

In the first one, with 20 constraints, each territory shares a

border with two others, and they could be arranged in a ring.

The other is similar, but with one additional border added

between two of the territories. This increased connectivity of

the territories corresponds to increased connectivity needed

within the annealer, leading in turn to more qubits being used

to represent the problem.

Both the QAOA algorithm and quantum-annealing hardware

typically run each problem many times to gain statistical

validity. (Remember, quantum computation is fundamentally

stochastic.) While Qiskit’s QAOA implementation returns the

single best solution, the Ocean library returns a histogram of

solutions so that one may select a solution (or, if desired,

multiple solutions) to consider. If the problem is correctly

formulated, the minimal-energy solution should (within sta-

tistical error) be the correct one, but this may not be the most

frequently occurring solution. When we inspect the success

probability of running our eight problems (Figure 5), an

interesting trend appears. Taken individually, the accuracy of

the different problems falls when the number of qubits used in-

creases, but the first-order effect is the problem type. The best

exact-cover problem observes a worse success probability—by

a full percentage point—than the worst map-coloring problem,

despite the fact that the exact-cover problems use significantly

fewer qubits than the map-coloring ones. One possible ex-

planation of this is that the exact cover problems had, in

these examples, exactly one right answer. The map coloring

problems, on the other hand, always have multiple solutions

simply by virtue of color permutations, to say nothing of

different correct arrangements of the colors.

Fig. 5: The trend in accuracy on D-Wave systems with

respect to the number of qubits used. Overall, the exact-cover

problems (+) observe a lower success probability than the

map-coloring problems (×).

VII. FUTURE WORK

Work is currently being done to expand the capabilities of

the NchooseK model to enable it to tackle a greater variety

of optimization problems. On the evaluation side, we are also

planning experiments to investigate the results of NchooseK

problems more fully, notably measuring the time spent on both

the quantum computation proper and the time spent in classical

problem preparation and, for QAOA, optimization.

We are also interested in finding new ways to prepare

NchooseK problems for gate-based machines. One approach

is to prepare custom mixers for QAOA [14], rather than using

Qiskit’s defaults.
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Once we have the framework of NchooseK more solidly in

place, we may look into expanding into more general ways of

programming, such as a more general ILP interface.

VIII. CONCLUSIONS

NchooseK is a constraint-based programming model de-

signed to be sufficiently powerful to express a variety of

problems while working at a level of abstraction that enables

the same program to run on classical computers, quantum

annealers, and circuit-based quantum computers. Although

not a typical programming model, NchooseK has a classical

semantics in that programmers work with bits (Z2) rather than

qubits (C2) and do not have to reason about quantum effects

such as superpositioning and entanglement, e.g., via unitary

matrix transformations. Our intention is that NchooseK’s

simple semantics will help non-experts exploit the power of

quantum computing.

NchooseK as we have implemented it converts each problem

to a QUBO, which is subsequently converted to a form

more suitable for the target architecture. QUBOs make a

suitable intermediate representation because they are supported

natively by quantum annealers, can be converted to QAOA

circuits for circuit-based machines, and can be solved using

a variety of classical solver types, such as an SMT solver.

While programs are converted internally to QUBOs, it is often

easier for a programmer to write NchooseK programs than it

is to calculate QUBO coefficients, and NchooseK problems

are more human-readable than QUBOs.
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