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Abstract

Comparing with natural imaging datasets used in transfer learning, the effects of med-
ical pre-training datasets are underexplored. In this study, we carry out transfer learning
pre-training dataset effect analysis in breast cancer imaging by evaluating three popular
deep neural networks and one patch-based convolutional neural network on three target
datasets under different fine-tuning configurations. Through a series of comparisons, we
conclude that the pre-training dataset, DDSM, is effective on two other mammogram
datasets. However, it is ineffective on an ultrasound dataset. What is more, fine-tuning
may mask the inefficacy of a pre-training dataset. In addition, the efficacy/inefficacy of
DDSM on the target datasets is corroborated by a representational analysis. At last, we
show that hybrid transfer learning cannot mitigate the masking effect of fine-tuning.

1 Introduction

Algorithms based on Deep Learning have achieved unprecedented successes in many fields,
such as natural image classification [11], natural language processing [2] and protein structure
prediction [8] etc., where a large amount of labeled data are available. While for other fields,
such as medical imaging analysis, such kind of labeled images are scarce. To overcome this
challenge, transfer learning is resorted to pre-train the Deep Learning based algorithms with
an existing source dataset (e.g. ImageNet), then fine-tune them on the target dataset.

Though the approach becomes popular in medical imaging analysis, a study [15] on un-
derstanding transfer learning for medical imaging reaches a starkly different conclusion that
transfer learning pre-trained with ImageNet offers little benefit to performance. Other studies
[4, 10] demonstrate that transfer learning does not necessarily result in performance improve-
ments and pre-trained features may be less general than previously thought. However, these
studies are based on the natural image datasets. If we utilize a medical imaging dataset as the
pre-training dataset, can transfer learning improves the performance on the target dataset? In
addition, fine-tuning is an integral part of transfer learning when the source dataset and target
dataset are from different domains. If they are from similar domains, what is the effect of fine-
tuning on performance? To answer these two questions, we carry out a study on understanding
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transfer learning effect on breast cancer imaging analysis because breast cancer is the most
commonly diagnosed cancer globally [22]. Early diagnosis can save million of lives.

The contributions of this paper may be summarized as follow.
First, to the best of our knowledge, the paper is the first one to study the transfer learning

effect of medical pre-training datasets. Other studies focus on the natural image datasets.
Second, the paper initializes decoupling the effects of medical pre-training datasets and fine-

tuning, demonstrates their effects on different target datasets and illustrates that fine-tuning
may mask the inefficacy of a pre-training dataset.

2 Datasets

We focus on mammogram and ultrasound datasets in this study and it is our intention to
not include MRI and histopathology imaging datasets because these two technologies are not
used to screen breast cancer. Especially for histopathology imaging, which is used as the gold
standard for breast cancer diagnosis. Current level of machine learning may not be ready for
that yet.

Digital Database for Screening Mammography (DDSM) [12] contains 10,239 breast cancer
mammography exam images from 2,620 cases, and it is the dataset used in this study to pre-
train the models. The images are primarily divided into three classes: normal, benign and
malignant and later the normal and benign classes are combined into one class when training
the models. These images are in various dimensions, roughly around 2,500x4,500, stored in the
lossless JPEG format.

Inbreast [13] is the second dataset used, and it has a total of 410 images classified as benign
or malignant. The images are in either 3,328 x 4,084 or 2,560 x 3,328 resolution and saved in
the DICOM format.

The third dataset used in this study is the MIAS dataset [21], breast cancer mammogram
digital images by the Mammographic Image Analysis Society. The dataset is divided into three
main classes: normal, benign and malignant and has a total of 322 images in 1,024x1,024
resolution. Similar to DDSM, normal and benign images are combined into one class when
further processing.

One popular ultrasound breast cancer image dataset [17] is used as the fourth dataset in
this study, and it contains 250 total images divided into 100 benign and 150 malignant images.
The images are in relatively low resolution compared to the mammogram images and the image
sizes are approximately 150x150 pixels.

3 Models and Results

In this study, we select three popular neural network architectures and one patch-based con-
volutional neural network (CNN) to evaluate their performance on three target breast cancer
imaging datasets (Inbreast, MIAS and Ultrasound) when (1) training from random initial-
ization, (2) performing transfer learning with ImageNet as their pre-training dataset and (3)
performing transfer learning with DDSM as their pre-training datasets. To examine whether
the pre-training dataset, DDSM, offers noticeable benefits to target datasets through parameter
sharing, experiments without fine-tuning on target datasets are carried out while experiments
with fine-tuning are used for comparison. The reason of excluding fine-tuning is to solely
investigate the effect of the pre-training dataset. To further study the effect of fine-tuning
on transfer learning, two fine-tuning configurations, FT 0.1 and FT 0.2, are assessed for each
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target dataset. FT 0.1 represents stratified sampling 10% of a target dataset for fine-tuning
and FT 0.2 represents stratified sampling 20% of a target dataset for fine-tuning. To evaluate
the classification performance of these models, we used AUC score(Area Underneath the ROC
Curve) as the performance metric. It is also used in the previous study on natural imaging
datasets [15].

3.1 Description of Models

VGG-16 [20], Resnet-50 [5] and Inception-v3 [23] are the selected neural network architectures
used in this study because they are prevalent in existing medical imaging transfer learning
studies [15, 7, 6, 1, 16, 3, 9, 24]. A patch-based CNN [18], which won the Digital Mammogra-
phy DREAM Challenge in 2017, is selected as a representative of patch-based models in this
study. The patch-based CNN is an end-to-end model, which includes a patch classifier based
on VGG/Resnet architectures as a feature extractor. To construct this model, first the patch
classifier is trained with regions of interest containing lesion annotation information. Then
customized fully connection layers are appended to the trained patch classifier, which results
in an image-based whole model. To accommodate inputs of different resolutions (patch VS
image), all fully connection layers are implemented as convolutional operations. At last, the
whole model is trained with medical images. As the patch classifier and the whole model can be
trained independently on different datasets, it circumvents the requirement of lesion annotation
information for all training medical images. This is a big advantage because not all medical
datasets contain lesion annotation information and obtaining medical annotations is laborious
and expensive.

3.2 Performance Evaluation of Transfer Learning

First, we perform experiments on the Inbreast dataset for each selected model. Each model is
randomly initialized, pre-trained with ImageNet or pre-trained with DDSM and then evaluated
under three fine-tuning configurations: no fine-tuning, fine-tuning with stratified 10% target
data and fine-tuning with stratified 20% target data. It is impossible to directly run pre-
trained models with ImageNet on medical datasets without fine-tuning. Because pre-trained
models with ImageNet give predictions on 1,000 labels instead of 2 labels here. So Not Apply
(NA) is used for No FT performance for these models. In addition, Path-based CNN model
is not designed to train using ImageNet dataset. Table 1 shows that when these models are
randomly initialized without fine-tuning, VGG-16 and Resnet-50 perform poorly and Inception-
v3 and the patch-based CNN perform slightly better than random guessing. However, all
models perform significantly much better (> 0.2 gains on AUC) if they are pre-trained with
DDSM. When these models are randomly initialized and then fine-tuned with 10% or 20%
of the Inbreast dataset, VGG-16, Resnet-50 and Inception-v3 have significant performance
gains (> 0.22) and the patch-based CNN also has a performance gain of about 0.1 on AUC.
ImageNet pretrained models fine-tuned show similar performance as random initialized model
fine-tuned. However, if they are pre-trained with DDSM then fine-tuned with 10% or 20% of
the Inbreast dataset, their performance gains are comparatively small (< 0.07 except VGG-16
fine-tuned with 20% of the Inbreast dataset). Therefore, we can conclude that (1) DDSM can
significantly improve the classification performance on the Inbreast dataset through transfer
learning, which is also demonstrated in previous research [19], (2) fine-tuning can mask the
inefficacy of random initialization and (3) when the pre-training data is effective, fine-tuning
plays a minor role on performance.
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Table 1: Transfer learning classification performance (AUC) on the Inbreast dataset

Algorithm Pre-training No FT FT 0.1 FT 0.2
VGG-16 Random Ini 0.340 0.763 0.784

ImageNet NA 0.760 0.770
DDSM 0.778 0.835 0.872

Resnet-50 Random Ini 0.244 0.776 0.802
ImageNet NA 0.790 0.809
DDSM 0.833 0.870 0.882

Inception-v3 Random Ini 0.583 0.812 0.816
ImageNet NA 0.806 0.824
DDSM 0.794 0.825 0.839

Patch-based CNN [18] Random Ini 0.512 0.605 0.636
DDSM 0.804 0.835 0.871

Second, we perform the same experiments on the MIAS dataset. In Table 2, similar patterns
can be observed and we can reach the same conclusions. DDSM is an effective transfer
learning pre-training dataset on the MIAS dataset. Fine-tuning masks the poor performance
of random initialization, while plays a trivial role on classification performance when the pre-
training dataset is effective.

Table 2: Transfer learning classification performance (AUC) on the MIAS dataset

Algorithm Pre-training No FT FT 0.1 FT 0.2
VGG-16 Random Ini 0.513 0.850 0.856

ImageNet NA 0.850 0.846
DDSM 0.863 0.862 0.867

Resnet-50 Random Ini 0.401 0.852 0.851
ImageNet NA 0.846 0.850
DDSM 0.872 0.881 0.880

Inception-v3 Random Ini 0.181 0.861 0.860
ImageNet NA 0.845 0.853
DDSM 0.858 0.861 0.866

Patch-based CNN [18] Random Ini 0.473 0.558 0.568
DDSM 0.771 0.776 0.760

At last, we perform the same experiments on the Ultrasound dataset. In Table 3, with-
out fine-tuning, no matter these models are randomly initialized or pre-trained with DDSM,
their performance is not impressive. However, when they are fine-tuned, their performance is
improved tremendously except when Inception-v3 is randomly initialized or pre-trained with
ImageNet and fine-tuned with 10% of data. Therefore, we can conclude that (1) DDSM is
not effective on improving classification performance on the Ultrasound data partly due to dif-
ferent data modalities or resolutions and (2) fine-tuning can mask the inefficacy of pre-training
datasets.
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Table 3: Transfer learning classification performance (AUC) on the ultrasound dataset

Algorithm Pre-training No FT FT 0.1 FT 0.2
VGG-16 Random Ini 0.671 0.932 0.977

ImageNet NA 0.951 0.957
DDSM 0.405 0.963 0.984

Resnet-50 Random Ini 0.516 0.844 0.954
ImageNet NA 0.803 0.933
DDSM 0.388 0.904 0.965

Inception-v3 Random Ini 0.632 0.672 0.842
ImageNet NA 0.687 0.817
DDSM 0.495 0.870 0.978

Patch-based CNN [18] Random Ini 0.526 0.951 0.982
DDSM 0.769 0.954 0.983

3.3 Representational Analysis of DDSM

To further investigate the effect of the pre-training dataset, DDSM, on the target datasets,
we compare the hidden representations learned by Resnet-50 on different target datasets using
(SV)CCA [14], which is short for (Singular Vector) Canonical Correlation Analysis. The tool
collects the ordered collection of outputs of neurons on a sequence of inputs and obtains neuron
activation vectors. Given the activation vectors for two sets of neurons (for example, the same
neurons under two conditions), CCA seeks linear combinations of each that are as correlated
as possible.

First, we divide each target dataset into two stratified groups, one with 20% of data and
the other containing 80% of data. We use SV(CCA) to compare the hidden representations of
the following layers, conv1, block1, block2, block3 and block4 under two conditions, before and
after training on target datasets. In the first condition, Resnet-50 is pre-trained with DDSM
and then fed with the 80% of a target dataset. In the second condition, Resnet-50 is first
pre-trained with DDSM, then fine-tuned with the 20% of a target dataset, and at last fed with
the left 80% of the target dataset.

Figure 1 shows that the CCA similarities on the Inbreast and MIAS datasets are on decreas-
ing trends, while the CCA similarities on the ultrasound dataset are on an increasing trend. For
the Inbreast and MIAS datasets, CCA similarities are high, which means the hidden representa-
tions learned from DDSM resemble the hidden representations learned from the Inbreast/MIAS
dataset. What is more, the low layers (close to the model input) have higher CCA similarities
than the top layers (close to the model output), which corresponds to the assumption of transfer
learning. Low level features are similar between tasks therefore can be transferred and high
level features are more task-specific. For the Ultrasound dataset, CCA similarities are very
low, which means the hidden representations learned from DDSM are quite different from the
hidden representations learned from the Ultrasound dataset. Therefore, DDSM is an effective
pre-training dataset for the Inbreast and MIAS datasets. However, it is not an effective one for
the Ultrasound dataset.
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Figure 1: Resnet-50 per-layer CCA similarities before and after training on target datasets.

3.4 Hybrid Transfer Learning Performance Evaluation

Previous research [15] recommends a hybrid transfer learning approach, reusing pre-trained
weights up to e.g. block2, redesigning the top of the network (which has the bulk of the
parameters) to be more lightweight, initializing these layers randomly. We perform the hybrid
approach by reusing pre-trained weights up to block2, evaluate its performance under two fine-
tuning configurations, FT 0.1 and FT 0.2, and compare with the results of transfer learning
that reuses all pre-trained weights. Table 4 shows that hybrid transfer learning and regular
transfer learning obtain similar performance. Therefore, the conclusions drew in paragraphs of
3.2 are also applied to hybrid transfer learning. DDSM is an effective pre-training dataset for
the Inbreast and MIAS datasets and it is not adequate for the Ultrasound dataset. Fine-tuning
can mask the inefficacy of random initialization when hybrid transfer learning is used.

Table 4: Comparing transfer learning reusing all weights and hybrid transfer learning (All VS
Hybrid)

Dataset Pre-training FT 0.1 FT 0.2
MIAS Random Ini 0.852 VS 0.849 0.851 VS 0.845

ImageNet 0.846 VS 0.853 0.850 VS 0.847
DDSM 0.881 VS 0.883 0.880 VS 0.892

Inbreast Random Ini 0.776 VS 0.785 0.802 VS 0.803
ImageNet 0.790 VS 0.772 0.809 VS 0.817
DDSM 0.870 VS 0.871 0.882 VS 0.877

Ultrasound Random Ini 0.844 VS 0.930 0.954 VS 0.982
ImageNet 0.803 VS 0.911 0.933 VS 0.986
DDSM 0.904 VS 0.936 0.965 VS 0.970

4 Conclusion

In this study, we investigate the effects of a transfer leaning pre-training dataset, DDSM, on
two mammogram image datasets and one ultrasound image dataset with three popular neural
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network architectures and one patch-based CNN. For each model, experiments of random ini-
tialization, pre-trained with ImageNet and pre-trained with DDSM are carried out under three
configurations of fine-tuning to decouple the compounding effect of the pre-training dataset and
fine-tuning in transfer learning. By comparing these experiment results, we draw the conclu-
sions that (1) DDSM is an effective pre-training dataset for the Inbreast and MIAS datasets,
(2) DDSM is not a good pre-training dataset for the ultrasound dataset, (3) fine-tuning can
mask the inefficacy of a pre-training dataset and give false impression of high classification
performance. The efficacy/inefficacy of DDSM is also demonstrated on these target datasets
from the perspective of representational analysis, in which increasing and decreasing trends
of per-layer CCA similarites are indicators. At last, we display that hybrid transfer learning
cannot mitigate the masking effect of fine-tuning.

The study inspects the effects of a transfer learning pre-training dataset in an empirical
approach and a principled method to systematically study the problem will be appreciated and
give insights on the generalization of transfer learning performance. In addition, excluding fine-
tuning from pre-training datasets to study their effects separately is not possible for natural
image datasets in medical imaging applications.
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[3] Carlos A Ferreira, Tânia Melo, Patrick Sousa, Maria Inês Meyer, Elham Shakibapour, Pedro
Costa, and Aurélio Campilho. Classification of breast cancer histology images through transfer
learning using a pre-trained inception resnet v2. In International Conference Image Analysis and
Recognition, pages 763–770. Springer, 2018.

[4] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4918–4927, 2019.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[6] Ahmed Hijab, Muhammad A Rushdi, Mohammed M Gomaa, and Ayman Eldeib. Breast cancer
classification in ultrasound images using transfer learning. In 2019 Fifth International Conference
on Advances in Biomedical Engineering (ICABME), pages 1–4. IEEE, 2019.

[7] Marcia Hon and Naimul Mefraz Khan. Towards alzheimer’s disease classification through transfer
learning. In 2017 IEEE International conference on bioinformatics and biomedicine (BIBM), pages
1166–1169. IEEE, 2017.

7



Transfer Learning Pre-training Dataset Effect Analysis for Breast Cancer Imaging Bulathsinghalage and Liu

[8] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna Potapenko, et al. Highly accurate
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