Experiences with Porting the FLASH Code to Ookami, an HPE
Apollo 80 A64FX Platform

Catherine Feldman
catherine.feldman@stonybrook.edu
Institute for Advanced Computational
Science, Stony Brook University
Stony Brook, NY, USA

Benjamin Michalowicz
michalowicz.2@osu.edu
The Ohio State University
Columbus, OH, USA

Eva Siegmann
Tony Curtis
Alan C. Calder

Robert J. Harrison
eva.siegmann@stonybrook.edu
anthony.curtis@stonybrook.edu

alan.calder@stonybrook.edu
robert.harrison@stonybrook.edu
Institute for Advanced Computational
Science, Stony Brook University
Stony Brook, NY, USA

Figure 1: Density distribution from a FLASH simulation showing a deflagration developing inside a white dwarf.

ABSTRACT

We present initial experiences with running the community sim-
ulation code FLASH, developed at the University of Chicago for
multi-scale multi-physics applications, on Ookami, a technology
testbed featuring the A64FX processor developed by Fujitsu. Our
effort focused largely on running FLASH “right out of the box" to
see which combinations of compilers and software implementa-
tions (e.g. MPI) allowed the code to run with minimal modification.
FLASH was one application in a larger effort to deploy Ookami; it
served as a test for different versions of newly installed software,
and as a cornerstone for the FAQ page of the Ookami website.

We report on our results with different compilers and other
software, along with our initial scaling results and attempts to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPCAsia 2022 Workshop, January 11-14, 2022, Virtual Event, Japan

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9564-9/22/01...$15.00
https://doi.org/10.1145/3503470.3503478

utilize the A64FX’s SVE instructions and NUMA architecture. We
found that FLASH readily ran with different compilers and MPI
implementations, and showed the expected good scaling with no
turning. However, more work must be done to fully take advantage
of the A64FX’s architectural features and produce a significant
speedup for FLASH on Ookami.

CCS CONCEPTS

+ General and reference; - Hardware; - Applied computing —
Physical sciences and engineering; Astronomy;

KEYWORDS

high-performance computing, A64FX, porting software, astro-
physics

ACM Reference Format:

Catherine Feldman, Benjamin Michalowicz, Eva Siegmann, Tony Curtis,
Alan C. Calder, and Robert J. Harrison. 2022. Experiences with Porting the
FLASH Code to Ookami, an HPE Apollo 80 A64FX Platform. In International
Conference on High Performance Computing in Asia-Pacific Region Workshops
(HPCAsia 2022 Workshop), January 11-14, 2022, Virtual Event, Japan. ACM,
New York, NY, USA, 6 pages. https://doi.org/lo.l145/3503470.3503478

HPCAsia 2022 Workshop, January 11-14, 2022, Virtual Event, Japan

1 INTRODUCTION

1.1 The Ookami Testbed

Ookami [3] is a testbed supported by the United States National Sci-
ence Foundation (NSF) and run by teams at Stony Brook University
and the University at Buffalo that provide access to state-of-the-art
scientific computing technology. The system has 174 A64FX Fu-
jitsu compute nodes, each with 32GB high-bandwidth memory and
a 512GB SSD. These processors promise to combine familiar and
successful programming models with very high performance for
a wide range of applications [16]. They provide 2—-4 times better
performance on memory-intensive applications.

Ookami is the first open machine outside of Japan that uses
the A64FX processor, the same processor deployed in the world’s
fastest machine: Fugaku at the RIKEN Center for Computational
Science in Japan [25]. Fugaku is not only the number one in the
Top-500 ranking, but also tops the charts in the major benchmarks
HPCG, HPL-AI and Graph-500 [24], and ranks in the top 10 on the
Green 500 [28]. The A64FX promises to have high performance and
reliability as well as a good performance to power ratio. The A64FX
700 series, used in Ookami, consists of four core memory groups
(CMGs) each with 12 cores, 64KB L1 cache, and 8MB L2 cache
shared between the cores and runs at 1.8 GHz. The processor uses
the ARMv8.2—-A Scalable Vector Extension (SVE) SIMD instruction
set with 512 bit vector implementation, allowing for vector lengths
anywhere from 128-2048 bits and enabling vector length agnostic
programming,.

The aim of the Ookami project is to explore this technology and
demonstrate its potential. For this purpose, various codes are being
ported and tuned on the machine, including our application, the
FLASH code. More details on the system can be found in the PEARC
2021 paper "Ookami: Deployment and Initial Experiences" [4].

1.2 The FLASH Code

The FLASH code is a component-based scientific simulation soft-
ware package with a wide user base addressing a variety of multi-
scale, multi-physics applications [10-12, 15]. FLASH was developed
at the Flash Center for Computational Science at the University of
Chicago and has a long history of deployment on advanced com-
puting platforms. Originally funded by the Department of Energy’s
Accelerated Strategic Computing Initiative [22], the Flash Center
had access to unclassified versions or partitions of the platforms
installed at the Defense Program National Laboratories as they be-
came available [26]. Highlights include winning the SC2000 Gordon
Bell Prize, Special Category, for reactive fluid flow simulations us-
ing AMR that achieved 238 GFlops on 6420 processors of ASCI Red
at LANL [5], simulating weakly compressible stirred-turbulence at
an unprecedented resolution on the IBM BG/L machine commis-
sioned at LLNL in 2005 when it was briefly available for unclassified
use [1, 13], and serving as one of the formal acceptance tests for
Intrepid, the IBM BG/P, and MIRA, the IBM BG/Q machines at the
Argonne Leadership Computing Facility [12].

The FLASH code was originally written to address astrophysical
problems involving thermonuclear flashes, stellar explosions pow-
ered by a thermonuclear runaway occurring on the surface or in
the interiors of compact stars. FLASH continues to be developed
both for high-energy-density physics and more general problems as

Feldman et al.

FLASH-X, a new code derived from FLASH with a completely new
infrastructure, being funded by the U.S. Department of Energy’s
Exascale Computing Project [23].

FLASH uses Adaptive Mesh Refinement (AMR) to address prob-
lems with a wide range of physical and temporal scales by plac-
ing higher resolution only where needed. The current release of
FLASH (version 4.6.2) implements AMR using the PARAMESH
library [20, 21], which uses a block-structured mesh. FLASH is par-
allelized primarily through MPI, although some solvers have been
modified to take advantage of threaded approaches to paralleliza-
tion [12] and development toward a more general design for better
allowing threading continues [7-9].

Our application is an explosive astrophysical event known as a
thermonuclear/Type Ia supernova, events thought to result from
a thermonuclear explosion disrupting a compact star known as
a white dwarf. Our study investigates one variation, a very dim
event known as a Type Iax that is thought to be produced by a pure
deflagration (subsonic burning front) occurring in a special “hybrid"
white dwarf [14, 19]. The vast disparity between the radius of the
white dwarf (~ 10° cm) and the width of the laminar nuclear flame
at high densities (< 1 cm) presents a significant challenge because
even with many orders of AMR, it is not possible to resolve the
physical flame in a whole-star simulation. Modeling these events
thus necessitates the use of a model flame. The extended version
of FLASH we use propagates an artificially broadened flame with
an advection-diffusion-reaction (ADR) scheme [31] that propagates
reaction progress variables describing the stages of the flame. Flame
speeds are from previously-calculated tabular results [6, 27] and
also include enhancement to the burning rate from unresolved
buoyancy and background turbulence [17, 18, 29]. The results we
describe here were for preliminary two-dimensional simulations
allowing for a relatively inexpensive exploration of both the Ookami
platform and the parameter space of the astrophysics problem.

2 METHODS

Using our supernova simulation as a test problem, our first task
was to identify the prerequisites of FLASH, e.g. MPI and HDF5,
and determine how those are accessed and configured on Ookami.
We tested combinations of compilers and MPI implementations to
see if FLASH could be ported to Ookami and which combination
produced the best performance.

Both the GCC 10.3.0 and ARM 21.0 compilers have flags that
allow users to specifically target the A64FX processor. SVE can be
enabled by adding the -03 flag, which enables loop optimization
options that are necessary for SVE instructions, and -mcpu=a64fx,
which tells the compiler to use specific hardware features of the
specified architecture, e.g., SVE, gather/scatter, and fast partial dot
product. The Cray compilers, on the other hand, have separate
module files for choosing between non-SVE and SVE instructions.
Loading the CPE module on Ookami loads the A64FX-targeted Cray
compiler and dependencies, which enables SVE instructions au-
tomatically. To compile without including SVE instructions, we
instead load the CPE-nosve module, which does not target the
A64FX hardware, and generates ARM-Neon code. These options
are summarized below in Table 1.

Experiences with Porting the FLASH Code to Ookami

HPCAsia 2022 Workshop, January 11-14, 2022, Virtual Event, Japan

Table 1: Summary of compilers, compiler flags, MPI implementations, and additional flags required to generate SVE instruc-
tions with the FLASH code. Compiler flags were chosen so that reals were promoted to double-precision, doubles were kept
at double-precision, and integers remained at single precision, options which are necessary for FLASH.

Compiler Compiler Flags MPI Implementation Additional SVE Flags
GCC 10.3.0 -fdefault-real-8 MVAPICH 2.3.5 -03 -mcpu=a64fx
-Wuninitialized -fdefault-double-8 Open-MPI 4.0.5
-fallow-argument-mismatch
Cray 10.0.3 -03 -h vectors3 MVAPICH 2.3.5 Load the Cray 10.0.1
-s real64 -s integer32 SVE module
ARM 21.0 -r8 -armpl MVAPICH 2.3.5 -03 -mcpu=ab4fx

Open-MPI 4.0.5

Note that this table reflects the state of software installations on
Ookami at the time when experiments were conducted.

The memory per core is indirectly tuned by setting the maximum
number of grid blocks that can be allocated per core. Due to the
relatively small 32 GB of memory per node, it was necessary to
adjust this from the 10,000 blocks per core that we use on Stony
Brook’s Intel-based cluster, SeaWulf [30], to 2,500 on Ookami. The
GCC compiler proved to be the easiest to use and the least sensitive
to memory constraints. Running with too high a setting of blocks
per core produced incredibly slow runs with the GCC compiler, but
simply crashed with the Cray and ARM compilers.

After fitting our problem into memory, we performed runtime
comparisons using the available compilers and MPI implementa-
tions, compared performance for different MPI bindings and layouts,
performed a strong scaling study, profiled our code, and looked
into the challenge of introducing SVE instructions into FLASH. To
check for accuracy, the final integrated quantities of our simulation
(mass, element yields, energy, etc.) were compared to those of an
initial run, to ensure that any changes we made did not affect the
results of the simulation.

3 RESULTS

3.1 Compiler Comparison

Figure 2 compares the runtime of our supernova simulation be-
tween the compilers described in Table 1. Our simulation was run
on 5 nodes at full subscription (48 cores per node) for 4 seconds of
simulation time. The Cray compiler with enabled SVE instructions
produced the fastest runtime, with the GCC compiler producing
the second-fastest running code. The ARM compiler produced runs
almost three times as long as the others. In general, runs using
MVAPICH are slightly faster. All three compilers successfully pro-
duced an executable with SVE instructions, however the difference
in runtime is not significant as we would hope. This indicates that
our code must be manually tuned to include SVE instructions at
the bottlenecks.

3.2 Strong Scaling Study

We performed a strong scaling study of our supernova simulation
using the GCC 10.3.0 compiler with GCC-compiled MVAPICH 2.3.5.
We ran our problem for 4 seconds of simulation time on 12 and 24
cores of a single node and 1-10 nodes at full subscription (48 cores
per node).

As shown in Figure 3, increasing the number of cores decreases
the total simulation time as expected. However, this speedup tapers
off. From runs using 12 to 96 cores, doubling the number of cores
cuts runtime in half, demonstrating almost perfect scaling. Increas-
ing from 12 to 96 cores decreases the runtime by 82.4%. Adding
more cores after this point (up to 480) decreases the runtime by a
further 10%, showing that each subsequent increase in the number
of cores contributes less and less to this percentage.

While increasing the number of cores used, the number of grid
blocks handled by each core decreases. While this decreases compu-
tation time, we will see an increase in communication. However, we
do not see turning in our scaling graph, indicating that the decrease
in computation time still outweighs the increase in communication
time.

An important note is that increasing the number of cores used in-
creases the time needed to write to an output file. However, FLASH
allows adjusting the cadence of its output files, and we can take
care to only save what we need.

3.3 MPI binding and placement

Because FLASH primarily uses point-to-point communication
through MPI_Send and MPI_Recv calls, the way in which MPI pro-
cessing elements (PE) are placed influences communication over-
head and runtime. When possible, specific mapping flags were used
at runtime to control PE placement—on the A64FX, these can be
placed by core, by node, or by CMG, either in a cyclic (evenly fill
CMGs) or block (fill one CMG at a time) fashion. To test this, we
ran our supernova simulation with the GCC 10.3.0 compiler on 4
nodes and 96 cores, with different placements of 24 cores per node.

Table 2: Runtime of our simulation for different MPI rank
placements.

MPI Nodes Cores MPI Runtime
Implementation Placement (hours)
MVAPICH 2.3.5 4 96 Block 2.79

4 96 Cyclic 2.80
Open-MPI 4.1.0 4 96 Block 2.86

4 96 Cyclic 2.73
MVAPICH 2.3.5 2 96 Block 4.05

4 192 Block 2.65

HPCAsia 2022 Workshop, January 11-14, 2022, Virtual Event, Japan

Feldman et al.

= MVAPICH = Open-MPI

8
6
°
>
24
[
E
£ 2
)
x
0
Cray 10.03 CraySVE ~ ARM21.0+ GCC103.0 GCC10.3.0+
10.0.1 SVE SVE

Figure 2: Runtime comparison of our supernova simulation using the Cray, GCC, and ARM compilers, the two MPI implemen-

tations MVAPICH and Open-MPI, and SVE instructions.

Runtime (hours) e Avg Final Blocks/proc

5 1000
t
w20\
g \ 750
o \ 5
£15) 1 o
[1 <
e \ 500 <
*g' 10 \\ %
E B3
5 \\\ 250
‘—‘-o_
0 --‘———-o———o-——-o—-—o-———o———oO
0 100 200 300 400

Processors

Figure 3: Runtime vs number of cores on Ookami is shown in the solid orange line. Number of blocks per core is shown in the
dotted blue line. The simulation has not been optimized - this serves as a demonstration that parallelism is feasible.

Initial results, shown in Table 2, show that the runs using Open-
MPI show a greater difference due to a change in mapping than
those using MVAPICH. It is also interesting to note that using 96
cores of 4 partially-filled nodes is much faster than using 96 cores of
2 completely filled nodes, and also only slightly slower than using
all of the 192 cores on 4 full nodes. More study is needed in order
to fully optimize communication pathways.

3.4 Profiling and attempt at using SVE
We profiled our code to find bottlenecks that could potentially be

addressed with the use of SVE instructions through ARM MAP [2].

We found that our code spends half of its time in the hydrodynamics
routines, and within that, 20% of the total computation time is
spent calculating the equation of state (EOS) for each cell in a grid
block. This became our first spot to try and improve through SVE
instructions.

The vectorization of the EOS routine remains a work in progress.
The EOS implements the physics of the stellar plasma by calculat-
ing derived thermodynamic quantities from those evolved by the
hydrodynamics, e.g. temperature as a function of density and com-
position. Accordingly, the routine contains math functions, nested
if statements, tabular lookups, and calls to condition-checking and
1/O routines. The latter needed to be taken out of the loop as they
checked variables for physical significance and aborted the code
if necessary, an action that cannot be vectorized. As the GCC 10
compiler is unable to vectorize certain math functions including
exp and pow on its own, our code will have to either be linked
to the ARM performance libraries (-L<ARMPL_install_dir>/1ib
-lamath -larmpl_1p64 -1m) or use the Cray compiler to fully vec-
torize. We are working on rewriting the loop into a vectorizeable
form, an arduous process.

Experiences with Porting the FLASH Code to Ookami

Particles
Burn A&

Flame

Hydro

HPCAsia 2022 Workshop, January 11-14, 2022, Virtual Event, Japan

Grid Refine

Initialization
Timestep

e}

Figure 4: Runtime breakdown of our FLASH supernova simulation. Half of the time spent is within the hydrodynamics rou-

tines.

3.5 Comparison to SeaWulf

The SeaWulf cluster sports 328 Intel Xeon E5-2683v3 CPUs that
operate at 2.0 GHz and have 128 GB of DDR4 memory (16GB re-
served for the system). The system is configured with 2 CPUs per
node for a total of 24 cores per node. Our problem was compiled
on Seawulf with the GCC 10.2.0 compiler using MVAPICH 2.3.5,
and run for four seconds of simulation time on 10 nodes, for a total
of 240 cores. SeaWulf produced code that ran almost three times
as fast (0.77 hours) than that on Ookami using a similar compiler
and the same number of cores (2.3 hours). The difference in clock
speeds (1.8 GHz on Ookami; 2.0 GHz on SeaWulf) is not enough to
account for this difference, suggesting that FLASH must be tuned
to use the A64FX’s hardware features, especially HBM, to their full
potential.

4 SUMMARY

Optimizing the FLASH code for use on Ookami’s A64FX ar-
chitecture will allow us to achieve our science goal — a full
three-dimensional simulation of a Type Iax supernova. The two-
dimensional simulation used for this study showed us what im-
provements we need to make, and what areas require additional
study.

Without making any adjustments to the code, our FLASH super-
nova problem successfully compiled and ran with three different
compilers using two MPI implementations. Use of SVE requires fur-
ther experimentation, especially within the EOS routine that takes
up 20% of the total computation time. To vectorize this routine, we
will use what we have learned to tune the code, and test both the
easy-to-use GCC compiler with the ARM performance libraries as
well as the the Cray SVE compiler.

FLASH demonstrates strong scaling across nodes; however, as
more nodes are added, this speedup rate decreases. Our problem
also shows a sensitivity to how MPI PEs are mapped to the A64FX’s
CMGs. A closer examination of both FLASH’s communication pat-
tern and memory use will allow us to find the optimized MPI PE

mapping for both intra/inter-node communication, as well as tune
the code to take advantage of Ookami’s HBM. An advantage of
FLASH is that a run can be paused and then restarted on a different
number of nodes; this allows us to both increase the number of
nodes as the problem grows in size as the star explodes, and adjust
the mapping as needed throughout a run.

ACKNOWLEDGMENTS

Ookami is a computer technology testbed supported by the Na-
tional Science Foundation under grant OAC 1927880. The authors
are grateful to the Ookami team for their efforts procuring and
deploying the machine, and for the arduous process of setting up
the software used. The authors would like to thank Research Com-
puting and Cyberinfrastructure, and the Institute for Advanced
Computational Science, at Stony Brook University for access to the
high-performance SeaWulf cluster, which was made possible by a
$1.4M National Science Foundation grant (#1531492). The FLASH
code was developed in part by the DOE NNSA ASC- and DOE
Office of Science ASCR-supported Flash Center for Computational
Science at the University of Chicago. Work involving supernovae
research was supported in part by the US Department of Energy
under grant DE-FG02-87ER40317.

REFERENCES

[1] Katie Antypas, Alan C. Calder, Anshu Dubey, Robert T. Fisher, Murali K. Ganap-
athy, Brad Gallagher, Lynn B. Reid, Katherine Riley, Daniel J. Sheeler, and Noel T.
Taylor. 2006. Scientific Applications on the Massively Parallel BG/L Machine. In
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications & Conference on Real-Time Computing Systems and
Applications, PDPTA 2006, Las Vegas, Nevada, USA, June 26-29, 2006, Volume 1,
Hamid R. Arabnia (Ed.). CSREA Press, 292-298.

[2] ARM. 2021. ARM Forge/MAP. https://www.arm.com/products/development-
tools/server-and-hpc/forge/map

[3] IACS Stony Brook. 2020. Ookami. https://www.stonybrook.edu/commecms/
ookami/

[4] A.Burford, A. Calder, D. Carlson, B. Chapman, F. Coskun, T. Curtis, C. Feldman,
R. Harrison, Y. Kang, B. Michalowicz, E. Raut, E. Siegmann, D. Wood, R. DeLeon,
M. Jones, N. Simakov, J. White, and D. Oryspayev. 2021. Ookami: Deployment and
Initial Experiences. In Practice and Experience in Advanced Research Computing

HPCAsia 2022 Workshop, January 11-14, 2022, Virtual Event, Japan

(5

=

[11]

[12]

[13]

[14]

puy
&

[16

[17]

(18]

[19]

[20]

[21]

[22]

[23]

(Boston, MA, USA) (PEARC °21). Association for Computing Machinery, New
York, NY, USA, Article 9, 8 pages. https://doi.org/10.1145/3437359.3465578

A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, G. Henry, P. MacNeice, K. Olson,
P. Ricker, R. Rosner, F. X. Timmes, H. M. Tufo, J. W. Truran, and M. Zingale.
2000. High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh
Refinement on Thousands of Processors. In Proceedings of Supercomputing 2000.
http://sc2000.0rg

David A. Chamulak, Edward F. Brown, and Francis X. Timmes. 2007. The Lam-
inar Flame Speedup by *’Ne Enrichment in White Dwarf Supernovae. The
Astrophysical Journal 655 (February 2007), L93. arXiv:astro-ph/0612507

C. Daley, J. Bachan, S. Couch, A. Dubey, M. Fatenejad, B. Gallagher, D. Lee, and
K. Weide. 2012. Adding shared memory parallelism to FLASH for many-core
architectures. In TACC-Intel Highly Parallel Computing Symposium. Poster.

A. Dubey. 2019. Dynamic Resource Management, An Application Perspective.
https://project.inria.fr/resourcearbitration/program/. Invited talk, RADR, co-
located with IPDPS.

Anshu Dubey. 2019. Programming Abstractions for Orchestration of HPC Scien-
tific Computing. https://chapel-lang.org/CHIUW2019.html. Keynote, Chapel
User’s Group Meeting.

Anshu Dubey, Katie Antypas, Alan C. Calder, Chris Daley, Bruce Fryxell, J. Brad
Gallagher, Donald Q. Lamb, Dongwook Lee, Kevin Olson, Lynn B. Reid, Paul
Rich, Paul M. Ricker, Katherine M. Riley, Robert Rosner, Andrew Siegel, Noel T.
Taylor, Klaus Weide, Francis X. Timmes, Natasha Vladimirova, and John Zuhone.
2014. Evolution of FLASH, a multi-physics scientific simulation code for high-
performance computing. International Journal of High Performance Computing
Applications 28, 2 (2014), 225-237. https://doi.org/10.1177/1094342013505656
A.Dubey, K. Antypas, A. Calder, B. Fryxell, D. Lamb, P. Ricker, L. Reid, K. Riley, R.
Rosner, A. Siegel, F. Timmes, N. Vladimirova, and K. Weide. 2013. The Software
development process of FLASH, a multiphysics simulation code. In 2013 5th
International Workshop on Software Engineering for Computational Science and
Engineering (SE-CSE). 1-8. https://doi.org/10.1109/SECSE.2013.6615093

Anshu Dubey, Alan C. Calder, Robert Fisher, Carlo Graziani, G. C. Jordan, Donald
Q. Lamb, Lynn B. Reid, Dean M. Townsley, and Klaus Weide. 2013. Pragmatic
optimizations for better scientific utilization of large supercomputers. Interna-
tional Journal of High Performance Computing Applications 27, 3 (2013), 360-373.
https://doi.org/10.1177/1094342012464404

R. Fisher, S. Abarzhi, S. M. Antypas, K.and Asida, A. C. C alder, F. Cattaneo, P.
Constantin, A. Dubey, I. Foster, J. B. Gallagher, M. K. Ganapath, C. C. Glendenin,
L. Kadanoff, D. Q. Lam b, S. Needham, M. Papka, T. Plewa, L.B. Reid, P. Rich,
K. Riley, and D. Sheeler. 2008. Tera-scale Turbulence Computation on BG/L
Using the FLASH3 Code. IBM J. Res. & Dev. 52 (jan 2008), 127-136. https:
//doi.org/10.1147/rd.521.0127

Ryan J. Foley, P. J. Challis, R. Chornock, M. Ganeshalingam, W. Li, G. H. Marion,
N.I. Morrell, G. Pignata, M. D. Stritzinger, J. M. Silverman, X. Wang, J. P. Anderson,
A. V. Filippenko, W. L. Freedman, M. Hamuy, S. W. Jha, R. P. Kirshner, C. McCully,
S. E. Persson, M. M. Phillips, D. E. Reichart, and A. M. Soderberg. 2013. TYPE Iax
SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION. The Astrophysical
Journal 767, 1 (mar 2013), 57. https://doi.org/10.1088/0004-637x/767/1/57

B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. Mac-
Neice, R. Rosner, J. W. Truran, and H. Tufo. 2000. FLASH: An Adaptive Mesh
Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. The
Astrophysical Journal Supplement Series 131 (2000), 273-334.

Fujitsu. 2021. A64FX. https://www.fujitsu.com/global/products/computing/
servers/supercomputer/a64fx/

A. P. Jackson, D. M. Townsley, and A. C. Calder. 2014. Power-law Wrinkling
Turbulence-Flame Interaction Model for Astrophysical Flames. The Astrophysical
Journal 784, Article 174 (April 2014), 174 pages. https://doi.org/10.1088/0004-
637X/784/2/174 arXiv:1402.4527 [astro-ph.SR]

A. M. Khokhlov. 1995. Propagation of Turbulent Flames in Supernovae. The
Astrophysical Journal 449 (1995), 695.

M. Kromer, S. T. Ohlmann, R. Pakmor, A. J. Ruiter, W. Hillebrandt, K. S.
Marquardt, F. K. Ropke, I. R. Seitenzahl, S. A. Sim, and S. Tauben-
berger. 2015. Deflagrations in hybrid CONe white dwarfs: a route
to explain the faint Type Iax supernova 2008ha. Monthly Notices of
the Royal Astronomical Society 450, 3 (05 2015), 3045-3053. https:
//doi.org/10.1093/mnras/stv886 arXiv:https://academic.oup.com/mnras/article-
pdf/450/3/3045/18513746/stv886.pdf

P. MacNeice, C. Olson, K. M. Mobarry, R. de Fainchtein, and C. Packer. 1999.
PARAMESH: A Parallel Adaptive Mesh Refinement Community Toolkit. NASA
Tech. Rep. CR-1999-209483 (1999).

P. MacNeice, C. Olson, K. M. Mobarry, R. de Fainchtein, and C. Packer. 2000.
PARAMESH: A parallel adaptive mesh refinement community toolkit. Comput.
Phys. Commun. 126 (2000), 330-354.

USDOE Office of Defense Programs. 2000. Accelerated Strategic Computing
Initiative (ASCI) Program Plan [FY2000]. (1 2000). https://doi.org/10.2172/768266
Jared O’Neal, Klaus Weide, and Anshu Dubey. 2018. Experience Report: Refac-
toring the Mesh Interface in FLASH, a Multiphysics Software. In WSSSPE6.1,

[30

(31]

Feldman et al.

colocated with eScience 2018, Amsterdam, Netherlands. https://doi.org/10.6084/
m9.figshare.7093199

RIKEN. 2020. Fugaku performance award. https://www.riken.jp/en/news_pubs/
news/2020/20200623_1/

RIKEN. 2021. Fugaku supercomputer. https://www.r-ccs.riken.jp/en/fugaku

R. Rosner, A. C. Calder, L. J. Dursi, B. Fryxell, D. Q. Lamb, J. C. Niemeyer, K.
Olson, P. Ricker, F. X. Timmes, J. W. Truran, H. Tufo, Y. Young, M. Zingale, E.
Lusk, and R. Stevens. 2000. Flash Code: Studying Astrophysical Thermonuclear
Flashes. Computing in Science and Engineering 2 (March 2000), 33.

F. X. Timmes and S. E. Woosley. 1992. The Conductive Propagation of Nuclear
Flames. I - Degenerate C + O and O + Ne + Mg White Dwarfs. The Astrophysical
Journal 396 (1992), 649.

TOP500.0rg. 2020. Green500 November 2020.
green500/2020/11/

D. M. Townsley, A. C. Calder, S. M. Asida, I. R. Seitenzahl, F. Peng, N. Vladimirova,
D. Q. Lamb, and J. W. Truran. 2007. Flame Evolution During Type Ia Supernovae
and the Deflagration Phase in the Gravitationally Confined Detonation Scenario.
The Astrophysical Journal 668 (Oct. 2007), 1118-1131. arXiv:arXiv:0706.1094
Stony Brook University. 2016. Understanding SeaWulf. https://it.stonybrook.edu/
help/kb/understanding-seawulf

N. Vladimirova, G. Weirs, and L. Ryzhik. 2006. Flame capturing with an advection-
reaction-diffusion model. Combust. Theory Modelling 10, 5 (2006), 727-747.

https://www.top500.org/lists/

	Abstract
	1 Introduction
	1.1 The Ookami Testbed
	1.2 The FLASH Code

	2 Methods
	3 Results
	3.1 Compiler Comparison
	3.2 Strong Scaling Study
	3.3 MPI binding and placement
	3.4 Profiling and attempt at using SVE
	3.5 Comparison to SeaWulf

	4 Summary
	Acknowledgments
	References

