


HPCAsia 2022 Workshop, January 11ś14, 2022, Virtual Event, Japan Feldman et al.

1 INTRODUCTION

1.1 The Ookami Testbed

Ookami [3] is a testbed supported by the United States National Sci-

ence Foundation (NSF) and run by teams at Stony Brook University

and the University at Buffalo that provide access to state-of-the-art

scientific computing technology. The system has 174 A64FX Fu-

jitsu compute nodes, each with 32GB high-bandwidth memory and

a 512GB SSD. These processors promise to combine familiar and

successful programming models with very high performance for

a wide range of applications [16]. They provide 2ś4 times better

performance on memory-intensive applications.

Ookami is the first open machine outside of Japan that uses

the A64FX processor, the same processor deployed in the world’s

fastest machine: Fugaku at the RIKΞN Center for Computational

Science in Japan [25]. Fugaku is not only the number one in the

Top-500 ranking, but also tops the charts in the major benchmarks

HPCG, HPL-AI, and Graph-500 [24], and ranks in the top 10 on the

Green 500 [28]. The A64FX promises to have high performance and

reliability as well as a good performance to power ratio. The A64FX

700 series, used in Ookami, consists of four core memory groups

(CMGs) each with 12 cores, 64KB L1 cache, and 8MB L2 cache

shared between the cores and runs at 1.8 GHz. The processor uses

the ARMv8.2śA Scalable Vector Extension (SVE) SIMD instruction

set with 512 bit vector implementation, allowing for vector lengths

anywhere from 128ś2048 bits and enabling vector length agnostic

programming.

The aim of the Ookami project is to explore this technology and

demonstrate its potential. For this purpose, various codes are being

ported and tuned on the machine, including our application, the

FLASH code. More details on the system can be found in the PEARC

2021 paper "Ookami: Deployment and Initial Experiences" [4].

1.2 The FLASH Code

The FLASH code is a component-based scientific simulation soft-

ware package with a wide user base addressing a variety of multi-

scale, multi-physics applications [10ś12, 15]. FLASHwas developed

at the Flash Center for Computational Science at the University of

Chicago and has a long history of deployment on advanced com-

puting platforms. Originally funded by the Department of Energy’s

Accelerated Strategic Computing Initiative [22], the Flash Center

had access to unclassified versions or partitions of the platforms

installed at the Defense Program National Laboratories as they be-

came available [26]. Highlights include winning the SC2000 Gordon

Bell Prize, Special Category, for reactive fluid flow simulations us-

ing AMR that achieved 238 GFlops on 6420 processors of ASCI Red

at LANL [5], simulating weakly compressible stirred-turbulence at

an unprecedented resolution on the IBM BG/L machine commis-

sioned at LLNL in 2005 when it was briefly available for unclassified

use [1, 13], and serving as one of the formal acceptance tests for

Intrepid, the IBM BG/P, and MIRA, the IBM BG/Q machines at the

Argonne Leadership Computing Facility [12].

The FLASH code was originally written to address astrophysical

problems involving thermonuclear flashes, stellar explosions pow-

ered by a thermonuclear runaway occurring on the surface or in

the interiors of compact stars. FLASH continues to be developed

both for high-energy-density physics and more general problems as

FLASH-X, a new code derived from FLASH with a completely new

infrastructure, being funded by the U.S. Department of Energy’s

Exascale Computing Project [23].

FLASH uses Adaptive Mesh Refinement (AMR) to address prob-

lems with a wide range of physical and temporal scales by plac-

ing higher resolution only where needed. The current release of

FLASH (version 4.6.2) implements AMR using the PARAMESH

library [20, 21], which uses a block-structured mesh. FLASH is par-

allelized primarily through MPI, although some solvers have been

modified to take advantage of threaded approaches to paralleliza-

tion [12] and development toward a more general design for better

allowing threading continues [7ś9].

Our application is an explosive astrophysical event known as a

thermonuclear/Type Ia supernova, events thought to result from

a thermonuclear explosion disrupting a compact star known as

a white dwarf. Our study investigates one variation, a very dim

event known as a Type Iax that is thought to be produced by a pure

deflagration (subsonic burning front) occurring in a special łhybrid"

white dwarf [14, 19]. The vast disparity between the radius of the

white dwarf (∼ 10
9
cm) and the width of the laminar nuclear flame

at high densities (< 1 cm) presents a significant challenge because

even with many orders of AMR, it is not possible to resolve the

physical flame in a whole-star simulation. Modeling these events

thus necessitates the use of a model flame. The extended version

of FLASH we use propagates an artificially broadened flame with

an advection-diffusion-reaction (ADR) scheme [31] that propagates

reaction progress variables describing the stages of the flame. Flame

speeds are from previously-calculated tabular results [6, 27] and

also include enhancement to the burning rate from unresolved

buoyancy and background turbulence [17, 18, 29]. The results we

describe here were for preliminary two-dimensional simulations

allowing for a relatively inexpensive exploration of both the Ookami

platform and the parameter space of the astrophysics problem.

2 METHODS

Using our supernova simulation as a test problem, our first task

was to identify the prerequisites of FLASH, e.g. MPI and HDF5,

and determine how those are accessed and configured on Ookami.

We tested combinations of compilers and MPI implementations to

see if FLASH could be ported to Ookami and which combination

produced the best performance.

Both the GCC 10.3.0 and ARM 21.0 compilers have flags that

allow users to specifically target the A64FX processor. SVE can be

enabled by adding the -O3 flag, which enables loop optimization

options that are necessary for SVE instructions, and -mcpu=a64fx,

which tells the compiler to use specific hardware features of the

specified architecture, e.g., SVE, gather/scatter, and fast partial dot

product. The Cray compilers, on the other hand, have separate

module files for choosing between non-SVE and SVE instructions.

Loading the CPEmodule on Ookami loads the A64FX-targeted Cray

compiler and dependencies, which enables SVE instructions au-

tomatically. To compile without including SVE instructions, we

instead load the CPE-nosve module, which does not target the

A64FX hardware, and generates ARM-Neon code. These options

are summarized below in Table 1.



Experiences with Porting the FLASH Code to Ookami HPCAsia 2022 Workshop, January 11ś14, 2022, Virtual Event, Japan

Table 1: Summary of compilers, compiler flags, MPI implementations, and additional flags required to generate SVE instruc-

tions with the FLASH code. Compiler flags were chosen so that reals were promoted to double-precision, doubles were kept

at double-precision, and integers remained at single precision, options which are necessary for FLASH.

Compiler Compiler Flags MPI Implementation Additional SVE Flags

GCC 10.3.0 -fdefault-real-8 MVAPICH 2.3.5 -O3 -mcpu=a64fx

-Wuninitialized -fdefault-double-8 Open-MPI 4.0.5

-fallow-argument-mismatch

Cray 10.0.3 -O3 -h vector3 MVAPICH 2.3.5 Load the Cray 10.0.1

-s real64 -s integer32 SVE module

ARM 21.0 -r8 -armpl MVAPICH 2.3.5 -O3 -mcpu=a64fx

Open-MPI 4.0.5

Note that this table reflects the state of software installations on

Ookami at the time when experiments were conducted.

The memory per core is indirectly tuned by setting the maximum

number of grid blocks that can be allocated per core. Due to the

relatively small 32 GB of memory per node, it was necessary to

adjust this from the 10,000 blocks per core that we use on Stony

Brook’s Intel-based cluster, SeaWulf [30], to 2,500 on Ookami. The

GCC compiler proved to be the easiest to use and the least sensitive

to memory constraints. Running with too high a setting of blocks

per core produced incredibly slow runs with the GCC compiler, but

simply crashed with the Cray and ARM compilers.

After fitting our problem into memory, we performed runtime

comparisons using the available compilers and MPI implementa-

tions, compared performance for differentMPI bindings and layouts,

performed a strong scaling study, profiled our code, and looked

into the challenge of introducing SVE instructions into FLASH. To

check for accuracy, the final integrated quantities of our simulation

(mass, element yields, energy, etc.) were compared to those of an

initial run, to ensure that any changes we made did not affect the

results of the simulation.

3 RESULTS

3.1 Compiler Comparison

Figure 2 compares the runtime of our supernova simulation be-

tween the compilers described in Table 1. Our simulation was run

on 5 nodes at full subscription (48 cores per node) for 4 seconds of

simulation time. The Cray compiler with enabled SVE instructions

produced the fastest runtime, with the GCC compiler producing

the second-fastest running code. The ARM compiler produced runs

almost three times as long as the others. In general, runs using

MVAPICH are slightly faster. All three compilers successfully pro-

duced an executable with SVE instructions, however the difference

in runtime is not significant as we would hope. This indicates that

our code must be manually tuned to include SVE instructions at

the bottlenecks.

3.2 Strong Scaling Study

We performed a strong scaling study of our supernova simulation

using the GCC 10.3.0 compiler with GCC-compiled MVAPICH 2.3.5.

We ran our problem for 4 seconds of simulation time on 12 and 24

cores of a single node and 1-10 nodes at full subscription (48 cores

per node).

As shown in Figure 3, increasing the number of cores decreases

the total simulation time as expected. However, this speedup tapers

off. From runs using 12 to 96 cores, doubling the number of cores

cuts runtime in half, demonstrating almost perfect scaling. Increas-

ing from 12 to 96 cores decreases the runtime by 82.4%. Adding

more cores after this point (up to 480) decreases the runtime by a

further 10%, showing that each subsequent increase in the number

of cores contributes less and less to this percentage.

While increasing the number of cores used, the number of grid

blocks handled by each core decreases. While this decreases compu-

tation time, we will see an increase in communication. However, we

do not see turning in our scaling graph, indicating that the decrease

in computation time still outweighs the increase in communication

time.

An important note is that increasing the number of cores used in-

creases the time needed to write to an output file. However, FLASH

allows adjusting the cadence of its output files, and we can take

care to only save what we need.

3.3 MPI binding and placement

Because FLASH primarily uses point-to-point communication

through MPI_Send and MPI_Recv calls, the way in which MPI pro-

cessing elements (PE) are placed influences communication over-

head and runtime. When possible, specific mapping flags were used

at runtime to control PE placementÐon the A64FX, these can be

placed by core, by node, or by CMG, either in a cyclic (evenly fill

CMGs) or block (fill one CMG at a time) fashion. To test this, we

ran our supernova simulation with the GCC 10.3.0 compiler on 4

nodes and 96 cores, with different placements of 24 cores per node.

Table 2: Runtime of our simulation for different MPI rank

placements.

MPI Nodes Cores MPI Runtime

Implementation Placement (hours)

MVAPICH 2.3.5 4 96 Block 2.79

4 96 Cyclic 2.80

Open-MPI 4.1.0 4 96 Block 2.86

4 96 Cyclic 2.73

MVAPICH 2.3.5 2 96 Block 4.05

4 192 Block 2.65







HPCAsia 2022 Workshop, January 11ś14, 2022, Virtual Event, Japan Feldman et al.

(Boston, MA, USA) (PEARC ’21). Association for Computing Machinery, New
York, NY, USA, Article 9, 8 pages. https://doi.org/10.1145/3437359.3465578

[5] A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, G. Henry, P. MacNeice, K. Olson,
P. Ricker, R. Rosner, F. X. Timmes, H. M. Tufo, J. W. Truran, and M. Zingale.
2000. High-Performance Reactive Fluid Flow Simulations Using Adaptive Mesh
Refinement on Thousands of Processors. In Proceedings of Supercomputing 2000.
http://sc2000.org

[6] David A. Chamulak, Edward F. Brown, and Francis X. Timmes. 2007. The Lam-
inar Flame Speedup by 22Ne Enrichment in White Dwarf Supernovae. The
Astrophysical Journal 655 (February 2007), L93. arXiv:astro-ph/0612507

[7] C. Daley, J. Bachan, S. Couch, A. Dubey, M. Fatenejad, B. Gallagher, D. Lee, and
K. Weide. 2012. Adding shared memory parallelism to FLASH for many-core
architectures. In TACC-Intel Highly Parallel Computing Symposium. Poster.

[8] A. Dubey. 2019. Dynamic Resource Management, An Application Perspective.
https://project.inria.fr/resourcearbitration/program/. Invited talk, RADR, co-
located with IPDPS.

[9] Anshu Dubey. 2019. Programming Abstractions for Orchestration of HPC Scien-
tific Computing. https://chapel-lang.org/CHIUW2019.html. Keynote, Chapel
User’s Group Meeting.

[10] Anshu Dubey, Katie Antypas, Alan C. Calder, Chris Daley, Bruce Fryxell, J. Brad
Gallagher, Donald Q. Lamb, Dongwook Lee, Kevin Olson, Lynn B. Reid, Paul
Rich, Paul M. Ricker, Katherine M. Riley, Robert Rosner, Andrew Siegel, Noel T.
Taylor, Klaus Weide, Francis X. Timmes, Natasha Vladimirova, and John Zuhone.
2014. Evolution of FLASH, a multi-physics scientific simulation code for high-
performance computing. International Journal of High Performance Computing
Applications 28, 2 (2014), 225ś237. https://doi.org/10.1177/1094342013505656

[11] A. Dubey, K. Antypas, A. Calder, B. Fryxell, D. Lamb, P. Ricker, L. Reid, K. Riley, R.
Rosner, A. Siegel, F. Timmes, N. Vladimirova, and K. Weide. 2013. The Software
development process of FLASH, a multiphysics simulation code. In 2013 5th
International Workshop on Software Engineering for Computational Science and
Engineering (SE-CSE). 1ś8. https://doi.org/10.1109/SECSE.2013.6615093

[12] Anshu Dubey, Alan C. Calder, Robert Fisher, Carlo Graziani, G. C. Jordan, Donald
Q. Lamb, Lynn B. Reid, Dean M. Townsley, and Klaus Weide. 2013. Pragmatic
optimizations for better scientific utilization of large supercomputers. Interna-
tional Journal of High Performance Computing Applications 27, 3 (2013), 360ś373.
https://doi.org/10.1177/1094342012464404

[13] R. Fisher, S. Abarzhi, S. M. Antypas, K.and Asida, A. C. C alder, F. Cattaneo, P.
Constantin, A. Dubey, I. Foster, J. B. Gallagher, M. K. Ganapath, C. C. Glendenin,
L. Kadanoff, D. Q. Lam b, S. Needham, M. Papka, T. Plewa, L.B. Reid, P. Rich,
K. Riley, and D. Sheeler. 2008. Tera-scale Turbulence Computation on BG/L
Using the FLASH3 Code. IBM J. Res. & Dev. 52 (jan 2008), 127ś136. https:
//doi.org/10.1147/rd.521.0127

[14] Ryan J. Foley, P. J. Challis, R. Chornock, M. Ganeshalingam, W. Li, G. H. Marion,
N. I. Morrell, G. Pignata, M. D. Stritzinger, J. M. Silverman, X.Wang, J. P. Anderson,
A. V. Filippenko, W. L. Freedman, M. Hamuy, S. W. Jha, R. P. Kirshner, C. McCully,
S. E. Persson, M. M. Phillips, D. E. Reichart, and A. M. Soderberg. 2013. TYPE Iax
SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION. The Astrophysical
Journal 767, 1 (mar 2013), 57. https://doi.org/10.1088/0004-637x/767/1/57

[15] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. Mac-
Neice, R. Rosner, J. W. Truran, and H. Tufo. 2000. FLASH: An Adaptive Mesh
Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. The
Astrophysical Journal Supplement Series 131 (2000), 273ś334.

[16] Fujitsu. 2021. A64FX. https://www.fujitsu.com/global/products/computing/
servers/supercomputer/a64fx/

[17] A. P. Jackson, D. M. Townsley, and A. C. Calder. 2014. Power-law Wrinkling
Turbulence-Flame Interaction Model for Astrophysical Flames. The Astrophysical
Journal 784, Article 174 (April 2014), 174 pages. https://doi.org/10.1088/0004-
637X/784/2/174 arXiv:1402.4527 [astro-ph.SR]

[18] A. M. Khokhlov. 1995. Propagation of Turbulent Flames in Supernovae. The
Astrophysical Journal 449 (1995), 695.

[19] M. Kromer, S. T. Ohlmann, R. Pakmor, A. J. Ruiter, W. Hillebrandt, K. S.
Marquardt, F. K. Röpke, I. R. Seitenzahl, S. A. Sim, and S. Tauben-
berger. 2015. Deflagrations in hybrid CONe white dwarfs: a route
to explain the faint Type Iax supernova 2008ha. Monthly Notices of
the Royal Astronomical Society 450, 3 (05 2015), 3045ś3053. https:
//doi.org/10.1093/mnras/stv886 arXiv:https://academic.oup.com/mnras/article-
pdf/450/3/3045/18513746/stv886.pdf

[20] P. MacNeice, C. Olson, K. M. Mobarry, R. de Fainchtein, and C. Packer. 1999.
PARAMESH: A Parallel Adaptive Mesh Refinement Community Toolkit. NASA
Tech. Rep. CR-1999-209483 (1999).

[21] P. MacNeice, C. Olson, K. M. Mobarry, R. de Fainchtein, and C. Packer. 2000.
PARAMESH: A parallel adaptive mesh refinement community toolkit. Comput.
Phys. Commun. 126 (2000), 330ś354.

[22] USDOE Office of Defense Programs. 2000. Accelerated Strategic Computing
Initiative (ASCI) Program Plan [FY2000]. (1 2000). https://doi.org/10.2172/768266

[23] Jared O’Neal, Klaus Weide, and Anshu Dubey. 2018. Experience Report: Refac-
toring the Mesh Interface in FLASH, a Multiphysics Software. In WSSSPE6.1,

colocated with eScience 2018, Amsterdam, Netherlands. https://doi.org/10.6084/
m9.figshare.7093199

[24] RIKEN. 2020. Fugaku performance award. https://www.riken.jp/en/news_pubs/
news/2020/20200623_1/

[25] RIKEN. 2021. Fugaku supercomputer. https://www.r-ccs.riken.jp/en/fugaku
[26] R. Rosner, A. C. Calder, L. J. Dursi, B. Fryxell, D. Q. Lamb, J. C. Niemeyer, K.

Olson, P. Ricker, F. X. Timmes, J. W. Truran, H. Tufo, Y. Young, M. Zingale, E.
Lusk, and R. Stevens. 2000. Flash Code: Studying Astrophysical Thermonuclear
Flashes. Computing in Science and Engineering 2 (March 2000), 33.

[27] F. X. Timmes and S. E. Woosley. 1992. The Conductive Propagation of Nuclear
Flames. I - Degenerate C + O and O + Ne + Mg White Dwarfs. The Astrophysical
Journal 396 (1992), 649.

[28] TOP500.org. 2020. Green500 November 2020. https://www.top500.org/lists/
green500/2020/11/

[29] D. M. Townsley, A. C. Calder, S. M. Asida, I. R. Seitenzahl, F. Peng, N. Vladimirova,
D. Q. Lamb, and J. W. Truran. 2007. Flame Evolution During Type Ia Supernovae
and the Deflagration Phase in the Gravitationally Confined Detonation Scenario.
The Astrophysical Journal 668 (Oct. 2007), 1118ś1131. arXiv:arXiv:0706.1094

[30] Stony Brook University. 2016. Understanding SeaWulf. https://it.stonybrook.edu/
help/kb/understanding-seawulf

[31] N. Vladimirova, G. Weirs, and L. Ryzhik. 2006. Flame capturing with an advection-
reaction-diffusion model. Combust. Theory Modelling 10, 5 (2006), 727ś747.


	Abstract
	1 Introduction
	1.1 The Ookami Testbed
	1.2 The FLASH Code

	2 Methods
	3 Results
	3.1 Compiler Comparison
	3.2 Strong Scaling Study
	3.3 MPI binding and placement
	3.4 Profiling and attempt at using SVE
	3.5 Comparison to SeaWulf

	4 Summary
	Acknowledgments
	References

