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We consider estimating the magnitude of a monochromatic AC signal that couples to a two-level
sensor. For any detection protocol, the precision achieved depends on the signal’s frequency and can
be quantified by the quantum Fisher information. To study limitations in broadband sensing, we
introduce the integrated quantum Fisher information and derive inequality bounds that embody

fundamental tradeoffs in any sensing protocol.

These inequalities show that sensitivity in one

frequency range must come at a cost of reduced sensitivity elsewhere. For many protocols, including
those with small phase accumulation and those consisting of 7-pulses, we find the integrated Fisher
information scales linearly with 7. We also find protocols with substantial phase accumulation can
have integrated QFI that grows quadratically with T, which is optimal. These protocols may allow
the very rapid detection of a signal with unknown frequency over a very wide bandwidth.

Introduction—Quantum systems such as atoms are
naturally good sensors because they are identical and
their environments can be well-controlled experimen-
tally. The detection of weak signals requires the con-
sideration of quantum effects, and entangled detectors
are well-known to be more sensitive than their unentan-
gled counterparts [1]. Indeed, by using techniques like
squeezing, quantum sensors have been used for dark mat-
ter searches, entanglement enhanced magnetometry, mi-
crowave clocks, and matterwave interforemeters. [2—11].

Quantum Fisher information (QFI) quantifies the per-
formance of a parameter estimation protocol [12]. For a
pure state pg := |1g) (|, parameterized by 6, the QFI
is

J(0) = 2Tr [(Dops)?] , (1)

[13]. The QFT tells us, via the Cramer-Rao bound [14],
how well an unbiased estimator of § can approximate
its true value. In particular, given m copies of |¢g)
the variance of any unbiased estimator 6 must satisfy
Var(0) > ﬁ(ﬂﬁ' Furthermore, this bound can be satu-
rated, so the more Fisher information a protocol has, the
better you can estimate 6.

We consider estimating the strength of a time-varying
signal at frequency w using a qubit that couples to the
signal according to

H(t) = pBcos(wt + ) Z, (2)

where p is the magnetic moment of the qubit. For in-
stance, we may wish to estimate the strength of an AC
magnetic field [15-23]. While we have included ¢ in the
analysis in Eq. 7, we have omitted it for convenience else-
where. In general, ¢ changes the peak of the sensitivity,
and averaging over and unknown ¢ only affects our re-
sults by a multiplicative constant. This is the case that is
relevant, for instance, to axion searches where the phase
of the signal is not known. To gather information about
this Hamiltonian, we need to establish a protocol, which
generically consists of preparing the sensing qubit in an

initial state, applying a time-dependent control sequence,
and finally performing a measurement. The performance
of a protocol will depend on the frequency of the signal w.
For example, preparing |+) followed by free evolution for
time 7' and measurement in the |+) basis is optimal for
w = 0 but performs poorly for w > 1/T. In fact, we will
show that trade-offs in sensitivity at different frequencies
are inevitable. We make this quantitative by consider-
ing the integrated QFI (IQFT). In general, a choice of
protocol includes a choice of measurement basis, as de-
fined above. In the majority of examples we consider in
this paper, the optimal measurement basis is frequency
independent, so that the the optimization over the final
POVM in the definition of QFI can be ignored. For this
reason, in this paper we consider integrating the QFI over
all frequencies. While this is different than the integrated
sensitivity of a single protocol, it provides an analytically
tractable method of analysis which is tight in many cases
of interest, namely weak fields and protocols consisting
only of m—pusles. By bounding this integral we formal-
ize the idea that there is a fundamental tension between
having sensitivity in different frequency bands.

The longer we observe a signal, the more we can expect
to know about it. Thus, it is no surprise that the IQFI
will typically grow with the duration 7" of a protocol. In
fact, we find a number of constraints on how IQFI grows
with T. First, we find that any protocol starting on the
equator of the Bloch sphere that involves only m-pulses
has an IQFI of 2w¢%T, where ¢ = /A is the inverse gyro-
magnetic ratio of the system being used as a sensor [24].
Second, for an arbitrary protocol with (BT/ < 1, the
IQF1I is close to 2n¢2T. Then we find a particular proto-
col that significantly exceeds 27(2T — by continuously
transversely driving a spin with a ¢gX term, our proto-
col has a peak sensitivity around 2¢, with IQFT scaling
quadratically with time. We further show that the IQFI
can not exceed quadratic scaling with time, so that this
protocol is in a sense optimal. However, the practical
restriction to the small signal regime (BT < 1 is not
uncommon, due in part to phase ambiguities that may



arise in the accrued phase if one begins to violate this
limit. Additionally if T, is a characteristic decoherence
time of the system, then we are practically constrained
to T' < Ty. Thus for B <« 1/((Ty) and fixed Ty, we also
find (BT < 1. In these contexts, our result show that
sensing should be expected to be limited by the bound
of 2r¢2T. Physically, this corresponds to when the peak
angular excursion of the Bloch vector is much less than
m. On the other hand, for weak fields, if we can sense
for long times so that (BT < 1, then we can accumulate
quadratically more IQFI.

Beyond signal estimation and detection, our results can
be applied to better understand the performance of dy-
namical decoupling [25-28]. Here we find that for many
protocols, the average (over the initial state) IQFI is at
least linearly proportional to 7. As a result, dynamical
decoupling can at best move the noise sensitivity of a
qubit around in frequency space, rather than eliminating
sensitivity at all frequencies. This gives a firm grounding
to the intuition provided in [29] that considers the filter
functions associated with CPMG sequences [30-32].

We note that the setting under consideration is differ-
ent from the waveform estimation studied in [33]. That
work studied how to simultaneously estimate a large
number of parameters representing the full time series of
a waveform. We consider the sensing problem of estimat-
ing a single Fourier amplitude, i.e. the systems we con-
sider couple to a monochromatic signal B cos (wt). The
relative simplicity of this setting admits a global analysis
of the performance of an arbitrary protocol at different
frequencies.

Preliminaries—We will consider Hamiltonians of the
form Eq. (2), motivated by a spin—% particle in a magnetic
field. We first consider estimation protocols composed of
instantaneous, arbitrary unitary rotations P; followed by
periods of free evolution. The choice of measurement
at the end of the protocol is assumed to be optimal in
the sense that it maximizes the Fisher information of the
resulting classical probability distribution. So, for a state
starting in the +1 X eigenstate, we have the final state

\¢(T,w)> = UN_1PN_1(tN,tN_l)...Uo(tl,to)P0|+>, (3)

where txy = T and U(ti41,t;) is the time evolu-
tion operator under the Hamiltonian in Eq. 2 be-
tween times t¢; and ¢;y1. Specifically, U(t;y1,t;) =
exp (—% tt:“ H(t)dt) = exp (—i(BO(t;y1,t;)Z), where
O(tit1,ti) = (sin (wtiy1 + ¢)) — sin (wt; + ¢))/w.

Given Eq. 3, the quantum Fisher information J(B) =
2Tr((0ppp)?) tells us how well we can estimate B. We
write J(B|w) to indicate that Fisher information with
respect to B will in fact depend on the signal frequency
w. Writing

\¢p) == 0BlYp) =  (4)
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FIG. 1: Integrated IQFI for using X/, pulses.
Depending on the magnetic field strength we observe a
more rapid accumulation of IQFI. The dashed lines are
~ T and ~ T? scalings to guide the eye. For non-zero
magnetic field, we see that a crossover from quadratic
to linear scaling occurs when when BT'¢ < 1 (where the
perturbative results are valid).

we find that the QFI can be expressed [13, 34|

J(Blw) = 4((¢] ) + Re{(d]1)*}), ()

where we have left the dependence on B implicit. Now,
to understand the total sensitivity of a protocol across
all frequencies we define the integrated QFI (IQFI) for a
protocol with total evolution time 7" as [35]

K(T) = /000 dwJ(B|w). (6)

Ramsey and mw-pulse protocols—Within the family of
control sequences consisting of instantaneous rotations
interleaved with free-evolution, we now consider Ramsey
spectroscopy, where a qubit is prepared on the equator of
the Bloch sphere and allowed to freely precess. Here Eq. 4
becomes |¢) = —iCO(T,0)|y)) and Eq. 5 gives J(B|w) =
4¢?02%(T,0). Defining ¢ = u/h, the IQFI follows as

K(T) — 4(2 /Ooo dw (Sin (wt + (P) — sin (@))27 (7)

w2

= 2C°T (7 — In(4) sin (2¢)). (8)

If ¢ is unknown and therefore random in each experi-
ment, averaging over ¢ gives K(T) = 2r(?T, but if ¢
is known and we wish to maximize the IQFI, we would
lock the experimental sequence to ¢ = 37/4 to get
K(T) = 2¢*T (7 + In4). For convenience, in what fol-
lows we assume ¢ = 0, but note that averaging over ¢
should be possible in principle.

Now consider a protocol applying m-pulses at times
t1,..., txy = T. At time t; we apply either X, Y or Z.
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FIG. 2: QFT as a function of frequency for some
protocols considered in this paper, for different protocol
times T [(a) T =2, (b) T =4, (¢) T =6, and (d) T =38
seconds|, with B{ = 1 Hz. Ramsey has a large DC QFI,
as expected, and very little ability to detect any AC
signal. m-pulses, on the other hand, can be used to
measure signals at higher frequencies, as might be
expected from spectroscopy techniques such as CPMG.
The gX protocol, with g = 27 X %Hz in this example, is
seen to be sensitive near 2g. Moreover, it is seen to be
sensitive over a broad bandwidth. The m-protocol
shown here consists of 7 rotations about the X axis, at
each integer value of time. The 7/2-protocol consists of
/2 rotations about the X axis, every half second.
Similar to the m-protocol, the 7/2-protocol has AC
sensitivity, as well as more broadband sensitivity.

Additionally, we can apply any unitary that leaves the
expectation value of Z invariant. Then we have

oo N-1
K(T)=4¢ [ dl(Y Ot t)? )
0 i=0

Using [, sin (wt1) sin (wio) /w?dw = Fmin(ty, to), we see
for t3 2 tg 2 tl 2 to that
fooo dwO,,(t3,t2)0,(t1,t9) = 0. Thus Eq. (9) gives

K(T) = 2rn(?T. (10)

/duK(T) = 4”§ T (11)

where p is the Haar measure.

This average has important implications for dynami-
cal decoupling protocols based on 7m-pulses. It shows that
for such protocols a qubit must maintain a sensitivity to
environmental noise over a substantial frequency range.
Indeed, in the presence of white noise any w-pulse pro-
tocol will leave the qubit equally degraded by the noise.

Specifically, we imagine that a qubit is subjected to a
background power spectrum of magnetic field noise fluc-
tuations whose noise spectrum is flat. A lower bound on
the IQFI implies a lower bound on how much of this noise
spectrum the qubit will experience, and therefore on its
decoherence. For noise with more structure, these pro-
tocols do not allow sensitivity to noise to be eliminated,
but can simply move that sensitivity to a frequency range
where the environmental noise is fairly low.

B=0 Bound—We now present an argument to bound
K(T) at B = 0, and approximately bound K (T) for short
times and weak magnetic fields. Consider protocols with
a control Hamiltonian Hy(¢) in addition to the signal
Hamiltonian H (t). We can then write |(T)) = UlU|wo),
where U is the time evolution due to Hy and U is the
interaction picture time-evolution, given by

U=1- iCB/O cos(wr) Z;(T)dr + O(B?), (12)

where we have used Z;(t) to express Z in the interaction
picture. Then we have

)0 = 8B|¢(t)>‘B:0 - fz‘CU/O cos(wr) Z1(7)dr o).
(13)

Substituting into Eq. 5 and integrating, we find that the
IQFI is at most 27¢2T. For small B and T, the next term
on dimensional grounds should be O(B?*T?), since we
can show the term linear in B is zero. This dimensional
analysis assumes that there are no other dimensionful
quantities - for instance, if the interpulse spacings are
not functions of T, then there may be other terms. Thus
we find

K(T) < 27*T + O(¢*B*T?) (14)

The full proof is provided in Appendix D. This shows
that for small magnetic fields and short times we should
expect a roughly linear scaling of the IQFT.

Entangled probe advantage— From standard results
[36, 37] we expect that entangled inputs can outperform
this bound. Indeed, consider an n—qubit GHZ state

1
\/i

This state accumulates phase as
Ultiv1,t)%"|GHZ),, (16)
1

_ 7(61‘Bn®(ti+1,ti)‘0>®n + e—iBn@(tiJrl,ti)'l)@n)’ (17)

(GHZ)y = —=(10)°" +[1)%"). (15)

2

so that an analogous argument gives an IQFI at B = 0
of

K(T) = 2mn?¢*T. (18)

Conversely, product input states can be reduced to the
single qubit example, since J(p®") = nJ(p), so that for



n qubits starting in a product state, again with B = 0,
we have

K(T) < 2mn(*T. (19)

So, while entanglement allows us to increase the coeffi-
cient in front of T, IQFT still increases linearly with time.

Quadratic scaling of IQFI— We have seen that m-pulse
protocols and protocols with BT'( < 1 have IQFI that
scales no faster than 27¢?7T. Even an entanglement-
enhanced protocol gives linear scaling of IQFI with T,
albeit with an improved coefficient. While it is tempting
to think linear scaling is optimal, we now give a simple
protocol with IQFT scaling quadratically in T

We consider a continuous-time protocol which applies
a transverse field, hgX, to the sensing qubit. This gives
a full Hamiltonian of

H(T) = hgX + pB cos (wT') Z. (20)

Assuming w ~ 2g, BT'¢( > 1 and using the rotating wave
approximation [38], we find

(CT)? 1)
I+ (5277

which we can integrate from w = g to w = 3g to get a
lower bound of

J(B|w) ~

K(T) 2 ¢2T? (199 +¢Btan™ (53)) (22

B

Representative dynamics in this regime are shown in Fig.
3 and 4 of [39].

This protocol can be approximated by a discrete pulse-
based protocol, described by Eq. 3 and given by Trotter-
ization, that intersperses instantaneous rotations around
the X-axis by periods of free evolution under the mag-
netic field. For times T', we can approximate evolution
under Eq. 20 by m periods of free evolution of duration %
separated by rotations of angle % about the X-axis. In-
deed, in Fig. 1, we see quadratic scaling choosing m = 27T
In Fig. 2 we compare the QFI of the m =T and m = 2T
cases with the g X protocol and a Ramsey protocol, where
it is evident that both the m = 2T protocol and the g X
protocol accumulate IQFI more rapidly than the other
two protocols. These discrete protocols with quadratic
scaling of IQFI have the property that the number of
pulses scales with the total time of the protocol. In fact,
this is necessary, as we will now see.

Consider a protocol with N pulses P; applied be-
tween periods of free evolution U;. Because (¢ |¢) = 1,
Op(Y|y) = 0, we have (¢|9p) = —(¢|$). This means
that Re({¢|v)) = 0, and so (1| ¢)? has real part that is
non-positive. Thus from Eq. 5 we see

J(Blw) < 4(6]9)- (23)

Now define Vi; = (+|P{U}...Pf ZU}...PLUL Uy Py ...
U,ZP;..UiPi|+), then we see that (¢|¢) =

4

X100,V =

t

207VO, where © is a vector

whose " entry is ©;. V is an N x N complex matrix
with entries of norm at most 1, so its eigenvalues have
norm at most N. We thus find

K= [ dorw) <a [“avole) o
= 4¢2 / ~ 1weTVe (25)
0
<4¢? / dwN|®|* = 2r N¢*T. (26)
0

In order to have quadratic scaling in 7', we must have a
number of pulses N that scales linearly with 7.

We will now see that the bound Eq. (24) can be used
to show that the IQFT can scale at most quadratically
with time, so that up to a constant the IQFI of the gX
protocol scales as fast as possible.

A continuous-time protocol involves a control Hamil-
tonian G that gives a total Hamiltonian of the system

H(t) = hG(t) + uB cos(wt) Z. (27)

We can Trotterize this evolution into a discrete se-
quence [40] like those considered in proving Eq. (24), with
some inter-pulse duration §¢. To zeroth order, the evolu-
tion will be

U'(T) = Tel S s dtG (1) iICBONZ  gei 3" dtG(1) iCBO1Z

(28)

with Not = T. We use T to denote a time-ordering, since
G(t) will not in general commute with G(¢') at ¢’ # t.

By linearity of the derivative we can constrain the

derivative of the Trotterized evolution to be close to the

actual derivative. Using U(t) to refer to the continuous

time protocol, and é”(t) to refer to the error between the
0p(U(t)) and 0p(U’(t)), we see from Eq. (23),

J(w) < Jg(w)+
8Re((+&"(T)'0pU'(T)|+)) + 4(+[&"(T)Te"(T)|+)),

where we’ve used Jy(w) to denote the QFT of the proto-
col given by U’(t). We can bound the integral of these
terms by splitting the integral into two parts, one up to
a frequency ) and bounding by a constant, and the sec-
ond by considering the explicit form of the Trotter error
presented in [41], and expanding in 1/w. Ultimately, as
show in Appendix C, this gives a bound of
2712
K(T) < 2w C<T

+ (el QuBHIGI)  (29)
+ €(6t, Q. B, H|GI))T?,

where ||G|| is maximum spectral norm of the control,
max;<7||G(t)|| and ¢ and e are functions that control
the error in approximating the IQFI of the continuous
protocol by the IQFT of the Trotterization. This proves



that K(T) € O(T?). Thus, our examples with quadratic
scaling are asymptotically optimal in the amount of IQFI
they accumulate.

Conclusions— The QFI provides an ultimate bound
on how well a quantity can be estimated, in our case the
amplitude of a sinusoid with fixed frequency. Integrating
the QFT over all frequencies, we found fundamental limits
on the broadband performance of quantum sensors. For
tasks such as axion detection [42], this implies that spec-
tral sensitivity is a scarce resource that needs to be care-
fully considered when designing metrological protocols.
While conventional spectroscopy protocols such as Ram-
sey interferometry and CPMG [30, 31] consist only of -
pulses, and therefore linearly accumulate IQFI, we found
both continuous and discrete protocols that quadratically
increase this accumulation. Moreover, we have shown
that this is asymptotically the largest scaling one can
achieve.

We see that there are protocols with IQFIs that scale
as both O(¢?T) and O(¢3BT?), but which is better? It
depends—if the goal is sensitivity to a wide range of fre-
quencies, O(¢3BT?) may allow the protocol to work over
a wider frequency band. If the goal is sensitivity to a very
narrow frequency range, O(¢?T') protocols may have sup-
port over a small band. Thus, we may see enhancements
when searching for a weak signal over a wide frequency
range. In such a setting, long integration times could
give a quadratic enhancement of the accumulated QFI
compared to the O(¢%T') protocols.

The gX protocol is sensitive to frequencies around 2g,
making it an excellent candidate for broadband detection
around a particular frequency. It is an open question
how to design optimal metrological protocols with sen-
sitivity spread evenly over wide bands. Techniques like
GRAPE[43] may be useful for this task[44].

Many dynamical decoupling protocols consist solely of
m-pulses (e.g., [45]). Such techniques may be described
by Eq. 3. Consequently, our results show these decou-
pling strategies are fundamentally limited - while they
can move noise sensitivity, they cannot remove it. We
leave open whether such bounds apply to arbitrary pro-
tocols.

Our key conceptual contribution is the idea that IQFI
is a useful metric for understanding the trade-offs inher-
ent in broadband sensing. In some cases, this metric pro-
vides a conservation law that can be summarized by the
slogan “no free QFI”. In particular, in the case where the
interaction picture operator being sensed (Z;(t)) com-
mutes with itself at all times and in the small signal
limit ((BT — 0) we showed that QFI at one frequency
ultimately comes at the cost of less QFI at another fre-
quency. This is also true for sequences consisting only of
m pulses, when the sensor state begins on the equator.
Moreover we have also shown that for any protocol there
is a limited amount of IQFI that can be accumulated.
This demonstrates that while broadband sensing is pos-
sible, there is an upper limit on how wide the bandwidth
of a given protocol can be if one desires a certain sensitiv-
ity. We do not currently know if other classes of control
protocols yield strict conservation laws, and we leave this
to future work.

The bounds on IQFT that we have found concern single
qubit initial states, which can be extended, via Eq. (19),
to arbitrary separable states due to QFI’s additivity and
convexity. As Eq. (19) applies only to separable probe
states, we can think of it as a kind of standard quantum
limit that cannot be exceeded without entanglement. In-
deed, we see that an n-qubit cat state can significantly
exceed the 27n(2T performance of unentangled m-pulse-
based protocols. This points to the possibility of using
IQFT as a form of entanglement witness, so that the quan-
tum Fisher information at any particular frequency may
be consistent with a separable state but the breadth of
such sensitivity can only be explained by an entangled
state. Mapping out the corresponding Heisenberg limits
on multiqubit entangled probes remains an open ques-
tion. Finally, another interesting open question is if other
transformations of QFI spectra might generate new in-
sights into broadband sensing limitations.
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In these appendices, we provide detailed calculations of the bounds presented in the main text.

A. Derivation of Average IQFI for Instantaneous m-Pulses

Here, we consider a discrete protocol in which a qubit is subject to a series of w-pulses interleaved with free-evolution.
After N pulses, the qubit state is given by

[V(tN)) = XU(tn,tn—1)XU(tn—1,tN—2)X....XU(t1,0)]1(0)), (A1)
where [1(0)) = cos £]0) + e? sin $[1), and U(tigq,t;) = e #BIE1t)Z and

sin (wt;y1) — sin (wt;)

H(ti_H, ti) = Tioo (A2)
We commute all the 7-pulses through the free-evolution operators, which conjugates every other Z operator, (i.e.
XZX = —Z7). Then all the time-evolution operators commute and can be combined to give,
N
[$(tn)) = XN exp [=ipB Y (=) 8(tns1,tn) Z)[1(0)). (A3)
n=0
The QFT can now be directly calculated to be
2
4 9 .2 N—-1 )
J(w) = “7‘2“0‘ (sin (wto) + 2 (Z(—wsm (wt;) | + (=1)V sin (wty) | (A4)
w
i=1
Expanding the square and combining like terms, one finds
4(2 sin? . . N . .
J(w) = (sin® wtg + 4 Z U sin wtg sin (wt;) + 2(—1)" sinwtg sinwt ¥ (AD)
w?
N-1 N—1N-1 o
N Z )i sinwt; sin (wtyn) + sin? wt y + 4 (—1)"* sinwt; sin (wt;) |).  (A6)
i=1 i=1 j=1

Although quite messy, we are only interested in the integral of this expression over frequency. Taking this integral
simplifies things considerably. First, recall that

* sinwt;sinwt; T .
/o ;72] = 5 min {ti, t;}. (A7)
Repeated application of this integral yields
[eS) N-1
K(ty) = / J(w)dw = 4¢? sin? a(gto + (=) Nty + gtn +2mty Y (1) (AS)
0 i=1
N-1 N-1N-1 4
F2r(-D)N Y (=Dt 2m | Y (=) min {t;, ¢} |). (A9)
i=1 i=1 j=1
Noting that Zf\gl(—l)i =1 ((=1)Y 4+ 1) and that the last two sums add up to zero, we obtain
K(ty) = 2n3(ty — to) sin® . (A10)
We can average over input states to find
1 2 iy
(K(tn)) = 4—/ dﬁ/ dasin ()27¢% (ty — to) sin® a, (A11)
T Jo 0
4¢?
(K(tn)) = 777(tN — to). (A12)

Letting ty — T and tg — 0, we obtain the result from the main text,
4¢3
3

(K(T)) = ="T. (A13)



B. Derivation of the IQFI under the Rotating Wave Approximation

For the protocol governed by the Hamiltonian

_ . _ (pBcoswt hg
H(t) = pBcoswtZ + hgX = ( hg _uB coswt) , (B1)

one can ask what the behavior of the system is near resonance (w ~ 2g). In this regime, we can apply the rotating
wave approximation (RWA) to the system and still capture the dynamics. Transforming into the interaction frame
with respect to hgX yields the RWA Hamiltonian given as

Hrwa = % (h(QZBi o) h(Q—QM_BW)> 7 (B2)

and the time-evolution operator is Urwa (t) = exp (—%HRWAt). We take u = h =1 to simplify the expressions, then
add the pre-factors in at the end of the calculation to restore dimensional consistency. Doing so gives a final state of
the form

[Y(t))rwa = Urwa (t)|+), (B3)

i(B4+2g—w) :;in(%t B2+(u729)2)
e O e (o

= i(£2g+w) sin(lt\/m) ’ (B4)
cos(%t\/32+(w—2g)2)+ Bz+2(w72y)2
V2
— al0) + b|1), (B5)

where we have identified

T - T
cos | 5 w g VB (0—29)
a = ) (BG)
V2
i(B—2g+w)sin( 1ty/B2+(w—2g)2
o8 (%t B+ (w- 29)2) + \/B2<+2(wzg)2 :

\/5 )

b:

for simplicity. Further defining dgla] := ¢ and Op[b] := d allows the QFI of estimating B from this final state,
J(w) = 4(0pv(t) |¢(t))? + 401 (t) | OB (t)), to be expressed as

J(w) =4[(c*a+d*b)* + c*c+ d*d] (B8)
4Sin2 t\/ Bz+(w_29)2
- B2t2 N 2 B tQBQ(W _ 29)2 (Bg)
- B2 (w—29)? (B? + (w —29)%)° (B? + (w —29)%)°
2B%t(w — 2g)?sin [t B? + (w— 29)2] B?(w — 2g)?sin® |ty/B2 + (w — 29)2]
+ (B10)

(B? + (w —29))>/2 - (B* + (w —29)%)°
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Now, we can attempt to find the anti-derivatives of each term in this lengthy expression. Denoting the IQFI as K (w),
we find

1, 4 w—2 B(w —2
K(w) = 5Bt (tan ( = g) + +((w s 5;)2)2) (B11)
. 4sin’ (W) 2B%t(w — 2g)? sin [t B? 4 (w — 29)2} B%(w — 2g)? sin? [t B? + (w— 29)2}
* / YT (w - 29)2)2 * (B2 + (w —29)2)>/2 - (B? + (w —29)?)3
(B12)
5 (B 1 [ w—2g BQ(w—2g)
<! (2 o ( B ) "B (w- 2g>2>2) (B13)
4 2B%t(w — 2g)* 3 B?(w — 2g)?
+ [ [(32 w2 w207 B+ 2g>2>3] / (B14)
K(w) = 12 (ftan—l <“ ;29 ) tx BQB+(°("W_2§;)Q)2) +I(0), (B15)

where we have let Z(t) represent the unwieldy integral. When integrated, the result is at most linear in ¢. Focusing
on the first term, which dominates for T" > 1, we can evaluate the anti-derivative to recover the expression in the
main text. The RWA holds in a frequency band around the resonant peak, which we take to be w = g to w = 3g.
Evaluating the anti-derivative over this band, we obtain

Bgu - g
K ! > B l 2 I n 1 _J B

Restoring dimensional consistency, we obtain the expression from the main text

22 g -1( 9
K(T) z ¢°T (HCQQ;—FCBtan (CB)) (B17)

C. Proof of O(T?) IQFI Scaling for Continuous-Time Protocols
1. Bound on IQFI of Continuous Protocols

As in the main text, consider a sensing protocol defined by a time-dependent control G(T'). In particular, the full
Hamiltonian we are considering is

H(T) = hG(T) + puB cos (WT')Z. (C1)

We can Trotterize the evolution into a discrete sequence [40], which will look like those considered in the proof above,
with some step size §t. The evolution will be

U'(T) = Tel S s dtG(t) (iCBONZ |, Tl ot diG (1) i¢BOLZ O(5t2) (C2)

with @ = [sin (wkdt) — sin (w(k — 1)dt)]/(fw), Ndt = T, and where T denotes the time-ordering operator, which is
necessary because in general G(¢) will not commute with itself at all times. The number of pulses, N, in the discrete
protocol described in Eq. C2 gives, to zeroth order,

/ dwJ.(w) < ngjp : (C3)

for all 6t. There are however error terms from the Trotter expansion that we need to propagate through the IQFI
- this is what we will do now. By linearity of the derivative operator we can also constrain the derivative of the
Trotterized evolution to be close to the derivative of the actual evolution. In particular, we have that

U(T) = U'(T) + &(T) (C4)
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opU(T) = 0pU'(T) + €'(T) (C5)

where ¢’(T) = 0pé(T) is the B derivative of the error term in the Trotter expansion. Then we see from Eq. 23,
Je(w) < Ja(w) +4(+[€"(T)OpU’(T) + 05U (T)E"(T)|+) + (+[e"(T)Te"(T)|+)) (C6)
= Ja(w) + 8Re((+[&"(T)10pU"(T)| +)) + 4(+[&" (1)1 &"(T)|+)). (C7)

We will analyze the integrals of the error terms piecewise, first up to a frequency €2 > 0. The derivative of the the
first order Trotterized evolution defined above is

N-1
OpU'(T) = =i Y ©;PyUs...P; ZU;...Py Uy 1. (C8)

Jj=0

Noting that |©| < 2T/N for a uniformly spaced pulse sequence, this gives

. N—-1
\|/ " ( = Z@jPOUo...PjUj...Pn_lUn_l|\ (C9)

=0

QN-1
< Prnaxcal|€'(T \|/ Z|@ 1 PoUo..- P, U Py Un s | (C10)
QN-1
<%maxw<g||€"(T)|| / Y or/N (C11)
*Q—u e (T C12
= —maxu<al[€" (D)7, (C12)
Similarly,

/ ||€"(T)Te"(T)]| < 4max,<al[e"(T)[]*Q (C13)

where the maximum is over w on which the error term implicitly depends. Then we have, for the last two terms in
Eq. C7

8| /O h Re(¢"1(T)opU'(T))|| < %QTmaxw<Q||€”(T)||+H /Q h 8Re(¢"T1(T)ogU'(T))||, (C14)
and
4/0 [[€"(T)e"(T)|] < 4maxe,<o|e”(T)| Q+4/Q |€"(T) " (7). (C15)

¢’(T) is at worst proportional to T, since the error in a time step 0t is independent of T' (it’s proportional to
[|[AG (t), uB cos (wt) Z]||6t?), and there are N = T/t times steps. Furthermore

—1
05U (T)|| = ”TM 3" 0, P PU;... PuUn || < pN/ () = T/ (Sth), (C16)
J

so we need only understand ||é”(T)|| at high frequency, where || - || is the spectral norm. To this end, consider the
error in time step ot given in [41] as U’ (¢, tp—1)F (tk,tx—1), where U’(a,b) is the Trotterized evolution from time a
to time b and

F(tk,tkfl) = ' C(U,tkfl)F(’lhtk,l)d'U (C].7)
Cltptr 1) = expli /t " Gs)ds)! tk du expli /t CA(s)ds)! (C18)
x[A(u), hG (t)]exp(—i /tu A(s)ds)exp(—i/tk G(s)ds), (C19)
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where A(s) = % cos (ws)Z. Thus, to lowest order in 1/w,

u

uB

exp (—i - A(s)ds) = exp (iBZ(cos (wu) — cos (whg—1)) /w) & T — i==Z(cos (wu) — cos (wix—1))/w  (C20)
so that the relevant integrals over u are
/:1 du cos (wu) = (sin (wtg) — sin (wWtp_1))/w (C21)
/t:kl du cos (wu)(cos (wu) — cos (wtp—1)) (C22)
= (28t -+ sin (20-1) = 4008 (t-100) in (tx-1 + 66)) +5in (2tucr + 88))/ () ()

Plugging these in we find

tr T tr
Cltpte 1) = %((sin (wtr) — sin (whe_1)) /) (exp (i /t hG(s)ds) (2, hG(t)] exp (—i /f hG(s)ds)) (C24)
—&—iQCQBQ ((20tw + sin (2t _q1w) — 4 cos (tx—1w) sin ((tg—1 + 0t)w) + sin (2(tx—1 + dt)w)) (C25)

4w?
i tr
212, hG(t)] exp (—i / KG(s)ds)) (C26)

th—1

x (exp (l/tk hG(s)ds)

T t
[ZyﬁG(tk)]ZeXp(*i/ hG(s)ds)))))), (C27)

tp—1

+(exp (z/k hG(s)ds)

th—1

where we have only kept the lowest order correction terms. By inspection, we see that there is no way for a T
dependence to enter for higher order terms, and moreover we see that for w large enough (Q >> uB/h) the terms
are both integrable over w and arbitrarily small. We are interested in IV times the B-derivative of this error, where
the extra factor of N is because the total error accumulates at worst as N times the step-wise error. But now we are
done, since this shows that for all € > 0 there is an Q(||G||, B, 6t) such that in total we have a bound of

21 (2T? 9
/dec(w) < 57 + (c(h||G]|, uB, 6t) + €(h||G||, uB, 6t))T*, (C28)

where we’ve denoted two parts in the coefficient of the second term - one coming from the lowest order contribution
to the right tail of the QFI, and one coming from the innaccuracy in this approximation. So in total we see that
[ dwK(T) € O(T?).

D. Perturbative Expansion to O(B?)

Recall that the pure state QFI can be expressed as

J(p) = (0] ¢) + 4Re{(0|¥)*}. (D1)

As shown in a previous note, the second term above is in general non-positive and thus if all we seek is an upper
bound on the QFI, we can simply consider the first term. We can write the time evolution operator as

t t T2
U= 1—iB/ COS(WT)Z[(T)dT—BQ/ dTg/ dry cos(wTs) cos(wty) Z1(72) Z1(T1) (D2)
0 0 0
t T3 T2
+iB® / drs / drs / 1 cos(wrs) cos(wrs) cos(wn) Z1(75) Z1 (2) Z1 (1) + O(BY), (D3)
0 0 0

where we have used Z;(t) to express Z in the interaction picture. We expand to order B? because, when differentiated
with respect to B, this yields a term proportional to B2. To simplify notation, let

U:=1—iBI, — B*I, +iB*I3 + O(B*). (D4)
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Then, the time-evolved quantum state will be

) = [¢(t)) = UgU|1p(0)), (D5)
and the derivative of this state is then
|¢) == 9BV), (D6)
= gl (t), (D7)
= dp(UolU|1(0))), (D8)
= (—iUol, — 2BUyl5 + i3B*UyI3)[4(0)) + O(B?). (D9)
The inner product of this vector with itself is,

(@] ¢) = (W(O0)|(+iI{U§ — 2BIJUS — i3B2IJUS ) (—iUg Iy — 2BUo I + i3B2Uy I5)[1(0)) + O(B?), (D10)
= ((0)[I] 11 [1h(0)) — i2B(4(0)|I] Ia|th(0)) — BB(h(0)| 1] I3]3(0))+ (D11)
+i2B{(0) [ I3 11 [¢(0)) + 4B (3p(0)| I I |v(0)) — 3B (4(0)| L1 11[4:(0)) + O(B?). (D12)

(D13)

Now we assume, and verify later, that (4(0)|11 I[¢(0)) = ((0)| I3 1, [1(0)) and ((0)| 11 3] (0)) = (1p(0)| L I [1(0)),

so we have
(@16) = (W(O) I I [(0)) + 4B ((0) [ I L2 |v(0)) — 6B(1(0)[I1] Is](0)) + O(B*). (D14)

From our work above, we have J(p) < 4(¢|p). Also, because J(p) is an even function of w, ffooo J(p)dw =
2fooo J(p)dw := 2Jy0r. Thus,

Jtot = %/;Oo J(p)dw, (D15)
<3 [ soloa. D16)
2/ " (6]6)do. (D17)

Thus, our task has become integrating Eq. D14 over all frequencies. Let’s start with the first term, which we write
out explicitly because the same technique will be applied to the other terms. We have

2 [~ @Ol n o) (D13)
- /jo (1(0)] (/0 dr’ cos (wT’)ZI(T’)> ( ; dT cos (WT)Z[(T)> [1(0))dw, (D19)
_ [ (W) < /0 dr /O chos(wT)cos(wT)ZI(T)ZI(T)> 105(0)) dov. (D20)

(D21)

Now, let us note the following useful fact,

216(r' — 1) = / e =) . (D22)
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With this in mind, we can write

2 [ O n o) -
— 2/_00 W) </O dT,/O dr (cosw(r’ —7) ;COSW(T’ + T)) Z[(T’)Z[(T)> [1(0)) dw (D24)

oo t’ t
%/ <¢(0)| </ dT// dr <€iw(7—/_7—) + e—iw(r’_T) + eiw(T'-‘rT) + e—iw(r’-‘rT)) ZI(T/)Z[(’T)> \w(0)>dw (D25)
—o0 0 0

= m(¥(0)] (/0 dT'/O dr[5(7" = 1) + 0(=(7" = 7)) + (" + 7) + 6(= (7" + 7))] ZI(T')ZI(T)> [4(0)) (D26)

= 7 ((0)] (/0 d’r'/0 d725(7" — T)ZI(T’)ZI(T)> [1(0)) (D27)

p / a7’ ((0)) Z1 (+') Z1 (+') 1 (0)) (D28)
0

2 / dr (0| 4(0)) (D29)
0

=27 t dr’ (D30)
0

=ont, (D31)

where we have used the facts that §(—z) = 6(z), the delta functions 6(7" + 7) = 0 for the range over which we are
integrating, Z;(7')Z;(7") =1, and (¢(0)|4(0)) = 1. Next, we turn to the second term in Eq. D14. We have

s [~ Ol Llv(0) e (D32)
3B /_ Z(w(on < /0 C i /0 " i cos(oJTé)cos(wT{)ZI(Té)ZI(T{)> (D33)
< < /O Cr, /O " iy cos(wrs) cos(wn) Z1(ra) Z1 (m) p(0))de, (D34)
_8B° /_ W) ( /O i, /0 arl /O . /0 Qdﬁl:[cos(wTi)Z[(Ti)> 9(0))de, (D35)

(D36)

where we have abused notation in attempt to compactly express the product of cosines and Z;’s. As above, the
integral over all frequencies Kkills one of the time integrals, leaving three. Finally, bounding the expectation value of
the product of Z;’s from above by 1, we have

8B? / (1 (0)| I3 15| (0))dw < 167 B3 (D37)
Similarly, for the last term we have
12B2 / (W (0)| 11 13]4(0))dw < 247 B3, (D38)

Together, this yields an upper bound on the IQFI of

Jot < 27t + 407 B*t3 + O(B?) (D39)
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