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Cavity QED experiments are natural hosts for non-equilibrium phases of matter supported by
photon-mediated interactions. In this work, we consider a cavity QED simulation of the BCS model
of superfluidity, by studying regimes where the cavity photons act as dynamical degrees of freedom
instead of mere mediators of the interaction via virtual processes. We find an enhancement of
long time coherence following a quench whenever the cavity frequency is tuned into resonance with
the atoms. We discuss how this is equivalent to enhancement of non-equilibrium superfluidity and
highlight similarities to an analogous phenomena recently studied in solid state quantum optics. We
also discuss the conditions for observing this enhanced resonant pairing in experiments by including
the effect of photon losses and inhomogeneous coupling in our analysis.

Superconductivity and superfluidity are among the
most celebrated predictions of modern condensed mat-
ter theory, both for their fundamental importance and
for the promise they hold to revolutionize power trans-
mission [1, 2]. Recent theory and experimental ef-
forts point at potential non-equilibrium enhancement of
superconducting-like phenomena in platforms at the in-
terface of condensed matter and quantum optics, hinting
at novel avenues beyond conventional high-temperature
superconductors in solid state systems [3–5]. These en-
compass pump and probe experiments in the solid state
setting [6–10], as well as proposals to enhance super-
conducting order using driven photonic cavities coupled
to quantum materials [11–15]. The complexity in mod-
elling the physical principles behind these platforms re-
sult from the necessity to combine materials science
together with an understanding of the role of driven
photonic and/or phononic degrees of freedom in many-
particle physics [16–33]. It would be therefore desirable
to provide an emulator of superconductivity which, al-
though it may simplify the degrees of freedom involved,
could shed light on complementary mechanisms for non-
equilibrium enhancement of superconducting order. This
could then be used as a stepping stone towards richer and
more intricate scenarios.

Such an emulator has been proposed in AMO physics
for quantum simulation of archetypal s-wave supercon-
ductors (for charged particles) or s-wave superfluids (for
neutral particles) [34, 35] . In these works the dynamics
of the superfluid phase coherence, directly related to the
Meisner and Anderson-Higgs mechanisms in supercon-
ductors [2], can be studied by monitoring the dynamics
of the atomic phase coherence. In the QED simulators
considered so far, the cavity must be far detuned from
atomic frequencies so that photonic degrees of freedom
can be integrated out [36–57] and so an effective matter-
only s-wave model of superconductivity is sufficient to

FIG. 1. Top panel: A simple schematic of the distribution of
atomic levels (see text) and the spectral response of the cavity
with detuning ∆c and linewidth κ. Bottom panel: Time aver-
age of the phase coherence S+ = 1

N

∑
i

〈
σ̂+
i

〉
as a function of

the cavity detuning ∆c/(χN), for large disorder W/(χN) = 8.
In the adiabatic limit, ∆c/(χN) → ∞, the simulator shows
vanishing coherence, S+(t)→ 0, while coherence is maximum
when the photon is at resonance with the mean atomic trans-
verse field ∆c ≈ ε0 = 6χN (marked by a black dashed line).
To make use of an integrability analysis we assume an ideal
cavity with κ = 0 for most of the paper, and then confirm
that a realistic cavity linewidth, κ/(g

√
N) = 1.4× 10−2, does

not significantly modify the resonance phenomenon.

describe the dynamics. In such a limit the cavity only
contains virtual photons, and their primary purpose is
to mediate pairing interactions.

In this Letter, we investigate the effect of real pho-
tons on the phase coherence when the cavity detuning
to the atomic transition is reduced. In this limit, the
single channel s-wave BCS Hamiltonian is no longer an
accurate description, and instead the atoms and cavity
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field simulates the two channel model of the BCS-BEC
crossover [2, 58]. In this model, the effect of reducing pho-
ton detuning on the dynamics are non-trivial because, on
one hand, reducing the detuning yields a stronger medi-
ated interaction strength, while on the other hand re-
ducing the detuning leads to retarded photon dynam-
ics where an instantaneous interaction is no longer valid.
Here, we find that even when the change in interaction
strength is accounted for, the retarded photon dynamics
can maintain phase coherence better than the instanta-
neous interaction. This is demonstrated in Fig. 1, where
we show that upon reducing the photon detuning phase
coherence increases until resonance, below which the di-
abatic (small detuning) limit takes over and phase co-
herence is lost. While these results are mostly obtained
by a classical integrability analysis [58–65], we also find
via numerical simulation that the phenomenon is robust
to the non-integrable effects caused by inhomogeneous
couplings and photon loss which are typically present in
realistic cavity QED settings.

Simulation of Superfluid Phase Coherence. We
consider the simulation of the two-channel model for the
BCS-BEC crossover observed in ultracold fermion experi-
ments [2, 58]. The model involves fermions (with creation

operator f̂†k,s with momentum vector k and spin s) that
can form Cooper pairs on the BCS side of the crossover
or, bind into diatomic bosonic molecules at zero center
of mass momentum (with creation operator d̂†) on the
BEC side of the crossover. Neglecting finite momentum
molecular bosons, the dynamics are characterized by the
Hamiltonian:

Hf/h̄ =
∑
k,s

ε|k|f̂
†
k,sf̂k,s + g

∑
k

f̂†k,↑f̂
†
−k,↓d̂+ h.c.+ ∆cd̂

†d̂,

where d̂ is the mean molecular field, ∆c is the molecular
binding energy, and g is the coupling strength between
fermions and molecules. When the fermions condense
into a superfluid on the BCS side of the crossover, they
mostly form Cooper pairs [2] quantified by the complex

pair amplitudes ρk = 〈f̂†k,↑f̂
†
−k,↓〉. In this Letter, we focus

on the dynamics of the superfluid s-wave phase coherence
S+ = 1

N

∑
k ρk, which quantifies the phase coherence

between Cooper pairs with different pairing wave vector
k.

Similar to Ref. [35], the Cooper pairs can be simulated
by a collection of two level atoms (described by Pauli
operators σ̂+

i and σ̂zi ) via the Anderson pseudospin map-
ping [58, 61, 62]:

σ̂+
i → f̂†ki,↑f̂

†
−ki,↓, σ̂zi → f̂†ki,↑f̂ki,↑ + f̂†−ki,↓f̂−ki,↓ − 1. (1)

where each atom i simulates a pair of fermion momen-
tum modes i→ ±ki. The above Hamiltonian can then be
simulated by a cavity QED system similar to the exper-
iments described in references [39, 40, 42, 66], in which
the internal levels of 2N atoms are encoded in long lived

electronic states, e.g the 1S0-3P1 states of 88Sr atoms.
The atoms are trapped in an optical lattice and are al-
lowed to interact with a single cavity mode (described by
a photon annihilation operator â simulating the molec-
ular field, â → d̂). Such a system is modeled by the
Hamiltonian [35, 39, 40]:

H/h̄ =
2N∑
i=1

εiσ̂
z
i +

2N∑
i=1

gi(σ̂
†
i â+ h.c.) + ∆câ

†â, (2)

where ∆c is the detuning of the cavity from the mean
atomic frequency, 2gi is the single-photon Rabi frequency,
and εi is an inhomogeneous effective transverse field.
Simulation of Hf by the cavity QED system occurs for
homogenous light-matter coupling gi = g and for a prob-
ability distribution, p(εi), of the inhomogeneous field,
εi, that is designed to match the density of states for
the fermion model. We choose the density of states as
p(εi) = [B(W/2, ε0/2, εi) +B(W/2,−ε0/2, εi)] /2, where
B(α, x0, x) is a box distribution with mean x0 and width
α (see Fig. 1). Similar to Ref. [35], such a bimodal distri-
bution is chosen to ensure the possibility of persistent os-
cillations of the phase coherence (see below) in the W = 0
limit. A possible band structure reproducing this den-
sity of states and the superfluidity that would occur in
the traditional thermal equilibrium setting is discussed
in Ref. [67].

At large detuning, ∆c � g
√
N and ∆c � ε0+W/2, the

cavity field mediates spin-exchange interactions and an
effective spin model can be derived which maps into a one
channel BCS model as discussed in Ref. [35]. In this limit,
an adiabatic approximation [35, 39, 40] assumes the state
of the light field is in instantaneous equilibrium such that〈
â†eq(t)

〉
= − gN∆c

S+, where S+ = 1
N

∑
i

〈
σ+
i

〉
= 1

N

∑
k ρk

is both the atomic phase coherence and the simulated
superfluid phase coherence. Thus, in the large detun-
ing limit, the photon directly measures the phase coher-
ence S+. Inserting

〈
â†eq(t)

〉
back into Eq. 2 and taking

homogenous couplings, one finds a mediated interaction
−χ
∑
ii′ σ̂

+
i σ̂
−
i′ with interaction strength χ = g2/∆c and

sign which favors effective Cooper pair formation at low
temperatures and positive detuning, ∆c. In this work we
will study the dynamics when the photon detuning, ∆c, is
decreased and the adiabatic approximation is no longer
valid. One complication to this limit is that when the
photon detuning is decreased, the interaction strength
χ increases. To isolate this effect we imagine that the
experiment simultaneously increases the strength of the
atomic energies as the photon detuning is decreased such
that ε0/χN and W/χN are held constant.

Dynamical Phases from classical integrability.
To study the dynamics of this system, we make a mean
field approximation (i.e. 〈Ô1(t)Ô2(t)〉 = 〈Ô1(t)〉〈Ô2(t)〉
and adopt the notation: 〈Ô1〉 ≡ O1) which is expected
to work up to time scales O(1/(χN)) [68–70]. The re-
sulting classical dynamics of the Hamiltonian in Eq. 2
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show Richardson Gaudin integrability [58–65, 71–73] in
the homogenous limit, gk = g . The so called Lax integra-
bility analysis [58–65] is then used to study the integrable
tori of the classical mean field Hamiltonian correspond-
ing to Eq. 2 and to construct a dynamical phase dia-
gram [35, 58] characterizing the collective modes. This
is done by studying the conserved quantities to identify
a minimum number, M , of collective degrees of freedom
(DOF) required to effectively reproduce the dynamics of
collective variables at long times [74].

The dynamical phases are then classified by the re-
quired number of collective DOF and the dynamics of
the phase coherence S+. First, we consider the result-
ing collective modes for a quench starting from an initial
state with all spins polarized in the x̂ direction, 〈σ̂xi 〉 = 1,
and the cavity in the vacuum, 〈a〉 = 0. In the spin-
only model, three phases are found [35, 58] with at most
M = 2. In contrast, we identify a fourth phase with
M = 3 upon introducing the photon away from adi-
abatic elimination. The three phases in the adiabatic
limit, ∆c →∞, are (for fixed χN and ε0 > χN):

• Phase I (M = 0): At large disorder, all phase co-
herence is lost, and the simulated superfluid enters
a normal state: S+(t)→ 0.

• Phase II (M = 1): Transition to this phase oc-
curs as disorder is reduced, and involves only one
effective degree of freedom (M = 1). In this phase,
the magnitude of the phase coherence, |S+(t)|, is
constant at late time, and the collective mode cor-
responds to precession of the phase of S+: S+(t)→
|S+| eiµt.

• Phase III (M = 2): This phase occurs at even
smaller inhomogeneous atomic broadening, and has
M = 2 DOF. The collective mode shows persistent
oscillations in |S+(t)| as shown in the lower panel
of Fig. 2.

In this adiabatic limit, the critical disorder strengths be-
tween phase I and II, and II and III, depends non-trivially
on ε0, but are on the order of the interaction strength χN .

At finite detuning, ∆c, the photon becomes another
DOF in the collective oscillations of these three phases,
and to distinguish the phases of the full model we will
write them with a “+1” superscript. The phases I+1

and II+1 show the same qualitative dynamics of S+(t)
as the phases II and III respectively, while a new phase
III+1 is defined by aperiodic oscillations of |S+(t)| and
requires M = 3 collective DOF (two macroscopically co-
herent spins and a photon). At large but finite ∆c, the
new phase III+1 involves the photon performing fast os-
cillations around aeq(t), the slowly evolving equilibrium
value given by adiabatic elimination (see Fig. 2 for an
example). In this limit, the aperiodic contribution to the
oscillations of S+ becomes small smoothly as function

of ∆c, and thus in the large detuning limit phase III+1

approximates phase III. This limiting behavior is the
same for phases I+1 and II+1 which, for large detuning,
approximate phase I and II respectively.

FIG. 2. The top panel shows the dynamical phase diagram
as a function of the cavity detuning and atomic disorder.
The approximate resonance condition, ∆c ≈ ε0 = 6χN , is
marked by a black dashed line. The bottom left panel shows
dynamics characteristic of phase III+1 (specifically W = 0
and ∆/(χN) = 40). For these parameters, the adiabatic
approximation correctly predicts the dynamics of the mat-
ter, but misses the extra oscillation around aeq(t) predicted
by the Lax analysis. The bottom right panel shows the dy-
namics of

∣∣S+(t)
∣∣ for W/(χN) = 8 and different values of

∆c/(χN) marked in the top panel. For ∆c/(χN) = 0.1 (red)
and 10.3 (yellow),

∣∣S+(t)
∣∣ evolves to a constant steady state

characteristic of phase I+1, while for the remaining values
of ∆c/(χN) the dynamics have persistent oscillations char-
acteristic of phase II+1. In this figure, the initial state has
〈σ̂x

i 〉 = 1 and 〈a〉 = 0.

Upon reducing the detuning, a rich dynamical phase
diagram emerges as shown in the upper panel of Fig 2. In
the W = 0 limit, there is only phase III+1, while, at fi-
niteW , the cavity field has a broad impact on the dynam-
ical phase diagram. In the diabatic limit, ∆c/χN � 1,
the dynamics are much more sensitive to the inhomo-
geneities due to an inability of the cavity to mediate an
effective interaction, and the transition to phase I+1 oc-
curs at much smaller disorder in comparison to the large
detuning limit. We also find a region at large disorder,
W > 4χN , where phase II+1 occurs when ∆c ∼ ε0 which
suggests phase coherence can be enhanced by setting the
detuning on resonance with the atoms that have atomic
energies close to ε0.
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Mechanism of resonant phase coherence. The
enhancement of phase coherence is confirmed in Fig. 1,
and we explain the formation of this resonance by first
considering finite but large detuning, such that 1/∆c is
still the fastest timescale. In this limit the dynamics are
in Phase I+1 and the enhancement of phase coherence is
very weak at long times, but the following simple picture
holds. First, on a timescale of 1/∆c, the initial polariza-
tion of the spins drive the photon into an excited state os-
cillating around a non-zero aeq(t = 0) = −Ng/∆c. Then,
on a timescale of 1/W >∼ 1/∆c, the spins mostly dephase
and aeq(t → ∞) ≈ 0. Once the spins mostly depolar-
ize to their steady state, the photon remains oscillating
around a small equilibrium, a(t) ≈ Aeiµt. The Lax analy-
sis (see [58] and [67]) yields expressions for the frequency
and amplitude of these small oscillations which have a
simple analytical form when ∆c > W > ε0: µ = ∆c and
A = χN/g =

√
N
√
χN/∆c.

From the perspective of the matter, the photon is ef-
fectively an external drive that pumps a small fraction
of the spins into a coherent steady state. In the frame
of reference of the photon (the effective external drive),
the dynamics of each spin is fully described by a constant
magnetic field, ~h = (εi−µ)ẑ+ gAx̂, and we can solve for
the steady state as:

S+ =
1

N

∑
i

gA√
(εi − µ)2 + |gA|2

. (3)

Since µ ∼ ∆c, this expression correctly predicts the loss
of coherence, S+, in the adiabatic limit shown in Fig. 1.

Further away from the adiabatic limit, the separation
of time scales, 1/W >∼ 1/∆c, that yields the simple pic-
ture above is no longer valid. Regardless, the Lax analy-
sis still produces the same expression, Eq. 3, for the phase
coherence in phase I+1 but now with a different A and µ
that must be numerically determined by solving for the
roots of a Lax vector (see [58] and SM). Since µ gives the
precession frequency of the photon, it is expected to be
close to the detuning µ ≈ ∆c and this is what we find
numerically. Eq. 3 therefore predicts the atom at site i
will be in resonance when ∆c = εi. The coherence is then
maximally enhanced when most spins are driven close to
resonance and occurs when the drive, ∆c, is at the center
of the band of atomic frequencies ∆c ≈ ε0. This approx-
imation is confirmed by the peak in coherence shown in
Fig 1.

Although Eq. 3 provides an intuitive picture, simliar
to a single particle resonance, when the system is in
phase I+1, the relevant enhancement of coherence at the
resonance happens in phase II+1 where the cavity field
and atomic coherence must both be treated as dynami-
cal variables. As shown in Fig. 2, their dynamics in this
regime show coupled nonlinear oscillations [58].

Experimental Realization. In the experiments of
Refs. [39, 40] an optical lattice is used to trap Sr atoms,

FIG. 3. The top panel shows the same dynamics for
∣∣S+(t)

∣∣
as in Fig. 2, but with κ/(2π) = 150 kHz and g/(2π) =
10.8 kHz as in the experiments of [39, 40]. The bottom panel
is computed assuming inhomogeneous couplings and an ini-
tial state prepared by a coherent drive through the cavity.
Even though inhomogeneities and cavity losses reduce the co-
herence, we can observe a signature of the resonance as a
minimum [75] in the photon density. Note that in contrast to
Fig. 2 and Fig. 1, the initial state depends on the initial num-
ber of photons driven into the cavity which scales as 1/∆c.
Both figures were obtained by numerical simulation of the
Lindblad equations of motion at mean-field [76]. In the top
panel, the decay rate of

∣∣S+(t)
∣∣ is constant with ∆c/χN and

proportional to 1/κ, but appears to increase with ∆c/χN in
the figure because the unit for time, 1/χN , decreases with ∆c

when g is fixed.

featuring a long-lived electronic clock transition with
atomic decay rate of γ. The optical lattice is placed
inside a standing wave optical cavity with linewidth κ.
While both γ and κ destroy phase coherence at long
times, we find that the effect of resonant phase coher-
ence is still observable on times O(1/κ) provided we oper-
ate at large collective cooperativity (Ng2 � κγ). Given
that for long-lived Sr atoms, κ � γ we neglect atomic
decay. Fig. 1 shows the dependence of |S+(t)| on ∆c,
and demonstrates that the resonant enhancement can be
maintained even with cavity loss. Furthermore, Fig. 3 de-
picts how the dynamics in Fig. 2 simply features a slow
decay for moderate κ.

The experiments in [39, 40] also have inhomogeneous
couplings gi = g cos(k0a0i) with k0a0 = 3.7 due to an
incommensurability between the optical lattice spacing,
a0, and the cavity wavelength, 2π/k0. The inhomoge-
neous couplings will disrupt the effect discussed in this
work if we start in a homogenous state, since the cou-
plings will no longer excite the photon. However, as long
as the initial state is generated by coherently driving the
optical cavity, inhomogeneities do not play a detrimen-
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tal effect. In this case, the initial state involves all spins
aligned with the inhomogeneities sgn(σxi ) = sgn(gi) such
that cavity will be coherently pumped by the atoms. The
resulting simulations show signature of resonant phase
coherence as a minimum [75] of the time averaged pho-
ton density shown in Fig. 3. Note that both dissipation
and inhomogeneities break Lax integrability.

Conclusion. Our work demonstrates that dynamical
fluctuations of a mediating field can produce enhance-
ment of phase coherence in cavity QED simulators of
superconductivity and superfluidity. The generality of
our result based on a resonance argument, would suggest
a natural extension to a broad variety of platforms such
as trapped ions or quantum optics in waveguides, both
of which serve as tunable simulators of non-equilibrium
quantum many body physics, employing mediating pho-
tons or phonons [77, 78]. It also suggests a promis-
ing direction for cavity enhanced superconductivity in
real materials. Such a possibility requires extending the
phenomenon to charged superfluids in which the light-
matter couplings are structurally different from the atom-
molecule couplings of Eq. 1. Our results offer the possi-
bility of studying novel regimes of enhanced cooperative
light-matter, and hint that quantum many-body optics
with active light and matter degrees of freedom has the
potential to become a blossoming area of quantum sim-
ulation in the near future.
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Since the initial state is uniform for spins 1 . . . N and for N + 1 . . . 2N , the sums over i splits into two sums which
can be approximated by disorder average: ∑

i

1

u− εi
≈ N

∫
p(ε)

u− ε
dε (5)

where p(ε) is the disorder distribution for transverse fields: εi = ε/2 + xi for i ∈ (1 . . . N) and εi = −ε/2 + x for
i ∈ (N + 1 . . . 2N), and xi are drawn from a uniform distribution with zero mean and width W/2. The integral
results in a logarithm whose branch cut must be chosen to match the continuum of poles that develop when taking
the N →∞ limit of the summation[63–65]. This results in:

lim
N→∞

χ

2

∑
i

σyi (t = 0)

u− εi
= Lyl (u) =

χN

W
sin(

∆φ0

2
) ln

[
(4u)2 − (W − 2ε0)2

(4u)2 − (W + 2ε0)2

]
(6)

lim
N→∞

χ

2

∑
i

σxi (t = 0)

u− εi
= Lxl (u) = 2

χN

W
cos(∆φ/2)

[
Arctanh(

W − 2ε0
4u

) + Arctanh(
W + 2ε0

4u
)

]
,

where the branch cut for ln(x) is Re(x) ∈ [0,−∞), and the branch cut for ArchTanh(x) is Re(x) ∈ [−1,−∞) and
Re(x) ∈ [1,∞). The square lax vector is therefore computed as:

χ

2
~L2 =

(
χ~Lxl⊥(u)− sχN

∆c
cos(∆φ/2)

)2

+ χ~Lyl⊥(u)2 +

(
1− 2u

∆c

)2

(7)

where s = 0 if the cavity field is a(t) = 0 at t = 0, or s = 1 if the cavity field is in equilibrium with matter
a(t = 0) = aeq(t = 0) at t = 0.

In the main text, we used the numerical search described below to study the dynamical phases as a function of
∆c/χN and W/χN , for fixed ε0/χN = 6, ∆φ0 = 0 and photon starting in the vacuum. Such a phase diagram does
not qualitatively change by increasing ∆φ, but if the cavity field is in equilibrium with matter a(t = 0) = aeq(t = 0)
at t = 0, and ∆φ0 = π we see larger region for phase II+1 (see Fig 4).

FIG. 4. Phase diagram as in main text but for an initial state with ∆φ0 = π and a(0) = aeq(0). Interestingly, for large W , the
region of Phase II+1 shifts to higher frequencies. While this region is in phase II+1 where the amplitude

∣∣S+
∣∣ oscillates, the

oscillations and over all phase coherence are relatively small at large W . Similarly, the Lax analysis of phase I+1 still predicts
a resonance in phase coherence

∣∣S+
∣∣ at ∆c = ε0 (marked by a black dashed line); we have confirmed this numerically.

Numerical Search for the roots

The dynamical phases are characterized by the number of roots of ~L2(u) = 0 as discussed in the main text. To find
these roots for a range of W/χN and ∆c/χN as in the main text, we employ the NLsolve Julia library. The algorithm
requires an initial seed for the roots and then uses the steepest decent to find the numerical value. Therefore, to find
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all the unique roots ~L2(u) = 0 and thereby correctly identify the dynamical phase we perform the following process.

First, we plot the complex magnitude of ~L2(u) and identify an approximate location of the 6 roots from the plot. Then
we use NLsolve function to find a precise location of the root with a relative and absolute numerical error tolerance
of 10−4. For the first root, this is done for W = 0, a specific initial state, a large value of ∆c/χN , and the remaining
Hamiltonian parameters fixed.

Since the location of the roots are smoothly connected to each other as ∆c/χN is smoothly decreased, we next
find the location of roots for W/χN = 0 and different values of ∆c/χN . This is done by starting with roots found
for W = 0 and the large value of ∆c/χN and then finding the roots sequentially decreasing ∆c/χN . The seeds used
for the NLsolve function are the roots obtained from the previous step in the sequence with slightly larger ∆c/χN .
Then, starting with the root found for a specific ∆c/χN and W/χN = 0, we find the roots for W/χN > 0 performing
a similar sequential process, but this time increasing W/χN and keeping ∆c/χN fixed. After finding all the roots,
we identify the unique ones, up to an error tolerance of 10−4, to identify which phase we are in.

A problem that can arise in this process is two roots closely approach each other, as W/χN is increased. If this
occurs, the seeds used for steepest decent can become identical to each other in the sequential update of seeds based
on the previous roots. In order to prevent such issue, we keep a list of fixed seeds that we also use when finding
distinct roots at each point in the phase diagram.

Analytic solution for phase I+1 roots

As discussed in the main text, the location of the two roots in phase I+1 gives useful information on the dynamics
of the photon. These roots can be found if

∆c > W > ε0, (8)

when the cavity is initially empty, and when ∆φ0 = 0. In this limit, the ArchTanh can be expanded, and the Lax
squared vector yields:

χ/2~L2 ≈ (
4χN

W
)2(

W

4u
)2 + (1− 2u

∆c
)2 + ... (9)

Defining u = u′∆c/2, the condition ~L2(u) = 0 becomes:

±i2χN
∆c

1

u′
= 1− u′

The quadratic equation solves as

u′ =
1±

√
1± i8/∆′c
2

. (10)

When ∆′c = ∆c/χ/N is very large the small angle approximation yields u′ ≈ 1 ± i 2
∆′

c
, or u = ∆c

2 ± iχN . The Lax

analysis argues [58] that in Phase I+1, the real and imaginary parts of this root pair gives the frequency, µ, and
amplitude, A, of the photon oscillations respectively: a ≈ Aeiµt. Therefore we find that when, ∆c > W > ε0 the
photon frequency is given as µ = ∆c the photon amplitude as A = χN/g =

√
N
√
χN/∆c. as in the main text. This

is confirmed in Fig. 5.

Minimum in photon occupation at resonance

As seen in Fig. 5, and in Fig. 3 of the main text, the photon density 1
TN

∫ T
0
dt
〈
a†a
〉

shows a minimum as a function
of the detuning, ∆c, near resonance ∆c = ε0. This phenomenon is explained in a similar way to the resonance
maximum seen by the phase coherence |S+| and it is related to the conservation of total excitations: Sz + a†a. In
Fig. 5, the initial state is polarized in the x̂ direction and with no photons in the cavity such that Sz + a†a = 0.
Therefore the photon density is fixed to the Jz polarization of the spins: a†a = −Sz. Using the same argument in
the main text that, in phase I+1, the photon simply acts as an external drive with a = Aeiµt, we find that

a†a = −Sz = − 1

N

∑
i

(εi − µ)√
(εi − µ)2 + |gA|2

. (11)
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FIG. 5. This figure shows the effect of resonant phase coherence as monitored by the photons. Since in the adiabatic limit
a† → −gNS+/∆c, and S+ vanishes at long times for the chosen conditions, it directly quantifies the extent to which adiabatic
elimination fails. The inset shows numerical confirmation (marked by x’s) of the analytic prediction for the photon amplitude
A2 = N2χ/∆c (solid line). Such a prediction requires the approximation ε0 � W , and therefore ε0 = χN � W = 8χN in the
inset, while in the main figure ε0 = 6χN . In both, the initial state has 〈σ̂x

i 〉 = 1 and 〈a〉 = 0.

Therefore the ith spin contributes least to the total Sz polarization (and photon amplitude) when it is in resonance
with the cavity field εi = µ ≈ ∆c. This implies a minimum in a†a when the spins on average are in resonance with
the cavity field: ε0 = ∆c. Furthermore, a spin i with frequency εi > µ will have opposite ẑ polarization than a spin j
with frequency εj < µ resulting in overall reduction of their net contribution to the total spin polarization Sz. This
deconstructive interference between spins with different relative frequency εi − µ will shift the minimum in a†a to a
smaller detuning than ∆c = ε0 due to the contributions of spins in the negative band of frequencies: |εi + ε0| < W/2.

The argument is similar for an initial state discussed in Fig. 3 of the main text, which also has Sz(t = 0) = 0 but
with photons in the cavity, |a(t = 0)| = |a0| > 0. The only difference is the conservation condition gives an additional
contribution to the photon density:

a†a = −Jz + a†0a0 (12)

Band Structure

We consider a dispersion, εk,b, that has two bands (indexed by b = ±1) centered at bε0/2 with bandwidths
maxk

∣∣ε|k| − bε0/2∣∣ = W/2, and a constant density of states within the two bands (see Fig. 6). Such a constant
density of states can occur with Dirac cones and is required to be easily simulated by a uniform distribution for the
inhomogeneous broadining on the atoms (see Fig. 6). Furthermore, we work in the limit W < 2ε0 such that there
are two bands separated by a band gap of ε0 − W/2. Note that, while the energy difference between the atomic
excited state and its ground state is 2εi, each atom represents two fermion modes with momentum −k and k such
that εi → εk,b is the energy of a fermion at either of those momenta.

Equilibrium Phase Diagram

While in the main text we consider quench dynamics from a state in which every possible Cooper pair is condensed,
intuition about superconducting systems is often developed near thermal equilibrium. To make connection to that
limit, we consider the superconducting order of the grand canonical state ρµ,T = exp[−(H − 2µ(Sz + a†a))/KbT ]
with chemical potential µ and temperature T → 0, and

H/h̄ =
2N∑
i=1

εiσ
z
i +

2N∑
i=1

gi(σ
†
i a+ h.c.) + ∆ca

†a. (13)
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FIG. 6. An example band structure with density of states matching the distribution of the inhomogeneous atomic energies
shown in the left panel. In this diagram, ε0 > W/2 such that there is a band gap of size ε0 −W/2. Note that center of the
bands are at ±ε0/2 for the fermion band structure, and not ±ε0 as for the atomic level distribution. This is because there are
two fermions per cooper pair, and it is cooper pairs that map to atomic levels.

This model has a U(1) symmetry generated by the conservation of total excitations
∑
i

1
2σ

z
i +n. At high T and µ = 0,

the system enters a symmetric phase with 〈~σ〉 → 0 and with photon occupation scaling monotonically with KbT .
At low temperature, a symmetric phase with all spins polarized on the ẑ axis, 〈σzi 〉 = sign(εi − µ) (a normal state
insulator or conductor), competes with a symmetry broken phase can where |〈S+〉| > 0 and 〈a〉 > 0. Away from the
quantum critical point separating these two phases, a mean field approximation (i.e. 〈O1(t)O2(t)〉 = 〈O1(t)〉 〈O2(t)〉)
is valid, and we again adopt the notation: 〈O1〉 ≡ O1. At zero temperature, energy is minimized at the fixed points of
the classical dynamics, ∂t~σ = 0 and ∂ta = 0. The later condition fixes the photon in a way mathematically equivalent
to the adiabatic condition:

a = − g

∆c − 2µ

∑
i

σ−i (t). (14)

Defining the gap as ∆ = g2

∆c−2µ

∑
i σ

+
i and inserting Eq. 14 into Eq. 13, one finds that the spins minimize energy in

an effective magnetic field ~h = (εi−µ)ẑ+ Re(∆)x̂+ Im(∆)x̂. Minimizing the energy of the spins in this field we find:

σ+ =
∆

2
√

(εi − µ)2 + ∆2
(15)

σzi =
εi − µ/2√

(εi − µ)2 + ∆2

using g2 = χN∆c we get the gap equation:

1 =
χN∆c

W (∆c − 2µ)

∫
R
dε

∆√
(ε− µ)2 + ∆2

where the integral is over the region defining the constant density of states: R = ε ∈ (ε0/2 −W/4, ε0/2 −W/4) ∪
(−ε0/2−W/4,−ε0/2−W/4). In addition to the gap equation, we can also restrict the total number of excitations to
match that of the initial state in the paper:

a†a+ Sz = 0 =
N

2W

∫
R
dε

ε− µ√
(ε− µ)2 + ∆2

+
∆2

χ∆c
(16)

In the adiabatic limit, ∆c/(χN) � 1, the photon amplitude goes to zero, and thus Sz must also limit to zero. This
is ensured by a chemical potential µ = 0 such that εi − µ is positive for half the spins and negative for the other half.
The resulting zero temperature phase diagram is calculated numerically and is shown in Fig. 7. At finite temperature,
the superconducting coherence |S+| is reduced in the ordered phase and remains 0 in the disordered phase. Weather
the disordered phase is a insulator or conductor at low temperature depends on if the chemical potential µ = 0 is
located in a band or band gap. Upon consideration of Fig. 6, we see the disordered phase is a two-band insulator
when ε0 > W/2 and a single band conductor for larger dispersion W . Upon inspection of Fig. 7, we see that for the
adiabatic limit studied in the paper, the system would traditionally be considered a two-band insulator.

The phase diagram shown in the left panel of Fig. 7 holds for all values of ∆c/χN assuming the chemical potential
is fixed to µ = 0. If, instead, µ is chosen to fix the total number of excitations, it will depend on the detuning of
the photon since, in the ordered phase, the photon occupation increases monotonically with χN/∆c. Therefore, to
maintain a fixed number of total excitations, the chemical potential must increase to ensure a finite and negative
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FIG. 7. Left Panel : Equilibrium phase diagram at T = 0 and with chemical potential fixed to µ = 0. In the paper we study
the line along ε0/χN = 6 which has

∣∣S+
∣∣ = 0 in the ground state and at all finite temperatures. Right Panel : Zero temperature

coherence, S+, versus photon detuning, ∆c/χN , with µ chosen to fix the total number of excitations, a†a+ 1
2

∑
i σ

z
i = 0. This

panel is for, ε0/χN = 6 and W/χN = 8 as in the paper and shows a similar resonance peak.

Sz = −a†a. This can lead to instabilities and produce an ordered phase where there was none in the adiabatic limit.
Fixing a†a + 1

2

∑
i σ

z
i = 0, we find a similar resonant order at zero temperature as was seen out-of-equilibrium (see

right panel of Fig. 7). Note, such an equilibrium state is unlikely to be observed in the cavity QED system due to the
effects of dissipation which lead to a disordered state with no photons in the cavity at long times.

Lindblad Dynamics

In order to investigate the effect of photon loss, we study dynamics of the spin and cavity evolving under the
Liouvillian with jump operator L =

√
κ/2a. In the Heisenberg picture operators evolve following

∂tO = i [H,O] + 2L†OL−
{
L†L,O

}
(17)

where κ is the loss rate. In the mean field limit (i.e. 〈O1(t)O2(t)〉 = 〈O1(t)〉 〈O2(t)〉), we can truncate the hierarchy
of equations generated by Eq. 17. We then numerically evolve the closed set of equations for the spin and photon
variables.


