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Abstract—This work considers low-rank canonical polyadic de-
composition (CPD) under a class of non-Euclidean loss functions
that frequently arise in statistical machine learning and signal
processing. These loss functions are often used for certain types of
tensor data, e.g., count and binary tensors, where the least squares
loss is considered unnatural. Compared to the least squares loss,
the non-Euclidean losses are generally more challenging to handle.
Non-Euclidean CPD has attracted considerable interests and a
number of prior works exist. However, pressing computational
and theoretical challenges, such as scalability and convergence
issues, still remain. This work offers a unified stochastic algorithmic
framework for large-scale CPD decomposition under a variety of
non-Euclidean loss functions. Our key contribution lies in a tensor
fiber sampling strategy-based flexible stochastic mirror descent
framework. Leveraging the sampling scheme and the multilinear
algebraic structure of low-rank tensors, the proposed lightweight
algorithm ensures global convergence to a stationary point under
reasonable conditions. Numerical results show that our framework
attains promising non-Euclidean CPD performance. The proposed
framework also exhibits substantial computational savings com-
pared to state-of-the-art methods.

Index Terms—Tensor decomposition, stochastic optimization,
mirror descent method, _divergence, KI.-divergence.

I. INTRODUCTION

ANONICAL polyadic decomposition (CPD) has been
Cused in many core tasks in signal processing and machine
learning, such as neural signal analysis. video processing, array

signal processing, text mining, social network analysis, link
prediction, among others—see [1]-{4].
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The majority of classic CPD models and algorithms were
developed for least squares (LS) problems using the Euclidean
distance-based fitting criterion: see [1]-[3]. [5] and references
therein. However, the Euclidean distance is unnatural for mea-
suring the “distance™ between many types of real-world data,
e.g.. stochastic, integer, and binary data. In principle, using
certain “data geometry-aware” divergences to serve as the fit-
ting criferia may greatly improve performance and robustness
in practice [6]-[9]. For example, the “distance” between two
probability distributions is typically measured by a proper di-
vergence, such as the generalized Kullback-Leibler (KL) diver-
gence [10]{13] and Itakura-Saito (IS) divergence [14]. These
divergences take into consideration that the data is constrained
in the probabilistic simplex, and thus are often more effec-
tive relative to the LS criterion in analyzing data that are not
generated over the entire Euclidean space. From a statisti-
cal estimation viewpoint, many non-Euclidean divergences are
closely related to the maximum likelihood estimators (MLEs)
under plausible data distributions. For example, the generalized
KL divergence [15] and logistic loss [6]-[8] can be derived
from the MLEs of count integer data and binary data that
follow certain Poisson distributions and Bernoulli distributions,
respectively.

However, computing CPD under non-Euclidean divergences
is much more challenging compared with the case under Eu-
clidean loss (or. the LS loss), especially when the data size
becomes huge. Algorithms developed under the LS loss are often
not easily extendable to handle these more complicated loss
functions, due to the lack of “nice” properties that are possessed
by the LS loss, e.g., the gradient Lipschitz continuity under
relatively mild conditions. Below, we provide a brief review
on existing developments for CPD models with specific loss
function.

A. Prior Works

Many existing non-Euclidean CPD approaches employ the
block coordinate descent (BCD) paradigm [27] with divergence-
specific strategies for block variable updating. For example,
the work in [26] proposed a hierarchical alternating optimiza-
tion algorithm for CPD with [J and [ddivergence. In [15].
the generalized KL-divergence loss was considered, where a
block majorization-minimization (MM) algorithm was devel-
oped. In [11]. the exponential gradient algorithm was proposed
for the KIL-divergence. Similar strategies were developed for
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TABLEI
BRIEF REVIEW OF ALGORITHMS FOR. CPD MODEL

Algorithm Stochastic Loss function Data Type
First-order tvpe aleorithm [ To]-] 18] Nao [ continuots
Prima-deal algorithim [ 19] No [ continuos
Quasi-isecord-order alzorithm [20], [ 21] No LS continuous
Stochastic optinization algorithm [ 22][ 23] Yes .S continuous
Hierarchical alrernating opuimization [26] No . d— Div, contnuous
Majorization-minimization algorithm [15] No KL Div. continuous and count
Multiplicative updute algorithm [ 14] No LS, KL Div, IS Div, hinury
Exponertial gradient algorithm [ 1] No K. Div, continuous and count
Alternating optimization algorithm [8] No logistic loss and others binary
Generalized Gaussian Newton algorichm [9] No J-div. continuous and count
Stochastic gradient descent aleorithm [7] Yes veneral lnss” continuous, count, and hinary
Stochastic mirror descent algorithm (this work) Yes ceneral loss” continuous, count, and hinary

“The general loss in this table refers to many ML criterion motivated losses [6]. [7] as well as statistical divergences such as KL div., IS div. and etc.

the KL and IS divergences [14]. Recently in [8]. several ML-
based loss functions for binary data were considered and an
alternating optimization algorithm with line search was pro-
posed. Besides BCD, other optimization frameworks such as
Gauss-Newton based methods [9], quasi-Newton methods [6].
and stochastic gradient-based methods [7] were also developed
for non-Euclidean CPD.

It is important to note that most of the algorithms mentioned
above (such as [8]. [9]. [14]. [15]. [26]. [28]). are batch al-
gorithms, which utilize the entire data set to perform every
update. They become increasingly slow when the size of the
data increases. On the other hand. stochastic algorithms are
effective in reducing per-iteration computational and memory
burdens. Recently. a stochastic gradient descent (SGD) based
algorithm [7] was proposed for CPD with a suite of statistical
criterion based loss functions (including loss functions under
missing values that are not considered in this work). The al-
gorithm was developed based on randomly sampling the tensor
enfries. Hence, it is difficult to exploit some interesting multilin-
ear algebraic properties of low-rank tensors to further improve
computational efficiency. In addition, the SGD algorithm in [7]
lacks convergence guarantees. Finally, in Table I, we summarize
the properties of a number of recently developed algorithms for
the CPD model.

B. Contributions

In this paper, we develop a unified stochastic mirror descent
(SMD) algorithmic framework for large-scale CPD under vari-
ous non-Euclidean losses. Our major confributions are summa-
rized as follows:

o Efficient fiber-sampled stochastic MD fiamework: We pro-
pose a block-randomized SMD algorithmic framework that is
tailored for tensor decomposition. Both MD and SMD are known
for its effectiveness in handling non-Euclidean losses [29].
but directly applying generic SMD does not fully exploit the
underlying CPD structure. We use a recently emerged tensor
data sampling strategy (namely, fiber sampling [25]. [30]) to
assist designing SMD-type updates. The fiber sampling strategy
judiciously uses the multilinear structure of low-rank tensors,
which gives rise to structured (non-)convex subproblems. These

structures can often be exploited to come up with economical
update rules for CPD.

o 4 suite of solutions for various losses and constraints: We
carefully craft solutions for a series of non-Euclidean losses.
The proposed algorithmic framework allows flexible choices
of the local surrogate functions under the SMD framework to
adapt to different loss functions. Such flexibility also helps offer
lightweight updates when the latent factors are under a variety of
consfraints that are of interest in data analytics. In particular, we
pay special attention to binary and integer data CPD problems,
which find numerous applications across disciplines.

. Guaranteed convergence: We offer convergence character-
izations for our block-randomized SMD-based non-Euclidean
CPD framework. Establishing stationary-point convergence for
generic SMD is already a challenging problem. The work in [31]
on SMD requires its gradient estimation error converging to
zero, which is unrealistic in many cases, especially under the
context of CPD. In this work, we leverage the notion of relative
smoothness and the tensor fiber sampling strategy to construct
lightweight SMD updates for different losses. This design also
helps circumvent stringent conditions (e.g.. vanishing gradient
estimation error) when establishing convergence. To our best
knowledge. such convergence results for multi-block SMD un-
der nonconvex settings have been elusive in the literature.

Part of the work appears in IEEE ICASSP 2021 [32]. The
conference version considered algorithm design under the [4
divergence loss. This journal version extends the ideas to han-
dle more non-Euclidean losses, e.g.. the logistic loss that is
critical in binary data analysis. More importantly, this version
provides unified convergence analysis for the proposed algo-
rithmic structure. Some important practical considerations, e.g.,
stepsize scheduling, is also discussed and experimented. The
journal version also contains substantially more simulations and
real-data validation.

C. Notation

We follow the conventional notation in signal processing, x, X,
X. and X denote scalar, vector, matrix, and tensor, respectively.
Given a matrix X, X and exp(X) denote the entry-wise

power and exponential operations respectively: X % ¢ denote

Authonzed licensed use limited to: University of Minnesota. Downloaded on July 19,2022 at 20:40:12 UTC from IEEE Xplore. Restrictions apply.



PU et al.: STOCHASTIC MIRROR. DESCENT FOR LOW-RANK TENSOR. DECOMPOSITION UNDER NON-EUCLIDEAN LOSSES

adding/subtracting a constant ¢ for each entry of X: vec(X)
denote the vectorization operator that concatenates the columns
of X. We use ®, s and oto denote the Hadamard product,
the Khatri-Rao product. and entry-wise division respectively.
T denotes the transpose operation. Script letter,- is used to
denote a discrete set aIFé| is the cardinalify . rdenotes the
Euclidean norm of vector, ;. # denotes the Frobenius norm
of matrix. and ,, denotes the inner product. For a positive
integer N , theset 4, 2,... ,N is denoted as [N ] for short. For
a function [ its domain and interior domain is denoted as dom
and int dom [] respectively. Other notation will be explained
when it first appears.

II. CPD UNDER NON-EUCLIDEAN LOSSES

Consider a data tensor X RI*LX-XIv yhere N is the
order of the tensor X and In > 0 (n [N ]) is the size of the
nth mode of X. Such multi-way data tensors arise in many
applications. The entries of the data tensor X could be contin-
uous real numbers, non-negative integers or binaries. A general
problem of interest is to approximate X using a low rank tensor
M . defined as

M = @

RI:XR

L.
lA{;,r) AL nO...0OA ¢,

where “q” denotes the outer product of vectors, An
is the mode-n latent factor matrix; R is the smallest positive
integer such that (1) holds. and it is also known as the rank of
M.

Denote an N -dimensional integer vector i as the entry coor-
dinate, i.e.,

i 0 {Gi,i,..., )| in=1,2,..., In, OOn}.

Then the CPD problem can be formulated as the following
minimization problem with a loss function of interest f{-, ) :

RxR OR, I.
min - f(x,vﬂi)
AA.,. A || i H: ~
o M = AG p0Of [
— r=1 n=1 " "
An Elﬂ’ DH, (2)

where X ; and M, denote the entries of X and M indexed by
I, respectively, Ay is a convex and closed set which captures the
prior information about the structure of latent factors An, e.g.,
non-negativity, sparsity, and smoothness. By choosing proper
loss functions f, Problem (2) is used for handling different
types of data. e.g., continuous, count, and binary data. Several
representative motivating examples are as follows,

o+ KL-divergence for count data: In many real-world sce-
narios, data is naturally recorded as nonnegative integers, e.g..
crime numbers across locations and time! and email interactions
recorded over months [33]. As an information-theoretic mea-
sure, the KL divergence was originally proposed for quantifying

1See official website of the city of Chicago, www.cityofchicago.org.
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similarity between two probability distributions. The general-
ized KL-divergence that handles nonngeative quantities beyond
distributions is also widely used in data analytics [10]. [12]. [15].
[34]. The generalized KL divergence has an f defined as follows:

(KL-Div.) fix, m)=m Ulxlog(im), 3)

where x d m (. Problem (2) with KL-divergence
can also be interpreted as the MLE for estimating the Poisson
ﬁls‘mneter tensor M from independent samples X, where M

a low-rank structure [6]. [7]. [15]. To be more precise, the
corresponding statistical model is

Xi ~ Poisson(M ), OF,

where Poisson(1m) denotes the Poisson distribution with a
mean of m.

o Log loss for binary data: Binary data is also frequently
encountered in data analytics, e.g., in adjacency matrix-based
social network community detection [4], [35] and knowledge
base analysis [6]-[8]. Binary data fitting is often handled using
the following loss:

(Log Loss) fix, m) =log(1 + em) [lxm, @

where x R?, l1yand m (. The log loss can be interpreted
as MLE for finding the Bernoulli distribution parameter [8].
The associated binary data generation model of the independent
samples is

X; ~ Bernoulli(Xp), X; = eld: /(1 + et), 0i,
where Bernoulli([J denotes the Bernoulli distribution,  is thé
probability for x taking 1, and [X][X] has the same size .

. Ldivergence: Non-Euclidean losses also find applications
in continuous data CPD, especially under non-Gaussian and/or
non-additive noise, e.g., multiplicative Gamma noise [9]. For
example, the [ddivergence was found useful for neural signal
analysis [26] and recently is studied as CPD fitting criterion [6].
[7]. [9]. [32]. The [ddivergence is parametrized by a constant

[0 Rldefined as
@ Olog(x) U1, (=0,
m m
(LDiv.) flxx, M= ylpom+ m Olx (=
B (x R%El]l)m tg ) oW,
mimimip)
The [ddivergence subsumes the IS divergence ( = [0), the

generalized KL divergence ([]= 1), and the Euclidean distance
(L= 2) as special cases. When [ = (), it can also be interpreted
as MLE corresponds to data with multiplicative Gamma noise.
In music data analysis, [1< 2 was found useful, since such
loss functions capture low intensity spectra components—but
the Euclidean loss tends to focus on significant variations in
data [34].

Remark 1: As one has seen in the examples, one way to select
fs to take a statistical analysis viewpoint. Each entry of the data
tensor is treated as a conditional independent random variable,
whose generation is statistically modeled as follows:

Xi ~pXi | LM»), 0F [ (&)
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TABLE II
DISTRIBUTIONS, LINK FUNCTIONS, AND LOSS FUNCTIONS FOR DIFFERENT TYPES OF DATA

Data Type  Distribution  Link Function Loss function Parameter Type Name
Gaussian d(my=m e —m)" rom = T Fuclidean Dis.
Continuous Garnma #lm) = m —— tloeim o) =0 =0 IS v,
- - n+ A —aim T HE=1) =m0 -Div, (42 R0, 1.2
Count Puisson i i " =0 ceneralized KL Div.,
) ' doan e I -
Binary Bernonlli i) = aim + 11— aloglm + s om0 -

Him)

looi 1 4+ ¢

e {0 fom e B -

where p(x; [)is a distribution with natural parameter (e.&]
the Poisson and Bernoulli distribution) and [1( ): R—R is an
invertible function whose inverse is often referred as the /ink
Junction in statistics (e.g.. [Ig1) = m and [In) = _™_). A
straightforward intuition behind model (5) is that, the gﬁs%rved
data tensor X is ‘embedded’ on a /afent low rank tensor M .
whose generation procedure is characterized by p(x; [J and
LJ()To find M . a statistically efficient way is choosing f{ ) as
the negative log-likelihood function associated with model (5),
given as

fiX;, M) O Olog p(X; | [M;)) + constant,

which naturally leads to a non-Euclidean CPD problem (if the

distribution is not Gaussian).

In Table II, some frequently used f{-), link function (), and
distribution of our interests are illustrated. In the table. ¢ > Qisa
sufficiently small number to avoid the function value or gradient
being 0 i.e..c = 10, This modification is often used in the
literature [6].

Tackling Problem (2) at large scale is highly nontrivial.
For example, a 5000 3000 5000 tensor can be as large
as 900 GB if the double precision arithmetic is used, which
means that batch algorithms may not be a viable option. Instead.
stochastic algorithms that sample ‘partial data’ per iteration
become an attractive choice. In Euclidean loss CPD., it has
been observed that stochastic algorithms can significantly reduce
computational and memory cost per iteration; see [23]. [25].
[30]. Nonetheless, unlike Euclidean CPD, where various data
sampling schemes and update rules may all offer competitive
algorithms [5]. non-Euclidean losses’ complex structures may
make stochastic algorithm design a more delicate process. In
other words, the sampling schemes may affect the subsequent
update rules’ complexity and convergence properties of the
algorithm.

Next, we offer a unified stochastic algorithmic structure that
can efficiently tackle CPD under a variety of non-Euclidean
losses. Our development is an integrated design of data sampling
and Lipschitz-like convexity [36] based local surrogate construc-
tion, leveraging the underlying multilinear structure of low-rank
tensors.

III. PROPOSED APPROACH

A. Preliminaries

A number of algorithmic frameworks have been consid-
ered for handling Problem (2) with non-Euclidean losses, e.g..
stochastic gradient descent (SGD) [7]. block coordinate descent
(or, alternating optimization (AQ)) [8]. [15]. and the Gauss-
Newton (GN) method [9].

Let us denote A := (A, A2,..., AN). 4 = A x A2
- s ‘[ﬂ . We also use F (A) to represent the objective f\:mction
of Problem (2). The updates of AO and SGD type algorithms
can be summarized as follows:

(AO)Afllf"1 Carg min F(An; At D (6a)
A, O C
~T
(SGD) At = Proja(At G )
— argmin (A, G+ + —IA CA® . (6b)

A O 204 F

In (6). A&jn corresponds to A with An being renlov?;
FA"ATY ig the ohissthvs Smeionsih fasd A7 6

represents the _ o >0
the step size: and Proj () denotes the projection onto constraint

set 4 Many deterministic non-Euclidean tensor decomposition
algorithms take the AO route; see, e.g.. [8]. [15]. whereas the
recent work in [9] used a GN method to improve the iteration
complexity (i.e., the number of iterations needed for reaching
a satisfactory solution). However, the AO and GN methods
face heavy per-iteration computational and memory complex-
ities when handling large-scale tensors; see the “MTTKRP”
challenge discussed in [1]. [2]. [5]. [25]. The SGD approach
in [7] is more lightweight in terms of the per-iteration resource
consumption. Constructing G can be fairly economical (c.f. [6,
Theorem 3]) since only partial data is used. This makes the
per-iteration complexity of the algorithm affordable, even if the
tensor of interest is large.

However, simply using SGD for the non-Euclidean CPD
problem may not be the most effective approach. One can
see that from (6b). every iteration of SGD is equivalent to
solving a quadratic program. which is used as a local surro-
gate of the original cost function. However, it is known that
such quadratic functions may not be a good approximation for
many non-Euclidean losses. In particular, using quadratic local
surrogates may result in slow progresses since it largely ignores
the geometry of the cost function [29]. [36].

Authonzed licensed use limited to: University of Minnesota. Downloaded on July 19,2022 at 20:40:12 UTC from IEEE Xplore. Restrictions apply.



PU et al.: STOCHASTIC MIRROR. DESCENT FOR LOW-RANK TENSOR. DECOMPOSITION UNDER NON-EUCLIDEAN LOSSES

Mode 2 .

¢/—- Mode 1

(SN

Fig. 1. Mode-n fibers of a third-order tensor, wheren=1, 2, 3.

In this section, we will propose a stochastic mirror descent
(SMD) framework to handle the non-Euclidean CPD problem.
Compared with SGD (6b). SMD replaces the quadratic term
gl F by a general divergence metric named Bregman

ivergence DA, A?) (see Definition 1),

(SMD) At = arg min (A, G£ + ~ D (A, A,
A O i

)

If [is properly designed, SMD can often take advantages of the
problem geometry and attain substantial efficiency improvement
compared to SGD, especially when non-Euclidean cost func-
tions are used; see more on MD and SMD in the optimization
literature [37]-[41]. The reason why using MD/SMD improves
convergence over GD/SGD will become clearer later in the next
subsections when specific examples of non-Euclidean losses and
Dro's (e.g. the example in Fig. 2) are discussed.
Definition 1 (Bregman Divergence): Given a strongly con-

vex function [{-) : dom [I[1R")[IR, the Bregman divergence
between@ Hdm and®® [btdom is OJ

Doa,a)= Oa) O0a" O000a%, a Oa'+.

Remark 2: The Bregman divergence was originally defined
in [42] using a Legendre function [ Here, we consider the case
where [lis a strongly convex function; see more details in [36]. It

O
;";P a(i}lcl%l]ﬂ%‘f ﬁogegl IQBE{?C qhgts]h‘oné) toﬁx’eaxjt?fl }ﬁl B%aaﬂgl?tfmo

if Clis cElonva-dime sional function, f’D E(ﬂft) can be deﬁnetd in

a coordinate-wise form as
j=1 Ha) U ay) U

Dda,a) =
Old)),a; O’ H@.a)
The general-purpose SMD scheme in (7) is not new in the
optimization literature and its convergence behavior under the
stochastic setting has been studied in recent works, e.g., [31].
[38]. [40]. However, the general-purpose SMD scheme does not
exploit the structure of the CPD problem in (2). Next, together
with a tensor fiber sampling strategy advocated in [3]. [25]. [30].
we will develop a block randomized SMD algorithm to exploit

the multilinear structure of CPD, where only one block An is
randomly selected and updated per SMD iteration.

1807

B. Data Sampling

A key ingredient for stochastic algorithms lies in the data
sampling strategy. which uses partial data to estimate the gra-
dient in each iteration. Under the Euclidean loss, sub-tensor
sampling [23]. random entry sampling [22]. and tensor fiber
sampling [25]. [30] were all considered—which all offered
effective solutions. In principle, all the sampling strategies con-
sidered in the Euclidean case could still be used in the non-
Euclidean cases. For example, the recent non-Euclidean CPD
work in [7] used an entry sampling scheme. Nonetheless, since
non-Euclidean losses are inherently more complex, different
sampling strategies may lead to algorithms that admit drastically
different updating rules and convergence properties.

In this work, we advocate the fiber sampling strategy that was

used in [25], [30] for Euclidean loss CPD; see illustration in
Fig. 1 for tensor fibers. We find this sampling strategy particu-

larly handy in the non-Euclidean case, for a couple of reasons:
Incorporating Prior Information on An: Randomly sam-
pling some indexes § [22] or selecting a subtensor [23] faces
an issue that the sampled data may relate to only some rows
of An, while many important constraints under statistical non-
Euclidean CPD are imposed on the columns of An, e.g.. the
probability simplex constraints in [11]. [43]-[45]. This may
lead to difficulties in developing efficient updating rules while
enforcing some types of prior information on Ax. For example,
the probability simplex constraints on An(:, 1), norm constraints
on An(:;, ). and smoothness constraints on An(:, ) all have
important applications [5], but the information of An(:, r) may
not be included in the selected samples. With fiber sampling,
every batch of sampled data contains information about one full
An. making dealing with such constraints easy.

. Convex Approximation to Optimize An: The fiber sam-
pling strategy also provides a way to further exploit the block-
wise structure of the loss functions. Even under complex non-
Euclidean losses. with the notion of Lipschitz-like convexity [36].
the loss function f{ ) with respect to each block An can often
be locally approximated (or, to be precise. majorized) by a
strongly convex function—which will prove useful for deriving
lightweight updates.

The fiber sampling scheme can be understood using the

matrix unfolding representations of low-rank tensors. The
mode-n matrix unfolding of X is a Jn X In matrix with

ITy

Jn = Im, denoted as Xn, and the entry-wise

m:l,m/:n -
correspondence is XITfDan(j, n), j=1+ y:l,b’:n (i O

Sk, where Sk = L Im. For the low-rank tensor
m=1,m/=n
in (1), its mode-n matrix unfolding can be expressed

as Mn = HnAT, where Hn = An X ANy ... X Ana X
Ao XX A:and denotes the Khatri-Rao product.
Based on the mode-n matrix unfolding for both X and M.,

Problem (2) with A being fixed can be recast as:
1
AL

_ﬁ}{An; Hn) s.t. An

J=1

where fi(An; Hn)=1 D‘;Llf(xﬂ(}': D), Hn(, HAn(, 7).

According to the reformulation in (8). fiber sampling can be

L%, ®

n
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it = - iy o,
Original Loss @(a)=-log a p(a)=alog a d(a)=a“/2
10 - ~ g- - - - 10 - {.) - g - 10 (_) — g. ~ — - 10 — u‘ _—
Opfifnal-Solution Set |
8 2 2 ~Optimal Solution Set i |
6 ; 6|/ 6 i
=) o a = ® G‘r = f b at ] I
4 4 g Optimal Solution Set ;
: \.-‘ Optimal Solution Set . ...,_:.a.f..-i—l
5 .
0 5 10 10 5 10 10

151 a

Fig. 2. Contour maps of upper bound functions over [(), 10]? indicated by (11) with different [{a). The loss function (x, m) =
az),and L = 1 forall different [({a). The solid red pointis @™ = (5, 5) and the solid red line denotes

x=3E=10"%m=hTawithh = (1,1) and a = (aa,
the solution set, hTa=x OE.

understood as sampling the index j fron , Jn . Note that
f'; only relates to the jth row of Xn, where each row of Xn
is a mode-n fiber. Thus, samphng f;i is equivalent to sampling
rows of Xn. Denote , Jn as the index set of
the sampled fibers. Then %116 sampled version of Problem (8)
becomes
1 Fl
min T 4 SKG, 0, HaG, 9Ani, D)
A, Al |Fn| nj'—l i=1
; ©)
) and Hy = Hn( n,:). Usually, the
size of = is chosen to satisfy [Jn. This may help sub-
stantially reduce the amount of data samples worked with (and
thus the computational workload) in each iteration. In addition,
the loss term in the finite summation of (9) composes the nonlin-
ear function f and the linear mapping H »(j, :)An(i, :)T . Fiber
sampling preserves such special composition form always taking
summation over all i ,2,.--,In , 1e., one fiber relates to
all entries of An. This hélps to derive a lightweight update of
A in Section ITI-C.
We also note that if f is the Euclidean loss. the subproblem
(9) is a (constrained) least squares problem, which is convex
(if = is a convex set) and can be relatively easily solved [25].
[30]. However, when fis a non-Euclidean loss, the problem in
(9) may still be nonconvex (e.g.. [ddivergence with (1< 1) and
challenging. One hopes to solve (9) using economical updates,
which is often an art when non-Euclidean losses are considered.

where Xn = Xn(

C. Block-Wise Approximation Via Bregman Divergence

Note that all the loss functions f{x, m)’s given in Table IT can
be decomposed into a convex part ﬁ(x m) plus a concave part

f (x, m) as flix, m) = ﬁ(x m)+ f (x, m). To see how to make
use of such a convex-concave property together with the linear
composition form to derive a lightweight update of An from

(9). we first give the definition of the Lipschitz-like convexity
be%gﬁnition 2 (Lipschitz-like Convexity): The Lipschitz-like
) if that

LIL > Qsuch that L [Ifis convex on int dom R

where f and [are differentiable convex functions.

convexity condition for a function pair (

m Ox log(m + E), where

A more general definition of the Lipschitz-like convexity
condition can be found in [36]. which is defined for the so-called
Legendre function [Jand lower semicontinuous convex function
f - This more general definition contains Definition 2 as a special
case.

Next, let us consider the (i, j)th component in (9). For nota-
tion simplicity, denote it as f{x, hTa). where we have defined
x = Xn(, 1), T = H,(j,:), and @ = An(i, :)T . The follow-
ing lemma constructs a strongly convex swrogate function of
fix,hTa) (ar and hr are the r-th components of @ and h
respectively):

Lemma I: Let L1 ) : R R be a strongly convex function.

Suppose that for the function pair ( ﬁ) the following Lipschitz-
like convexity condition holds:

C h,
Or, L (a) OGIE %,

T

is convex w.r.t. ar, (10)
where [d:= b-",;-‘;é, ﬁland L,hr,ar >0, r, are constants.
Then, the following holds:

fix, hTa) [fix, hTa)+(0f(x, hTa),ada t + LDo(a, a),
(11)

where D@, @) is the Bregman divergence. The equality in (11)
holds ifa = 4.

Proof: See Appendix A in supplementary material. O

The upper bound constructed in Lemma 1 is reminiscent
of the majorization-minimization (MM) scheme developed for
[ddivergence [28]. The difference here is the choice for [{).
The MM scheme in [28] suggested to choose [{) to be the
convex part of f{ ) (up to a constant scaling) while Lemma 1
suggests to choose [{) to “fit’ the geometry of the convex part
of fix, hTa). Clearly, the condition in (10) is more general.
The corresponding functions ([{ ), ﬁ(x, )) are referred to as the
Lipschitz-like convexity function pair [36].

Lemma 1 suggests that if one can find the appropriate [{ ).

then problem (9) can be approximately solved via the following
SMD update:

At

n

- - t 1
=arg min (G A DAtniJrEIDD(A, A), (12)
A Al

where HGIH is the gradient estimation w.r.t. A. using sampled
data at iteration t and DA, A?) is the Bregman divergence
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TABLE I
EXPLICIT FORMS OF f}tnFo:R DIFFERENT £(-)

Loss Funetion () Fo -G
Tiw =) (X, X)) H
R [m( X, o) X! 2
m— @l + €) [ Xoo (X)) 0 H
e™ —xm el X X, I
1 —xloglin + €) [| X ol (X, +¢) "on
log{1+ " —xm ln-x XN I:\'x| (X X, I,
roct (X! ot X X |,.J'“u

*Inthis table. X, = H A,

between An and A? For different f(x, m) in Table II the

expressions of G ;are summarized in Table III. The form of the
gradient for general losses f{x, m) was recently presented in [6,
Theorem 3].

Compared with (7), the SIMD step in (12) is only for the block

: t

E%?%Stﬂﬁ'a}{'&;%"&ﬁﬂ (s camfses g firstrorder
geometry-aware augmentation for properly approximating the
loss in (9). If choosing L in (10) as -|15 such that (10) holds, then
(12) minimizes an upper bound function for the loss in (9). In
addition, considering [ {a) =§1 A ?, then (12) reduces to the
well-known projected SGD.

Remark 3: For non-Euclidean losses. the choice of [{ ) can

heavily affect the behavior of the algorithm. On the other hand,
the flexibility of using different [{ )’s also entails opportunities

of developing fast non-Euclidean CPD algorithms. An illustra-
tive example using the generalized KL loss is shown in Fig. 2.
One can see that using [{a) = a*/2. the progress from at to at*™*
is very small. However, by using [{a)’s that are more adapted
to the cost function’s geometry (reflected by the contour of the
cost function), i.e., [{a) = alog a or _ log a. the progress in
one iteration can be much larger?.

D. Stochastic Mirror Descent for CPD

The SMD step in (12) specifies the update for one latent
matrix An. Combining it with a random selection of block n, the

proposed algorithm is summarized in Algorithm 1. The major
advantage of using uniformly at random block selection is that
such a scheme leads to an unbiased gradient estimation [25] (up
to a constant scaling). which simplifies the convergence analysis.

In essence, the proposed algorithm is a block-randomized
(inexact) coordinate descent method, which admits a similar
structure as the algorithm in [25] for CPD under the Euclidean
loss. The key difference is that Algorithm 1 employs SMD to
solve each subproblem inexactly, while the algorithm in [25]

’In this illustrative example, we used L = 1. This is only for the ease of
illustration. The L that satisfies the condition in (10) should be larger. Although
the geometries are similar under L > | and L = [, the former case 1s harder to
visualize due to the condensed contours.
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Algorithm 1: Stochastic Mirror Descent (SMD) Algorithm.
Require: X, A’ A),..., Ay, {{}o,..
1: fort=0,1,..., until meet some convergence criteria

do
2:  Uniformly samplen K1,2,... N}
3:  Uniformly sample fibers Fn [1{1,2,...,Jn};
4: Compute the sampled grgdient Gf :
5: Aﬁl = minaA Gn;A DA%*
+" DA A?): af
T n
6: Ali."+1 =AOi/=n:
7: _end for

uses proximal gradient. For simplicity, we name it as Stochastic
Mirror descent AlgoRiThm for CPD (SmartCPD).

Remark 4: If no data sampling or block sampling is con-
sidered, the full batch version of SmartCPD subsumes many
existing non-Euclidean and Euclidean matrix/tensor decom-
position algorithms as its special cases—see the algorithms
in [11], [14], [15], [17]. [25]. [28], [46]. In particular, con-
Sider by Kl Siereence; 1 pne.chiooses Bl meech iy

t
algorithm [15]; when one uses [{a) = a log a. then SmartCPD
becomes the MD algorithm developed in [11]. This connection
is not surprising, since MD includes many first-order approaches
as its special cases. Nonetheless, using this connection, our
convergence analysis (cf. Sec. IV) may also shed some light on

the convergence behaviors of some existing algorithms whose
convergence analyses were not considered at the time (e.g.. [14]).

E. Practical Implementation

To implement the SmartCPD algorithm in practice, several
key aspects need to be considered carefully. In particular, as in all
stochastic algorithms, the step size-related parameter selection
(i.e., dand L in SmartCPD) needs to be carefully carried out.
In addition, the EI() function should be chosen judiciously. In
this subsection. we discuss these aspects in detail.

1) Choice of L1-): Asindicated by Lemma 1, [{-) should be
chosen to adapt to the geometry of f{-)—e.g., by setting [ {-) to
be the convex part of f{-), if f{-) has convex-concave structure.
In addition, the update (12) needs to solve a subproblem which
minimizes the constructed surrogate loss over constraint set An.
Practically, it is desirable that this subproblem can be solved
easily, preferably in closed form. Hence, the choice of [{ )
should be an infegrated consideration of the function geometry
of f and the constraint —». For example, consider flx, m) =
xlog m with An being the probability simplex constraint, i.e.,
AT, An(G,j) [0, i,j where 1Ddenotes a vector (of
proper length) with all elements being 1. Then., it is preferred
to choose [{a) = a log a rather than [{a) =log a since the
former admits a closed-form solution of the MI]?) update, which
is also known as the exponential gradient descent or entropic
descent [29]. Several other examples of  untér variousEn’s
which admit closed-form solutions are summarized in Table TV.
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Continuous Data

0 —e—jensen, -loga =% -adagrad, -Ioga.
10 =& -adagrad, aloga —$—constant, -loga 10'1
. t, aloga

Time [Second]

(a) Continuous Data (diff. step size and ¢)

Fig. 3. Numerical examples on 100 1

Count Data

6 a8 10 12
Time [Second]

(b) Count Data (diff. step size and ¢)
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Continuous Data
—&— jensen, -loga

E_._ -adagrad, xlogx =4 -adagrad, aloga, 3lte.
|—8&—constant, xlogx|
i-& +adagrad, -logx
—#—constant, -logx

10? ||~ ® -adagrad, aloga, 1lte. —#—constant, aloga, 3lte.
—a— , aloga, 1lte.

Time [Second]

(c) Continuous Data (diff. no. of ite.)

100 tensors with rank R = 10, where the generalized KL divergence is selected as the loss function and non-negative

constraints are considered. For SmartCPD, the number of fibers is 2R = 20, b = 105 for adagrad step size (see (13)) and (3= ] for constant step size. The
averaged mean squared error (MSE, see definition in (17)) of the latent matrix (averaged over 20 independent trials) 1s used as performance metric. The latent
matrices are drawn from 1.1.d. uniform distribution between 0 and 1. For continuous data case (Fig. 3(a) and (c)), Gaussian noise with SNR = 4() dB (see definition
in Section V-A4) is added to the data; in count data case (Fig. 3(b)), each tensor entry is drawn from Poisson distribution with identity link function, ie., [dm) = m.

TABLEIV
EXAMPLES FOR PAIR ( Ag) AND CLOSED-FORM SOLUTION OF (12)

() An Closed-form Suolution
—loga nen-negative -'1.rw # |G, & ':_'A: i)+ I:|
alora nen-negative /‘1:,- Pl — G 1] |

Coie = L oor el (1) non-negative (ALY e—1) I_.—.l'.‘,r'J |’,| o
al-\;‘-;a, simplex "t'a||IlZI'IIJ|'{1':’., Fouxpl—GL oo L)
i many forms reler [25]0 [17]

“In this table, colnorm(A) = A 0 1(AT1)T. which denotes the column-wise nor-

2) Choice of & Since the Bregman divergence D(A, A’

is defined in an entry-wise summation form, scaling D(A, A"
with a constant _, for all entries may be less effective for
approximating the loss in (9). In this work, we propose to use
coordinate-dependent step size, i.e., different positive scaling
factors [X]t (in, j)’s for different coordinates (in, j)’s, where
in [IN] r_} [R], and IZ]; RI-*R. Consequently, the term

EIDE(A,AE) in (12) becomes
Xt (in, j)) D(An(in, j), At (in, )))-
i B

Asillustrated in Fig. 3, such a coordinate-specific Xt ,empirically
helps accelerate convergence. In what follows, we provide two

schemes on choosing [X} (in, Q’s. ) ] L
. Jensen’s inequality based choice: One important criteria is

to choose IZLf (in, j) such that the inequality in (11) holds for each
coordinate (in, j). Such a choice makes the local approximation
in (12) be an upper bound of (9). In the case where f{+) enjoys
the convex-concave property and the constraint sets An satisfy
An Eﬁf’fﬂ, 1ty Lemma 1 implies that one can choose [{ )
to be the convex part of f{ ). Consequentially, Xt (in, j) can
be derived based on the Jensen’s inequality in each iteration. A
number of examples of [ (in, j) with respect to different f{ ) are
given in Table V, where the derivation are based on (18) and (19)
in supplementary material. We note that the Jensen’s inequality
based X! (in, j) choice is often used by popular methods such
as MM [48] and block successive upper bound minimization
(BSUM) [49] to simplity the solution of the subproblems. The

TABLEV
( :r,) BASED ON JENSEN’S INEQUALITY

Luss Function 100 |-

]
= |=
= 1.
=

Eucl. Dis. Lot

1S Div. 1 s [ XL X2 A,

KL Div. —loga S HOUX, (X))
Divoid =1 al LX) HL Al
3-Div. (2« 1) a” 7! — X, s XY HL A -2

*In this table, x; =H A

difference here is that our construction uses sampled fibers in-
stead of the whole data. Such Jensen’s inequality-based step-size
choice also works well with certain non-Euclidean losses under
our stochastic settings. as will be seen in the experiments.

. Adaptive step size based choice: The deep learning com-
munity has developed a number of effective adaptive step size
scheduling methods, e.g.. the Adagrad [50] and Adam type
schemes [51]. These schemes typically exploit the past itera-
tions’ gradient information to scale the current sampled gradient
in a coordinate-wise manner. The upshot of these methods is that
they often require very small amount of step size tuning, yet offer

highly competitive empirical performance; also see theoretical
understanding in [51]. Under the Bregman divergence. the adap-

tive step size schemes can be used to ‘schedule’ Ef (in,j)ineach
iteration. Specifically, we propose the following Adagrad step
size rule for DJ(in J)-

t g,
Rn(in, j) =
=0

t
[G n(in,)))> + D, (13)

- P

where Gi;(in, J) denotes the (in, j)-thentry of G ,, and b > O isa
constant to ensure D (in, j) > 0. Note that the adaptive step size
was considered in fiber-sampling based stochastic Euclidean
CPD in [25] and entry-sampling based stochastic non-Euclidean
CPD [7]. and encouraging results were observed in both cases.
Remark 5: Tt can be observed from numerical examples in
Fig. 3 that, for continuous data (Fig. 3(a)), using different
NXn(in,j) > 0 for different coordinate (in,j) exhibits much
faster convergence behavior than using a constant step size
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Count Data: adagrad, aloga Count Data: adagrad, aloga

q —e—5 fibers | —e—5 fibers
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i —e—380 fibers| |, "8 _|[—#—80 fibers
%] %] 5
= =
102 102
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Time [Second] No. of Iteration 10*

Fig 4. Averaged MSE of count tensor with different number of fibers (In =
100 and R = 10).

for all coordinates. For count data (Fig. 3(b)). we have similar
observations. Another observation from Fig. 3 is that, for count
or binary data, the Jensen’s inequality based step size scheme
may be less competitive, especially when the data contains many

zeros. The zero entries may make [X|n(in, j) very small, thereby

causing numerical issues. The ‘adagrad’ scheme in (13) has

empirically much more stable convergence behavior under such
circumstances. In practice, a user could make a choice between
a more conservative algorithm with better convergence under-
standings (constant step size [d) or a more aggressive one with

less theoretical guarantees (coordinate-wise step size @rﬂ). This
may be analogous to constant step size SGD or Adam/Adagrad

type SGD, where the former has better convergence understand-
ing while the latter works faster for some problems in practice.

3) Inmer Iterations: The proposed Algorithm 1 only contains
one iteration per block. Nonetheless, one can also extend it to
multiple SMD updates (i.e.. inner iterations) per block. We have
observed that implementing with a few more inner iterations
could improve the practical convergence behavior—as shown in
Fig. 3(c). There are two ways of having multiple inner iterations.
The first way is to repeat lines 3-5 in Algorithm 1 to update An
several times before moving to the next block, where the fibers
are re-sampled for each inner iteration. The second way is that,
for fixed sampled fibers, repeat lines 4-5 for multiple times.
Both methods work reasonably well in practice. In Fig. 3(c).
we use the latter because it uses less samples and has similar
performance (in our experience) compared with re-sampling per
inner iteration.

4) Number of Fibers: By regarding f(x, m) as a certain
‘distance’ measure between x and m, the SMD step (12) in
SmartCPD can be understood as approximately solving the
linear system X ,= H AT under such ‘distance’ measure.
From this viewpoint, the number of fibers should be chosen
to be larger than rank R, e.g.. = 2R. In Fig. 4, with the
same problem setting as in Fig. 315)‘) SmartCPD (adagrad step
size, [{a) = a log a, 1 inner iteration) with different numbers
of fibers are compared. Clearly, increasing number of fibers
improves per iteration efficiency but also needs more time to
compute the sampled gradient. Using 2R fibers seems to strike
a good balance between the gradient estimation’s variance and
the per-iteration complexity.
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IV. CONVERGENCE ANALYSIS

In general. convergence guarantees of stochastic tensor de-
composition algorithms are difficult to establish. as nonconvex
constrained optimization problems are intrinsically harder to
analyze under stochastic settings. The non-Euclidean version
is even more so, since the sampled subproblems may still be
nonconvex. There has not been an analytical framework for SMD
based non-Euclidean tensor/matrix factorization. The noncon-
vex block SMD in the optimization literature [31] is the most
closely related to our algorithmic framework. However, the con-
vergence analysis there does not cover the proposed algorithm.
Specifically, the convergence of the algorithm in [31] hinges
on some special incremental block averaging steps, which is
not used in our algorithm. More importantly, the algorithm
in [31] requires that the block-wise gradient estimation error
vanishes to zero when the iterations progress. This may require
implementing the algorithm with an active variance reduction
technique, e.g.. increasing the batch size in each iteration [25].
which is not entirely realistic, and it is somewhat against the
purpose of using stochastic algorithms.

Our goal is to offer tailored convergence analysis for
SmartCPD that does not rely on conditions like incremental
block averaging or vanishing gradient estimation error. We note
that for constrained problems, convergence analysis for SMD
with adaptive step size X is very challenging. Theoretical un-
derstanding of SGD with adaptive step size scheme was recently
discussed in [51]—but the SMD case is still an open problem. In

this work, we focus on the case where &‘ (in, j) = 4> 0 are
all identical.

By using Bregman divergence as a proximity measure, the
recent notion of relative smoothness [41] (or called L-smooth
adaptable [37]) can be defined as below:

Definition 3 (Relative Smoothness): A continuous differen-
tiable function f is relatively smooth to a strongly convex func-
tion wifhlL (0 <L <—)ifL  fisconvex onintdom [l

If f is convex, relative smoothness (Definition 3) becomes
the Lipschitz-like convexity in Definition 2. Also, there are
several different concepts which are closely related to relative
smoothness, e.g., relative weak convexity [39]. [40], and rela-
tive continuity [38], which were used in several recent works
to analyze single-block SMD type algorithms’ convergence:
see [37]-[40]. Our analysis leverages the notion of relative
smoothness, generalizing this prior work to cover multi-block
SmartCPD. Particularly. the proof takes advantage of the multi-
linear low-rank tensor structure and the block-randomized fiber
sampling strategy to brige the gap between the single-block and
multi-block cases.

The objective function in (2) is denoted as F (A) with A =
(AL, A.,..., Ax). Then, Problem (2) can be re-expressed as:

rrgn F(A)+ h(A) (14)

where h(A) =ENn=fln(An) and hn(An) is the indicator
function of sefy n. 1.e.. ha(An) = 0 if Ax a and otherwise
hn(An) =

Our first observation is as follows:
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t all reside in a compact set for all n, there
exists () < L < Lsuch that for any A’, A in this compact set
function F is relatively smooth to wﬂEL, 1e.,

|[F(AY OFA) OOF @A), A [DA| OLDAA" A),
(15)

Lemma 2: If

where %can be any strongl%; convex function.
Proof: See Appendix B in the supplementary material.

It is easy to see Lemma 2 immediately implies inequality (11)
in Lemma 1 summed over all the entries. Also, Lemma 2
has no restriction on the choice of [{-). This brings much
convenience for the practical usage of Algorithm 1. More im-
portantly, Lemma ZIilolds for the all latent factors simultane-
ously (as opposed to one latent factor as in Lemma 1). This
is critical for establishing the convergence guarantee. Also,
we note that inequality (15) is a generalization of standard
Lipschitz-continuous gradient property of F' (A) under Bregman
divergence, which is also known as relative smoothness [52]. We
remark that the assumption that A? live in a compact set is
not easy to check in advance, yet it is not hard to satisfy. When
the constraints 4 are compact sets, then this assumption is
naturally satisﬁéli per the defined update in (12). Even if,» is
not bounded. unbounded iterates are rarely (if not ever) observed
in our extensive numerical experiments.

Based on Lemma 2. convergence of the proposed Algorithm 1
can be guaranteed for any strongly convex function [{ ) (see
Theorem 1). Our convergence analysis starts by using the fol-
lowing “reference” function in each iteration:

L(A A" = F(A)+ h(A)+ e L1p (A, A)
where 0 < [k ] is a constant such that L(A A is strongly
convex in A. The minimal value and minimizer oy (A; A" for
a given A’, which are also known as Bregman Moreau envelope
MA )and Bregman proximal mapping (A [53]. are defined
as

M(AY = mig L(A; A), T (A% = arg mip L(A; A9,

Denote A = A) for a given A, we use the following lemma
to show that Do( A , A) is a measure for attaining stationary
points of Problem (14).

Lemma 3: A is a stationary point of Problem (14), i.e., 0[X
of (A)+ Oh(A), where Oh(A) denotes the subgradient, if and
only if Do(A , A) = 0.

Proof: see Appendix C in the supplementary material. [

The key step for analyzing Algorithm 1 is to quantify its one

iteration behavior:
Lemma 4: Suppose that { At } all reside in a compact set for

all n, and that (lis a Cstrongl¥f convex function. Let A #+1 be
generated by Algorithm 1 at iteration t, then we have

E M(A®)

OMA Y OeOpo(A AN+ oE IG T, (16)

where &1 = g%) &nd ¢, = -, The expectation in (16) is
taken over the random variable responsible for fiber sampling in
iteration t.
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Proof: See Appendix D in the supplementary material. [l
The lemma implies that, in expectation, if the step size [4
is properly chosen, then ) decreases after every iteration.

Using Lemma 4 as a ste stone, we show our main result:
Theorem 1. Suppose hat e assumptions emma 4 hold.

1) for diminishing step size [d satisfying [d=[] and

0 . =1 ..
1 [ < CJAlgorithm 1 converge to a stationary point in
expectation,

liminfE D{A"A) =0;
00
2) for a constant step size [d= T’ T—Statlonary solution of
Problem (14) can be obtained by Algorithm 1 within T iterations,
~¢ CL
E [
DdA.A) nc/ T,

where C > () is a constant. The expectations are taken over the
fiber and block sampling in all iterations jointly.
Proof: See Appendix E in the supplementary material. O

min
\Oor

V. SIMULATIONS

We use synthetic and real data experiments to showcase the
effectiveness of SmartCPD. The MATLAB code is available at
https://github.com/WQPw/SmartCPD.git.

A. Synthetic Data
We evaluate the numerical performance on different types of

synthetic data, i.e., continuous, count, and binary data, under
various non-Euclidean losses in Table II (c in Table II is set to
be 107).

1) Baselines and Performance Metric: We use two recent
competitive algorithms as our main baselines. The first one is an
entry-sampling based stochastic non-Euclidean CPD optimiza-
tion algorithm, namely, GCP-OPT, proposed in [7]. The second
baseline is the generalized Gauss-Newton (GGN) method for
non-Euclidean CPD [9]. The GCP-OPT method is implemented
in Tensor Toolbox [54] and ‘Adam’ is selected as the opti-
mization solver. The sampling rule of GCP-OPT is the default
‘uniform’ setting for dense tensors unless we specify it for par-
ticular examples. The GGN method [9] is implemented by nlsb

gndl and the ‘preconditioner’ is set as ‘block-Jacobi’; see
more details in the Tensorlab toolbox [55]. For the ploposed
SmartCPD, different choices of step size [{t,and function [ )
will be specified according to data type.

We generate third-order tensors with different sizes and ranks,
each dimension of the tensor keeps the same as [ = I =
I,=1 . For the two stochastic algorithms, in each iteration,
SmartCPD samples 2 R fibers’ and GCP-OPT samples
2IhR entries. This make$ the two algorithms use the same
number of samples per iteration, though it differs from the
recommendation in [7, Section 5.1]. The other hyperparameters

of the baselines follow their default settings. The MSE of the
latent matrices is used as a performance metric [25]. which is

3Note that that using 2R is not the only choice, but based on our experience.
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Fig. 5. MSE of count tensor (I = 100 and R = 20).

definedas MSE=2 ~ MSE, with
N n=1
Rlacoy Aen
MSEn = min n n

O @, 1JA, G L) YA Il
(

1?)
where A, denotes the estimated An and Q 1),-.
represents a permutation of the set [R] = ., R Wthh 15
used to fix the intrinsic column permutatlo in CPD.

2) Count Data: We first evaluate the performance on count
data tensors. For the proposed SmartCPD, IE‘ is scheduled
following (13). We use [{a) = a log a and I:{a) =2d inthe
SMD update. The constant b in (13) is 10™® for all simulation
trials.

We use the loss function fix, m) = m X log(im + c¢) as
in [15] and draw the latent matrices A, A, and A fromi.i.d.
uniform distribution between 0 and Apax, Where Apax= 0.5 1s
a positive constant. For each column of the latent matrices, 5%
elements are randomly selected and replaced by i.i.d. samples
from uniform distribution between 0 and ]0Amax. This way, the
elements have more diverse scales. The observed count data
tensor X is generated following the Poisson distribution, i.e.,
X; Poisson(M;). We set An for all n as the nonnegative
orthant.

Fig. 5(a) shows the performance of the algorithms under
I = 100 and R = 20, where the solid lines correspond to
the average MSEs and dashed lines are for individual trials.
One can see that SmartCPD improves the MSE quickly in
all trials. On average, it brings the MSE below 10™ using
less than 10 seconds. while the best baseline. i.e., GCP-OPT
takes at least around 40 seconds to reach the same MSE level.
Fig. 5(b) shows the MSEs of the algorithms against the number
of iteration. Clearly, GGN has the best iteration complexity
since it exploits second-order information based on all sam-
ples. Both SmartCPDs enjoy better iteration complexity than
GCP-OPT. In addition, SmartCPD (a log a) performs better
than SmartCPD (a’/2) (which is equivalent to the BrasCPD
algorithm in [25]). GCP-OPT achieves smaller MSE for some
trials. Note that both SmartCPD (a’/2) and GCP-OPT can be
viewed as SGD type algorithms with fiber sampling and entry
sampling, respectively.

In many trials, SmartCPD uses at least one order of mag-
nitude fewer data entries to reach MSE= 10" Fig. 6 shows
a closer look at the runtime breakouts of the two stochastic
algorithms. It can be found that both use similar time for
sampling but GCP-OPT requires slightly more time for com-
puting the gradient as well as updating all latent matrices. These
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Fig. 6. Detailed time cost per iteration of SmartCPD and GCP-OPT algo-

rithms (I = 100 and R = 20).
TABLE VI
MSE AFTER 100 SECONDS (I = 100 AND DIFF. R)
Rank It 10 20 50
) mean 2T7E-3 0 37E-3 0 6.6E-3
SmartC P (a log ¢ . A - .

martCPL (alog a) median  27E-3 30E-3 0.5E-3
medn 9.0E-3 0028 040N
GCP-OPT median 23E 3 33E 3 0406
el mein 0.023 0031 .288
SGN median  19E-3  6.5E-3  ().281

results clearly show that using non-Euclidean proximal term
(e.g., a log a) and fiber sampling both play important roles in
accelerating KL-divergence CPD.

In Table VI, the achieved MSEs after 100 seconds when I =
100 and R = 10, 20, 50 are compared. It can be observed that

SmartCPD (a log a) outputs MSEs that are smaller than 107
for all cases, while GGN and GCP-OPT could not reach MS
0.1 in 100 seconds when R = 50, in terms of both mean a
median. Also, GCP-OPT and GGN can often attain a slightly
smaller MSE value relative to SmartCPD when the rank is not
large. e.g.. R = 10.

3) Binary Data: Next, we evaluate the performance on bi-
nary tensors. We use the loss function that is related to the MLE
of Bernoulli tensors, i.e., fix, m) = log(im + 1)[ x log(m +
¢) (cf. Table II). We set [{a) = a log a and non-negativity
constraints are considered. Note that GGN is developed for
[divergence, and thus cannot be used for this loss function.
Hence, we only use GCP-OPT to benchmark our algorithm in
the binary case. We set I = 100 as before and each entry of the
binary tensor is generated from the Bernoulli distribution, i.e.,
X; = 1 with probability M;/(1 + M,). The latent matrices
are generated as in Sec. V-A2. First, we set R = 5, 10 and the
constant A, = (.3. This results in the generated binary tensor
having about 4% (R = 5) and 8% (R = 10) non-zero entries,
respectively. For such sparse binary tensors, ‘stratified” and
‘semi-stratified’ sampling rules in GCP-OPT are also included
in the comparison.

Fig. 7 shows the convergence curves (averaged over 20 in-
dependent trials) and SmartCPD achieves the fastest conver-
gence speed. Also, GCP-OPT with ‘semi-stratified” shows better
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convergence behavior than the other two sampling rules (i.e..
‘uniform’ and ‘stratified’).

In Fig. 8, we increase rank to R = 2( and set the constant
Amax 03, 0.3, 0.4, 0.5 to generate four different binary data
tensors, with about 5\%, 15'%. 28\%. 40'% nonzero entries,
respectively. For R = 2(), we observe GCP—-OPT with ‘uniform’
sampling rule performs more consistent than the other two sam-
pling rules and hence, in this figure we only present the result of

GCP-OPT with ‘uniform’ sampling rule. Fig. 8 shows the MSEs
against time of 20 independent trials when the tensor has 15%
nonzero entries. Similar as before, SmartCPD requires much
shorter time to achieve MSE- 10™. In addition, the histograms
of MSEs after 60 seconds are presented in Fig. 9. One can see
from there that that SmartCPD consistently outperforms the
baseline, and the advantage is more articulated when the data
becomes denser.

4) Continuous Data: We also evaluate the performance of
SmartCPD on continuous tensors under [ddivergence. We con-
sider the multiplicative Gamma noise, i.e..

Gamma : X; = M; - N;,

in which N; is i.i.d. Gamma noise. The SNR for Gamma noise is
defined the same way as in [9]. which is determined by the shape
parameter of Gamma distribution. The latent matrices A, A,
and A; are drawn from the i.i.d. uniform distribution between
0 and 1 and non-negativity constraints are considered. Since
the [div. loss functions satisfy the convex-concave property,

function [and X, are used based on the Jensen’s inequality
for SmartCPD: see details in Table V. We find such setup
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TABLE VII
MSE oF CONTINUOUS DATA TENSOR WITH GAUSSIAN NOISE AFTER 100
SeEconDS (I = 300, R = 20, AND DIFFERENT [J

A -1 s 0 0.5 1 2 3
mwean 24E-3 200E-3 19E-3 2A4E-3 3TE-5 34E-5 1.5E-5
SmartCPD | .| p 5 s 19E-3 20E-S 365-5 34E-5 [.5E-S
[ETCRATTIR® 0t S Il R IS I S A 1 SO S O I S T B Y B I O
GCP-OPT med. +8E-3 4 1E-3 2.2E-3 38E-3 18E-3 29E-5 3.3E-5

mean 0,304

med. 0.2

02537 0,299 0139

AN U207 013

Dowd b 6O

GG 0090 <2 1E-0

particularly efficient for dealing with dense and continuous
tensors under [ddivergence.

Fig. 10 shows simulations where the tensor has a size of 300
300 x300 and R = 20. The average MSEs over 20 independent
trials for = (ILvith SNR = 20 dB are compared. Clearly, the
two stochastic algorithms, i.e.. SmartCPD and GCP-OPT have
faster convergence than GGN. Further, SmartCPD is even faster
than GCP—OPT. especially in the beginning. We also observe that
the original SmartCPD’s MSE saturates at a certain level after
few iterations.

Next, we test the proposed algorithm on CPD under various
4, ie., I ,0,0.5,1, 2,3 . The data is generated
using an addig‘lae noise model, i.e., Xj = M; + N;. where N;
denotes zero-mean i.i.d. Gaussian noise and M is generated as
in the previous simulation.

In Table VII, the mean and median MSE over 20 indepen-
dent trials after 100 seconds are compared with SNR = 40
dB. SmartCPD achieves smaller mean MSE than other two
algorithms and both SmartCPD and GCP-OPT have similar
median MSEs. This is because 100 seconds is not enough for
GCP-OPT to ensure all trials converge: see the convergence
curves for = Blin Fig. 11. As a deterministic second-order
algorithm, GGN attains better MSEs for = ] This shows
effectiveness of exploiting the second-order information for
handling the Euclidean loss.

5) Column Constraints: In Fig. 12, we evaluate the per-
formance for problems with simplex constraints, i.e.. AT 1[4

1, An(i,)) Qﬁ’ @J and the loss function is f{x, m) ='m
xlog(m + ¢) (KL div.). Tensors that represent joint probability
distributions with I = 100 and R = 10 are considered; see [11].
[43]-[45]. [56] for details. The latent matrices A;, A, and A
are drawn from 1.1.d. uniform distribution between 0 and 1, then
each column is normalized so that it represents a probability
mass function. For SmartCPD, the step size scheme in (13)
with [{a) = a log a is used. Note that both the baselines are
not able to handle such simplex constraints, while this problem
frequently arises in probabilistic tensor decomposition; see [11].
[43]. [44]. [37]. To benchmark our algorithm, we use the deter-
ministic block MD algorithm in [11]. In Fig. 12. one can see that
SmartCPD has much faster convergence behavior than the MD
algorithm due to stochastic sampling.

B. Real Data

1) Chicago Crime Data: We apply the algorithms to the
Chicago Crime dataset. The dataset records crime reports in the
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Fig. 11. MSE of continuous data tensor with additive Gaussian noise (In =
300, R=20,and =31

city of Chicago, Illinois, United States, between January 1, 2001
to December 11, 2017. The original dataset is published in the
official website of the city of Chicago (www.cityofchicago.org).
Here, we use the version in [38]. The data is in the form of a fourth
order tensor (day>< hour ><crime community) with integer
entries representing the number of crimes reported. The size of
the tensor is 6186, 24,77 2. 1t has 5,330,678 ( 1.5%)
nonzero entries.

We choose the loss function corresponding to the Poisson
distribution, i.e., f{x, m) = mpex log(in + ¢) (see Table II),
and non-negativity constraints are considered for the latent ma-
trices. In every iteration, 40 fibers are used by SmartCPD. For

(c) = 28% nonzero entries (d) =~ 40% nonzero entries

Histogram of MSE after 60 seconds of 100 % 100 > 100 binary tensor (rank 20) with different level of sparsity.

Probabilistic Tensor

—a—MD

10®

10° 102 10*

Time [Second]

Fig.12. MSE of continuous data tensor with simplex constraint (In = 100,
R =10, and O0=1).

GCP-OPT, 40 (6186 + 24 + 77 + 32)/4 tensor enfries are
sampled in every iteration, such that we sample an equal amount
of data on average for both the algorithms, though it differs from
the recommendation in [7, Section 5.1]. The uniform sampler of
GCP-OPT is used, but note that this choice is not the GCP-OPT
default for sparse tensors. All algorithms under test are stopped
when the relative change in the [ddivergence (in this case, [ = 1)
is less than 10"

Fig. 14 shows the cost change against time of the algorithms
under R = 5 and R = 10, respectively. Each algorithm is run for
20 trials and in each frial, the factor matrices are initialized by
randomly sampling its entries from uniform distribution between
0 and 1. One can see that the proposed algorithm SmartCPD
exhibits a fast runtime performance in this case. For each of the
cases, the SmartCPD takes only about 5 seconds to reach a low
cost value, whereas the baselines take much more time but still
could not attain the same cost value. In some trials, especially
when R = 5. there exist some cases where GGN did not converge.
More details on the algorithm-output latent factors can be found
in Fig. 13.

2) Plant-Pollinator Network Data: We also consider the
plant-pollinator network dataset published by [59]. The dataset
consists of plant-pollinator interactions collected over 12 mead-
ows in the Oregon Cascade Mountains, USA; also see [12] for
detailed data descriptions. We extract the number of interactions
between 562 pollinator species and 124 plant species over 123
days during 2011 and 2015. Hence, we form a count-type
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Fig. 15. Convergence of the algorithms (Count data, Plant-Pollinator network,
gen. KL div , size = 562 X 124 X 123).

third-order tensor with a size of 563 124 123. where each
entry represents the number of interactions between a particular
plant and a pollinator on a specific day. The data is fairly
sparse with only 8.370 ([0'1%) nonzero entries. We choose
the loss function corresponding to the Poisson distribution, i.e..
fix, m) = m_x log(m + c¢) along with non-negativity con-
straints. Other algorithm settings are also same as those used
in the Chicago Crime data.

Fig. 15 plots the cost values of the algorithms against time,
for different values of R. Both the baselines GCP—OPT and GGN
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Fig. 16. Convergence of the algorithms (binary data, UCI chat network, log
loss, size = 400 X 400 x 196).

work reasonably well in this dataset. However, the proposed
SmartCPD has better performance—it converges to lower cost
values compared to the other baselines. Also. one can observe
that the SmartCPD is about 15 times faster in reaching low cost
values compared to GCP-OPT and GGN.

3) UCI Chat Network Data: We test the algorithms on real-
world binary data using a social network which contains the
online interactions of the students from the University of Cali-
fornia, Irvine, USA. The original dataset was published by [60].
which includes 59.835 online messages sent between 1.899
students over 196 days from March 2004 to October 2004.
We select 400 most prolific senders and form a third-order
binary tensor of size 4OQ 40'Ox196 having 18862 ( 0.06%)
nonzero entries. Each entry of the binary tensor indicates if
sender 7 has sent a message to receiver j on the kth day. We
choose the loss function corresponding to the Bernoulli distribu-
tion, i.e., f(i, x) = log(m + 1) ~xlog(m + ¢) (see Table II).
Other settings and parameters are as before. Since GGN method

is not designed for the loss function considered in this case, it is
not included.
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Fig. 16 shows the cost value change against time in seconds
for different values of R. Similar to the previous datasets, the
proposed SmartCPD shows considerable runtime advantages
over GCP-OPT. In all the trials, SmartCPD is at least 40 times

faster for converging to a cost value that is later attained by
GCP-0OPT.

VI. CONCLUSION

In this work, we proposed a unified SMD algorithmic frame-
work for low-rank CPD under non-Euclidean losses. By inte-
grating a fiber-sampling strategy within the SMD optimization
technique, the proposed framework is flexible in dealing with
a variety of loss functions and constraints that are of interest
in real-world data analytics. By its stochastic nature, the pro-
posed algorithm enjoys low computational and memory costs.
In addition, under different data types and loss functions, we
discussed a number of “best practices.” e.g.. step size scheduling
and local swrogate function construction, which were shown
critical for effective implementation. We also provided rigorous
convergence analysis that is tailored for the non-Euclidean CPD,
since generic SMD proofs do not cover the proposed algorithm.
We tested the algorithm over various types of simulated and
real data. Substantial computational savings relative to state-of-
the-art methods were observed. These results show encouraging
and promising performance of using geometry-aware algorithm
design for large-scale tensor decomposition.
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