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ABSTRACT: Progress in the development of photocatalytic reactions requires a detailed understanding of the mechanisms
underpinning the observed reactivity, yet mechanistic details of many photocatalytic systems, especially those that involve electron
donor—acceptor complexes, have remained elusive. We report herein the development and a combined mechanistic and
computational study of photocatalytic alkene 1,2-diacylation that enables a regioselective installation of two different acyl groups,
establishing direct, tricomponent access to 1,4-diketones, key intermediates in heterocyclic and medicinal chemistry. The studies
revealed the central role of the electron donor—acceptor complex formed from an N-heterocyclic carbene (NHC) catalyst-derived
intermediate and an acyl transfer reagent, providing a detailed description of the structural and electronic factors determining the
characteristics of the photoinduced charge-transfer process that mediates photocatalytic transformation. The in-depth investigation
also illuminated the roles of other radical intermediates and electron donors relevant to the catalytic activities of N-heterocyclic
carbenes in radical reactions.

KEYWORDS: charge transfer, 1,2-diacylation, N-heterocyclic carbenes, photocatalysis, radical addition

B INTRODUCTION transfer bands in the near-ultraviolet (UV), visible, or near-
Photocatalysis has recently emerged as one of the most enabling infrared (IR) regions of the absorption spectra of solutions of
methodological advances in organic synthesis,' streamlining the electron donors and acceptors.” The charge-transfer encounter
introduction of diverse functional groups into unactivated complex can undergo an interfragment electron transfer (IFCT)
substrates and increasing the efficiency of functional group with thermal activation if the electron transfer takes place over

interconversions.” Despite the rapid progress in the develop-
ment of new photocatalytic reactions, their mechanistic
understanding has been lagging because of the complexity of
catalytic processes.

Recent studies showed that a number of novel synthetic

an accessible electron-transfer barrier. Alternatively, photo-
excitation can be used to overcome an inefficient thermal ET

process to access the electron-transfer state that, upon thermal

transformations can be enabled by photochemically or thermally Received: October 6, 2021
induced electron donor—acceptor (EDA or charge transfer) Revised:  December 2, 2021
complexes,”* adding to the trove of knowledge on the Published: December 15, 2021

importance of EDA complexes in organic and organometallic
reactions.’” The formation of a charge-transfer encounter
complex is typically manifested by the appearance of charge-
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relaxation, can dissociate into separated ion radicals or undergo
subsequent transformations (Figure 1).

Electron Donor-Acceptor (EDA) complex-mediated reactivity
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Figure 1. N-Heterocyclic carbene-photocatalyzed regioselective alkene
1,2-diacylation.

N-heterocyclic carbenes (NHC) have recently emerged as
versatile catalysts for a variety of photocatalytic transformations.
In particular, reactions that involve Breslow intermediates I as
electron donors have enabled new radical functionalizations
(Figure 1).°” The reactions are thought to proceed via a thermal
or photoinduced electron transfer from Breslow intermediates I
or their deprotonated forms, and the involvement of EDA
complexes was inferred based on the changes in the absorption
spectra for some of the reactions. However, mechanistic details
of the reactions and the roles of various electron donors and
radical intermediates remain poorly understood.

1,4-Dicarbonyl compounds are centrally important synthetic
intermediates that provide access to a variety of nitrogen,
oxygen, and sulfur heterocycles, as well as other diverse products
with applications in medicinal chemistry and materials science.”
However, the synthesis of 1,4-dicarbonyls remains challenging
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because of the mismatch in the polarity-driven reactivities of the
carbonyl precursors (Figure 1).”

Tricomponent regioselective 1,2-diacylation of alkenes,
wherein two different acyl groups are appended to an alkene
in a regioselective manner, can provide a new approach to 1,4-
dicarbonyl compounds. However, 1,2-diacylation of alkenes
remains underdeveloped,'® and a general method that enables a
regioselective installation of two different acyl groups by 1,2-
diacylation has been elusive.

We report herein the development of a tricomponent,
photocatalytic, regioselective alkene 1,2-diacylation that pro-
ceeds via a photoinduced proton-coupled electron transfer in an
EDA complex formed from an acyl transfer reactant and a
Breslow intermediate. We provide a detailed mechanistic and
computational analysis of the key roles played by the EDA
complex and other intermediates that may guide the develop-
ment of other photoinduced and thermal NHC catalytic
reactions driven by a single electron transfer from Breslow
intermediates.

B RESULTS AND DISCUSSION

Optimization studies with oxime 1a, styrene 2a, and aldehyde 3a
revealed that tricomponent coupling is readily enabled in the
presence of precatalyst C1 under blue light-emitting diode
(LED) (4 = 450 nm) and at 65 °C (Table 1, entry 1). The

Table 1. Reaction Conditions for the Visible Light-Induced
Dual Catalytic Alkenylation”

(0} C1 (12 mol%) 0 Ph
Ph)j\( PN j)\ DIPEA (2 eq:uv.) o Ph
N. H Ph MeCN, 65 °C 5

1a OBz 2a 3a LED (450 nm) 4a
entry change from optimal conditions yield, %

1 no change 83 (81°)

2 no light 7

3 400 nm instead of 450 nm LED 53

4 ambient temperature 9

S no C1

6 C2 instead of C1 0

7 C3 instead of C1 S5

8 C4 instead of C1 53

9 PhCH; instead of MeCN S3

10 DMF instead of MeCN 64

11 under air 39

“Reaction conditions: oxime la (0.2 mmol), styrene (2a) (0.4
mmol), benzaldehyde (3a) (0.4 mmol), C1 (12 mol %), DIPEA (0.4
mmol), MeCN (2.6 mL), LED (450 nm), 65 °C, and 16 h.
’Determined by 'H NMR with 1,3,5-trimethoxybenzene as an

internal standard. “Isolated yield.
ot

&

C2,n=1

NL § ©1 NW 8 Cc3,n=3

ﬁ X £ % Cdn=5
ClO,” ClOoy4

reaction did not proceed without light and was less efficient at
shorter wavelengths (entries 2, 3). An elevated temperature was
also required to effect the conversion to ketone 4a (entry 4). No
conversion was observed without the catalyst (entry S), while
the size of the carbocyclic moiety in the carbene catalyst had a
significant effect on the catalytic performance, with the five-
membered ring derivative C2 being completely devoid of the
catalytic activity and a reduced performance for the seven- and
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Table 2. Scope of Oxime Precursors and Alkenes in the Photocatalytic Tricomponent Regioselective Alkene Diacylation”

o

o}
O)S/ o C1 (12 mol%), DIPEA oh
= >
I /\O H)k
“OBz

Ph MeCN, 65 °C
LED (450 nm)

Diketone oxime

4a, R =H, 81% (CCDC 2104666)
1.09 g, 66%

4b, R = Me, 81%

4c, R = OMe, 61% (CCDC 2104659)
4d, R = NHBoc, 80%
4e, R =Cl, 68%
4f,R = CFy, 47%

49, R = Me, 83%
4h, R = OMe, 55%
4i, R = Br, 65%

4j, R = Me, 70% [¢] 4k, 69%

0 41, 60%
1129, 51%
MeO O

Cl

Alkene linchpin

5a, R = jBu, 78%

5b, R = tBu, 82%

5¢c, R = OMe, 83% (CCDC 2104664)
5d, R = OtBu, 90% (CCDC 2104669)
5e, R = OPh, 84%

5f, R = Ph, 83% (CCDC 2104665)
59, R=F, 80% (CCDC 2104662)
5h, R =Cl, 89%

5i, R = Br, 88% (CCDC 2104661)

5j, 72%

51, 90%
(CCDC 2104670)

5m, 66%
OMe
5n, R=H, 82% 5p, 81%
50, R = OMe, 80% (CCDC 2104660)
Br
N=<
S
o N
O s5r,50% O 5t 99%
“See Table 1 for reaction conditions.
eight-membered congeners C3 and C4 (entries 6—8). carried out under air, pointing to the detrimental effects of
Furthermore, both less polar and more polar solvents were oxygen as an oxidant.
detrimental to the reaction performance (entries 9 and 10). The scope of the reaction was examined next with a range of
Finally, a diminished yield was observed, when the reaction was oxime precursors and (hetero)aromatic alkenes (Table 2).
287 https://doi.org/10.1021/acscatal.1c04594
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Table 3. Scope of Aldehydes in the Photocatalytic Tricomponent Regioselective Alkene Diacylation®

(@]
o) C1 (12 mol%), DIPEA o Fh
PR A ph - Ph
N H MeCN, 65 °C
OBz (e]

LED (450 nm)

Aldehyde
6a, R = /Bu, 83% O

6b, R = tBu, 69%
6¢c, R = Ph, 65%
6d, R = OMe, 56%
6e, R = OPh, 65%
6f, R = NHAc, 61%

69, R = F, 69%
6h, R = Cl, 81%
6m, R =H, 67% YR

6n, R = OMe, 61%

-J’D‘;/;i -6n

(CCDC 2104668)

“See Table 1 for reaction conditions.

O 6r,R=Ac, 72%
6s, R = Boc, 63%

6i, R = Me, 74%
6j, R = OMe, 60%
6k, R =Br, 51%

6l, R = Me, 70%
(CCDC 2104657)

60, 91%
1.07 g, 62%

o 6p,50%

A variety of products were produced in good yields from
diverse oxime precursors (4a-41). Both electron-donating and
electron-withdrawing substituents were tolerated, including
alkyl (4b, 4g, and 4j), methoxy (4c and 4h), amide (4d),
chloro, and bromo (4e, 4i, and 4k) groups without any
detrimental dehalogenation, as well as the naphthalene core (41)
and the medically important trifluoromethyl group (4f).
Similarly, an array of diversely substituted styrenes was readily
converted to the corresponding 1,4-diketone products (Sa—5t).
The reaction performed well with electron-rich (Sa—5fand Sk—
Sm) and electron-deficient (Sg—5j) arylalkenes, including
naphthalene derivatives (Sn—5p). Notably, nitrogen-, oxygen-,
and sulfur-containing heterocyclic groups were introduced into
the 1,4-diketone framework (5q—5t).

The scope of aldehydes was investigated next (Table 3). A
diverse range of products was accessed, revealing good
functional group tolerance, for example, with respect to alkyl,
alkoxy, amide, and halogen groups (6a—61). Other aromatic and
heteroaromatic aldehydes, including naphthalene (6m and 6n),
pyridine (60—6q), indole (6r and 6s), benzofuran (6t), and
thiophene (6u) were equally suitable, also highlighting the
stability of the reaction bromoarene functionality to dehaloge-
nation induced by single electron transfer (SET). Several
products were accessed in gram quantities (4a, 41, and 60),
underscoring the synthetic utility of the method. Importantly,
the acceptor-derived acyl group was added to the less-
substituted position in the alkene, while the aldehyde-derived

acyl group was appended to the more-substituted terminus in all
of the products, as revealed by the X-ray crystallographic analysis
of products 4a, 4c, Sc, 5d, 5f, 5g, Si, Sl, Sp, 61, and 6n. We
proceeded further with the investigation of the reaction
mechanism.

A radical trapping experiment with (2,2,6,6-tetramethylpiper-
idin-1-yl)oxidanyl (TEMPO) showed that the production of
diketone 7 is completely suppressed in the presence of TEMPO
(Scheme 1). The formation of the acyl radical trapping products
8 and 9 in nearly equal amounts supports the intermediacy of
species capable of transferring an acyl radical (e.g., m-
methoxybenzoyl radical from the oxime precursor and an

Scheme 1. TEMPO Radical Trapping Experiment

0] I

MeO Ph
o Z TEMPO (5 equiv.) O o)
C1 (12 mol%) 7,0%
MeO | . DIPEA (2 equiv.) (52% without TEMPO)
N\OBZ (0] MeCN, 65 °C
J_ LED 450 nm)
H” “Ph )J\

8 (Ar = Ph), 38%
9 (Ar = m-MeOPh), 41%
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oxidized Breslow intermediate derived from benzaldehyde, vide
infra).

UV/visible (vis) spectroscopic studies indicated that none of
the reactants (1a—3a, C1, N, N-diisopropylethylamine, DIPEA)
or reagents absorb in the visible range.

(Figures 2 and S1). Similarly, no appreciable increase in
absorption was observed for combinations of oxime 1a, alkene

Absorbance, a.u.

Figure 2. Absorption spectra of the acetonitrile solutions of the reaction
mixture at the concentrations specified below (black lines); oxime 1a,
aldehyde 3a, C1, and DIPEA (red lines); C1, DIPEA, and aldehyde 3a
(blue lines); C1 and DIPEA (green lines). Concentrations: oxime la
(1.2 mM), aldehyde 3a (3.6 mM), alkene 2a (3.6 mM), C1 (1.2 mM),
and DIPEA (12 mM).

2a, and aldehyde 3a, or C1 and DIPEA. Interestingly, new
absorption bands were observed for a solution of aldehyde 3a,

Cl1, and DIPEA, suggesting the formation of Breslow
intermediate 10."" Furthermore, spectroscopic studies revealed
a substantially stronger absorption in the near-UV and visible
range for a solution of oxime 1a, aldehyde 3a, C1, and DIPEA.

The strong absorption was also observed in the reaction
mixture. Taken together, these results indicate that the reaction
proceeds via the formation of an EDA complex between the
Breslow intermediate and electron acceptor la that sub-
sequently undergoes fragmentation, producing the prerequisite
acyl radical intermediate. This conclusion was further supported
by mass spectrometric studies that revealed the presence of
species with the molecular masses corresponding to inter-
mediate 10 (364.1730, [M + H*]) and the complex of 10 with
oxime 1a (653.2458 [M + Na*]).

Density functional theory (DFT) and time-dependent-DFT
(TD-DFT) studies were carried out next to clarify the
mechanism of the EDA complex-mediated 1,2-diacylation
process (Figure 3). The addition of carbene 11 to aldehyde 3a
can produce E- and Z-isomers of the Breslow intermediate. Z-
isomer 10 is more stable by ~2.6 kcal/mol, indicating that it is
the major component in the equilibrium. Both catalyst 11 and
intermediate 10 are relatively weak reductants (E,.4(117*/11) =
1.65 V and E,4(10%/10) = —0.37 V vs SCE in MeCN) that
cannot mediate a thermodynamically favorable reduction of
oxime 1a (E,4(1a™/1a) = —1.29 V), in agreement with earlier
studies, pointing to insufficient reducing power of Breslow
intermediates in the context of redox-mediated NHC-catalyzed
processes.'”

Complexation of intermediate 10 with oxime 1a by hydrogen
bonding proceeds nearly isergonically (AG = 0.32 kcal/mol),
supporting the facile formation of complex 12 in the reaction

Figure 3. Computed Gibbs free energy profile for the regioselective 1,2-diacylation of alkenes (AG, kcal/mol). Mes = mesityl.

https://doi.org/10.1021/acscatal.1c04594
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system. Furthermore, the noncovalent interaction (NCI) plot'"
points to the extensive noncovalent interactions between the
phenyl ring of the acyl fragment in acceptor 1a and the bicyclic
system of intermediate 10 on one terminus, as well as the N-
benzoyloxy moiety of acceptor 1a and the phenyl ring of the enol
moiety in intermediate 10 on the other terminus, in addition to
the hydrogen bond, as key stabilizing interactions between the
two components of complex 12 (Figure 4A). The stabilizing

AEqisp
(272)

Figure 4. (A) NCI plot of complex 12 formed from Breslow
intermediate 10 (brown) and acceptor la (gray). (B) Energy
decomposition analysis (ALMO-EDA) of complex 12.

noncovalent interactions of the acyl fragment with the aliphatic
ring of the NHC fragment are particularly noteworthy, given the
significant difference in the catalytic performance of NHC
catalysts with varied aliphatic ring sizes (cf. entries 1, 6—8, Table
1). The importance of the noncovalent interactions for the
stabilization of complex 12 is further evident from the energy
decomposition analysis based on absolutely localized molecular
orbitals'* (ALMO-EDA, Figure 4B) that points to a large
contribution of the stabilizing dispersion energy (AEdisp) to the
interaction energy (AE,,) that alone nearly compensates for the
Pauli (steric) repulsion (AEp,,;). Notably, TD-DFT calcu-
lations of the absorption spectra of catalyst 11, intermediate 10,
and complex 12 show substantial differences (Figure S). While

20000 -

15000 A

10000 A
-

5000 A

350 400 450

A, nm

300 500
Figure 5. Calculated absorption spectra of catalyst 11 (--, green),
intermediate 10 (— —, blue), and complex 12 ( ,red). Vertical lines
indicate A, for the absorptions in the UV-A/vis range for complex 12.

no absorption bands were observed in the near-UV and visible
range for catalyst 11, strong absorption appeared in the
spectrum of intermediate 10, consistent with the experimentally
observed spectral data for model Breslow intermediate
systems.11

For intermediate 10, the peak with A, = 343 nm
corresponded to the electron transitions from the highest
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occupied molecular orbital (HOMO) that is located on the enol
moiety to the lowest unoccupied molecular orbital (LUMO)
located on the phenyl ring (Figure 6A). By contrast, for complex
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Figure 6. HOMOs and the three LUMOs of intermediate 10 (A) and
complex 12 (B) with an isovalue of 0.05 a.u.; the electron—hole analysis
of complex 12, isovalue 0.005 a.u. (C).

12, the lowest energy band with 4,,,, = 449 nm corresponded to
the interfragment 7 — 7% charge-transfer electron transitions
from the HOMO located on the enol moiety of the Breslow
intermediate to the LUMO and LUMO+1 located on the oxime
acceptor (Figure 6B). Significantly, the transition to the LUMO
that is located on the oxime-acyl fragment exhibits the largest
contribution (96%). The IFCT analysis'® indicates that the
excitation results in a nearly complete (98%) charge transfer
from the Breslow intermediate fragment to the acceptor la
fragment. The excitation was further examined by an electron—
hole analysis,'>'® revealing the significantly separated hole
(corresponding to the HOMO) and the electron (correspond-
ing to the LUMO) with the substantial distance between the
centroids of the hole and the electron (D = 3.89 A) and H = 2.64
A, reflecting the broad distribution of the hole and electron
(Figure 6C). Furthermore, the relatively large ¢ index (2.33 A)
points to a notable hole/electron separation with a small overlap
(S, = 0.12 a.u.). In addition, two higher-intensity absorptions
contribute to the band in the near-UV region with 4, = 347 nm
and 342 nm. The band with 4_,,, = 347 nm corresponds to the 7
— 7% electron transitions from the HOMO to LUMO+1 and
LUMO+2 localized on the acceptor la fragment (both the
benzoate and the acyl moieties) for LUMO+1, and mostly the
phenyl group in the carbene fragment (with a smaller
contribution of the oxime moiety in 1a) for LUMO+2. The
IFCT transition provided a smaller but still the most significant
contribution (76%). The shorter-wavelength excitation (4, =
343 nm) had significant contributions from 7 — 7* transitions
from the HOMO to higher energy unoccupied orbitals with a
much smaller contribution (22%) of the IFCT. The TD-DFT
calculations are consistent with the experimental data and
observations and provide important insights into the involve-
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ment of EDA complex 12 in the reaction. The experimental
spectra of the mixtures of acceptor 1a, C1, DIPEA, and aldehyde
3a exhibit bands in the near-UV region that are consistent with
calculations. Furthermore, the position of the charge-transfer
band with 4, = 449 nm in the visible spectrum is congruent
with the experimentally determined optimal irradiation wave-
length (4, = 450 nm). In addition, the significant contribution
of the oxime moiety to the LUMO of complex 12 and the nearly
complete electron transfer to the LUMO may facilitate the
elimination of the benzoate and fragmentation

of acceptor 1a. The relatively low calculated absorptivity (¢ =
86 M'-cm™") for the charge-transfer band suggests that it likely
overlaps with the substantially stronger near-UV-centered
absorption tailing into the visible region that can also mediate
the reaction pathway because of the high contribution of the
IFCT (vide supra). The differences in the relative intensities of
the calculated and experimental absorption bands for
intermediate 10 and complex 12 can be due to the under-
estimation of the oscillator strengths of the charge-transfer
excitations for 12 compared to the local excitations for 10, as
well as the presence of the vibronic structure in the experimental
spectra.'” Importantly, TD-DFT calculations further indicate
that the HOMO—LUMO singlet excited state $;—12 lies 45.0
kcal/mol above the ground state, making it thermally
inaccessible at the reaction conditions and indicating that
photoactivation is required to mediate charge transfer, in line
with experimental observations. Subsequent proton shift from
the OH group of the Breslow intermediate fragment to the
carbonyl oxygen of the benzoate moiety in the acceptor 1a can
facilitate the elimination of the benzoate and fragmentation of
acceptor la.

Subsequent fragmentation of singlet excited state S$;—12
proceeds highly exergonically, affording acyl radical 13, as well as
acetonitrile, benzoic acid, and acyl-NHC radical 14 (Figure 3).
The natural bond orbital (NBO) analysis'® of radical 14 points
to the relatively low spin density on the carbonyl carbon atom
(0.1398) with significant delocalization of the residual spin
density over the carbonyl oxygen (0.2446), as well as the NHC
core (S1: 0.1618, C2: 0.1971, N3: 0.1938, CS: 0.1017, Figure
7A), as previously observed for other radicals of this type.'**
Experimentally, the intermediacy of radical 14 was confirmed by
electron paramagnetic resonance (EPR) studies of the reaction
mixture (Figure 7B). The radical was also independently
generated via the acylthiazolium intermediate obtained in a
reaction of carbene 11 with benzoyl chloride and subsequent
reduction with zinc. The addition of acyl radical 13 to alkene 2a
proceeds exergonically over a small barrier (13.3 kcal/mol),
producing radical 15 (Figure 3). Given the significant
delocalization of the spin density in NHC radical 14, the
cross-termination of radicals 14 and 15 can take place at the
carbon atom in the S—C—N moiety of the NHC fragment in 14,
producing NHC adduct 16, or directly at the carbonyl C atom,
leading to carbonyl adduct 17, with estimates of the transition-
state energies pointing to the addition at the S—C—N moiety in
14 as being more kinetically favorable (See the Supporting
Information). As was also observed for a similar system by
Scheidt and Cheong,61 NHC adduct 16 can undergo a
rearrangement to carbonyl adduct 17. The availability of the
16 — 17 isomerization pathway for NHC catalyst 11 suggests
that this mechanism can also play significant roles in other
NHC-catalyzed radical reactions.

NHC redox-catalyzed reactions have been reported to
proceed under thermal and photochemical conditions, and, in
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Figure 7. (A) Computed NBO spin density (isovalue 0.00S a.u.) in
radical intermediate 14. (B) Room temperature X-band EPR
spectroscopic study of radical 14 in the 1,2-diacylation reaction. L
Reaction mixture of the 1,2-diacylation reaction (path A). IL
Generation of radical 14 via the acylthiazolium intermediate reduction
(path B). III. Simulated EPR spectrum. g = 2.0052; ay = 3.45 G, ay =
3.30 (2 H), 3.70 (2 H), 4.50 G (2 H).

some cases, with the involvement of EDA complexes, suggesting
that a range of inner and outer-sphere electron-transfer
processes may be operative, depending on the reaction
conditions and the nature of electron acceptors.”>™ Given the
importance of the donor—acceptor interactions for the
feasibility of the thermal and photoinduced electron transfer
from Breslow intermediates, for example, as observed in 1,2-
diacylation and the previously described systems,”°™° the
potential involvement of other Breslow intermediate-derived
species as outer-sphere electron donors in the NHC redox-
catalyzed reactions that are typically performed in the presence
of relatively weak bases (e.g, amines) was also examined.
Although anion 18 was found to be a sufficiently strong
reductant (E(14/18) = —1.73 V) to mediate an outer-sphere
electron transfer to the typical organic electron acceptors used in
the NHC-catalyzed radical processes (e.g., N-hydroxyphthali-
mide esters and easily reducible haloarenes), the low acidity of
intermediate 10 (pK, = 36.1 in MeCN) suggests that the
formation of anion 18 (Figure 8) is significantly disfavored with
the typical bases used for the reactions (e.g,, J)KBHJ' = 24.3 for
DBU and 18.8 for triethylamine in MeCN '), if other more
thermodynamically accessible electron donors are formed under
the reaction conditions. Indeed, a hydrogen bond complex 19 is
readily accessible by an exergonic reaction of intermediate 10
and DBU (AG = —1.7 keal/mol) and is also a sufficiently strong
reductant (E,4(14 + DBU-H'/19) = —1.23 V) that can
mediate single electron transfer to the acceptor substrates by
multisite proton-coupled electron transfer (PCET) (Figure 8A).
In the case of the 1,2-diacylation reaction, however, the
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formation of the corresponding complex of intermediate 10 with
DIPEA (E, (14 + DIPEA—H*/10-DIPEA) = —1.30 V) is
substantially disfavored (AG = 5.2 kcal/mol) so that this
reduction pathway does not participate in 1,2-diacylation. In
addition, photoexcited Breslow intermediate I* may also
mediate electron transfer.”” Our studies show that single
electron transfer from the triplet excited state of intermediate
10 is exergonic (E,4(10%/T;—10) = —1.92 V). However, the
calculated molar absorptivity of intermediate 10 at 450 nm is
substantially lower than that for complex 12 (log(e;,/€1) =
4.3), indicating that the pathway may not be providing a
significant contribution to 1,2-diacylation. These results indicate
that a range of Breslow intermediate-derived species can
participate in the NHC-catalyzed radical processes, including
EDA complexes (e.g., 12), as well as hydrogen bond complexes
(e.g, 19), and the type of the electron-transfer process and the
activation mode (thermal or photochemical, outer or inner
sphere) are determined by the structural and redox properties of
the acceptor substrates and catalysts (Figure 8B).

B CONCLUSIONS

In summary, we have developed a visible light-induced, N-
heterocyclic carbene-catalyzed regioselective 1,2-diacylation of
alkenes that affords direct access to 1,4-diketones via a
tricomponent C—C bond-forming radical coupling. Mechanistic
and computational studies provided a detailed description of the
EDA complex between the Breslow intermediate and the oxime
acceptor that is central to the observed reactivity and the
stabilizing interactions, notably dispersion, within the complex.
The studies have revealed the key role of the interfragment
charge transfer in enabling the otherwise thermally inaccessible
process. Our mechanistic investigation also clarified the roles of
the radical acyl transfer species and various single electron
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donors in NHC redox catalysis, highlighting the roles of the
EDA and PCET channels in facilitating key redox processes.
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