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Abstract 
In unconventional reservoirs, optimal completion controls are essential to improving well productivity 
and reducing costs. In this article, we propose a statistical model to investigate associations between shale 
oil production and completion parameters (e.g., completion lateral length, total proppant, number of 
hydraulic fracturing stages), while accounting for the influence of spatially heterogeneous geological 
conditions on hydrocarbon production. We develop a non-parametric regression method that combines a 
generalized additive model with a fused LASSO regularization for geological homogeneity pursuit. We 
present an alternating augmented Lagrangian method for model parameter estimations. The novelty and 
advantages of our method over the published ones are a) it can control or remove the heterogeneous non-
completion effects; 2) it can account for and analyze the interactions among the completion parameters.  
We apply our method to the analysis of a real case from a Permian Basin US onshore field and show how 
our model can account for the interaction between the completion parameters. Our results provide key 
findings on how completion parameters affect oil production in that can lead to optimal well completion 
designs. 
 
Introduction 
With the advance of horizontal well drilling and multi-stage hydraulic fracturing completion technologies, 
production from shale has grown rapidly, making it a major source of hydrocarbon production in the 
United States. Since the oil price downturn in 2014, the US oil industry has been focusing on reducing the 
operational expenditures and improving well productivity to improve profit margins and cash flow in the 
low oil price environment (Curits and Montalbano, 2017). There is a strong demand from the industry to 
quantify the relationships between completion parameters and hydrocarbon production, which can guide 
the decision process to more effective completion designs for cost-saving and production enhancement. 
 
There are several major challenges in developing the methodology to quantify the relationships between 
completion parameters and hydrocarbon production. First, well production is influenced simultaneously 
by a complex combination of many factors such as geological conditions, reservoir fluid properties, and 



2 
  

well completion parameters. It remains largely elusive how geological factors can be effectively and 
feasibly estimated and subsequently removed from the quantitative analysis of the relationships between 
the completion parameters and the production. Second, even with the knowledge on how to effectively 
remove the effects from the geological factors, the functional associations between completion features 
and production can be complex in nature and challenging to characterize. Third, the challenge is 
aggravated by the spatial misalignment between production data and covariates. The database containing 
vertical deep well logs that penetrate shale layers and measure geological properties often do not have 
production data, and horizontal wells that have production data often do not penetrate the full formation 
so the geological measurements at the same location are missing. Finally, the relationships between the 
completion parameters and hydrocarbon production can be heterogeneous across different sub-regions in 
a large reservoir area. 
 
Over the years, much research work (Wilson, 2018; Chorn et al, 2014; Carpenter, 2018; Dosunmu and 
Osisanya, 2015; Malayalam et al, 2014) has been done on how to optimize completion parameters to 
enhance oil production from horizontal wells. Numerical simulation is considered as a reliable method 
that can be applied to define the optimal completion parameters (e.g., amount of proppant for hydraulic 
fracturing, completion lateral length and stage number of horizontal wells). To run reservoir numerical 
simulations, one needs to generate geological models that are considered as good representations of the 
subsurface geological conditions. It requires first to build a geological model that incorporates some prior 
information (e.g., well logs and geomechanics) collected from the oil field. The resulting geological model 
will then be calibrated according to the production data by history matching with multiple possible 
realizations generated for uncertainty quantification (Oliver et al, 2008; Gao et al, 2016; Chen et al, 2018). 
After these steps, one runs the reservoir simulation under the constraints of different possible completion 
designs, and then compares the cumulative oil production within a time period (e.g., 12 months) or 
estimated ultimate recovery (EUR) to decide the optimal completion strategy. The advantage of using 
numerical simulation is that it is a physics-based approach and takes account of the influence of many 
factors (e.g., reservoir geological environment, completion method) on the well production. In addition, 
once a reliable reservoir model becomes available it can address many other complicated engineering 
problems. Therefore, reservoir simulation is an important tool for reservoir engineers to get insight on 
field development. However, the disadvantage of numerical simulation is also obvious. It requires 
tremendous amount of work to build the geological model; the computational cost to run reservoir 
simulations is also very expensive. Given the complexity of the subsurface geological environment of 
unconventional reservoirs, the geological model typically requires a large number of simulation grids to 
characterize the complex geometry of fractures, which makes the computation cost even more unbearable 
while increasing the uncertainty on the simulation results.  
 
In recent years, artificial intelligence (AI) technologies such as machine learning, deep learning and 
statistical data mining have been recognized to be useful in solving challenging problems in oil industry 
that require extensive field data analysis (Chen et al. 2020; Yang et al. 2020; Yang, Lu, et al. 2020; Sen, 
Ong, et al. 2020; Sen, Chen et al. 2020; Zhou et al. 2018; Pan et al. 2021). A large body of work (Lafollette 
et al, 2012; Centurion, S. M., 2011; Al-Alwani et al, 2019; Guevara et al, 2018; Guevara et al, 2019) has 
been done using data mining to investigate the questions such as how long the lateral wellbore to drill, 
how many stages to complete and how far apart to place them. Zhong et.al. applied and compared several 
data mining approaches such as Support Vector Machine, Random Forests, Classification and Regression 
Tree analysis, and Boosted Regression Trees to the data from the Wolfcamp Basin. Their finding reveals 
that completion lateral length and total proppant amount are important factors driving the first 12-month 
cumulative oil production. However, the authors did not take into account geological effects, which may 
lead to bias in their results and findings. Another study by Yuan et.al. used a linear model and claimed 
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through data analytical studies that no distinctive advantage of drilling a well with longer lateral length 
was found, and no clear correlation trend was observed between longer lateral length and better production 
performance in the Barnett Basin. The recent progress in the study of completion design using data mining 
has increased our understanding of key completion controls on shale reservoir productivity. But to the 
best our knowledge, no research work has been found using data mining to analyze the quantitative 
relations between production and multiple completion engineering parameters while simultaneously 
considering the geological confounding effects. 
 
In this paper, we propose a novel method of developing and applying a statistical nonparametric regression 
model that comprises two parts: a generalized additive model (GAM) (Wood, 2004) to investigate the 
functional associations between production and key completion parameters, and a random effect to 
account for geological confounding effects on production. Standard GAMs extend generalized linear 
models (GLM) (Nelder and Wedderburn, 1972) by replacing linear functions with a sum of smooth 
functions, which allows the exploration of possible nonlinear relationships between responses and 
covariates. We then extend the standard GAM models by adding a random effect to capture heterogeneous 
geological effects via locally homogeneity pursuit regularizations (see, e.g., Li and Sang, 2019), which 
have gained popularity in recent machine learning and statistics literature for high dimensional data due 
to their many nice computation and theoretical properties. We propose a regularized likelihood-based 
inference algorithm to estimate completion control effects and geological effects simultaneously. The 
method allows us to detect clustered heterogeneity across the Permian Basin automatically without the 
need to pre-specify the number and shape of clusters. 
 
We will show how the proposed method performs through a use case in the Permian Basin, which is a 
large oil and natural gas producing area and has a growing number of new wells being drilled and 
completed. The dataset includes production data, completion data, geological data and other relevant 
information such as water-oil ratio (WOR) and gas-oil ratio (GOR) that we combine from various sources. 
The model performance is assessed and compared with other methods in terms of prediction accuracy on 
results from cross validation. We also present important findings and recommendations regarding 
completion controls. The method and its results provide a useful tool and guidance to completion engineers 
for well completion designs that maximize well productivity and saves completion cost. 
 
Data Description and Preliminary Analysis 
The data set after preprocessing in this investigation consists of 355 vertical well logging data, and 104 
wells with at least 1-year production history in the target zone.  
 
The completion engineering covariates available for analysis include the amount of proppant per stage 
(lbm/stage), fluid per stage (gal/stage), stage spacing (feet), and completed lateral length (feet). To 
determine geological effects, we use the logging data from vertical wells that consists of gamma ray (GR), 
rock density (DEN), deep resistivity (RESDEP) and neutron porosity (NEU_LIM). GR is known to be 
associated with the rock type in a reservoir. High GR value indicates high shale volume and lower GR 
value indicates lower shale volume. RESDEP indicates the water saturation level at the well location. 
High deep resistivity indicates lower water saturation since the hydrocarbon has a high resistivity 
compared to the fresh water in the formation. NEU_LIM and DEN are associated with the medium 
porosity at the well location. The density of pure sandstone is 2.65 g/cm3 and the density of pure limestone 
is 2.71 g/cm3, but the hydrocarbon and water in the pore will change the rock density. We can estimate 
the medium porosity according to NEU_LIM and DEN logs. In addition, we include water-oil ratio 
(WOR) and shut-in days (Days) as other potentially relevant covariates. 
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As aforementioned in Introduction, spatial locations of vertical wells that contain geological covariates 
differ from those of horizontal producing wells containing production and completion data as shown in 
Figure 1. But it is noticeable that vertical wells and horizontal wells are in general distributed in 
overlapping regions. 

 
Figure 1: Spatial location distribution of horizontal (red) and vertical (black) wells for completion design analysis 

 
 
 
Figure 2 shows the histograms of the response and relevant features. As we can see, the response variable, 
the 12-month cumulative oil production, approximately follows a log-normal distribution. And we will 
confirm in the numerical results in Section Real Data Results below that the log transformation on the 
response variable yields a lower cross-validation error compared to the model using the original response. 
In addition, from the histogram of completed lateral length, we can see there are very few wells with long 
lateral length from which we expect that the model will have large uncertainty in the relation between oil 
production and long completed lateral length. 
 



 
 5 

 
Figure 2: Histograms of response and covariate variables 

 
We conducted a correlation analysis, and the results indicate some considerable relationships among oil 
cumulative production and the selected predictors (Table 1). For example, cumulative oil production is 
negatively correlated with WOR. In addition, we find that proppant per stage and fluid per stage also 
exhibit a strong correlation. 
 
 Cum.Oil.12 Proppant 

per stage 
Fluid per 
stage 

Stage 
spacing 

Completed 
lateral length 

WOR Shut in 
Days 

Cum.Oil.12 1.0 0.2428 0.083 -0.221 0.168 -0.531 -0.082 
Proppant per 
stage 

0.2428 1.0 0.654 0.372 0.125 -0.233 0.029 

Fluid per 
stage 

0.083 0.654 1.0 0.567 -0.042 -0.120 -0.167 

Stage spacing -0.221 0.372 0.567 1.0 0.029 -0.111 -0.028 
Completed 
lateral length 

0.168 0.125 -0.042 0.029 1.0 -0.037 -0.014 

WOR -0.531 -0.233 -0.120 -0.111 -0.037 1.0 -0.269 
Shut in Days -0.082 0.029 -0.167 -0.028 -0.014 -0.269 1.0 

Table 1: Correlation matrix of cumulative oil production with relevant features 
 
Methodology 
We introduce notations before giving details about our modeling method. Let (𝐬!, … , 𝐬") be the 
production well locations where N is the number of production wells, and (𝐬'!, … , 𝐬'#) be the vertical well 
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locations where M is the number of vertical wells. We let Y$ denote the (log-transformed) production at 
the production well location 𝐬$, and 𝐘 = (Y!, … , Y")%. Let 𝐗$ = (𝑋$,!, 𝑋$,', … , 𝑋$,() denote the vector of 𝑝 
covariates observed at production well location 𝐬$. For the Permian data, we have 𝑝 = 6 such covariates 
including proppant per stage, completed lateral length, stage spacing, fluid per stage, WOR and shut in 
days at well location 𝐬$, respectively. We let 𝐆) denote the vector of geological variables collected at 
vertical well location 𝐬') for 𝑗 = 1,… ,𝑀. We denote the 𝐿!, 𝐿' norms by ‖⋅‖! and ‖⋅‖', respectively.  
 
We consider a regression model as follows: 
                                          Y$ = 𝜇$ + 𝑓(𝐗$) + 𝜖$ 	(𝑖 = 1,2, … , 𝑁)                                                             (1) 
where 𝜖$ is the residual capturing measurement error, and 𝑓(𝐗$) is a function describing the effects of 
covariates 𝐗$ on well production. As completion engineering variables are included in 𝐗$, the estimation 
and interpretability of this function is of high priority for practical engineering controls. We also include 
a random effect 𝜇$ to represent the dependence and variability in Y$ that are unexplained by covariates 𝐗$ 
and random error 𝜖$, for instance, the confounding effects from spatial and geological variables. We let 
𝜇 = (𝜇!, … , 𝜇")% and 𝐟 = @𝑓(𝐗!), 𝑓(𝐗'), … , 𝑓(𝐗")A

%. Below, we focus on the model specifications for 
𝐟 and 𝜇, respectively.  
 
Generative Additive Model 
The relationship between completion parameters and production is expected to be a relatively smooth 
function. Therefore, we choose to model it using a generalized additive model (GAM), which has been 
acknowledged as an appealing choice to model multivariate functions (Hastie and Tibshirani, 1986; Lin 
and Zhang, 1999; Wood, 2004). It represents the relationships between the coariates (or predictors) and 
the dependent variables as a sum of unknown smooth functions, which flexibly allow linear or nonlinear 
fittings with relaxed assumptions on the actual relationship between the response and the predictors with 
interpretable results. Specifically, the GAM model for 𝐟 takes the form 
                                                            𝑓(𝐗$) = ∑ 𝑓*(𝑋$,*; 𝜷*)

(
*+!                                                             (2) 

in which each 𝑓* is modeled as a smooth function with parameter 𝜷* for 𝑘 = 1,2, … , 𝑝.  
 
One popular choice for modeling smooth functions (Ahlberg, N. and Walsh, 1967; Ferguson, J. C. 1964) 
is to use the cubic smoothing splines, where the natural spline basis functions are used with the knots 
placed at all the observed points to circumvent the problem of knots selection, and the coefficients of these 
basis functions are regularized to suppress overly wiggly components and to avoid over-fitting (Claeskens 
and Hjort, 2008).  
 
Specifically, for the 𝑘-th predictor 𝑋*, let 𝜙!,*,…,𝜙",* be the truncated power basis functions for natural 
cubic spline with knots at the observed covariates  𝑋!,* , … , 𝑋",*. Then each individual function 𝑓* can be 
expressed as 𝑓*(𝑥, 𝜷*) = ∑ 𝜙$,*(𝑥)"

$+! 𝛽$,* where 𝜷* = @𝛽!,* , … , 𝛽",*A
%. To impose a smoothness 

assumption on 𝑓*, we consider a smoothing penalty term defined as 𝜆!𝜷*%Ω*𝜷*, where Ω* is the 𝑁 × 𝑁 
smoothing penalty matrix whose (𝑖, 𝑗)-th element Ω*

$) = ∫𝜙$,*,, (𝑡)𝜙),*,, (𝑡)𝑑𝑡. This matrix plays an 
important role to control for overfitting by penalizing the wiggliness for each 𝑓*. The penalty term involves 
a so-called smoothing parameter 𝜆!, controlling the level of penalty; the larger the value of 𝜆!, the 
smoother the function.  
 
We remark that for simplicity of illustration, equation (2) does not involve interaction terms between 
predictors. But it is straightforward to generalize this model to consider interactions among predictors if 
necessary by using, for instance, tensor products of spline functions (Wood, 2006).  



 
 7 

Clustered random effect model  
Next, we turn our attention to the model specification for the random effect 𝜇 that captures the remaining 
structures in the data that is unexplained by 𝐟.  
 
It is reasonable to let 𝜇 depend on geological variables because well productivity is heavily tied to local 
geophysical conditions. Moreover, the subsurface consists of complex and heterogeneous multiple layers, 
and hence underground geophysical properties often change abruptly across layers. As a result, we expect 
that geological effects on production may also exhibit non-smoothly varying patterns. In addition, both 
oil production and geological variables are collected from well locations distributed in space. Previous 
studies (Tian et al., 2018) have suggested the existence of strong spatial patterns in these measurements. 
It is therefore desired to account for such spatial information when modelling 𝜇. A remaining challenge 
in modelling 𝜇 is to deal with the issue of missing geological covariates at the production well locations.  
 
With the above considerations, we choose to model 𝜇 as a clustered random effect determined by both 
geological covariates and spatial locations. Detecting these clusters allows straightforward interpretations 
of local associations between response variables and covariates.  
 
Specifically, we propose a flexible regularization model for 𝜇 that extends the spatial fused lasso (Li and 
Sang, 2019) and the 𝑘-nearest-neighbor (KNN) lasso for non-parametric regression (Padilla et al., 2018). 
The method is performed in the following steps: 
Construct a graph denoted by 𝐺 = (𝑉, 𝐸) based on information from geological covariates and spatial 
locations, where 𝑉 = 𝑣!, 𝑣', … , 𝑣" is the vertex set with 𝑁 vertices and 𝐸 is the edge set.  
Use the graph from Step 1 to construct the fused lasso penalty for 𝜇 as follows: 
                                                                  𝜆' ∑ S𝜇$ − 𝜇)S($,))∈0                                                                  (3) 
The regularization in eq. (3), referred to as the fused lasso penalty (Tibshirani and Taylor, 2011), is to 
encourage homogeneity between the geological effects at two locations if they are connected by an edge 
in 𝐸. 𝜆' is a regularization parameter determining the strength of fused lasso penalty and hence the number 
of clusters. Since the solution of 𝐿! penalty results in exact fusion or separation between 𝜇$ and 𝜇), this 
regularization automatically leads to a spatially clustered geological random effect.  
 
The edge set 𝐸 is a key ingredient in the model since it reflects the prior assumption on the homogeneity 
structure of geological effects. Since similar geological conditions are likely to lead to similar effect on 
production, it is desirable to construct 𝐸 such that pairs of locations that have similar values of geological 
parameters are included to reflect homogeneity among them.  
 
To address the issue of missing geological covariates at the production well locations and take into account 
spatial information, we first build a KNN graph connecting vertical well locations using their geological 
measurements. This initial graph is then used to build a new graph connecting horizontal wells based on 
spatial information. In the intial graph, we include all edges that connect a vertical well location with each 
of its 𝑘 nearest neighbors. Here the neighbors are searched by using the distance metric defined on 
pricinpal component scores of geological parameter values. By principal component analysis, all wells 
share one space coordinate system spanned by the principal components and for each well, the 
corresponding score vector can be interpreted as the projection of the original vector (defined by the spatial 
coordinates and geological parameters at that specific well location) onto each unit principal component 
coordinate. As a result, we can take the principal component score vector as point coordinates that specify 
the location in the space spanned by the principal component vectors. Thus, we propose to use the principal 
component score metric to measure the geological similarity, which is analogous to the method we 
normally apply to define two-point distance in Euclidean space. Finally, to construct the new graph 
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connecting horizontal wells, we assume there exists an edge between 𝐬$ and 𝐬) if the nearest neighbors of 
𝐬$ and 𝐬) are connected by the KNN graph on vertical wells.  
 
The advantages of using fused lasso for cluster detection are in three folds; it provides an integrated 
approach that allows to detect clusters and estimate model parameters simultaneously, the number of 
clusters is completely data driven, and the resulting clusters have very flexible shapes as long as they form 
components of the graph (West et al., 1996).  
 
The values of the nearest neighbors 𝑘 and the number of clusters (or equivalently, 𝜆') are two tuning 
parameters required for our estimation procedure. We determine the optimal number of nearest neighbors 
and the optimal number of clusters by the leave-one-out (LOO) cross validation criterion described in 
Section Estimation. 
 
We note that there are other possible ways to construct the edge set 𝐸. For example, one may apply spatial 
interpolation methods to estimate geological parameter values at horizontal locations from measurements 
at vertical locations (Tian et al., 2018), and then construct a KNN graph using the interpolated values. But 
in practice, subsurface geological parameters often have highly complex dependence structures that can 
result in large interpolation errors.  
 
Estimation 
Using the regularization models for 𝜇 and 𝐟 presented in Methodology, we have an optimization problem 
as follows: 
           !

"
∑ UY$ − 𝜇$ − ∑ ∑ 𝜙$,*@𝑋$,*A𝛽$,*"

$+!
(
*+! V' +"

$+! ∑ 𝜆!𝜷*%Ω*𝜷*
(
*+! + 𝜆'∑ S𝜇$ − 𝜇)S($,))∈0               (4) 

Our goal is to find the estimates of 𝜷 and 𝜇 that minimize the above objective function. Below, we will 
show an algorithm that updates 𝜇 and 𝜷 iteratively until convergence.  
 
Given values of 𝜇, the basis regression coefficients 𝜷 are estimated via a penalized least square method 
that takes a quadratic form, i.e., by finding 𝜷 that minimizes  
                              !

"
∑ UY$ − 𝜇$ −∑ ∑ 𝜙$,*@𝑋$,*A𝛽$,*"

$+!
(
*+! V'"

$+! + ∑ 𝜆!𝜷*%Ω*𝜷*
(
*+!                                (5) 

We use the function gam in the R package “mgcv” to solve this optimization (Wood, 2019). And we 
follow the Generalized Cross Validaton (GCV) (Golub et al., 1979) criterion to estimate the smoothing 
parameter 𝜆!.  
 
Given values of 𝜷, 𝜇 is obtained by solving a regularized convex optimization as below: 
                            !

"
∑ UY$ − 𝜇$ −∑ ∑ 𝜙$,*@𝑋$,*A𝛽$,*"

$+!
(
*+! V'"

$+! + 𝜆'∑ S𝜇$ − 𝜇)S($,))∈0                             (6) 
We can formulate the above equation as a generalized Lasso problem (Tibshirani and Taylor, 2011) as 
follows: 
                                     !

"
∑ UY$ − 𝜇$ − ∑ ∑ 𝜙$,*@𝑋$,*A𝛽$,*"

$+!
(
*+! V'"

$+! + 𝜆'‖𝐇𝜇‖!                                   (7) 
where 𝐇 is a 𝑙 × 𝑁 matrix constructed from the edge set 𝐸 with 𝑙 edges. For an edge connecting two 
vertices 𝑣$ and 𝑣), we can represent the penalty term S𝜇$ − 𝜇)S as |𝐇1𝜇|, where 𝐇1 is a row vector of 𝐇 
only containing two nonzero elements, 1 at 𝑖-th element and -1 at 𝑗-th. 
The path following type of algorithms (Arnold and Tibshirani, 2016; Shen and Huang, 2010) and 
alternating direction methods of multipliers (ADMM) (Boyd et al. 2011) have been developed to solve 
the generalized lasso problem. In this article, we use the standard ADMM method which proceeds by first 
decoupling the likelihood term and the regularization term by introducing new equality contraints 𝐇𝜇 −
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𝜸 = 𝟎, such that the optimization can be written as  
                              argmin

2,𝜷

!
"
‖𝐘 − 𝜇 − 𝐟(𝐗, 𝜷)‖'' + 𝜆'‖𝜸‖!, subject	to	𝐇𝜇 − 𝜸 = 𝟎                             (8) 

Then, the standard ADMM solves the above equivalent formulation following the iteration steps as below: 
Step	1: 𝜇(45!) = (𝐈 + 𝜌𝐇%𝐇)6!{𝐘 − 𝐟 + 𝜌𝐇%(𝜸(4) − 𝐮(4))} 

                                    Step 2:	𝜸(45!) = 𝑆7!/9(𝐇𝜇(45!) + 𝐮(4)) 																																																																								(9) 
                                    Step 3: 𝐮(45!) = 𝐮(4) +𝐇𝜇(45!) − 𝜸(45!) 
where 𝑆7!\9 is the elementwise soft thresholding operator (Tibshirani, 1996) that maps 𝐇𝜇(45!) + 𝐮(4) to 
𝜸(45!) in the following way 
                                             		𝑆7! 9⁄ (𝑥) = sgn(𝑥)max

	
(|𝑥| − 7!

9
, 0)                                                       (10) 

where 𝜌 denotes the step-size parameter and sgn(𝑥) denotes the sign function of 𝑥. For the detailed 
derivation of eq. (9) and the general convergence properties of ADMM, we refer to the work from Boyd 
et al. 2011. We use the admm.genlasso function in the R package “penreg” (Huling, 2017) to implement 
these steps.  
 
The two optimizations in eq. (5) and eq. (6) are run iteratively until cluster memberships and model 
parameters converge. LOO cross validaton is used for model assessment and tuning parameter selection 
because of the limited number of wells available for the study. Given 𝑁 horizontal wells, we choose 𝑁 −
1 horizontal wells as training wells to build a production model that incorporates both geological and 
completion effects and then make a prediction on production for the hold-out well. Each well in our study 
will serve as a test well once and finally, we will compare the true production values with the prediction 
obtained from cross validation. The equation of cross validation error is  

                                                   C. V. Error = y∑ >?"#$%,'6?(#%),'@
!

'
∑ ?"#$%,'

!
'

                                                          (11) 

where yABCD and yEBDF denote the true value and prediction value of 1-year cumulative oil production, 
respectively. We select the combination that yields minimum LOO as the optimal values for the nearest 
neighbors and the clustering number.  
 
Real Data Results 
Before running the regularization model in Section Methodology, we perform a preliminary analysis using 
the GAM model only to select more relevant covariates from 𝐗 according to the LOO cross validation 
criterion. The results indicate that the most important features for oil production are proppant per stage, 
fluid per stage, stage spacing, WOR and shut-in days. According to fracture mechanics, the amount of 
proppant and fluid used in hydraulic fracturing are correlated. Therefore, an additional term is added in 
the GAM to take account of the interaction between proppant and fluid. Completed lateral length does not 
show statistical significance in predicting oil cumulative production (Table 1). This is because in our 
dataset most of the wells have completed lateral length concentrated within one interval, and hence we do 
not see the importance of this feature. However, according to the domain knowledge from production 
enginnering, we believe completed lateral length is an important feature and in addition, since one of our 
major goals is to answer the question on whether longer completed lateral length necessarily indicates 
higher cumulative production, we will include completed lateral length in the final model to examine the 
effect of long completed lateral length on oil production.  
 
We then analyze the Permian data using the model in (1). Table 2 reports the LOO cross validation errors 
for different combinations of the two tunning parameters; the number of neighbors 𝑘 in the KNN graph 
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and the number of clusters. From Table 2, we can see that the optimal number of neighbors is 4 and the 
optimal number of clusters is 3, which corresponds to the lowest LOO cross validation error among all 
combinations. Fixing the tunning parameters at these values, we obtain the parameter estimation results.  
 
 
       Clusters 
 
 
Neighbors 

2 3 4 5 6 7 8 9 10 

3 NA NA 0.260 0.257 0.253 0.253 0.255 0.254 0.253 
4 0.256 0.242 0.251 0.251 0.252 0.253 0.254 0.255 0.256 
5 0.257 0.256 0.254 0.253 0.254 0.255 0.256 0.258 0.259 

Table 2: Leave one out cross validation error (geological clustering) 
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Figure 3: The relation of oil cumulative production with key nongeological features (geological clustering by logging 
data) 
 
The top subfigure in Figure 3 reveals the functional association between oil cumulative production and 
proppant per stage at different levels of fluid per stage. It is important to notice that the optimal proppant 
per stage changes depending on the level of the fluid per stage. The more fluid we inject, the larger the 
fracture volume will be. In addition, when the amount of fluid per stage is fixed, injecting more proppant 
does noe necessarily lead to an increase in oil production. At the average level of fluid per stage, the 
proppant efficiency starts to decline when proppant per stage reaches beyond a certain high level.  
 
Next, in the bottom subfigure of Figure 3, the blue dot line represents the expected contribution to oil 
cumulative production from each of the other four features and the two red lines in each plot represent the 
uncertainty on the estimation. The feature stage spacing is negatively correlated with oil cumulative 
production. The results show a trend that the stage spacing should be kept small, though there are not 
enough data points below the 150 ft range to support a definitive conclusion; the common choice of the 
stage spacing can be reduced to 150 ft from 200 ft to enhance the production. As expected, the higher 
WOR is, the lower the oil cumulative production will be. The same relation holds for the shut-in days. 
The last plot is a relation between oil production and completed lateral length. From Figure 3, when the 
completed lateral length (CLL) is in the range of 3500~5000 ft, production increases with CLL. For wells 
with a CLL longer than 5000 ft, the uncertainty grows significantly as the number of the wells decreases 
dramatically. However, the results support, with relatively high confidence, that the CLL should be closer 



12 
  

to 5000 ft to enhance the production.	The method we presented will be helpful to completion engineers 
to decide the best completion parameters. In the example case above, according to Figure 3, we can 
determine the best value of stage spacing. The optimal value of proppant per stage depends on the amount 
of fluid per stage. The fluid per stage should be no less than 4.0 × 10G gal/stage. The amount of proppant 
per stage to be around 3.0 × 10G lbm/stage lbm/stagegiven the large uncertainty that exists at large 
proppant per stage. The completed lateral length should be around 5,000 ft.  
 
Now we examine the geological clustering results presented in Figure 4. Overall, there are three clusters. 
11 wells in the red cluster at the bottom right corner have the lowest geological random effect and these 
11 wells are all in zone WC_SH_B1. 8 wells in the blue cluster at the top left corner have the highest 
geological random effect and these 8 wells are all in zone WC_SH_B. Therefore, we can see the detected 
clusters partially agree with the internal zone information, which is defined as the internal layer where the 
horizontal lateral is located and is usually derived from a complex and time-consuming analysis of raw 
geological data by geologists and petro-physicists. In addition, we found the LOO cross validation error 
directly based on the feature internal zone is 0.251, which is higher than the LOO cross validation error  
0.242 achieved from fused lasso geological clustering. This comparison shows us the advantages of the 
proposed clustering method. If a reservoir is a sweet spot with good geological properties, then we expect 
the production will be high; if the geological condition is the same, then good completion design will 
further increase well productivity.  
 

 
Figure 4: Geological clustering (X,Y coordinate values are hidden for confidentiality purpose) 

 
Last, we compare our method with the model derived from the alternating conditional expectation (ACE) 
algorithm (Breiman and Friedman, 1985). ACE builds functional transformations of the independent 
variables 𝑋* → 𝑔*(𝑋*) and the response variable Y → ℎ(Y) which minimize the regression error variance 
in the transformed space: 
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The features used in the ACE model are the same as the features used in the GAM model, but the ACE 
model does not take account of the interaction between proppant and fluid. We report the result of the 
ACE algorithm in Figure 5, from which we can see the transformed functions of proppant per stage and 
fluid per stage are not clear in guiding the completion engineers to determine the best parameter values. 
Also, the LOO cross validation error from the ACE model is 0.29, which is 16% higher than the GAM 
model. As a result, we recommend the GAM model for the oil production model.  
 

 
Figure 5: Nonlinear transform of features by the ACE algorithm. 

 
Conclusion 
In this paper, we proposed a new approach for well completion design optimization. As well production 
is a combined reult of geological, completion, and other (for example, operation) effects, we incorporated 
the geological confounding effect in the model by treating it as a clustered random effect using graphical 
fused lasso. tTo investigate and quantify the likely nonlinear associations between production and key 
completion parameters including the interactions between the parameters themselves we applied a 
generalized additive model (GAM) with a fused LASSO regularization for geological homogeneity 
pursuit. We have showed how our method can remove the non-completion effects and provide the 
guidance to the completion engineers for determining the optimal completion parameters by a real case in 
the Permian asset. The results have shown that the following five features are important for the completion 
design to maximize oil productions (1) proppant per stage (2) fluid per stage (3) stage spacing (4) WOR 
(5) shut in days. From the example above, the optimal completed lateral length may be longer than 5000ft. 
This is because the completed lateral length in the dataset has low variation and is concentrated within 
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one region. By comparing to ACE, we have also shown the advantages of our method in readily accounting 
the interaction of the covariats and in LOO lower cross-validation error.  
 
Nomenclature 
     ‖𝐱‖! = ∑ |𝑥$|R

$+!  with 𝐱 = (𝑥!, 𝑥', … , 𝑥R)S   

     ‖𝐱‖' = 	�∑ 𝑥$'R
$+!   with 𝐱 = (𝑥!, 𝑥', … , 𝑥R)S  

      𝐗$ =   (𝑋$,!, 𝑋$,', … , 𝑋$,() the vector of predictors for the 𝑖-th horizontal 
well. 

      𝜇$ =   the geological random effect of the 𝑖-th horizontal well 
Y$ =   cumulative oil production of the 𝑖-th horizontal well 

𝑓(𝐗$) =   the unknown function describing the effect of the covariates 𝐗$ on 
production 

𝜖$ =   the measurement error of the 𝑖-th horizontal well 
     𝑁 =   number of horizontal wells 
     𝑀 =   number of vertical wells 
     𝐬$ =   spatial coordinate of the 𝑖-th horizontal well 
     𝐬'$ =   spatial coordinate of the 𝑖-th vertical well 
    𝐆$ =   the vector of geological variables for 𝑖-th vertical well 

𝑓*(𝑥; 𝜷*) =   the 𝑘-th unknown function based on the expansion coefficient 
vector 𝜷* in GAM model 

𝜷* =   @𝛽!,* , 𝛽',* , ⋯ , 𝛽",*A
% the expansion coefficient vector in 𝑓*(𝑥, 𝜷*) 

𝜙$,*(𝑥) =   the 𝑖-th basis function for the unknown function 𝑓*(𝑥; 𝜷*) 
𝜆! =   smoothing parameter controlling overfitting 
𝜆' =   strength parameter of graphical fused lasso penalty  

     𝑉 =   the set of vertices in a graph 
     𝐸 =   the set of edges in a graph 
    𝐇 =   a 𝑙 × 𝑁 matrix constructed from edge set 𝐸 with 𝑙 edges 
    𝐈  =   a 𝑁 × 𝑁 identity matrix 
    𝜸  =   the auxiliary vector used in ADMM algorithm 
    𝜌 =   the step size parameter used in ADMM algorithm 
   𝑆T  =   the soft thresholding function that depends on the parameter 𝛼 

 
Subscripts/Superscripts 
        𝑇               =        matrix transpose 
        (𝑡)             =        the 𝑡-th iteration 
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SI Metric Conversion Factors 

lbm x 2.20462 E+00 = Kg 
ft!  x 3.53147 E+01 =  m! 
gal x 2.64172 E+02 =  m! 

*Conversion factor is exact 
 
 
 
 
 
 


