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ABSTRACT: Deep learning methods provide a novel way to
establish a correlation between two quantities. In this context,
computer vision techniques such as three-dimensional (3D)-

convolutional neural networks

become a natural choice to

associate a molecular property with its structure due to the
inherent 3D nature of a molecule. However, traditional 3D input
data structures are intrinsically sparse in nature, which tend to
induce instabilities during the learning process, which in turn may lead to underfitted results. To address this deficiency, in this
project, we propose to use quantum-chemically derived molecular topological features, namely, localized orbital locator and electron
localization function, as molecular descriptors, which provide a relatively denser input representation in a 3D space. Such topological
features provide a detailed picture of the atomic and electronic configuration and interatomic interactions in the molecule and hence
are ideal for predicting properties that are highly dependent on the physical or electronic structure of the molecule. Herein, we
demonstrate the efficacy of our proposed model by applying it to the task of predicting atomization energies for the QM9-G4MP2
data set, which contains ~134k molecules. Furthermore, we incorporated the A-machine learning approach into our model, which
enabled us to reach beyond benchmark accuracy levels (~1.0 k] mol™"). As a result, we consistently obtain impressive mean absolute
errors of the order 0.1 kcal mol™" (~0.42 kJ mol™") versus the G4(MP2) theory using relatively modest models, which could
potentially be improved further in a systematic manner using additional compute resources.

1. INTRODUCTION

A recent surge in deep learning and computer vision research has
pushed this field to unprecedented heights, so much so that new
state-of-the-art models are being developed and implemented
every other month for two-dimensional (2D) image recognition
tasks." These newly developed artificial intelligence techniques
have also profoundly impacted other branches of science, and
chemistry is no exception. Thus, taking a cue from 2D image
representations in computer vision theory, molecules, being
intrinsically three-dimensional (3D) in nature, can be imagined
as 3D images. Therefore, molecules can be analogously
represented in the form of a 3D grid or a multidimensional
tensor. However, unlike 2D images, where the input features (or
descriptors) are quite well-defined, viz., red, green, and blue
(RGB) color channels, there is no clear consensus on the choice
of descriptors to represent a molecule, and this remains an
outstanding task in the field of machine learning in chemistry.
Nonetheless, a variety of molecular descriptors have been
identified for representing a molecule in a 3D grid data structure
(vide infra) and successfully used for a diverse set of problems
ranging from protein—ligand binding affinity prediction”~” and
receptor binding site detection and classification'*™'* to the
prediction of material properties'”'® and NMR chemical
shifts.'” However, a major complication associated with 3D
input representations is their high data structure sparsity
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aggravated due to the grid cell structure; therefore, in this
article, we advocate the use of spatially dense descriptors,
especially the ones based on the electron distribution in a
molecule, thus providing an alternative to mitigate the data
structure sparsity. Specifically, we propose to use what are
known as electron localization functions (ELFs), viz., localized
orbital locator (LOL)'® and electron localization function
(ELF)," which have found widespread use in elucidating
bonding topology and electronic structure in a wide variety of
molecules.”’ ™

Computing molecular bond energies to high accuracy is one
of the holy grails of quantum chemistry. However, the steep
computational requirements of highly accurate methods, such as
CCSD(T)™ and Gaussian-4 (G4),”" preclude their use on a
routine basis. Therefore, considerable research efforts have been
directed toward developing machine learning frameworks that
could ?redict energies (or properties) at high levels of
theory.”>~** Additionally, a variety of noteworthy deep learning
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architectures (viz, SchNet,* PhysNet,** DimeNet,*” Deep-
MoleNet,*® OrbNet,” TensorMol,*° and ANI*') have been
proposed, which were validated on the DFT level properties.® >
In this work, we aim to predict G4(MP2)**~*" level energies, a
relatively cheaper alternative to the G4 method, which is
typically accurate within 1.0 kcal mol ™ of the experimental value
and hence is quite a valuable quantity to reproduce.

In the present work, we attempt to leverage and adapt some of
the latest developments in fields such as computer vision for the
task of predicting atomization energies at high levels of accuracy.
In this context, we note that Ward et al.>® have achieved a highly
impressive out-of-sample mean absolute error (MAE) of the
order of 0.1 kcal mol™! [vs the G4(MP2)>” level of theory] on
the QM9-G4MP2 data set>>>’ using the SchNet* and FCHL®’
models in conjunction with the A-machine learning (A-ML)
approach.”’ As the name suggests, the A-ML strategy targets
learning the energy difference between an expensive target level
of theory and a cheaper baseline level of theory, thus exploiting
the systematic nature of the error between the two theoretical
methods. Thus, given the energy at the baseline theory, energy at
the expensive level of theory could be obtained using the ML-
learned additive correction term. Indeed, A-ML procedures
have been shown to provide significantly better accuracy than
models attempting to learn absolute energies directly,” thus
enabling to reach chemical accuracy (£1.0 kcal mol™)
consistently and also within striking distance of the elusive
benchmark accuracy (+1.0 kJ mol™") with respect to a high level
of theory (or the experimental value) through machine learning
means. In this context, we note that DFT has emerged as a highly
versatile and cost-effective approach to perform quantum
computations and remains the go-to method for most chemical
problems; however, its results could be erratic. Thus, it is
imperative to discover new and novel methods to make DFT
computations more accurate. Therefore, in light of this, we have
also incorporated the A-ML scheme in our proposed machine
learning protocol to attain chemical accuracy starting from a
DEFT baseline level of theory. This is likely to lead to a model that
we expect will be highly useful for a variety of applications in
quantum chemistry.

2. METHODS

2.1. Data. The QM9-G4MP2 data set is a collection of
133,296 molecules composed of C, N, O, F, and H atoms, with
each molecule containing up to nine heavy atoms.””*” The data
set provides the atomization energies of the molecules at
B3LYP/6-31G(2df,p) [precursor for G4(MP2) computations]
and G4(MP2) levels of theory and thus is ideally suited to be
used for the A-ML approach. Ward et al.>® used 130,258
molecules from the QM9-G4MP2 data set, excluding the ones
whose bond connectivity was found to be ambiguous. In their
study, a random selection of 10% of molecules from the entire
data set (13,026 molecules) was chosen as the test set to validate
the working of their machine learning models, viz., SchNet* and
FCHL.>**%®* To make a fair comparison with their results, we
have also chosen the same training and test split. Therefore, all
the results shown in Section 3 were obtained using the full
training set (117,232 molecules), except that in Section 3.2,
where we discuss the variation in model performance as a
function of training set size.

2.1.1. Data Representation. The 3D space (where a
molecule “lives”) can be imagined as a cubic grid composed of
voxels. Given the Cartesian coordinates of a molecule, its atomic
positions can be mapped onto the voxelized grid. In addition,
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any property associated with an atom, viz., atom type (based on
atomic number, aromaticity/aliphaticity, etc.), charge (or
population), spin density, bond connectivity, hybridization,
and so forth, can be directly embedded into one of the voxels
based on its position in the 3D space. Formally, the 3D input
representation of a molecule is a four-dimensional tensor (say, N
X N X N X C), with the three equal indices (or dimensions)
representing the voxel grid length (IN) of the cube confining a
molecule, and the remaining one representing the number of
different features [or channels (C) in the context of convolu-
tional neural networks (CNNs)] associated with a given
molecule. Thus, the embedded properties can act as molecular
descriptors for a machine learning model to predict a chemical
property of interest. However, a naive mapping of the discreet
atomic attributes to their corresponding voxels leads to a highly
sparse tensor (or input representation) (Figure 1), which in turn
may lead to an underfitted model due to the lack of enough
information to learn from, in the input representation. Such
performance degradation is caused due to sparse gradients being
propagated through the network.

a)

b)

Figure 1. (a) Discrete voxelized representation of C,N,. The colored
voxels represent the atomic positions. (b) Voxelized LOL profile of
C,N,. Larger values represent electron-localized regions, while smaller
values represent electron-diffuse regions.
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Sparsity can be reduced to some extent by convolving the 3D
molecular image with a Gaussian or a wave-transform kernel,
which imparts a smoothing (or blurring) effect to the input
representation, thus approximately capturing interatomic
interactions, while also providing a continuous feature
representation.é‘?”64 Alternatively, 3D sparse data could be
efficiently represented through an octree data structure, where
only the nonsparse regions of a cubic volume are recursively
partitioned into octants. Following this algorithm, a uniformly
spaced voxelized data structure can be converted into one with
numerically dense regions represented at fine resolutions and
sparse spaces at low resolutions. The octree-based CNN®>*
proposed by Liu et al.” for the prediction of protein—ligand
binding energies showed incredible performance gains in terms
of memory usage and computation time; however, the model
accuracy did not improve at high resolutions (<1.0 A),
potentially due to the (quality of) molecular descriptors used
being unsuitable for high resolutions. Therefore, molecular
descriptors that are intrinsically dense in nature and contain
meaningful information at fine resolutions are needed.
Naturally, a well-defined volumetric function depending on
the 3D spatial coordinates would be an obvious choice for such a
descriptor. In this context, we note that molecular descriptors
based on the electron probability distribution (or electronic
structure) of a molecule provide a less sparse way of encoding its
geometrical and electronic features into the spatial grid and
hence forms the main focus of this paper.

Electron density, a scalar-valued function depending on the
three spatial coordinates, is the primary observable associated
with a molecule’s electronic state. A plethora of electron density-
based functions are available in the literature to extract physically
interpretable information from a molecule’s electronic structure.
For the problem at hand of predicting atomization energies,
which are highly dependent on the molecular geometry, an
accurate picture of the bonding patterns in the molecule must be
provided to the machine learning model. Therefore, in the
present work, we have mainly explored the performance of the
so-called ELFs (or localization functions, for brevity), viz.,
LOL,"® and ELF,"” which are known to provide comprehensive
topological information of a molecule. Localization functions
have found wide applications in deciphering bonding and
electronic structure of problematic systems such as radicals™
and transition metal complexes.”*~>* In addition, they have also
been used to better understand aromaticity”'~** and electron
density shifts during a chemical reaction.”’ %

ELF and LOL, developed by Becke, are scalar functions
providing a quantitative value to the degree of electron
localization in space for a molecule. The idea behind the
concept of localization functions is built on the premise of Pauli’s
exclusion principle, or more precisely, on the conditional
probability of finding an electron with a given spin in the
immediate vicinity of a reference electron with the same spin.
The corresponding spherically averaged probability could be
further shown to be directly proportional to the noninteracting
kinetic energy density using the Taylor series expansion.”””" For
interpretation purposes, the expression for the conditional pair
probability density in terms of kinetic energy density is scaled
with respect to the kinetic energy density for the uniform
electron gas and then mapped to a range of [0, 1]. Physically, a
low probability of finding another like-spin electron in the
neighborhood of a reference electron implies high localizability
of the reference electron in that region, which can also be
interpreted as the reference electron being low in kinetic energy,
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and hence, it is termed as a “slow” electron. Such electrons are
said to be highly localized within a region and are associated with
those found in the core, bonding, and lone-pair regions. Whereas
a high pair probability corresponds to a high delocalizability of
the reference electron, implying a high associated kinetic energy
(“fast” electrons), and refers to the delocalized regions such as
those found near orbital boundaries. Thus, a localization
function cleanly partitions the molecular topology into
electronically dense and diffuse regions, thus providing a
chemically interpretable picture of a molecule akin to VSEPR
and Lewis-dot theory. In addition, because localization functions
are based on pair probability density, they also help capture
some degree of electron correlation in the input representation.
For the sake of visual comparison, a discrete voxel-based
representation of a simple molecule (C,N,) is shown in Figure
la, and a voxelized LOL profile for the same molecule is shown
in Figure 1b. The two contrasting images depict the difference in
sparsity levels in the two representations.

The information needed to compute localization functions or
any other wavefunction-dependent molecular descriptor, viz.,
orbital coefficients, is usually stored in large data files (viz.,
checkpoint, or wfx files in Gaussian 16) and are not included in
most curated data sets, potentially due to huge memory
requirements. Therefore, to obtain the requisite descriptors,
an additional electronic structure calculation on the full data set
is needed, which is probably one of the reasons why there has
been a reluctance to use wavefunction-based descriptors in the
machine learning models. Fortunately, localization functions
depend only on the symmetry and nodal properties of the
orbitals, making them topologically invariant with respect to the
level of theory used.”” In contrast to most population analysis
methods, the level of theory does not change the qualitative
nature of the molecular topology and, by extension, localization
functions. Therefore, a simple computation such as a single-
determinant small basis set or a semi-empirical method would be
sufficient to provide learnable topological features of a molecule.
In the present work, the localization functions used for
molecular representation are generated using B3LYP/6-31G, a
relatively cheap level of theory. Nevertheless, for the sake of
comparison, the model’s efficacy was tested with a large basis set
[B3LYP/6-31G(2df,p)] generated localization functions as well
(Section 3.4). Additionally, we have also analyzed the
performance of nuclear electrostatic potential (NEP) (as a
molecular descriptor) due to its dense nature and being
independent of any electronic structure computation.

2.1.2. Data Preparation. A molecule can attain multiple
orientations and positions in a 3D space; therefore, multiple grid
representations for a molecule could be obtained upon
translating or rotating it in 3D space. However, it is quite
apparent that molecular properties are invariant to such
transformations. Therefore, various techniques with varying
degrees of rigor have been proposed to minimize or eliminate
variance in CNNs with respect to spatial transformations. Due to
the intricacy of the subject matter, we have dedicated a separate
section (Section 3.6) on translational and rotational invariance
(and equivariance), where we discuss these topics in more detail
in the context of CNN.

However, to analyze the effect of varying various hyper-
parameters on model performance, we used a standard
orientation for each molecule so as to remove any ambiguity
in the orientations between different molecules in the data set.®®
Such a unique orientation for every molecule was obtained using
the principal component analysis algorithm, which provided a
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Figure 2. Schematic diagram of the DenseNet architecture. C;, represents the number of incoming channels from the first dense block. cf stands for

compression factor and is taken to be 0.5 in all cases.

new set of molecular coordinates at which the variance in the
(heavy atom) x-coordinates is maximum. In simple terms, the
molecule is oriented along the first principal component (or the
x-axis in this case). The reoriented molecules were then used to
obtain the dimensions of an imaginary cubic box, large enough
to encompass all the heavy atoms of any molecule in the data set.
The dimension of such a cube turns out to be 10.4 A for the
QM09 data set. Although, as discussed in more detail in Section
2.2.1, because our network architecture is a pure CNN, we could
choose a custom box dimension for every molecule depending
on its spatial span. Nevertheless, for the sake of simplicity, we
chose a constant box size to construct the input representation
for every molecule in the data set.

Grid resolution determines how finely the topological details
of a molecule are encoded in the voxelized grid and can be
formally defined as the dimension of a single voxel cell. The
number of uniformly spaced voxels along a grid dimension is
known as the grid length (N) and determines the shape and size
of the four-dimensional (4D)-input tensor. For a cube of fixed
dimensions, the larger the grid length, the higher would be the
grid resolution, and thus more would be the topological
information embedded into the grid, which should theoretically
improve model accuracy. However, the computational cost of
training a CNN roughly scales as the cubic power of the grid
length. Therefore, the grid length (or grid resolution) parameter
should be carefully chosen, taking the available computational
resources into consideration. We used a grid length of 14 (grid
resolution = 0.743 A) to construct the input tensors, which were
used to obtain the majority of results discussed in Section 3;
however, we also experimented with multiple grid lengths (or
equivalently, grid resolutions) to ascertain their correlation with
the model performance (Section 3.1).

The requisite molecular descriptors (viz.,, LOL, ELF, and
NEP) were obtained using the Multiwfn program”® that takes
the wavefunction data from the Gaussian 16"* generated wfx
files as the input and computes the value of a desired real space
function at each of the Cartesian coordinates of a user-defined
3D grid. The generated data can then be converted into a 4D

tensor (N X N X N X 1), suitable to be used as an input for a 3D
CNN. All the data preparation scripts are available in the paper’s
GitHub repository (https://github.com/ankur56/ELFNet).
2.2. Model. 2.2.1. Architecture. The input data structure
usually dictates the architecture type of the neural network.
Therefore, with the input data structure defined as a 3D grid, a
CNN becomes the concomitant architecture. Among the host of
CNN architectures available in the literature for image learning
tasks, we chose to employ the DenseNet”” architecture chiefly
for its high parameter efficiency and ease of training. Most
computer vision architectures, including DenseNets, were
developed for 2D image recognition tasks where the input
shape is a 3D tensor. Thus, for the task of learning the molecular
topology, we modified the standard DenseNet architecture
accordingly to make it compatible with 3D input representa-
tions. A schematic diagram of the basic DenseNet architecture
used is shown in Figure 2. DenseNet introduces what is known
as a dense block into a CNN architecture, which is composed of
the so-called dense layers (not to be confused with a fully
connected layer, which is also called a dense layer quite
commonly), which in turn is a stack of 1 X 1 X 1 and 3 X 3 X 3
convolutional layers, reminiscent of the bottleneck-block in
ResNets.”® However, the defining trait of a DenseNet
architecture is the dense connectivity pattern within a dense
block, wherein every dense layer is directly connected to every
other dense layer through a concatenation operation.
Mathematically, the feature maps generated by a dense layer
are concatenated with those produced by all the preceding
layers, which are then passed as an input to the next layer in the
architectural hierarchy. In this way, the features learned by the
shallower layers are transferred to the deeper layers, thus
enhancing the learning process. Furthermore, because features
are being reused throughout the network, only a small number of
new features (or channels) need to be added by every dense
layer, making the DenseNets parameter efficient by design and,
hence, less susceptible to overfitting. Although quite simple in
concept, the densely connected topology of DenseNets also
makes it robust to the vanishing gradient problem and boosts
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information and gradient flow. For the sake of simplicity, only
four dense layers are included in the dense block shown in Figure
2.

Any two adjacent dense blocks in the DenseNet architecture
are connected through a transition layer, which downsamples
the feature maps through the average-pooling operation. Data
downsampling is often necessary to train deeper networks
without proliferating the number of FLOPs, and hence training
time, albeit at the cost of some loss in resolution (or
information). The compactness of the DenseNet architecture
is further increased by reducing the number of incoming
channels (C,) in the transition-block by a factor, called the
compression factor (cf), whose domain is 0 < cf < 1, which
provides further computational efficiency to the model without
compromising accuracy to a large extent. A cf value of 0.5 was
found to be optimal for providing a reasonable balance between
the model training cost and accuracy.”” All the architectural
hyperparameters except the number of dense layers in each of
the dense blocks are depicted in Figure 2. In this work, we have
experimented with the number of dense layers in the two dense
blocks (Section 3.2), which determines the overall depth of the
architecture, and is one of the primary factors dictating the
model’s overall performance and training cost. Henceforth, the
number of dense layers in the first and second dense block are
referenced as d; and d,, respectively, and is collectively denoted
as (d,, d,), representing the dense block configuration of a
DenseNet architecture. For example, a dense block config-
uration of (16, 8) implies 16 dense layers in the first dense block
and 8 dense layers in the second dense block.

The feature maps obtained from the second dense block are
then passed through a global average pooling layer that outputs
the spatial average of each of the feature maps. Finally, the
resultant 4D tensor (of shape, say, 1 X 1 X 1 X C’) is flattened
into a vector (of size C’) and then passed through a single node
fully connected layer with linear activation to obtain the
requisite output (or A-atomization energy in this case). Such an
architectural design ensures that the network remains
independent of the initial input size and is therefore sometimes
referred to as a purely convolutional network. Convolutional
layers operate on input through a small kernel whose size is
independent of the given input size (or shape); hence,
convolutional layers are input size-agnostic by design. However,
global average pooling is the key layer that makes the given
network input size independent, as it enables providing a
constant-sized vector irrespective of the starting input size.
Therefore, input tensor size need not be the same for every
molecule in the data set and could be chosen to be different from
each other; however, most applications involving CNNs use
only a fixed-sized input for simplicity. The input agnostic nature
of the given DenseNet architecture enables us to make
predictions for spatially extensive systems using a model trained
only on relatively compact systems (or molecules). In addition,
we could also build a customized tensor representation for every
molecule based on its physical range that could be incorporated
in the data processing pipeline to reduce grid data sparsity.
However, to make a model robust to variable-sized input, it may
also be necessary to include inputs of variable size in the training
set, and hence, a systematic analysis is required and is being
pursued in our group. A model summary of a (16, 16)-DenseNet
architecture is available in Table S1 of the Supporting
Information, which shows the output shape generated after
every layer for a fixed input size and depicts how inputs are
propagated through the network.
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2.2.2. Training. The entire machine learning workflow was
implemented in PyTorch-Lightning.”””® The 3D-DenseNet
code was adapted from the publicly available memory-efficient
version of DenseNet implemented in PyTorch by Pleiss et al.”’
Each of the models was trained in parallel on four NVIDIA V100
GPUs with a cumulative batch size of 128. The MAE is chosen as
the loss function for model training. The model parameters were
optimized using the stochastic gradient descent algorithm in
conjunction with Nesterov momentum (0.9) using a weight
decay parameter (L2 penalty) of 1.0 X 107*. The model
optimization was initialized with a starting learning rate of 0.1 to
run for 250 epochs, enough for both training and test metric
values to converge comfortably. During the optimization
procedure, the learning rate is controlled through a learning
rate schedule (ReduceLROnPlateau) that decreases the learning
rate by a factor of 0.75 whenever the training loss plateaus within
a certain user-provided threshold (0.005 kcal mol™). While
benchmarking the performance of a hyperparameter of interest,
the corresponding trials were run under fixed random seed
conditions to eliminate any variability whatsoever due to
dissimilar weight initializations. However, due to the non-
deterministic nature of certain GPU algorithms, a small degree
of variance is still inevitably introduced between different runs;
hence, all the reported metrics were obtained using an average of
five different runs.

3. RESULTS AND DISCUSSION

Following the A-ML philosophy, the proposed machine
learning model is trained to reproduce the difference in the
atomization energies between the G4(MP2) and B3LYP/6-
31G(2df,p) levels of theory. The optimized model could then be
used to predict the A-atomization-energy values for out-of-
sample cases, which in turn could be used to predict their
absolute atomization energies at the G4(MP2) level of theory,
provided the corresponding atomization energies at the B3LYP/
6-31G(2df,p) level are known. The predicted values for an out-
of-sample data set by the trained network, however, must be
within a reasonable error threshold to be of any practical use and
is indicative of the quality of a model. Therefore, the MAE
between the ML-predicted values and the exact values over the
test set (13,026 molecules) is used as the metric to quantify the
performance of a given model. The model performance usually
depends on a number of model/architecture and data-related
hyperparameters; therefore, the effect of varying a few seemingly
important hyperparameters is reported in this section, thus
gleaning insights into different ways that systematically improve
the model performance.

3.1. Effect of Varying the Voxel Grid Length (or Grid
Resolution). The input tensor’s shape and size depend on the
grid length (or equivalently, grid resolution), which ultimately
governs the quality of topological information encoded in the
grid. However, the number of FLOPs associated with training a
convolutional neural network formally scales as the cubic power
of the grid length (Figure S1 in the Supporting Information).
Therefore, selecting an appropriate grid length is imperative if
the computational resources are scarce. To assess the perform-
ance of the model as a function of the change in the grid length,
the topological descriptors are generated with different grid
lengths (N) viz.,, 12, 14, and 16, with the corresponding grid
resolutions being 0.867, 0.743, and 0.650 A, respectively. These
input representations are then used to train the base DenseNet
architecture (Figure 2) with a fixed dense block configuration of
(16, 16). The obtained metrics summarized in Figure 3 clearly
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Figure 4. Effect of varying the training set size on the MAE of the test
set. All results were obtained using the base DenseNet architecture
(Figure 2) with a dense block configuration of (16, 16).

show an improvement in model performance with an increase in
grid length. Furthermore, all three molecular descriptors
improve model generalizability at finer grid resolutions. Indeed,
the higher the input grid resolution, the more detailed
interatomic features would be available to the model to help it
discern between different molecular patterns. Interestingly,
among the two localization functions tested, LOL provides
superior results than ELF in all cases. In addition, the
performance of NEP is comparable to that of LOL. More
importantly, all the errors are well below the desired benchmark
accuracy of 1.0 k] mol ™, with the N = 16 MAE (0.423 kJ mol ™
or 0.101 kcal mol™" or 4.38 meV) comparable to the best result
obtained by Ward et al.”>* (0.434 k] mol ™" or 0.104 kcal mol ™" or
4.50 meV).

3.2. Effect of Varying the Training Set Size. High volume
and quality of data are essential to increase the generalization
capability of a machine learning model. Therefore, we
experimented with multiple training set sizes to decipher the
extent of correlation between the amount of data and model
accuracy, keeping the architectural and data hyperparameters
fixed. To be more precise, we prepared training sets of various
sizes, viz., 25,000, 50,000, 75,000, and 117,232 (full train set),
keeping the grid length (N) for the input representation at 14,
which provides a reasonable balance between cost and accuracy.
The (16, 16)-DenseNet architecture was used to test the
variation in the model performance. The MAE of the test set as a
function of the training set size is depicted in Figure 4. As
expected, the model performance improves with an increase in
the training set size. Moreover, even with a relatively small
training set composed of only 25,000 samples, the model
achieves a respectable accuracy of approximately 1.2 kJ mol™
(or 0.287 kcal mol™), which could be useful in situations with
limited compute availability. Interestingly, both LOL and NEP
provide similar quantitative results with respect to change in the
training set size, indicating further similarity between the
efficacies of the two descriptors.

3.3. Effect of Varying the Dense Block Configuration.
The depth of a dense block refers to the number of dense layers
(or convolutional layers) it is composed of. The depth of the first
dense block (d,) is a hyperparameter of critical importance
because it is one of the primary determining factors of the
training cost associated with a DenseNet architecture. All the
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convolutional layers in the first dense block act on the full un-
downsampled input tensor, making its associated FLOP count
substantially larger than that for the second dense block. The
latter operates only on a downsampled version of the data, thus
losing some of the topological information. Therefore, for the
model to learn as many high-level input features as possible, the
first dense block needs to be as deep as computationally feasible.
In short, increasing the number of layers in the first dense block
should theoretically improve model accuracy but at an
associated training cost. To measure model sensitivity as a
function of the change in the first dense block’s depth, DenseNet
models with different d; values (viz., 12, 16, 20, and 24) were
prepared, keeping the total depth (d; + d,) of the network fixed
at 32. The number of dense layers in the second dense block (d,)
is varied accordingly to keep the overall depth constant across all
the models. It should be noted that even though the dense block
configuration is different, the total number of trainable
parameters remains the same across the different models, as it
depends only on the total depth of the model. As predicted, the
test error decreases with an increase in the depth of the first
dense block (Figure Sa).

Furthermore, we also experimented varying d, (viz,, 8, 16, 24,
32) while keeping d, constant (at 8) (Figure Sb). Finally, we also
show results obtained by simultaneously doubling the number of
layers in each of the dense blocks (Figure Sc). In both of these
cases, the overall depth of the network is being increased, which
causes a lowering of the test set MAE. Clearly, out of all the
models tested, the best performing (and also the most
expensive) model is the one with the most number of dense
layers, that is, a dense block configuration of (32, 32), which
provides an MAE of 0.393 + 0.008 kJ mol ™" (or 0.094 kcal mol ™!
or 4.08 meV); however, it should be reiterated that errors could
potentially be lowered further by increasing the architecture
depth and/or using a finer grid resolution. All the results shown
were obtained using the LOL descriptor; however, the general
trend is expected to be the same for other topological descriptors
as well. The training times for an epoch for different models are
shown in Figures S2 and S3 of the Supporting Information,
roughly scaling linearly with respect to the number of dense
layers (or convolutional layers) in the model. In summary, the
model performance could be systematically improved by
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increasing the depth of the architecture, which, however, is
accompanied by an increase in the training cost.

2138

3.4. Effect of Varying the Level of Theory to Generate
the Localization Functions. Electronic-wave function-
dependent topological functions (viz, LOL and ELF) are
obtained through an electronic structure computation and, as
such, depend quantitatively on the level of theory used. To test
whether the level of theory affects the model performance or not,
the localization functions (viz.,, LOL and ELF) were generated
using two different levels of theory (or basis sets), viz., B3LYP/
6-31G and B3LYP/6-31G(2df,p), which were then used as
inputs to train the standard (16, 16)-DenseNet architecture.
From the results shown in Figure 6, it is apparent that the results
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Figure 6. Effect of varying the basis set used to generate the localization
functions on model performance. All results were obtained using the
base DenseNet architecture (Figure 2) with a dense block configuration
of (16, 16).

vary negligibly between the two levels of theory. Moreover, as
noted before, LOL outperforms ELF at both levels of theory.
Thus, the model performance does not rely heavily on the
quantitative nature of the localization functions but rather on its
qualitative aspects, further reinforcing the idea of network
learning from broad topological features.

3.5. Effect of Using Multiple Descriptors. A single
molecular descriptor is usually insufficient to capture every
molecular detail and thus may lack enough learnable data to
provide expected accuracy levels, especially in case of a
challenging problem such as protein—ligand binding energy
predictions. However, for the problem of predicting atomization
energies, a single topological feature by itself proved sufficient to
provide excellent results. Nonetheless, we also tested the model
performance for multichannel inputs, which are obtained by
stacking individual input tensors along the channel axis.
Specifically, two different combinations from the available
topological features were formed, viz., LOL + NEP and ELF +
LOL + NEP, where the “+” sign indicates a concatenation
operation between any two topological tensors. The con-
catenated inputs were then used to train the base DenseNet
network (Figure 2) with a (16, 16) dense block configuration. As
depicted in Figure 7, the test MAE did not reduce much upon
providing more learnable features to the network, potentially
due to information overlap between the three topological
descriptors, thus leading to redundant features being added to
the input upon their concatenation. Such an observation can also
be attributed to the test loss saturation with respect to the
network architecture and could mean that a deeper or wider
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Figure 7. Performance comparison between different molecular
descriptor combinations. All results were obtained using the base
DenseNet architecture (Figure 2) with a dense block configuration of

(16, 16).

architecture is required to learn the additional features. Due to
computational considerations, only three topological descrip-
tors are tested; however, a myriad of other discrete and dense
molecular descriptors existing in literature could also be used in
different combinations to construct a grid representation for a
molecule. In fact, for a set of n distinct molecular descriptors, a
total of (2" — 1) input combinations could be obtained, which
makes the scaling exponential in the space of molecular
descriptors. A thorough benchmark of the architecture’s learning
capacity with respect to a more extensive set of input features
will be pursued in a future publication.

3.6. Effect of Incorporating Transformation Invari-
ance. The learning capacity of an ML model could be greatly
enhanced by imbuing it with invariances in the data.*’
Furthermore, such transformation invariances could be
embedded in the network architecture itself, thus significantly
improving their data and compute efficiency. In this section, we
discuss translational and rotational invariances in the context of
CNNes, as they are the most prevalent invariant transformations
in chemistry data sets; however, research on other affine
transformation invariances (viz., reflection, scaling, and shear) is
also being actively pursued in the computer vision community.*"

In a convolutional layer, only one set of kernel parameters is
learned for every location in the grid. Such a parameter-sharing
mechanism imparts translational equivariance to the convolu-
tional layer (and, by extension, to CNNis).*” In addition, the
pooling layers help make CNNs apgroximately invariant to small
translations of the input object.”> However, commonly used
downsampling or subsampling techniques such as strided
convolutional and pooling layers may destroy translational
equivariance and invariance in a CNN.**"*° For an extended
discussion on translational equivariance and invariance in
CNNes, please refer to sections 9.2 and 9.3 of ref 82. However,
standard CNNs are neither equivariant nor invariant to
rotational transformations of the input object. Therefore,
many research activities have been focused on explicitly
encoding rotational equivariance (and invariance) directly into
CNN architectures, which has led to the development of a range
of networks, viz., harmonic networks,”” 3D steerable CNNs,*
CFNets,* tensor field networks,”® and so forth,”' ™’ though
none of them has dominated standard practice. Although such
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enhanced CNNs provide a mathematically rigorous ML
framework to account for invariances with respect to different
input transformations, they also add another layer of complexity
into the network architecture and thus may require substantial
changes or even a complete overhaul to the base architecture
and the training protocol. Therefore, a careful study is needed to
benchmark different models available on various parameters
such as model performance, time complexity, ease of
implementation, and so forth. To that end, we are actively
working toward exploring different rotationally equivariant
models that could integrate well with DenseNets.

Another popular way to incorporate rotation invariance into a
CNN-based model is through data augmentation, which
involves generating spatially transformed copies of the input
grid representation of every sample in the data set. Therefore,
augmenting the data set increases the number of training
samples, which in turn increases the computational cost of
training the network. However, an overwhelming advantage of
using data augmentation is that it does not require any
modification to the architecture and training protocol and
hence is relatively simple to implement. Although not
mathematically rigorous and exact, data augmentation is a
simple and effective means to make a model (partially)
impervious to spatial transformations and has been widely
used in the CNN literature. Therefore, in this work, we have
used data augmentation to assess the effect of incorporating
rotational invariance in our ML model.

Because a cube has 24 rotational symmetries (cube group), we
augmented the data set by transforming it through the set of all
right-angle rotations, as prescribed in some of the previous
works utilizing 3D CNN5s.>”1% In other words, the cubic grid
representation of the standard orientation (discussed in Section
2.1.2) of each molecule in the data set was transformed through
all possible combinations of 90° rotations, which yielded 24
different orientations. As a result, both the training and test data
set increased by a factor of 24. We used the augmented data set
[grid length (N) = 14] for training a (16, 16)-DenseNet model
using a cumulative batch size of 1024 across 16 GPUs while
keeping the rest of the training hyperparameters the same as
described in Section 2.2.2. The training plots for the
unaugmented and data-augmented models are shown in Figure
S4. As shown in Figure 8, the results obtained using the data-
augmented model are a definite improvement over those from
the unaugmented version and demonstrate the usefulness of
data augmentation in reducing overfitting, improving general-
izability, and increasing model robustness. In addition, the data-
augmented model is less susceptible to errors associated with
spatial transformations of the molecule, as shown in Figures S§
and S6 of the Supporting Information. Although the results in
the previous sections (Sections 3.1—3.5) were obtained using
only a single standard representative molecular orientation, the
qualitative trends should behave similarly for the data-
augmented model.

3.7. Model Performance on Heavier and Larger
Molecules. To quantify the transferability of the proposed
DenseNet model, we assessed its performance on molecules
heavier and larger than that in the QM9 data set. To this end, we
borrowed the G4MP2-heavy data set from ref 58, a collection of
66 bio-oil-derived molecules containing 10—14 heavy atoms (C,
N, O, and F). We performed energy inferences on the G4MP2-
heavy data set using the best performing DenseNet model
(trained on 117,232 molecules from the G4MP2-QM?9 data set)
from Section 3.1, that is, (16, 16)-DenseNet (descriptor: LOL)
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Figure 8. Performance comparison between data-augmented and
unaugmented models [grid length (N) = 14]. All results were obtained
using the base DenseNet architecture (Figure 2) with a dense block
configuration of (16, 16). Data-augmented model results were obtained
using only one training run.

with grid length (N) = 16. The corresponding MAE obtained
from the DenseNet model is compared with that from the
FCHL-A and SchNet-A models and are summarized in Table 1.

Table 1. Comparison of MAEs [with Respect to G4(MP2)
Atomization Energies] on the G4MP2-Heavy Data Set
between DenseNet, FCHL-A, and SchNet-A Models

MAE on the G4MP2-heavy data

machine learning model set (kcal mol™)

FCHL-A 0.29
SchNet-A 0.91
(16, 16)-DenseNet 0.36 (0.21)¢
[grid length (N) = 16; descriptor: LOL]
“The value in parenthesis in the second column corresponding to the
DenseNet model represents the associated mean absolute deviation.

As shown in Table 1, the (16, 16)-DenseNet [grid length (N)
= 16; descriptor: LOL] model outperforms SchNet-A by a
respectable margin. Interestingly, the MAE obtained from the
DenseNet model is more comparable to that from the FCHL-A
model. However, unlike FCHL-A, the inference time for
DenseNets scales more favorably with the training data set
size. Furthermore, from the trends discussed in this article, we
expect the transferability to improve (or the MAEs to reduce)
even further upon training the DenseNet architecture on higher
resolution and memory-efficient data structures.

4. CONCLUSIONS

The present article highlights the importance of using dense
molecular descriptors for a machine learning task utilizing the
3D-CNN framework. The 3D-DenseNet architecture success-
fully learned the subtle molecular topological features encoded
in the ELFs and correlated them with the A-atomization
energies. Moreover, the network could also learn the structural
features through the NEP. Furthermore, we analyzed the
proposed model’s performance with respect to several key
hyperparameters, some of which helped improve model
accuracy in a systematic manner, viz, grid length (or grid
resolution) and network depth. Among the localization

functions tested, LOL outperformed ELF in all instances,
indicating the former’s superiority over the latter in providing a
clear topological picture of a molecule, as noted in several other
publications previously.*>'*'~'** Moreover, NEP performed
comparably to LOL, potentially due to its relatively denser input
representation, and could be a cheaper alternative to LOL as it
does not require any additional electronic structure computa-
tion. Nevertheless, it is likely that there are cases where NEP will
fall short, such as in problems involving open-shell species or
electronic transitions, where the electron distribution is known
to play a critical role in property determination. Moreover, data
sets composed of transition metal species, which often involve
multiple energetically accessible spin states, may present a
situation where a single atomic configuration (but having
different electronic configurations) has multiple corresponding
target values associated with it, differing only due to subtle
changes in the electronic structure of the molecule. Fortunately,
localization functions provide a novel way to visualize alpha and
beta electron topologies (or distributions) separately, thus
making it easier to locate regions associated with unpaired
electrons, which could help predict properties such as redox
potentials and ionization energies.””*" Additionally, localization
functions have been widely used to characterize the bonding
topology in transition metal complexes and thus could be an
indispensable tool for their tensorial representation.”* ™"

The encouraging results in the present article show incredible
promise for future endeavors to tackle even more challenging
problems. The proposed ML model in this work, based on the
DenseNet architecture, is a crucial stepping-stone toward our
goal to build even more efficient and physically motivated
models utilizing 3D descriptors. The existing framework could
be further refined by leveraging recent developments in the field
of computer vision. For example, as noted earlier, the 3D-CNNs
can be made further computationally efficient by taking
advantage of the octree data structure. Additionally, the latest
and ever-improving state-of-the-art CNN architectures could be
adopted for learning tasks; however, challenges remain, as the
training protocols for chemistry-related problems could be quite
different from those for image classification tasks. Furthermore,
our immediate research efforts would focus on engineering a
rotationally equivariant DenseNet architecture. Finally, the
future directions concerning these deep learning frameworks
would be directed toward solving problems of practical interest,
such as predicting ligand—receptor binding affinities, thus
providing complementary ways to enhance high-throughput
virtual screening tasks.
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