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ABSTRACT: Based on the strategy of polarity reversal in the
generation of free radicals derived from diazo compounds,
photocatalyzed multicomponent reactions (MCRs) of nitrogen
aromatic heterocycles, alkenes, and diazo compounds form
functionalized derivatives in good to high yields and exacting
regioselectivities. The carbon radicals generated from the acceptor
diazo compounds are electrophilic, and their selective additions
with alkenes provide nucleophilic radicals, which enable the further
rapid assembly with various heteroarenes. A delicate balance has been achieved between the activation of heteroarenes through
protonation and the decomposition of diazo compounds by the same acid. This multicomponent Minisci reaction shows high
functional group tolerance, especially in the incorporation of biologically active molecules. Detailed mechanistic studies that include
photophysical measurements elaborate this radical cascade reaction. Furthermore, this transformation provides new opportunities for
versatile reactions of diazo compounds in radical cascade multicomponent coupling reactions.
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■ INTRODUCTION

Diazo compounds are versatile building blocks that have been
used extensively in organic synthesis.1,2 Their multicomponent
reactions (MCRs),3 which incorporate two or more functional
groups into one molecule with the release of dinitrogen, have
shown features of high synthetic efficiency, atom economy, and
convergence that provide an economical and useful tool for the
construction of complex target compounds.4 Previous
endeavors toward MCRs of diazo compounds focused on
trapping protic onium ylides with various electrophiles
followed by delayed proton transfer (Scheme 1a(i))4a and
on the combination of traditional cross-coupling with carbene
migratory insertion (Scheme 1a(ii)).4b Both of them enrich the
diazo chemistry through carbene intermediates and have found
remarkably wide applications in building complicated organic
molecules.
Radical chemistry has made great progress during the past

decade, and many new radical processes have been developed
with photoredox catalysis.5 Unlike the carbene process, the
radical chemistry of diazo compounds makes MCRs possible
through radical propagation. Though formation of carbon-
centered radicals from diazo compounds with the release of N2
has been reported, their subsequent reactions with alkenes are
rare.6 Gryko,6a Zhang,6b Li,6c and their co-workers reported
the generation of radical species from diazo compounds either
through a cobalt(III)-carbene radical intermediate or homo-
lytic bond cleavage of a C−I bond. Their further reaction with
alkenes delivered Csp2−H alkylation products or traditional

cyclopropanation products (Scheme 1b). Recently, we
reported the functionalization of alkenes with diazo com-
pounds by radical pathways,7 through which photocatalytic
hydroalkylation products by thio-assisted hydrogen atom
transfer (HAT) and azidoalkylation products through an iron
catalytic cycle were selectively formed (Scheme 1b). Since the
carbon radical generated from a diazo compound stabilized by
one or two electron-withdrawing groups (EWG) is electro-
philic,8 its addition to a carbon−carbon double bond produces
an alkyl radical that is nucleophilic.9 We envisioned that a
radical cascade reaction utilizing this radical polarity reversal
could be designed to achieve a new MCR pathway with diazo
compounds.
Heteroarene groups exist widely in natural products,

pharmaceuticals, and agrochemicals.10 The Minisci reaction,11

in which nucleophilic radicals undergo addition to hetero-
arenes, provides an efficient and direct method for the
functionalization of heteroarenes. The three-component
Minisci reaction was first disclosed in 1978, in which alkenes
were oxidized by Ag+/S2O8

2− in the presence of H2O, and the
resulting radical was added to lepidine (4-methylquinoline).12
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While radical species such as H•, N3
•, phosphinyl radical, and

alkyl radicals from aliphatic halides have been utilized,13 the
use of easily accessible diazo compounds to afford a desirable
spectrum of functionalization in multicomponent Minisci
reaction has not been reported.
With our continuing research interest in the radical

chemistry of diazo compounds,7,14 we have designed a
photocatalytic redox-neutral multicomponent Minisci reaction
of diazo compounds (Scheme 1b, below). The diazo
compounds are transformed to electrophilic carbon radical
species through proton-coupled electron transfer (PCET).15

Then, selective addition of the carbon radical to diverse
unactivated CC bonds reverses the radical polarity to
nucleophilic, which enables their further trapping by
heteroarenes. However, several challenges had to be overcome,
including (1) the undesirable direct decomposition of diazo
compounds by acid (proton-denitrogenation), which is of
concern because of the necessary use of acid for the activation
of heteroarenes; (2) the competitive two-component reaction
between diazo compounds and alkenes that forms cyclo-
propane derivatives; and (3) different from our previous
photocatalytic hydroalkylation process,7 the photocatalyst here
plays two roles: first as a reductant to transform the diazo
compound into radical species and, then, as an oxidant of the
heteroarene radical intermediate formed in the Minisci
reaction, providing the final functionalized heteroarene after
deprotonation. Thus, a photocatalyst with a suitable reduction
potential to initiate the reaction as well as an oxidation
potential for its oxidized state that can complete the cascade
transformation is critical for this reaction.

■ RESULTS AND DISCUSSION
Reaction Optimization. The three-component adduct 4a

was effectively obtained from the reaction of lepidine (1a),

ethyl diazoacetate (EDA, 2a), and 4-phenyl-1-butene (3a) in
1,2-dichloroethane (DCE) at room temperature under blue
LED with [Ir(dtbbpy)(ppy)2]PF6 as a photocatalyst and with
2.0 equiv of TFA to activate lepidine and protonate the diazo
compound (Table 1, entry 1). A series of control experiments
verified the necessity of each reactant. Thus, the multi-
component adduct 4a was not formed in the absence of the
photocatalyst or a blue LED (Table 1, entries 2 and 4), and
only a low yield of 4a was observed when TFA was omitted
from the reaction system (Table 1, entry 3). Weaker acids than
TFA were ineffective. The catalytic systems we used in our
previous hydroalkylation and azidoalkylation reactions were
also tested,7 but either no product or only a trace amount of 4a
was formed (Table 1, entries 5−7). This indicates that even
though the carbon radical could be formed from the diazo
substrate under these conditions, the second catalytic cycle, in
which the intermediate derived from addition of the
nucleophilic radical to the protonated heteroarene was
oxidized to a radical cation, failed with these catalysts. Other
photocatalysts were also investigated, but only the iridium
catalyst gave this product in a moderate yield (Table 1, entries
8−12). Changing the light source confirmed that the blue LED
is the best irradiation source (Table 1, entries 13−15). It
should be mentioned that in addition to the desired 4a,
byproducts 5 and 6 were also observed under several of these
reaction conditions. These cyclopropanation products were
presumably generated from either a carbene intermediate or
through a free radical process that occurred with the release of
N2.

2i,6c,16

Substrate Scope. With the optimized conditions in hand,
we evaluated the scope of olefins appropriate for this
photocatalytic multicomponent coupling reaction and found
that a wide variety of unactivated alkenes are transformed into
the corresponding products in moderate to good yields

Scheme 1. Designs for the Radical Cascade Multicomponent Minisci Reaction with Diazo Compounds
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(Scheme 2). The mild reaction conditions allowed for high
functional group compatibility and tolerance to a variety of
functional groups, such as methoxy, chloride, bromide,
ketones, esters, amides, and even a free hydroxyl (4f−4l,
4p−4q). The X-ray structure of product 4j was obtained for
full structural characterization. Additionally, substrates derived
from pyromucic acid and 2-thenoic acid proceeded smoothly
under the reaction conditions to deliver products 4m and 4n.
The estrone derivative 4o was also obtained in a good yield,
which underscores the synthetic utility of this protocol and its
compatibility with complex molecules.
The substrate scope of diazo compounds was next examined

(Scheme 3). These multicomponent Minisci reactions with
different diazoacetates were accommodated under the mild
reaction conditions to furnish the corresponding products in
good to high yields (7a−7j). Additionally, other potentially
reactive functional groups such as allyl (7e), propargyl (7f),
and pentynyl (7g) were well tolerated on the ester group in
diazo compounds. This methodology is successful with various
naturally occurring alcohols in their derived diazoacetate esters,
including dihydroconiferyl alcohol, epiandrosterone, and
cholesterol (7h−7j), highlighting the generality and potential
utility of this methodology. Furthermore, this reaction was not
limited to α-diazo esters. Diazoacetamides (7k, 7l), diazo-
ketones (7m, 7n), acceptor/acceptor disubstituted diazo ester
(7o), phosphonate (7p), and fluorinated (7q) diazo alkanes
were also reactive under the reaction conditions, providing the
products smoothly and in moderate to high yields.

We further assessed the reaction generality with various
heteroarenes (Scheme 4). For quinolines bearing phenyl,
isopropyl, cyclohexyl, chloro, and methyl substituents at either
the C-2 or C-4 position, the reaction proceeded regioselec-
tively at the alternative ortho or para position (8a−8h), while
the unsubstituted quinoline gave mixtures of regioisomers (8i−
8i′) in comparable yields as well as the 2,4-disubstituted

Table 1. Optimization of the Reaction Conditionsa

entry variations yield (%)b 4a/5/6

1 none 75 (73)c/10/10
2 no [Ir(dtbbpy)(ppy)2]PF6 nd/2/2
3 no TFA 18/16/16
4 no blue LED nd/nd/nd
5 [Ru(bpy)3]Cl2·6H2O nd/nd/nd
6 [Ru(bpy)3]Cl2·6H2O + HEd 4/nd/nd
7 Fe(OAc)2/TBHP

d nd/nd/nd
8 [Ru(bpz)3](PF6)2 nd/nd/nd
9 [Ir{dF(CF3)ppy}2(dtbbpy)]PF6 36/14/15
10 [Ir{Me(Me)ppy}2(dtbbpy)]PF6 63/9/9
11 Ir(ppy)3 21/3/3
12 eosin Y-disodium salt nd/nd/nd
13 white LED 21/6/6
14 UV LED 33/10/10
15 CFL 6/3/3

aReactions were carried out using lepidine 1a (0.2 mmol, 1.0 equiv),
ethyl diazoacetate 2a (0.8 mmol, 4.0 equiv), 4-phenyl-1-butene 3a
(0.8 mmol, 4.0 equiv), [Ir(dtbbpy)(ppy)2]PF6 (2 mol %), and TFA
(0.4 mmol, 2.0 equiv) in DCE under a blue LED at 25 °C.
bDetermined by 1H NMR analysis using CHBr3 as an internal
standard. cIsolated yield in parentheses. dOur previous catalytic
system; see the Supporting Information for more details. dtbbpy: 4,4′-
di-tert-butyl-2,2′-dipyridyl. ppy: 2-phenylpyridine. bpz: 2,2′-bipyra-
zine. nd: not detected. HE: Hantzsch ester.

Scheme 2. Substrate Scope of Alkenesa

aConditions identical to those of entry 1, Table 1. bdr value was
determined by HPLC.

Scheme 3. Substrate Scope of Diazo Compoundsa

aConditions identical to those of entry 1, Table 1. bdr value was
determined by HPLC. cdr value was determined by analogy with 7i.
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product 8i″. The scope of the reaction was further extended to
a series of isoquinolines including unsubstituted isoquinoline
and those with methyl-, ester-, methoxy-, and chloro-
substitution at different positions, and all of these substrates
underwent regioselective C-2 addition (8j−8p). Phenanthri-
dine was also found to be a competent substrate, affording
product 8q in a high yield, and its X-ray structure provided full
characterization. Reaction with hydroquinine was performed
and gave the desired product 8r in a good yield, albeit with no
diasteroselectivity. More importantly, this methodology was
not limited to quinolines, isoquinolines, or phenanthridine.
Benzimidazole (8s) and pyridine (8t) also proved to be
compatible, corroborating the broad generality of the reaction.

However, heterocycles such as quinazoline and quinoxaline
and failed diazo compounds and alkenes show some limitations
with this method (see the Supporting Information for details).

Mechanistic Investigations. To obtain insights into the
mechanism of this novel multicomponent Minisci reaction, a
series of control experiments were carried out (Scheme 5, also
see the Supporting Information). The yield of 4a from the
model reaction in the presence of TEMPO decreased
significantly from 73 to 5%, and the related radical-trapping
product 9 was separated and characterized (Scheme 5a).17

However, the yields of the cyclopropanation byproducts 5 and
6 and their ratio were not influenced, which excluded a radical
pathway for their formation.16 A radical clock experiment using
vinylcyclopropane 3r formation produced the multicomponent
product 4r with complete cyclopropane ring opening (Scheme
5b), and the cis/trans ratio from the cyclopropane ring opening
was always 1:1. Additionally, a competition experiment
between 1a and 1a-d1 was conducted giving a primary kinetic
isotope effect (KIE) of 1.0, which is consistent with
deprotonation not being the rate-determining step (Scheme
5c).13f

To identify if, as expected, the protonated diazo compound
was the species that quenched the photoexcited iridium
catalyst, steady-state Stern−Volmer luminescence-quenching
experiments were conducted by the addition of different
concentrations of EDA 2a to [Ir(dtbbpy)(ppy)2]PF6 (Figure
1a). The results showed that the iridium photocatalyst was
quenched and a linear correlation was found, as presented in
the Stern−Volmer plot (Figure 1b). The quenching experi-
ment with the combination of EDA and TFA also showed a
quenching effect but decayed with the progression of time
(Figure S4). This was due to the decomposition of EDA by
TFA. Further investigation with other substrates including
lepidine 1a, alkene 3a, and TFA showed that they were not the
effective quencher for the Ir photocatalyst (Figure 1b). In
addition, a lifetime measurement of the excited Ir* catalyst
using time-resolved emission spectroscopy was also performed
(Figure 1a, inset). A long-lived phosphorescence from Ir* was
observed (τ° = 807 ns, also see the Supporting Information for
more details), which decreased monotonically with the
increase in the EDA 2a concentration. Moreover, the slopes
of the steady-state and time-resolved Stern−Volmer plots are

Scheme 4. Substrate Scope of Heteroarenesa

aConditions identical to those of entry 1, Table 1. bdr value was
determined by 1H NMR. c1-Methylbenzimidazole (66%) was
recovered. dEthyl 2,4-dimethylnicotinate (50%) was recovered.

Scheme 5. Mechanistic Experiments
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close, indicating that the major quenching process is the
dynamic quenching of the excited-state Ir photocatalyst by the
EDA substrate (Figure 1b).18 The Stern−Volmer constant
from the steady-state quenching is ∼26 M−1, which affords a
bimolecular quenching rate of kq ∼ 3.2 × 10−1 M−1 s−1.
Considering the combined results of our mechanistic studies

and previous reports,7,19 a plausible mechanism for this novel
multicomponent reaction is illustrated in Figure 2. Upon
irradiation with blue light, the Ir(III) complex is converted into
the photoexcited species Ir(III)* (E1/2

IV/III* = −0.96 V vs
SCE).20 Reduction of ethyl diazoacetate (EDA) by the Ir(III)*
complex through proton-coupled electron transfer,15 or a
stepwise pathway in which reduction of the diazonium ion that
is generated by protonation of EDA with TFA (but not with
HOAc), is feasible due to N2 extrusion; the reduction peak
potential of EDA is slightly more negative (−1.145 V vs
SCE).19b The rate of endothermic photoinduced electron
transfer could be accelerated due to the ultrafast dissociation of
the reduced diazonium ion.21 The formed electrophilic carbon-
centered radical I8 undergoes selective addition to an
unactivated alkene, instead of the electron-deficient protonated
heteroarene, to furnish nucleophilic radical II. Furthermore,
the Minisci reaction between radical II and electrophilic
heteroarene III smoothly delivers radical cation IV, which is
converted to V by deprotonation. According to the KIE
experiment, this step is not the rate-determining step.
Subsequently, oxidation of V by the Ir(IV) (E1/2

IV/III = +1.21 V

vs SCE) complex gives rise to the corresponding cation that is
deprotonated to afford the product, and the photosensitizer
Ir(III) catalyst is regenerated at the same time.

■ CONCLUSIONS

Different from the traditional carbene process, we have
developed a radical-mediated methodology for the multi-
component reaction (MCR) of diazo compounds that should
be applicable to other electrophilic radical generators. Utilizing
polarity reversal enabled in the reaction between the
electrophilic radical derived from diazo compounds and
nonactivated alkenes, three-component Minisci reactions of
heteroarenes, alkenes, and diazo compounds have been
achieved. The high functional group tolerance and the broad
substrate scope, especially the incorporation of biologically
active molecules, embody the generality and synthetic utility of
this protocol. We anticipate that the chemistry reported herein
will broaden applications of diazo compounds, especially in the
discovery and development of new multicomponent reactions
(MCRs) for the construction of valuable complex targets.
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Figure 1. Quenching experiments of [Ir(dtbbpy)(ppy)2]PF6. (a) Steady-state Stern−Volmer quenching experiments of ([Ir] + EDA). Inset:
phosphorescence lifetimes of ([Ir] + EDA). (b) Combined Stern−Volmer analysis of steady-state and time-resolved experiments.

Figure 2. Proposed reaction mechanism.
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