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Comparative assessment of QM-based and
MM-based models for prediction of protein–
ligand binding affinity trends†

Sarah Maier, a Bishnu Thapa, ab Jon Ericksonb and Krishnan Raghavachari *a

Methods which accurately predict protein–ligand binding strengths are critical for drug discovery. In the

last two decades, advances in chemical modelling have enabled steadily accelerating progress in the

discovery and optimization of structure-based drug design. Most computational methods currently used

in this context are based on molecular mechanics force fields that often have deficiencies in describing

the quantum mechanical (QM) aspects of molecular binding. In this study, we show the competitiveness

of our QM-based Molecules-in-Molecules (MIM) fragmentation method for characterizing binding

energy trends for seven different datasets of protein–ligand complexes. By using molecular

fragmentation, the MIM method allows for accelerated QM calculations. We demonstrate that for classes

of structurally similar ligands bound to a common receptor, MIM provides excellent correlation to

experiment, surpassing the more popular Molecular Mechanics Poisson-Boltzmann Surface Area

(MM/PBSA) and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) methods. The MIM

method offers a relatively simple, well-defined protocol by which binding trends can be ascertained at

the QM level and is suggested as a promising option for lead optimization in structure-based drug

design.

1. Introduction

The study of structure-function relationships in proteins has accel-
erated over the last decade due to newly emergent techniques in
computational chemistry.1,2 In particular, these techniques have
become increasingly important for the study of protein–ligand
binding. The binding of a ligand to a target protein is a thermo-
dynamic process, whose direction is guided by the free energy of the
system. Free energy steers all biochemical processes, and therefore
its calculation is fundamental. However, obtaining experimentally
significant enthalpies and free energies is often difficult, and for
systems involving complex biological systems in their native aqu-
eous environment, accurate free energy calculations remain a grand
challenge for chemists.

For computational investigations of protein–ligand interac-
tions, there is a dearth of methods which calculate binding free
energies while maintaining both accuracy and efficiency. Mole-
cular docking, whose primary goal is to predict and rank ligand

binding poses using computationally inexpensive scoring func-
tions, is one of the most widely used computational approaches
for studying protein–ligand binding.3,4 While this technique is
computationally economical, its accuracy and predictive ability
are often inadequate. By contrast, alchemical free energy (AFE)
methods, such as free energy perturbation (FEP) and thermo-
dynamic integration (TI) are mathematically rigorous, though
they are computationally demanding.5–7 These methods involve
extensive sampling of intermediate states, generated via small
changes of the energy function, and are often slow to converge.
While FEP-type methods are reliable and are used successfully
in many applications, their accuracy still may suffer from the
fundamental limitations of the underlying force fields.

The two sets of methods described above occupy opposite
ends of the spectrum when considering both accuracy and
efficiency. Representing a compromise between AFE methods
and molecular docking are the so-called end-point free energy
methods, which have become extremely popular in structure-
based drug design.8–17 As the name suggests, end-point meth-
ods sample only the bound and unbound states, unlike AFE
methods which also sample intermediate states. By far, some of
the most popular end-point free energy methods are the
‘‘Molecular Mechanics Poisson–Boltzmann Surface Area’’
(MM/PBSA) method and the ‘‘Molecular Mechanics Generalized
Born Surface Area’’ (MM/GBSA) method developed by Kollman
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et al.18 In the MM/P(G)BSA approach, the free energy of binding
is calculated using the following thermodynamic cycle:

Thus, the free energy of a ligand (L) binding to a target
protein (P) to form a complex (P–L) is given as

DGbinding ¼ GP�L � GP þ GLð Þ (1)

where the free energy of binding, DGbinding, can be
approximated as

DGbinding E DEgas + DGsolv � TDS (2)

whereDEgas is the gas phase binding energy typically calculated with
MM potentials, DGsolv denotes the contribution from the energy of
solvation, and �TDS is the change in configurational entropy upon
ligand binding.16,19 Terms in eqn (2) can be further decomposed:

DEgas E DEMM = DEint + DEelec + DEvdW (3)

DGsolv = DGPB/GB + DGSA (4)

DGSA = gDSASA + b (5)

where DEint includes all contributions to the internal energy (bond,
angle and dihedral terms), DEelec represents the electrostatic con-
tribution, and DEvdW is the van der Waals contribution. The
solvation term, DGsolv, is composed of an electrostatic (polar)
contribution, DGPB/GB, and a nonpolar contribution, DGSA. DGPB/GB

is calculated using either the PB or GB model, and DGSA is
approximated using the solvent-accessible surface area (SASA). For
the MM/P(G)BSAmethods, all terms in eqn (2) are typically taken as
an average over many snapshots from a molecular dynamics (MD)
trajectory, although a few studies have investigated the use of only a
single minimized structure.11,20 The change in configurational
entropy, �TDS, may be determined via normal-mode analysis on
a set of MD snapshots; however, due to its high computational cost
and larger uncertainty, entropy terms are often neglected when only
relative free energies of structurally similar ligands bound to a
common target receptor are desired. This choice assumes that
entropic contributions are similar across a dataset, and therefore
the neglect of such terms will have only a minimal effect on overall
correlation.8

The accuracy of MM/P(G)BSA results, and more specifically
of DEgas, is directly related to the quality of the energy function
used in the calculation.10,21,22 Since DEgas is most often calcu-
lated using MM potentials, the use of MM/P(G)BSA is limited to
cases for which such a potential exists.21,23–25 Moreover, for
challenging and experimentally relevant cases, MM potentials often
have significant deficiencies.26–28 Conversely, QM potentials give a
rigorous description of those electronic effects which play a critical
role in intermolecular interactions (e.g., charge-transfer, p–p

interactions and many-body effects). As such, a high-level QM
treatment of protein–ligand binding is highly desirable.

Several research groups have begun to study proteins using
QM potentials.10,29,30 However, because of their computational
complexity, these calculations have typically been limited to
minimal model systems, for example, including only a small
number of residues around the ligand. In recent years, QM
treatments of larger portions of protein–ligand complexes have
begun to emerge, using either semiempirical methods or high-
level methods with fragmentation techniques.31,32 Among the
many fragmentation-based methods, the fragment molecular
orbital (FMO) technique, molecular fragmentation with con-
jugate caps (MFCC), and related approaches have been used in
studying protein–ligand interactions.33–37

We have developed our own fragmentation method, the
Molecules-in-Molecules (MIM) multilayer fragmentation method,
to study protein–ligand interactions.38,39 Our MIM fragmentation
method is designed to produce high-level QM results efficiently for
large systems. Similar to the ONIOM methodology developed by
Morokuma and co-workers,40 the MIM protocol is a hybrid method
which employs layers of structural fragmentation to achieve highly
accurate chemical calculations at a fraction of the typical cost. Over
the course of several recent studies, we have successfully applied our
method to over 100 protein–ligand complexes.39,41–43 According to
the MIM protocol, the full system is partitioned into smaller over-
lapping subsystems, and independent QM calculations are per-
formed on each one. The energy contributions from all
subsystems are then combined in such a way that the total energy
of the full system is recovered. The MIM method is capable of
providing high quality QM results at a substantially lower computa-
tional cost compared to traditional QM approaches. Moreover, the
MIM method prescribes a well-defined protocol, which makes it
particularly appealing for drug discovery purposes. The protocol has
proven to be widely useful and has been effective in achieving high
correlation (Spearman rank correlation (r) = 0.83–0.94; R2 = 0.74–
0.93) between calculated interaction energies and experimentally
derived binding affinities for similar ligands binding to a target
receptor.39

While we have demonstrated the effectiveness of our
method in several studies, we have not yet made a direct
comparison of the MIM method to the more popular end-
point methods. MM/P(G)BSA methods achieve a reasonable
balance between accuracy and computational cost; therefore,
they serve as an appropriate standard to judge our own method
for calculating and ranking binding interactions. In the present
study, we make such a comparison, considering nearly 100
protein–ligand complexes, and demonstrate MIM’s ability to
achieve high correlation between theory and experiment.

2. Methods
2.1 Data sets and structure preparation

MIM-calculated binding affinities of 98 ligands, bound to five
different target receptors, are compared to affinities obtained
via MM/P(G)BSA analysis. A group of congeneric ligands bound
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to a single target receptor comprises each of the seven datasets.
Ligand structures were obtained from published cocrystallized
structures or generated from a similar cocrystallized ligand.
Assuming similar ligands bind similarly to a given receptor,
each generated ligand was placed into the binding pocket of the
published crystal structure. While modifying the ligand, the
flexible alignment module, as implemented in the Molecular
Operating Environment (MOE) program (version 2019.01), was
used to conserve any key binding features observed in the
cocrystallized structure. Missing hydrogen atoms in the crystal
structure were added to the complexes at pH 7.0 with the
Protonate 3D44 tool, as implemented in MOE. Each protein–
ligand complex was minimized in MOE with the AMBER10:EHT
force field, using a generalized Born/volume integral implicit
solvation model with an internal dielectric constant of 2 for the
binding pocket and an external dielectric constant of 80. The
minimization was performed using restraints via a harmonic
potential centered on each atom, where the strength of the force
constant was specified by the standard deviation (0.5 Å in this work)
from the original coordinates at 300 K as implemented in MOE.
Assuming the PDB structure is a good representation of the
dominant binding pose, we minimize in order to relax the added
hydrogens while keeping the overall structure close to the starting
PDB structure. Protonation states of histidine residues present
within 5 Å of the ligand were further determined by analyzing the
possibility of hydrogen-bond formation with nearby residues. Our
previous study considering 22 thrombin inhibitors showed that
calculations which include residues within 5.0 Å of the ligand
capture approximately 95 percent of the total interaction energy
when compared to results calculated using the full complex.43 In
this same study, it was found that the coefficient of determination
comparing theory to experiment is converged at about a 4 Å radius.
Therefore, all residues and water molecules within 5.0 Å of the
ligands were included in the MIM calculations. Any dangling bonds
were saturated with hydrogen atoms using MOE. For MD, the full
system was included in all simulations. Relevant information con-
cerning protein–ligand structures considered in this work, along
with corresponding PDB IDs are featured in Table 1 (set I,45 set
II,31,46 set III,47,48 set IV,31,49 set V,31,50 set VI,51 and set VII52,53).

2.2 MIM calculations

The full MIM protocol has been detailed in previous
works.39,41,43 Herein, only the necessary protocol for our

protein–ligand binding analysis is given. Similar to the ONIOM
methodology, the MIM protocol is a hybrid method which
employs layers of structural fragmentation to achieve highly
accurate chemical calculations at a fraction of the typical cost.
According to the MIM protocol, each subsequent fragmentation
layer is comprised of increasingly smaller fragments (primary
subsystems), with each subsequent layer treated at a higher
(more accurate) level of theory. For example, the three-layer
MIM protocol for calculating energies can be understood
through eqn (6).

EMIM3 ¼ ER
low þ Er0

medium � Er0
low

� �
þ Er

high � Er
medium

� �
(6)

Eqn (6) involves three levels of theory (low, medium, and
high) as well as three primary subsystem size parameters
(r o r0 { R). Resembling a telescoping series, each subsequent
layer corrects errors present in the previous layer. According to
the MIM protocol, proteins are first fragmented into small
fragments (monomers) by cleaving single bonds between heavy
atoms, as depicted in Fig. 2. Because of their partial double-
bond character, peptide bonds are left uncut.54

Primary subsystems of each fragmentation layer are then
created by grouping proximate monomers into larger, over-
lapping subsystems. Primary subsystems are created by expand-
ing around an initiating monomer fragment, based on either a
number- or distance-based criteria as described in previous
works and as illustrated in Fig. 2. Under the number-based
scheme, primary subsystems are generated by combining n
covalently bonded monomers, with the initiating fragment as
the central monomer. The prescription for the distance-based
scheme involves the creation of primary subsystems via the
grouping of all monomers within a certain cutoff distance, d, of
the initiating monomer. In previous work, we have employed
distance-based schemes in the middle layer in order to capture
important long-range interactions at a satisfactory level of
theory and number-based schemes in the high layer to capture
bonded interactions with high accuracy. Additionally, we have
found that a number-based high layer may be supplemented
using a distance-based dimers scheme, under which interac-
tions between pairs of primary subsystems whose distance falls
within a certain cutoff ( %d) are included in the high-layer (see
Fig. 2). The distance-based dimer scheme ensures that certain
short-range, nonbonded interactions (e.g. hydrogen bonding,

Table 1 Descriptors for each dataset

Set Count Ligand class Receptor PDB ID Resolution (Å)

I 10 Biotin-based Avidin 1AVD 2.70
I 14 Benzathiazole (BZT)-

based
ITK 4MF0 2.67

III 13 — CDK2 2VTA,2VTH, 2VTI, 2VTJ, 2VTL, 2VTM, 2VTN, 2VTO,
2VTQ, 2VTR, 2VU3, 2VTT, 2VTS

2.00, 1.90, 2.00, 2.20, 2.00, 2.25, 2.20, 2.19,
1.90, 1.89, 1.85, 1.68, 1.90

IV 11 Indazole (IND)-based ITK 4PP9 2.58
V 18 Sulfonylpyridine

(SAP)-based
ITK 4QD6 2.45

VI 16 D-Phe-Pro-based Thrombin 2ZFF 1.47
VII 16 4-Aminopyridine

benzamide-based
TYK2 4GIH 2.00
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p–p stacking) are included at the high-level of theory. The low
layer includes the full molecule and thus captures any long-
range effects not included in the high and middle layers. After
subsystems are generated, all remaining cleaved bonds are
then saturated with hydrogens. Finally, contributions from
overlapping regions are subtracted out via the Inclusion-
Exclusion principle:

a1 . . .[a
n

�� �� ¼
X
i

jaij �
X
io j

jai \a
j j þ

X
io jo k

jai \a
j \a

k j . . .

þ �1ð Þn�1jai \... \a
n j (7)

In multilayer MIM, less computationally expensive QM
methods are used in the low layer to describe long-range
interactions and polarization effects not present in individual
subsystems, while more expensive but highly accurate methods
are used to locally correct any errors present at the low-level of

theory. In the present study, we use three-layer MIM (MIM3)
using a distance-based (d = 3.5 Å) scheme at the middle level
and a number-based (n = 5) scheme supplemented with a
distance-based dimer scheme ( %d = 3.5 Å) at the high level. This
particular protocol (denoted as N5D) has been benchmarked on
similar complexes in previous studies.39,41,43 Ligand molecules
are left uncut.

2.3 Protein–ligand binding energy calculation with MIM3
protocol

The starting point is the gas phase interaction energy between a
ligand and a protein, given as

DEgas
interaction ¼ EPL � EP þ ELð Þ (8)

where EPL, EP, and EL are dispersion-corrected gas-phase elec-
tronic energies of the complex, protein, and ligand,

Fig. 1 Representative ligand structure for each dataset (a) biotin-analogue avidin ihibitors, (b) benzothiazle-based ITK inhibitors, (c) CDK2 inhibitors,
(d) indazole-based ITK inhibitors, (e) sulfonylpyridine-based ITK inhibitors, (f) Thrombin inhibitors, (g) 4-aminopyridine benzamide-based TYK2 inhibitors.

Fig. 2 Illustrations of the fragmentation scheme used in MIM3 calculations. (a) Depiction of 5.0 Å radius around ligand considered in MIM calculations.
(b) Formation of monomers. (c) Example of distance-based middle layer subsystem. (d) Example of distance-based dimer pair used in high layer.
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respectively. The protocol outlined in the previous section was
used to calculate energies for the bound and unbound struc-
tures. Both bound and unbound structures were obtained from
the same energy-minimized structure. All QM calculations were
performed in the gas phase, and due to overestimation of
electrostatic interactions, charged ligands and residues (Lys,
Arg, His, Asp, and Glu) were neutralized to better match charge
stabilization observed in solution. The effectiveness of this
treatment has been validated in several previous
studies.31,39,41–43 While QM calculations are performed in gas
phase, the penalty for ligand desolvation is included in the
MIM calculation. Thus, the total MIM3 binding energy reported
herein includes DEgasinteraction as well as the penalty term from
ligand desolvation (the penalty of abstracting ligand from
solvent upon binding). Therefore, the total MIM3 binding
energy is given as

DEr
MIM3 ¼ DEgas

interaction þ DEL
ðdesolvÞ (9)

where DEL(desolv) is the desolvation penalty of ligand scaled
based on the buried solvent accessible surface area (SASA).
The method used for determining the desolvation penalty is
detailed in our previous works.41

For the high level of theory, the dispersion-corrected B97-
D3BJ functional (B97 functional55,56 with Grimme’s D3 disper-
sion correction57 and Becke—Johnson damping58) with 6-
311++G(d,p) basis set was used. For the middle layer,
B97-D3BJ was again used, however this time with the smaller
6-31+G(d) basis set.59–62 Finally, PM6-D3 was used for the low
layer.63 The ligand desolvation penalty was determined using
the SMD implicit polarizable continuum solvation model at the
high level of theory.64 All DFT calculations were performed
using the Gaussian 16 program suite65 and our MIM external
program was used to generate and sum the fragmented
systems.

2.4 Molecular dynamics simulations

The electrostatic potential (ESP) was obtained via geometry
optimization at the SMD/B3LYP/6-31+G(d,p) level of theory
followed by a Merz–Kollman ESP-fitted charge calculation at
the HF/6-31G* level of theory.66,67 The RESP method was used
for charge fitting. Ligand atoms were described by the general-
ized Amber force field (GAFF).68,69 All protein residues were
described with the ff14SB force field.70 Each complex was
solvated in a truncated octahedral periodic box of TIP3P water
molecules extending 18 Å from the solute. The crystal structure
water molecules were removed before solvating with the explicit
water molecules. Counterions of Na+ or Cl� were added to
neutralize the system. Specific details concerning minimiza-
tion, heating, equilibration, and production are given in the
ESI.†

One prominent issue with MM/P(G)BSA methods is that
there may exist several energy states that are rarely sampled
from the MD trajectory, and therefore, one may obtain energies
with high standard errors.71–73 Several recent publications have
indicated that the results of MM/P(G)BSA calculations are

highly dependent upon the length of MD simulation. Multiple
authors have explored issues with convergence and reproduci-
bility of MM/P(G)BSA calculations and have suggested that
averaging over several independent MD trajectories, initiated
with random starting velocities, provides greater statistical
significance than a single long trajectory.73–76 Therefore, we
ran 40 � 1 ns independent trajectories using random starting
velocities (see ‘‘ig’’, ‘‘ntx’’, and ‘‘irest’’ flags in AMBER 18). The
last recorded geometry of the 10 ns equilibration was used as
the initial structure for each 1 ns trajectory run. Coordinates
were recorded every 10 ps.

2.5 MM/PBSA calculations

Studies describing the effects of various force fields, charge
models, radii sets, etc., for MM/P(G)BSA calculations are abun-
dant. In this study, we elected to follow a computational
protocol similar to that most often encountered in the litera-
ture. The MM/PBSA calculations were performed using
MMPBSA.py in AMBERTools18.77 The solute and solvent dielec-
tric constants were set to 1 and 80, respectively, and the salt
concentration was set to 0.1 M. It should be noted that MM/
PBSA is known to be particularly sensitive to the choice of
solute dielectric, especially for charged binding pockets.15 1000
snapshots were taken evenly from the 40 � 1 ns production
runs and used for MM/PBSA calculations. This sampling inter-
val is believed to ensure that subsequent MD snapshots are
sufficiently uncorrelated.73 The default MM/PBSA surface ten-
sion and non-polar free energy correction were used, and the
mbondi2 radii set was used. Entropic terms calculated via
normal mode analysis were not included. Because we consider
similar ligands bound to a common target receptor, entropic
contributions are expected to be similar across each data set.

2.6 MM/GBSA calculations

The MM/GBSA calculations were also performed using
MMPBSA.py in AMBERTools18. For this study, the polar con-
tribution to solvation was obtained by solving the generalized
Born solvation model of Onufriev et al. with a, b, and g to 0.8,
0.0, and 2.909125, respectively (GBOBCI/‘‘igb = 2’’ flag in
AMBER18).78 The solute and solvent dielectric constants were
set to 1 and 80, respectively, and the salt concentration was set
to 0.1 M. As for the case of MM/PBSA calculations, 1000 snap-
shots were evenly extracted from the 40 � 1 ns production runs
and used for MM/GBSA calculations. The default MM/GBSA
surface tension and non-polar free energy correction terms
were used, and the mbondi2 radii set was used. As in the case
of MM/PBSA calculations, entropic terms were not included.

3. Results and discussion

In the lead optimization stage of drug discovery, the goal is to
develop drug molecules with improved selectivity and potency
relative to the lead compound. Therefore, the ability to rank a
series of structurally similar molecules in terms of their capa-
city to bind to target receptors becomes an invaluable tool. In
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this section, we make a direct comparison of the QM-based MIM
model to the more popular MM/P(G)BSA methods and determine
their relative performance when it comes to correctly ranking
binding free energies. To make this comparison, we have elected
to study a series of structurally and chemically diverse ligands,
bound to one of five different target receptors. A representative
structure for each dataset is given in Fig. 1. For a complete structural
description of each ligand, see Fig. S1–S7 (ESI†).

Often used in structure-based drug design, MM/P(G)BSA
methods are regarded as well suited for ranking structurally
similar ligands according to their ability to bind to a target
receptor, rather than for obtaining absolute binding
energies.9,13,17,79 Indeed, systematic inaccuracies of MM poten-
tials and the common neglect of entropic contributions renders
MM/P(G)BSA methods perhaps more appropriate for identify-
ing correlation between theory and experiment. Similarly, the
MIM method has been proven effective at producing binding
energy trends that are well correlated with experiment. There-
fore, we have elected to compare the MM/P(G)BSA and MIM
methods based on their ability to calculate binding strength
trends of structurally similar ligands bound to a common target
receptor. We employ two different metrics to assess the perfor-
mance of the methods tested: the Pearson correlation

coefficient, rp, and the Spearman rank-order correlation coeffi-
cient, rs.

The correlation plots comparing the experimental DGbind or
pKi and the calculated interaction energies for MM/GBSA with
sampling over 40 � 1 ns trajectory runs are shown in Fig. 3. The
corresponding plots for MM/PBSA are shown in Fig. 4. The MM/
GBSA results show an overall strong correlation, with five of the
seven test sets achieving rs values above 0.6. The Pearson
correlation coefficient for set I, calculated with MM/GBSA, is
particularly impressive at rp = 0.95. However, it is perhaps
expected that the dataset with the widest range of experimental
affinities achieves the highest correlation. As experimental
affinities become more closely spaced, the task of ranking
ligands via computational means becomes more difficult, as
in the case of set V, which contains the most datapoints as well
as the narrowest range of experimental affinities. The precision
and rank-ordering capability of a particular method is deter-
mined by the inherent errors and uncertainties present within
the method. If differences between affinities is smaller than the
precision of the method, then erroneous performance may
result. This idea is discussed further below.

In contrast to MM/GBSA, MM/PBSA results (Fig. 4) are
somewhat mixed, with the degree of correlation varying

Fig. 3 Correlation (rp = Pearson, rS = Spearman) between experimentally measured binding affinities and MM/GBSA (40x1 ns trajectory run with e = 1)
calculated binding energies for various protein-ligand complexes (I) biotin-analogue avidin inhibitors, (II) benzothiazole-based ITK inhibitors, (III) CDK2
inhibitors, (IV) indazole-based ITK inhibitors, (V) sulfonylpyridine-based ITK inhibitors, (VI) Thrombin inhibitors, (VII) 4-aminopyridine benzamide-based
TYK2 inhibitors.
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between datasets. For MM/PBSA, the biotin-analogue avidin
inhibitors, set I, and the 4-aminopyridine benzamide-based
TYK2 inhibitors, set VII, achieve good correlation, with Pearson
coefficients of 0.86 and 0.66, respectively. Here again, the
dataset with the widest range of experimental affinities (set I)
achieves the highest correlation. Although set I and VII show
good correlation using MM/PBSA, the remainder of the datasets
display rather poor correlation, with rp values of 0.31, �0.11,
0.22, �0.19, and 0.43 for set II, III, IV, V, and VI, respectively.

It is perhaps counterintuitive that GBSA gives better overall
correlation than PBSA, given that the former is a more approx-
imate method. A few studies have also found cases for which
GBSA gives higher correlation with experiment than PBSA.9,80,81

In this context, it should be noted that the results of MM/
P(G)BSA calculations are dependent on parameter and protocol
choice. Several studies have explored the effect of varying
parameters.13,17,81 These studies often indicate that optimum
parameter and protocol choice may be system dependent. Since
we elected to follow a standardized protocol for all seven test
sets in this study,15 it is possible that parameter optimization
may improve results in some cases. A particularly relevant study
in 2013 showed that for an internal dielectric constant of 1
(e = 1), the GBSA method outperforms PBSA when it comes to

rank-ordering.82 However, setting e = 10 resulted in signifi-
cantly better rank-ordering for PBSA. In fact, even doubling e
led to a significant improvement in performance.

Given these results, we elected to run MM/PBSA calculations
for e = 4. Results are shown in Fig. 5. We saw a similar overall
improvement in correlation for PBSA when compared to results
for e = 1. The improvement was particularly noticeable for
complexes in set III that feature a charged binding pocket.
After the increase in e, PBSA results are on par with those
obtained using GBSA. Despite the improvement in PBSA
results, the 2013 study found that the improvement with higher
e was attributed to a dulled effect of the electrostatic contribu-
tion due to screening. Moreover, the authors found no correla-
tion between the electrostatic components of the experimental
free energy and the calculated free energy. We explored this
possibility for set III and had similar findings. Results are
shown in Fig. S16 (ESI†). The electrostatic part of the MM/PBSA
free energy for e = 4 was anticorrelated to the experimental free
energy, while the van der Waals term was well correlated.

An acknowledged deficiency of MM/P(G)BSA methods is the
large variation in per snapshot energies, which can lead to high
standard deviations—typically 5–40 kcal mol�1 for MM/GBSA if
a single trajectory is used for all three reactants.73 If one hopes

Fig. 4 Correlation (rp = Pearson, rS = Spearman) between experimentally measured binding affinities and MM/PBSA (40x1 ns trajectory run with e = 1)
calculated binding energies for various protein-ligand complexes (I) biotin-analogue avidin inhibitors, (II) benzothiazole-based ITK inhibitors, (III) CDK2
inhibitors, (IV) indazole-based ITK inhibitors, (V) sulfonylpyridine-based ITK inhibitors, (VI) Thrombin inhibitors, (VII) 4-aminopyridine benzamide-based
TYK2 inhibitors.
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to achieve statistically significant analyses, converged energies
are needed. Fig. 6 shows per snapshot binding energy distribu-
tions calculated using MM/PBSA over 40 � 1 ns trajectory
runs for the 4-aminopyridine benzamide-based TYK2 inhibitor
dataset (set VII), along with corresponding Gaussian fits.
Overall, the 1000 energies sampled for each protein-ligand
complex form a near Gaussian distribution with a standard

error (S. E., standard deviation divided by
ffiffiffiffiffiffiffiffiffiffi
1000

p
) below or near

B0.25 kcal mol�1, indicating the energies are sufficiently
converged. Per snapshot MM/PBSA energy distributions over
40 � 1 ns trajectory runs for the other six datasets can be found
in Fig. S10–S15 (ESI†). Expected near Gaussian distributions are
seen in all datasets with few exceptions.

Next, we make a direct comparison of MIM to the more
popular MM/P(G)BSA methods and determine the relative
performance of the three models when it comes to correctly
ranking binding free energies. Therefore, we have determined
the binding affinities of each of the seven datasets using our
MIM3 method. Fig. 7 displays the correlation between MIM3
calculated interaction energies and experimental affinities for
each of the seven tests sets. As mentioned earlier, the reported
MIM3 values include the gas-phase interaction energy along
with the contribution from ligand desolvation. The MIM3

method yields well correlated results for all seven datasets,
with Pearson coefficients ranging from 0.81 for the 4-
aminopyridine benzamide-based TYK2 inhibitors to 0.97 for
the indazole-based ITK inhibitors (Spearman rank-order coeffi-
cients of 0.84 and 0.92, respectively). Using MIM, the indazole-
based ITK inhibitors, set IV, achieve the best rp value of 0.97.
The MM/P(G)BSA methods deliver weaker overall correlation to
experiment when compared to MIM3. The difference in perfor-
mance between these methods is perhaps most obvious in the
case of the sulfonylpyridine-based ITK inhibitors, as its Pearson
correlation improves from 0.35, and B�0.2 for MM/GBSA and
MM/PBSA, respectively, to 0.86 for MIM3. While the absolute
interaction energies calculated by MIM3 are much larger than
their experimental counterparts, the overestimation of binding
strength is clearly systematic within a group of similar ligands,
as seen in the excellent correlation achieved by MIM3.

Fig. 8(a) shows a linear plot between experimental binding
energies and MIM3 calculated energies for all seven datasets
combined together instead of individually as in Fig. 7. Since
different datasets have different receptor binding sites, error
cancellation is expected to be poor across datasets. Indeed,
neglected receptor-specific effects, such as contributions to the
energy from configurational entropy, result in different linear

Fig. 5 Correlation (rp = Pearson, rS = Spearman) between experimentally measured binding affinities and MM/PBSA (40x1 ns trajectory run with e = 4)
calculated binding energies for various protein-ligand complexes (I) biotin-analogue avidin inhibitors, (II) benzothiazole-based ITK inhibitors, (III) CDK2
inhibitors, (IV) indazole-based ITK inhibitors, (V) sulfonylpyridine-based ITK inhibitors, (VI) thrombin inhibitors, (VII) 4-aminopyridine benzamide-based
TYK2 inhibitors.
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slopes for each dataset, leading to a poor overall fit in Fig. 8(a).
However, the complexes of set II, IV, and V, despite having
differing ligand scaffolds share a common receptor. Linear
trends for these three datasets are well matched, and so a
predictive model can be made, as seen in Fig. 8(b). Therefore,
MIM stands as a good candidate for lead optimization, where
the more relevant goal is to optimize an initial lead compound
for a particular receptor.

The resolution of a particular method is related to the
variability of the data. Methods which have low standard error
are considered more precise. Uncertainty estimates for MM/
P(G)BSA methods, which sample over multiple frames, are
given by the standard error, shown in Fig. 6 and Fig. S10–S15
(ESI†). In contrast, MIM starts from a single PDB-based geo-
metry and employs a well-defined protocol for structure pre-
paration and minimization. Therefore, aspects such as the
quality of the crystal structure and the flexibility around the
binding cavity will affect the resolution of the method. How-
ever, for a given dataset involving several ligands in a specific
binding site, a single energy-minimized receptor structure is
used in modelling. Our protocol guarantees that the overall
binding pose is close to the one found in the PDB crystal

structure. Thus, errors specific to a particular structure are
expected to be mostly systematic across a dataset. However,
such error cancellation is unlikely for comparisons across
different receptors, as evident in the differing linear trends in
Fig. 8(a).

It is important to determine whether the improved perfor-
mance of MIM is indeed due to the accuracy of QM methods
rather than the strategy of using single frames. Therefore, we
also performed MM/P(G)BSA calculations on single snapshots
for each complex in dataset II (benzothiazole-based inhibitors)
and dataset V (sulfonylpyridine-based ITK inhibitors). Dataset V
was specifically chosen as correlation between theory and
experiment for this set showed drastic improvement upon the
use of MIM3. For MM/P(G)BSA calculations, the minimized
structures used in the MD simulations were used as the single
frames. PBSA calculations were run with e = 4. While there is a
slight improvement in the correlations, the rp values (Pearson
rank-order coefficients) for MM/GBSA (0.31 and 0.61 for sets II
and V) and MM/PBSA (0.63 and 0.31) are substantially worse
than MIM3 (0.87 and 0.86). Results for these calculations are
shown in Fig. S17 and S18 (ESI†). Additionally, we performed
low-level PM6-D3 calculations on the 5 Å cutout used in the

Fig. 6 Per snapshot distribution of MM/PBSA (e = 1) energies in kcal mol�1 over the 40 � 1 ns trajectory runs for 4-aminopyridine benzamide-based
TYK2 inhibitors.
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MIM3 protocol, i.e., using the same geometry, protonation
states, system truncation and solvation models. Again, the rp
values for PM6-D3 (0.74 and 0.27) show that high-level methods
such as MIM3 are needed for an improved correlation. Thus,
MIM3 results outperform all methods, even in the single frame
case. Overall, these results suggest that while improvements
may be seen in individual cases by using single frames,

consistent high performance in predicting rank-orders is only
obtained by using a high-level QM method.

Overall, MIM3 offers the strongest correlation with experi-
ment among the three methods. The strength of correlation
achieved by the MIM3 method as compared to MM/P(G)BSA
methods demonstrates the advantages of QM potentials
when it comes to studying important interactions in the

Fig. 7 Correlation (rp = Pearson, rS = Spearman) between experimentally measured binding affinities and MIM3 calculated binding energies for various
protein-ligand complexes (I) biotin-analogue avidin inhibitors, (II) benzothiazole-based ITK inhibitors, (III) CDK2 inhibitors, (IV) indazole-based ITK
inhibitors, (V) sulfonylpyridine-based ITK inhibitors, (VI) Thrombin inhibitors, (VII) 4-aminopyridine benzamide-based TYK2 inhibitors.

Fig. 8 (a) Linear plots between experimentally measured binding affinities and MIM3 calculated binding energies for all seven datasets (b) linear plots
showing correlation for datasets involving the ITK receptor, i.e. (II) benzothiazole-based ITK inhibitors, indazole-based ITK inhibitors, (V) sulfonylpyridine-
based ITK inhibitors.
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protein–ligand complexes. Moreover, the MIM method calls for
a well-defined protocol, which makes it particularly attractive
for studying large datasets.

It is important to note that there are some significant differences
in the protocols used in our QM-based MIM model and MM-based
P(G)BSA models. A particularly noteworthy aspect is that excellent
performance is obtained with MIM3 despite our use of only a single
energy-minimized structure. We have found that by using a well-
resolved crystal structure as a template for a series of congeneric
ligands binding to a common receptor, high correlation with
experiment has been obtained by MIM, even without sampling.
This suggests that other factors such as conformational change or
entropy change are significantly conserved in our comparisons
between different ligands binding to the same receptor site. This
is fortunate since the use of a QM-based method such as MIM will
be computationally prohibitive to explore in conjunction with
extensive sampling. In this context, a few MM-based studies have
also explored the possibility of using a single energy-minimized
structure for the calculation of free energies. A 2008 study showed
that reasonable accuracy could be achieved for the calculation of
free energies of reactions in proteins using QM/MM-MMPBSA, even
when no sampling was performed.11 Similarly, a 2009 study showed
that using a single minimized protein–ligand structure in binding
free energy calculations resulted in accuracies similar to those
obtained after averaging over multiple MD snapshots.20 Further-
more, the authors found that the use of a single structure proved
effective and useful when applied to a virtual screening experiment.
It will be interesting to explore the validity of such ideas in future
work. Nevertheless, for a class of structurally similar ligands bound
to a common target receptor, a common scenario in lead optimiza-
tion, MIM is a promising option.

4. Computational efficiency of MIM

Reduction of computational cost is central to the MIM method. By
fragmenting the complex and treating the full low-level calculation
with semiempirical methods, the method achieves substantially
improved scaling. Parallelization of fragment calculations lends
added efficiency to MIM. The larger fragments in the middle layer
of the MIM3 fragmentation scheme are typically the bottleneck in
the calculations. As the size of the protein–ligand complex grows,
the ratio between fragment size and full system size shrinks,
revealing MIM’s true computational advantage. As an illustration,
for the first complex in dataset II at the B97D3/6-311++G(d,p) level,
the computational cost for the costliest fragment is 1.5% of the full
system high-level calculation. Nevertheless, MIM calculations are
still computationally demanding so that only single-point energy
evaluations on selected structures are feasible, as carried out in
this study.

5. Conclusions

In the context of drug discovery, the ability to quickly rank
binding strengths necessitates a method which is capable of
capturing the important physics of a problem at a reasonable

rate. By taking advantage of chemical fragmentation and QM
potentials, the MIM method is able to provide a physically
accurate description of electronic structure at a fraction of the
typical cost. Moreover, when applied to the problem of structu-
rally similar ligands bound to a common target receptor, the
MIM method proves extremely effective. In this study we test
our method against two popular endpoint methods for comput-
ing and ranking protein–ligand binding strengths, MM/PBSA
and MM/GBSA. In total, we have calculated binding energies for
nearly 100 chemically diverse ligands using the three methods
mentioned.

Overall, the MM/GBSA method gave results more closely
correlated with experiment than MM/PBSA. Most notably,
however, the MIM method outperforms both MM/GBSA and
MM/PBSA methods. MM/P(G)BSA methods involve extensive
sampling over a MD trajectory using MM methods, while the
MIM method uses QM potentials and considers only a single
energy-minimized structure. Because we limit our studies to a
set of structurally similar ligands bound to a common target
receptor, where conformational and entropic changes are
expected to be conserved, the use of a single energy-
minimized structure proves sufficient and yields good correla-
tion with experiment. To summarize, our results show the
advantage of using a well-defined QM-based protocol where
the computational cost is greatly reduced via molecular
fragmentation.
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