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The Mediator complex controls RNA polymerase Il (pol Il) activity by coordinating
the assembly of pol Il regulatory factors at transcription start sites and by mediat-
ing interactions between enhancer-bound transcription factors (TFs) and the pol Il
enzyme. Mediator structure and function is completely altered upon binding the
Mediator kinase module, a multi-subunit complex that contains CDK8 or its
vertebrate-specific paralog CDK19. Here, we review the mechanisms by which
the Mediator kinase module controls pol Il transcription, emphasizing its impact
on TF activity, pol Il elongation, enhancer function, and chromatin architecture.
We also highlight how the Mediator kinase module integrates signaling pathways
with transcription to enable rapid, stimulus-specific responses, as well as its links
to human disease.

Kinase module structure and Mediator interaction

The Mediator complex (see Glossary) is a genome-wide regulator of RNA pol Il transcription; con-
sequently, Mediator itself is targeted by an array of factors that regulate its function. For example,
sequence-specific, DNA-binding TFs bind Mediator and control its recruitment to specific genomic
loci. Also, the Mediator kinase module reversibly associates with Mediator (forming what we here
call CDK-Mediator) and regulates Mediator function in several ways. Conserved from yeast to
humans, the Mediator kinase module consists of four subunits: the CDK8 kinase, CCNC, MED12,
and MED13. However, vertebrates evolved subunit paralogs, called CDK19, MED12L, and
MED13L (Box 1), which expand the functional diversity of the kinase module in ways that remain
poorly defined. Not surprisingly, Mediator kinase module subunits are required for mammalian em-
bryogenesis [1-4] and are linked to myriad diseases (Box 2).

Although current structural data for the human Mediator kinase module consists only of the
CDK8-CCNC dimer [5], a cryogenic electron microscopy (cryoEM) structure of the yeast
(Saccharomyces cerevisiae) kinase module was recently determined by the Tsai lab [6]. This
structure provided the first high-resolution data for the large Med12 and Med13 subunits. Nota-
bly, Med12 was identified as a key structural component in the yeast Mediator kinase module.
The Med12 N terminus interacts with the Cdk8-Ccnc dimer and the Med12 C terminus interacts
with Med13 (Figure 1). The N terminus of human MED12 is mutated in a variety of cancers [7], with
mutations clustering around residues 36-44 (Table S1 in the supplemental information online).
Structural and functional data from Tsai and coworkers show that these residues occupy a
conserved activation helix in the yeast complex. This Med12 activation helix interacts with
Cdk8 and stabilizes an otherwise disordered Cdk8 kinase activation loop, which allows substrate
access to the active site [6]. Additionally, prior work from the Boyer lab showed reduced CDK8
or CDK19 kinase activity with MED12 oncogenic mutations in its N terminus [8,9], suggesting
that the structural model for Med12-dependent activation of yeast Cdk8 is likely conserved
in humans.
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Highlights
The Mediator kinase module transforms

Mediator function through physical inter-
action and its kinase activity.

The Mediator kinase module regulates
transcription by altering Mediator and
transcription factor function at enhancers
and promoters.

Rapid, stimulus-specific transcriptional
responses are enabled by the kinase
module.

By controlling stimulus-specific tran-
scription factor (TF) function and poly-
merase Il (pol I) activity, the Mediator
kinase module helps convert signaling
inputs to transcriptional outputs.
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While high-resolution structural details of the kinase module interaction with Mediator are not
available, the interaction requires MED13 [10,11]. The Cramer lab recently completed a
crosslinking-mass spectrometry analysis with yeast (S. cerevisiae) CDK-Mediator [12]. The data
suggest extensive interactions between the kinase module and Mediator, including evidence
for Med12 and/or Med13 interactions with Med19 and Med10, among other subunits. Med19
and Med10 reside in the hook domain of Mediator [13], which also represents a structural
interface between Mediator and the TFlIH-associated kinase module (see later).

In this review, we highlight some of the regulatory functions of the Mediator kinase module,
considering past data in the context of current results. We start by emphasizing how the Mediator
kinase module enables transcriptional responses to cell signaling cascades to help ‘reprogram’
gene expression patterns to changing conditions. We then discuss Mediator kinase module-
dependent regulation of pol Il function at different transcriptional stages (initiation, pausing,
elongation) and highlight new structural data that have clarified and expanded upon results
from biochemical and cell-based experiments. Finally, enhancers represent powerful genomic
regulatory elements that coordinate cell type- and stimulus-specific gene expression programs
and we outline how the Mediator kinase module may contribute to enhancer function, through
control of TF activity and enhancer-promoter looping. Throughout, we highlight areas in
which understanding remains limited and we conclude with open questions for future research.

Mediator kinase module connects cell signaling with transcription

TFs control pol Il function, genome-wide, through recruitment of Mediator, chromatin remodelers,
and other factors to specific genomic loci. In this way, TFs serve as ‘master regulators’ of
pre-initiation complex (PIC) assembly and function. Activation of signaling pathways
causes changes in TF phosphorylation that impact TF nuclear localization and/or TF activity on
chromatin (Figure 2). As examples: (i) interferon-induced phosphorylation of STAT TFs triggers
their nuclear localization to allow target gene activation, and (i) the ELK1 TF is phosphorylated
on chromatin during MAPK pathway activation, which enhances ELK1-dependent recruitment of
Mediator [14]. In each of these representative examples, TFs are the endpoints of signaling
cascades. Importantly, TFs are common targets of Mediator kinases (see later), yielding a direct
link to cell signaling.

Coordination between the Mediator kinase module and cell signaling is evident from ancient

and conserved links to metabolism. Signaling and metabolic pathways are integrated and
interdependent, such that altered signaling will trigger metabolic adaptation, and vice versa

Box 1. Vertebrate-specific paralogs of Mediator kinase module subunits
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Glossary

CDK-activating kinase (CAK)
module: module of the general
transcription factor TFIIH. Contains
CDK7, MNAT1, and CCNH.
CDK-Mediator: Mediator bound to the
Mediator kinase module (MKM); may
contain CDK8 or CDK19. Because the
Mediator subunit MED26 dissociates
upon MKM-Mediator binding, the
human CDK-Mediator complex contains
29 subunits.

CDK: cyclin-dependent kinase; a
member of the serine-threonine kinase
family.

Cytokine: a small signaling peptide,
produced during inflammatory
responses (for example).

Degron: a peptide sequence that
marks a protein for rapid degradation.
Enhancer-promoter loops: enhancer
elements are brought into spatial
proximity with promoters through
looping of intervening genomic DNA.
Enhancer RNA (eRNA): results from
pol Il transcription of enhancer DNA.
Mediator complex: a 26-subunit
assembly (in humans) that lacks the
Mediator kinase module (MKM).
Mediator kinase module: composed
of the CDK8/19, MED12/L, MED13/L,
and CCNC subunits in vertebrates.

Pol Il C-terminal domain: the
intrinsically disordered domain of the
largest subunit of pol Il, RPB1/POLR2A.
Pre-initiation complex (PIC): consists
of TFIIA, TFIIB, TFID, TFIE, TFIIF, TFIH,
Mediator, and pol Il.

Upstream activator sequence
(UAS): a cis-acting regulatory sequence
that enhances transcription from a
nearby promoter in yeast.

The Mediator kinase module is conserved among eukaryotes, but paralogs for CDK8, MED12, and MED13 emerged in vertebrates (Figure l). Each paralog is expressed
on different chromosomes and appears to be mutually exclusive within the kinase module [52]. Comparatively little is known about how these paralogs function, but

connections to human disease have been discovered (Table S1 in the supplemental information online).

CDK8 and CDK19 have the highest sequence identity among the kinase module paralogs and inhibitors invariably block both proteins. CDK8 and CDK19 show evidence of
redundant [109] and nonredundant [52] functions and each has been shown to regulate transcription in both kinase-dependent and -independent ways [25,87,109,117].

The MED12 protein is implicated in numerous X-linked diseases (Table S1 in the supplemental information onling) and is expressed on the X chromosome, whereas the
MED12L gene resides on chromosome 3. Interestingly, CDK8 function has been linked to Xist repression (CDK19 no effect) in mice [118]. MED12L shows more
restricted expression across tissues compared with MED12. Whereas MED12 is necessary for activation of Mediator kinase activity [8,81], it is unknown whether MED12L
activates CDK8/19 function. The sequence similarity between MED12 and MED12L in the N-terminal activation helix (Figure |) suggests a similar role in kinase activation.

One basic function for MED13 is to link the kinase module to the Mediator complex [10,11]. Notably, proteomics data suggest that kinase modules containing MED13L (instead of
MED13) maintain association with Mediator [39,119]. Moreover, both MED13 and MED13L are ubiquitylated by FBW?7, which initiates subunit dissociation and degradation [110].
Clinical data suggest similar, but not identical, biological roles for MED13 and MED13L (Table S1 in the supplemental information online).
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Figure I. Sequence conservation and domain structure of human Mediator kinase module subunits. Regions marked ‘disordered’ are predicted to be
intrinsically disordered and defined domains are individually labeled. Evolutionary conservation was calculated from 150 homologs of at least 35% identity, using
ConSurf [120]. Sequence identity between paralogs is noted.

(Figure 2) [15]. Whereas signaling cascades can impact metabolic flux by directly changing the
activity of metabolic enzymes (e.g., through phosphorylation), they modulate metabolic pathways
through transcriptional changes as well. For example, in model organisms such as S. cerevisiae,
Cdk8 coordinates metabolic changes in response to nutrients [16-18] via phosphorylation of TFs
that control expression of metabolic genes [19,20]. Similarly, CDK8 indirectly controls metabolism
in metazoans through modification of TFs. In mouse and human cells, CDK8 phosphorylates TFs
that are major regulators of cell metabolism, such as SREBP [21], Notch ICD [1,22], SMAD1/3
[23], and STAT1/3/5a [24]. These TFs are endpoints for the insulin, WNT/B-catenin, TGFf3, and
interferon signaling cascades, respectively. Importantly, CDK8-dependent phosphorylation
altered the stability [21-23] or the activity [25] of these TFs. In this way, Mediator kinases directly
regulate downstream transcriptional responses to signaling cascades.
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Box 2. Mediator kinase module and disease

Mutations in Mediator kinase module subunits cause disability and disease (Table S1 in the supplemental information
online), which can be broadly grouped into two categories: cancer or neurological/developmental disorders (reviewed in
[7]). In addition, a wide range of cancers are linked to altered expression of Mediator kinase module subunits, which are
summarized in recent reviews [121,122].

Three medically related intellectual/developmental syndromes have been linked to mutations in MED12: Opitz-Kaveggia, Lujan,
and Ohdo syndrome. Furthermore, mutations in the CDK8 or CDK19 kinase domains are associated with intellectual disorders
that exhibit comparable phenotypes to individuals with MED12 mutations (Table S1 in the supplemental information online).
Notably, whereas introduction of CDK19 could compensate for CDK8 deletion in Drosophila, mutant CDK19 associated with
human neurological disorders could not, resulting in seizures and reduced fitness in surviving flies [123]. Likewise, induced
expression of pathogenic human MED12 mutants in mice resulted in developmental defects [124]. These results suggest
conserved biological functions for disease-associated mutations in MED12 and CDK19.

Mutations in MED12 associated with nonmalignant uterine leiomyoma are among the most well-studied (Table S1 in the
supplemental information online) and cause changes in enhancer-promoter looping and chromatin architecture [79] and
negatively impact CDK8 or CDK19 activity [8,9]. Such functional defects are consistent with the role of the Mediator kinase
module in TF regulation and super-enhancer function [67,74,75].

Targeting Mediator kinase function for therapeutic benefit remains a work in progress, but novel strategies continue to
emerge. For example, the Firestein lab showed that bromodomain and extraterminal domain (BET) inhibitors (e.g., JQ1)
may complement CDK8 + CDK19 kinase inhibition in certain cancers [109]. Moreover, compensatory increases in
enhancer occupancy of MED12 and the BET protein BRD4 were observed in CDK8 + CDK19 double knockout cells
(HCT116 or DLD1), suggesting functional cooperativity between the Mediator kinase module and BRD4 [109], in
agreement with other studies [51,125].

The Espinosa lab has shown that CDK8 kinase activity controls expression of glycolysis genes
[26] and numerous signaling pathways converge on glycolysis because of its central role in cell
metabolism. For example, glycolytic intermediates can serve as building blocks for nucleic
acids (i.e., DNA and RNA), amino acids (proteins), and fatty acids (membranes), which are essen-
tial for cellular homeostasis or proliferation. In addition to CDK8, numerous labs have shown that
MED12 and MED13 impact metabolism. A common theme among these studies, completed
mainly in flies and mice using overexpression or knockdown/knockout methods, was that
MED12 or MED13 affects lipid biosynthesis and homeostasis [21,27-29]. Signaling cascades
that influence glycolysis and/or lipid biosynthesis include MAPK, interferon, and WNT/[3-
catenin; experiments in model organisms have linked Mediator kinase module subunits to
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Figure 1. Structural model of the yeast (Saccharomyces cerevisiae) Mediator kinase module [6]. Note the
MED12 N terminus (dark pink; at right) interacts with CDK8 and CCNC, whereas the MED12 C terminus (light pink)
interacts with MED13. High-resolution data for the human complex are lacking but can be expected to show similar
features. The subunit sequence similarity is 38%, 40%, 24%, and 22% for CDK8, CCNC, MED12, and MED13,
respectively; also, human MED12 and MED13 each contain about 750 additional amino acids compared with yeast
subunits. These additional amino acids are designated with semi-transparent ovals (right panel). PDB ID: 7KPX.
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Figure 2. The Mediator kinase module coordinates signaling inputs and transcriptional outputs. Signaling
pathways, such as MAPK, IFN, and WNT/[3-catenin, direct transcriptional responses through transcription factors (TFs);
TFs then recruit Mediator to enhancers and promoters to enable pre-initiation complex (PIC) assembly and activation of
polymerase Il (pol I) transcription. The Mediator kinase module (MKM) controls TF function through phosphorylation; upon
binding Mediator, the MKM blocks Mediator-pol Il interaction and therefore regulates PIC assembly. The MKM also
appears to influence pol Il pausing and elongation via its kinase activity and through physical association with the super
elongation complex (SEC). However, the molecular mechanisms remain unclear. Abbreviation: CTD, C-terminal domain.

WNT/[-catenin [4,30-32], interferon [24], and Ras/MAPK [30,33] pathways. Based upon these
and other results [34], the kinase module serves as an intermediary between cell signaling and
transcription, at least in part, by acting through TFs and/or Mediator (Figure 2).

CDK-Mediator and pol Il initiation, pausing, and elongation

Transcription initiation

The pol Il enzyme initiates transcription as part of the PIC (Figure 3), which assembles at transcrip-
tion start sites throughout the genome [35,36]. As a PIC factor, the Mediator complex is required
for pol Il transcription and Mediator serves as a conduit between promoter- and enhancer-bound
TFs and the pol Il enzyme. Mediator also controls the assembly and activity of other PIC factors,
including TFIIH and pol Il itself. For instance, biochemical and structural data have shown that
Mediator stimulates TFIIH-dependent phosphorylation of the pol Il C-terminal domain and
Mediator is required for TF-dependent activation of transcription [37,38]. These functions are
disrupted upon Mediator binding to the kinase module, as it blocks pol Il assembly into the
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PIC, as shown by biochemical [10,39] and structural data [6,11,12]. That is, kinase module
binding to Mediator is mutually exclusive with pol Il. The interaction between Mediator and the
kinase module is dependent on MED13 [10,11], based upon biochemical and structural data;
however, the Robert lab has shown that, in yeast (S. cerevisiae), Cdk8 kinase activity may also
regulate the interaction [40]. Recent cryoEM data of the human PIC also suggest that kinase
module-Mediator binding is mutually exclusive with TFIIH [41-43], as depicted schematically in
Figure 3. Consequently, CDK-Mediator can block PIC assembly to prevent transcription initiation.

Pol Il pausing

The Mediator kinase module can also positively impact pol Il transcription. How does this occur?
Whereas the mechanisms remain incompletely understood, it is evident that the Mediator kinase
module can regulate post-initiation events, which we define here as occurring after pol Il initiates
transcription, breaks contacts with the PIC, and ‘escapes’ the promoter. Following promoter
escape, pol Il typically pauses after generating a 20-80 nucleotide transcript [44]. This paused
intermediate represents a key regulatory step in which pol Il can either continue to transcribe
(pause release) or terminate transcription (promoter-proximal termination). Pausing is controlled
by many factors, including NELF and TFIID [44,45]; whereas premature termination is less well-
studied, it appears to be regulated in part by SETX and XRN2 [46,47] (Figure 4). Mediator kinases
phosphorylate NELF, TFIID, SETX, and XRN2 in human cells [48], suggesting mechanisms by
which CDK8 and/or CDK19 may regulate promoter-proximal pausing or termination. In support,
Mediator kinase inhibition increased pol Il pausing in the context of IFNy stimulation and this
activity was linked exclusively to CDK8, not CDK19 [25].

Pol Il elongation

Release of pol Il pausing is controlled in part by the CDK9 kinase [49], which functions within a
two-subunit P-TEFb complex or as part of the larger super elongation complex (SEC) [50].
Proteomics experiments revealed that the CDK-Mediator complex, but not Mediator itself,
physically interacts with P-TEFb/SEC [39], and functional cooperativity among the Mediator
kinase module and P-TEFb has been observed in response to a variety of stimuli [51,52].
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Figure 4. Speculative models for Mediator kinase module (MKM) regulation of enhancer function and polymerase Il (pol Il) transcription. (A) CDK-Mediator
may prime enhancers for future activation [98] by regulating the activity of enhancer-bound transcription factors (TFs) and nearby chromatin modifying or remodeling
complexes, through phosphorylation [48]. (B) CDK8/CDK19 phosphorylation of Mediator may promote MKM dissociation [12], to promote Mediator-dependent
enhancer-promoter looping, pre-initiation complex (PIC) assembly, and pol Il transcription initiation. Mediator kinase activity activates enhancer RNA (eRNA)
transcription at enhancers [25] and the MKM may remain associated with the enhancer through interactions with TFs [94] or eRNA transcripts [95]. (C) This could
position the MKM for downstream phosphorylation events (e.g., to regulate pause release or elongation) without requiring association with PIC-bound Mediator.
Transcriptional bursting [115] may be favored through formation of transcriptional condensates [116] (green shading) that may compartmentalize initiation factors,
including multiple pol Il enzymes for rapid reinitiation following pause release. Premature termination can also occur at promoter-proximal sites, regulated in part by
XRN2 and SETX [46,47]. The SEC, NELF, XRN2, SETX, are each phosphorylated by the MKM [48]. (D) Rebinding of the MKM to Mediator will block PIC assembly and
inhibit further transcription initiation [10], which may serve as a means to shut off transcription and disassemble the PIC. Reassembly of the PIC could occur over time,
to initiate transcription from the promoter once again. Abbreviations: CAK, CDK activating kinase module (CDK7, CCNH, MNAT1), part of TFIIH; CTD, C-terminal
domain; lIA, TFIIA; 1B, TFIIB; 1D, TFIID; IIE, TFIE; IIF, TFIF; IIH, TFIIH; TBP, TATA binding protein.

CDK9 and the Mediator kinases target some of the same proteins (e.g., NELFA, XRN2) [48,53,54]
and structural data for the human PIC suggest that the Mediator kinase module would orient
downstream of the transcription start site [41-43], toward CDK9/SEC, at promoter-proximal
pause sites upon Mediator binding (Figures 3 and 4). Given the evidence for functional
cooperativity, we speculate that CDK8/CDK19 and CDK9 may coregulate each other, similar
to CDK7-dependent regulation of CDK9 activity [55]. In this way, Mediator kinases could also
indirectly regulate pol Il pause release and elongation through CDK9/SEC.

The Mediator kinase module and enhancer function

Enhancers are one of the most fundamentally important regulators of pol Il transcription in
mammalian cells [56], but precisely how enhancers function remains incompletely understood.
What is understood, however, is that enhancer function is dependent on TF binding and TFs
mediate their biological functions in large part through enhancers. Enhancers are sequences of
genomic DNA that contain clustered TF binding sites and can control pol Il transcription at

320 Trends in Biochemical Sciences, April 2022, Vol. 47, No. 4


Image of Figure 4
CellPress logo

Trends in Biochemical Sciences

promoter regions that may be separated by tens of kilobases (or more) of genomic DNA. Active
enhancers will have bound TFs and are typically bidirectionally transcribed by pol Il. These bidirec-
tional transcripts, called enhancer RNAs (eRNAs), are capped but unstable and their regulatory
roles remain unclear (but see later). Enhancer-bound TFs mediate their function through recruitment
of chromatin remodelers, coactivators such as CBP/p300, and through interaction with promoter-
bound PICs (Figure 4). The enhancer-PIC interaction may occur primarily through TF-Mediator-
pol Il binding, but this remains controversial (see later).

Enhancer sequences are commonly mutated in human diseases [57,58] and enhancers drive cell
differentiation programs to establish lineage-specific transcription [59-61]. Thus, enhancers are
cell type-specific [60,62,63]. Within the past decade, different types of enhancers have been
identified: so-called ‘typical’ enhancers activate sets of genes at moderate levels, whereas
‘super-enhancers’ drive high-level gene expression [64]. Super-enhancers are also distinguished
by their large size (encompassing a few to perhaps several dozen kilobases) and their high-level
occupancy of TFs, Mediator, pol Il, and other factors [63,65]. Several labs have linked Mediator
kinase module components to super-enhancer function [66,67] and, like Mediator, genomic
occupancy of kinase module subunits serves as a marker for super-enhancers in human cells
[68]. The Mediator kinase module regulates enhancer function in several ways, which are summa-
rized next.

Control of TF activity

Mediator kinases directly impact enhancer function through phosphorylation of TFs, which can
alter TF function or stability. TFs represent a major category of proteins that are modified by
Mediator kinases in human cells [48], suggesting that CDK8/CDK19 evolved to modulate TF
activity. In support of this idea, the CDK8 ortholog in yeast appears to function primarily through
TF phosphorylation [19,20,69]. Whereas the functional consequences of most CDK8/CDK19-
dependent TF phosphorylation events remain unknown in mammalian cells [48,70], those that
have been studied include Notch ICD [22,34], SMAD1/3 [23], and STAT1 [24]. In these cases,
TF phosphorylation altered its activity (i.e., target gene expression patterns) and/or stability.
Additional direct evidence for Mediator kinases regulating of TF function was obtained through
the use of CDK8/CDK19 inhibitors [25,71,72] and through chemical genetics, with an engineered
CDK8 analog-sensitive cell line [73].

The development and discovery of Mediator kinase inhibitors has yielded additional insight about
the biological roles of CDK8 and CDK19. The Shair lab showed that inhibition of Mediator kinase
activity further activated genes regulated by super-enhancers in acute myeloid leukemia (AML)
cells [74]. This caused apoptosis and the cytotoxic effect was linked to Mediator kinase activity
specifically, as inhibitor-resistant mutations in CDK8 or CDK19 rescued cell death. A more recent
study by the Serrano lab also implicated Mediator kinase inhibition as a means to further activate
super-enhancer target genes; in this case, mouse and human embryonic stem (ES) cells were
examined [75]. Given that super-enhancers represent high-occupancy sites for TF binding [64],
these data are consistent with Mediator kinase-dependent control of TF function.

Cell type and context specificity of Mediator kinase function has been widely reported [52,74,76]
and likely derives from cell type- and context-specific TF requirements. For example, select TFs
are required to maintain pluripotency and if a subset of these TFs require Mediator kinases for
normal function, cell state will be disrupted upon kinase inhibition. In AML cells, Mediator kinase
inhibition triggered apoptosis through induction of differentiation programs, in part through
disruption of STAT1 TF function [72]. Similarly, Moraga et al. observed that Mediator kinase inhi-
bition induced differentiation in IL-6-stimulated Th-17 cells, and this occurred via STAT3 [71],
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whereas Sakaguchi et al. reported that differentiation of regulatory T cells was induced by Mediator
kinase inhibition, acting in part through TFs FOXP3 and STAT5 [77]. Consistent with these
findings, earlier results from Firestein and coworkers, using mouse xenografts derived from
human tumors, showed that CDK8 helped maintain human tumor cells in a pluripotent state
[78] and CDK8 knockdown [via short hairpin (sh)RNA] caused differentiation. Interestingly,
this CDK8-dependent effect was observed in tumors with amplification or overexpression of
CDKB8. By contrast, a groundbreaking study by Serrano and coworkers showed that Mediator
kinase inhibition prevented differentiation in mouse and human ES cells; moreover, similar
results were obtained upon depletion of CDK8 or CDK19 via shRNA methods [75]. These con-
tradictory findings probably reflect different cell types and contexts (e.g., AML versus ES cells,
tumor xenografts versus cultured cells), which will maintain different expression levels of TFs
and other transcriptional regulators. Indeed, additional xenograft models tested by Firestein
and coworkers showed that those derived from cells with lower CDK8 expression maintained
hallmarks of pluripotency even after CDK8 depletion [78], showing that CDK8 dependence was
cell type-specific.

MED12 also appears to control enhancer activation through TFs. A subset of uterine leiomyomas
is caused by mutations in MED12; in these cells, expression and enhancer occupancy of AP-1
TFs was markedly reduced [79]. Similarly, the Egly group observed that MED12 mutations corre-
lated with reduced expression of AP-1 subunits in neurons [80]. Because MED12 activates
CDKB8/CDK19 kinase function [8,81], these results could manifest through CDK8 and/or
CDK19. Indeed, the Espinosa lab has shown that CDK8 drives expression of AP-1 TFs in
HCT116 cells [51]. If the link between expression of AP-1 subunits and Mediator kinase module
function is shared across cell types, it could help explain many phenotypes associated with
Mediator kinase module inhibition or mutation. For example, proliferation [26,31,51], drug resis-
tance [33,82], and cell migration [83,84] are each linked to the Mediator kinase module and
each is impacted by AP-1 TFs [85,86].

Enabling rapid stimulus-specific transcriptional responses

Also consistent with a role in enhancer function, Mediator kinase activity is important for directing
rapid changes in gene expression patterns (e.g., in response to a stimulus). For example, disruption
of CDK8 and/or CDK19 function negatively affects transcriptional responses to p53 activation
[87,88], serum [51], hypoxia [52,73], or inflammatory cytokines [25,89,90]. An extracellular
stimulus willimmediately activate signaling cascades (e.g., MAPK activation upon serum induction),
which will ultimately coordinate transcriptional responses in the nucleus.

Stimulus-specific changes in gene expression patterns are first observed at enhancers [91],
typically within minutes of a stimulus. Newly activated enhancers can be detected through pol Il-
dependent induction of eRNA transcription and eRNA transcripts can then be mapped to consen-
sus TF sequences at the active enhancers [92]. Analysis of eRNA transcription immediately follow-
ing IFNy stimulation revealed that TFs responsive to IFNy (e.g., STAT1, IRF1) failed to induce eRNA
transcription in cells treated with the CDK8/19 inhibitor cortistatin A. Accordingly, induction of inter-
feron responsive genes was defective, which resulted in an increased sensitivity to viral infection
[25]. Because STAT1 is phosphorylated by CDK8 [24,48], these and other results [73] establish
a direct role for Mediator kinase-dependent regulation of enhancer function and suggest that
kinase-dependent transcriptional effects may be broadly mediated through enhancer-bound
TFs. Because enhancer-bound, signal-responsive TFs recruit Mediator to activate stimulus-
specific target genes, this ensures coincident changes in CDK8 or CDK19 genomic occupancy,
through kinase module-Mediator interactions. In this way, CDK8 or CDK19 substrate specificity
can rapidly shift in coordination with cell signaling cascades.
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Enhancer-promoter looping

The Mediator complex is recruited to enhancers genome-wide [63] through direct protein—protein
interactions with TFs. The kinase module forms a stable complex with Mediator [10,11], through
interactions dependent on the MED13 subunit. Through its interaction with Mediator, the
kinase module can likewise occupy enhancer regions genome-wide [74,93]; however, direct
binding to TFs [94] or eRNA [95] may also help retain the kinase module at enhancer sequences
(see later).

Mediator is a large complex (human Mediator: 26 subunits, 1.4 MDa) that can simultaneously
interact with TFs and the pol Il enzyme [41-43]. In mammalian cells, Mediator also interacts
with cohesin [39], which can form cell type-specific chromatin loops that may help juxtapose
enhancers and promoters [93,96,97]. By studying mouse ES cells, the Klose lab has shown
that the CpG DNA-binding protein FBXL19 acts to link enhancer-bound CDK-Mediator to
CpG-rich promoters [98]. Because CDK-Mediator blocks Mediator-pol Il interactions [10], this
link does not immediately activate transcription. Rather, enhancer-promoter loops formed
through FBXL19 and CDK-Mediator appear to ‘bookmark’ genes for future activation during
mouse ES cell differentiation. Incidentally, conserved signaling pathways govern cell differentia-
tion and therefore this bookmarking function may represent a distinct mechanism by which the
Mediator kinase module controls transcriptional responses to signaling cascades.

The results from the Klose lab are related to findings from the Brickner group, which studied
stimulus-specific transcriptional responses as a function of human CDKS or its yeast ortholog
[99]. Upon re-introduction of a stimulus, human or yeast cells depleted of CDK8 had diminished
transcriptional responses, suggesting a similar ‘bookmarking’ function. The precise mechanisms
remain unclear but may involve formation of enhancer-promoter loops, as suggested by the
FBXL19 results [98]. Other results from yeast support a role for the Mediator kinase module in
the formation of looped architectures at promoter DNA. However, yeast have compact genomes
compared with mammals and lack enhancers; instead, yeast have upstream activator
sequences (UAS) that reside 200-400 bp upstream of the transcription start site. The Struhl
and Robert labs showed that the yeast (S. cerevisiae) Mediator kinase module associated
with the UAS but not promoters [100,101]. By contrast, Mediator itself was observed to
interact with both the UAS and promoter regions, suggesting that the kinase module helps
bridge UAS-promoter interactions through the Mediator complex [100,101]. Although it
remains unclear how the kinase module-Mediator interaction is controlled in yeast, data from
the Robert [40] and Cramer labs [12] suggest that phosphorylation by the Cdk8 kinase may
promote dissociation.

In human cells, the Shiekhattar lab showed that the CDK-Mediator complex, and MED12 in
particular, was important for the formation of enhancer-promoter loops and that looped interac-
tions may be mediated in part through eRNAs [95]. Subsequently, others have linked MED12 to
control of enhancer function, with evidence of eRNA binding. By studying estrogen-responsive
enhancers in MCF7 cells, Liu and colleagues observed that ERa-induced eRNA transcription
was sensitive to JIMJD6, which mediated interaction between the CARM1 methyltransferase
and MED12 at active enhancers [102]. Subsequent studies revealed a CARM1-dependent
RNA binding function for MED12 [103]. Others have reported MED12-dependent maintenance
of p300 and H3K27 acetylation at enhancers in hematopoietic stem cells [66] or MED12-
dependent looping at the IgH locus during class switch recombination [104]. Estrogen receptor
activation and class switch recombination occur in response to MAPK and inflammatory signaling
pathways, respectively; these studies suggest that MED12 may help establish enhancer-
promoter loops to ensure robust transcriptional responses to these signaling cascades.
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We emphasize, however, that the role of Mediator or CDK-Mediator in formation of enhancer-
promoter loops remains unclear and controversial [105]. Because enhancer-promoter looping
is transient and varies from cell-to-cell [106], population-based methods such as 3C or Hi-C
are limited in their ability to resolve stimulus-specific or Mediator-dependent architectural
changes. Live cell imaging experiments currently lack the spatial resolution required to confirm
direct enhancer-promoter loops [107]. Based upon structural data of the human PIC [41-43],
direct enhancer-promoter-PIC interaction may separate these sequences by 20-40 nm, which
is beyond current resolution limits for fluorescence microscopy [108]. Moreover, live cell imaging
requires signal averaging over time, which may preclude detection of transient enhancer-
promoter interactions [107]. Nevertheless, chromosome conformation methods and live
cell imaging experiments have markedly advanced our understanding of pol Il transcription in
cells and we anticipate that methodological improvements will yield new discoveries about
enhancer-promoter dynamics and potential CDK-Mediator-dependent regulation.

Concluding remarks

Given its role in connecting cell signaling with transcription, the Mediator kinase module serves as
a regulatory node through which changes in gene expression patterns can be initiated. Through
kinase-dependent mechanisms, CDK8 and/or CDK19 regulate TF function to help ‘reprogram’
gene expression patterns in response to a stimulus or developmental cues. The Mediator kinase
module also functions in kinase-independent ways, through Mediator binding, which blocks
Mediator-pol Il interaction yet appears to promote post-initiation events, such as pol Il pause
release or elongation. The complexity of the pol Il transcription machinery and cell signaling
networks presents many opportunities for new discoveries, but also many challenges. Cell
type and cell context (e.g., oxidative stress or growth factor induction) will remain important
considerations in future work, as the set of active TFs will change in each case. Because disrup-
tion of the Mediator kinase module will broadly impact transcriptional programs [109], rapid
methods to manipulate activity, such as degrons or chemical inhibitors, will be essential for
delineating direct versus indirect effects. Biochemical and structural data will also continue to
inform about molecular mechanisms, which are otherwise difficult to reliably assess with only
cell-based or in vivo assays. Many questions remain to be addressed regarding the biological
functions and mechanisms of the Mediator kinase module (see Outstanding questions).
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property of TFs and Mediator [116]
and formation of condensates
may help control pol Il transcription
by compartmentalization of distinct
transcriptional stages (e.g., initiation
versus elongation). It is currently
unknown whether the Mediator ki-
nase module influences gene ex-
pression via condensate-dependent
mechanisms.
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