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Long-Term Trajectory Prediction of the Human Hand
and Duration Estimation of the Human Action

Yujiao Cheng

Abstract—In the framework of human-robot collaborative as-
sembly, it is important to predict the long-term human hand tra-
jectory for collision avoidance and to estimate the durations of
the human actions for collaborative task planning. Many existing
works predict long-term human trajectory by a preset time horizon,
while in this letter, our prediction horizon depends on how far in the
future we could predict the human’s actions. To be more specific,
we predict the human trajectory and estimate the durations for
the human’s current action and future actions. To address this
problem, we propose a recognition-then-prediction framework.
First, we present a hierarchical recognition algorithm to infer the
human intentions for the current action and the future actions.
Next, we propose to use the sigma-lognormal function to model and
predict the human movement, and from this model we estimate the
action durations. To accommodate different human behaviors, we
also propose an online algorithm to adapt the movement model by
using the observed trajectory, the human intentions and the scene
layout. The effectiveness of the proposed framework is supported
by experimental validations on the human trajectory data for
conducting a computer assembly task.

Index Terms—Industrial robots, human-centered robotics,
assembly, trajectory prediction.

1. INTRODUCTION

OBOTIC systems are increasingly integrated into human

workspace for collaborative tasks, which brings one im-
portant challenge as prediction. It is difficult to make accurate
predictions of the human movement due to the nonlinearity and
stochasticity of the human behavior and the variety of its external
and internal stimuli [1]. However, for the human workers in the
assembly line, their movement behavior is mainly driven by
the task goals and the layout of the parts, and it is possible to
make good predictions using such contextual information. For
example, as shown in Fig. 1(a), the human worker is assembling
a desktop computer. By using the worker’s hand trajectory, task
information and the layout of the parts, we can infer that the hu-
man is going to reach the CPU fan, and we can also anticipate that
the human will obtain the CPU fan and install it in the computer
case. Therefore, the human’s hand trajectory can be predicted
in the long term, not only for the current action (reaching for
the CPU fan), but also for the predicted actions (obtaining the
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CPU fan and installing the CPU fan). Besides, from the trajectory
prediction, we can also estimate the action duration, which is the
time required to complete an action. Therefore, in this letter, we
study the following problem: predict the human hand trajectory
and estimate the durations for the human’s current action and
[future actions with the knowledge of historic trajectory, the task
information and the scene context.

Active research explores techniques for human intent recog-
nition and trajectory prediction. For intent recognition, many
works focus on deep learning frameworks with RGBD images
as inputs [2]-[4]. Typically, the features selected mainly focus
on human, for instance, the body pose, hand positions and
histogram of oriented gradients (HOG). No information about
the objects of interaction are included. However, the objects can
provide rich information for inferring what the human is doing
via the intrinsic hierarchy among actions, motion types and the
objects. Hence, in this letter, we explore such hierarchy to design
more robust intent recognition algorithm. For trajectory predic-
tion, two categories of approaches are proposed: 1) learning-
based approaches such as recurrent neural networks (RNNs) [5],
inverse reinforcement learning [6] and semi-adaptable neural
network [7], and 2) model-based approaches such as social
force model [8] and minimum jerk model [9]. We are interested
in developing model-based methods for their intuitive physical
meanings and data efficiency property, and we propose to use
sigma-lognormal equations to model the human kinematics. To
the best of our knowledge, it is the first time that this model
is applied to the human-robot collaborative field. Besides, most
works predict the trajectory by a preset horizon, while our pre-
diction horizon is not fixed and it depends on how far in the future
we could predict the human’s actions, which is the longest pre-
diction horizon given the results of the human intent recognition.

We propose to use a recognition-then-prediction framework.
For the recognition, the goal is to recognize the human inten-
tions for the current action and the future actions. We apply a
hierarchical approach as in [10], and we improve the method
by utilizing the task information. We propose to use a sigma-
lognormal function to model and predict the human’s velocity
profile. The parameters of this model are trained offline, and
we propose an adaptive algorithm to change the parameters
online to suit different human behaviors. The prediction of the
trajectory and the action duration estimation are both based
on this model. Experiments validate the effectiveness of the
proposed framework and demonstrate the superiority of our
prediction method over other four baseline methods in terms
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(a) Long-term human hand trajectory prediction. With the observed trajectory, task information and the layout of the parts, the trajectory of the human

hand is predicted over the horizon of the current action and the predicted actions. (b) The framework for the long-term human hand trajectory prediction.

of the trajectory prediction accuracy and the duration estima-
tion accuracy. Besides, experimental results also show that our
adaptation algorithm can quickly adapt the model to the human
movement with the same motion type but with different starting
and ending points.

The key contributions of this letter are:

® We propose a framework to make long-term human hand

trajectory prediction and action duration estimation.

® We improve the intent recognition method in [10] by addi-

tionally utilizing task information.

® We propose to use the sigma-lognormal function to model

and predict the human movement, and we propose an online
algorithm for the model adaptation.

® We conduct experiments to validate the effectiveness of

our proposed recognition-then-prediction framework and
the effectiveness of the trajectory prediction method.

The rest of the letter is organized as follows. Section II
demonstrates the proposed framework. Section III proposes the
algorithm for human intent recognition, and Section I'V proposes
the algorithm for trajectory prediction and duration estimation.
In Section V, experiments are included. Finally, Section VI
discusses some results and Section VII concludes the letter.

II. FRAMEWORK

Our goal is to predict the human hand trajectory over the
horizon of the human’s current intended action and the human’s
future actions. The terminologies we used in this letter are
defined as follows:

® Trajectory: a time series of the joint positions of an agent

(a human) in Cartesian space (3D). It represents the con-
tinuous movements of an agent.

® Motion Type: A discrete variable/label to represent differ-

ent types/patterns of trajectories. For instance, typical mo-
tions in factory scenarios include “Reaching,” “obtaining™

and “Installing™.
® Action: A paired discrete variable/label including a
motion type and the target object to act on, ie.,

action={ motion type, target}. For example, we can define
“action 1={Reaching, a CPU fan}”.

® Plan: A plan is comprised of a sequence of ordered actions.
It represents the preferences to finish a fask (defined below),
and we also use intent to indicate a human’s plan in this
letter.

® Task: A task represents the work to be conducted by agents.

It specifies the initial states, the goal states and the partic-
ipants.

The pipeline of the proposed approach is schematically illus-
trated in Fig. 1(b). Three aspects are addressed in this frame-
work: (i) obtaining the human pose from the sensor input, (ii)
recognizing the human’s current action and predicting the future
actions, a.k.a. human intent recognition, and (iii) predicting the
trajectory over those actions and estimating the action durations.
In the following, we first introduce the method of human intent
recognition, and then we propose an approach to estimating the
durations and predicting the trajectories over the current and the
future actions.

ITII. HUMAN INTENT RECOGNITION

The purpose of human intent recognition is to discover what
the human’s intended action at the moment is and what the
human’s future actions can be. To do this, first, we need to rec-
ognize the human’s current action, which is a combination of the
motion type recognition and the target estimation according to
the definition of an action. Second, based on the task information
and the sequence of actions that the human conducts, we infer
human’s plan and predict the future actions.

A. Motion Type Recognition

Motion type classification aims to categorize different mo-
tions given the task information and the trajectories of the
human hand. The recognizer applies a two-step methodology:
(i) classifying the trajectories to different motion types using
a long-short-term-memory (LSTM) neural network, which has
been extensively proved to be an effective approach to model the
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dynamics and dependencies in sequential data, and (ii) scaling
the probability output of the motion classification by a coefficient
vector which is obtained based on the task information. The
output of the first step is P(my, =1 | Xgg:,),0 = 1,2, ..., gy,
the probability of the motion type m being i at time f; given
a series of the hand positions x from £q to tz, where n,, is the
number of motion types. More details can be found in [10]. The
second step is a scaling step that weights the output of classifier
in the first step, and we will elaborate on it in the following.

The introduction of the scaling step consists in weighting the
LSTM probabilities with respect to the soundness of the action
transition in a task. The intuition is that when an action is in
progress, the motion type stays the same, while when the action
is finished and the human continues to do the next action, the
motion type will transition to the motion type of the next action.
In this sense, we define the i-th component of the coefficient
vector ¢, € R™™ at time ¢, as:

ey (i) = P (me, =1 | argity )

Tq
:Zp(mtk = i"la'to:tk_IBQ)! 1= ]..,2,....,Rm

g=1
1-o _ -
lTi My, =My, =1
o _ —a —_ I —
P(mtk - Elatoitk_laQ) - 3 0 Mgy, = Mg =1
a, otherwise
where ¢ = 1,2, ..., ng indicates different plans that the human

might follow for the task, o is a very small number, a;,.¢, , is the
action history from time £ to t;_1, and mf;,l is the next motion
type predicted from the last time step t;_; for the plan being g,
the computation of which is described in Section III-C. For any
plan, the human either continues to conduct the previous motion
type or switches to the next motion type in the plan after the
previous action is finished. The chances that the human gives up
the current plan and changes to another are slim. Thus, we assign
o with a very small number to the probability that the human
changes the plan, and we make equal the possibilities that the
human continues doing the previous motion type or the human
conducts the next motion type that is predicted by the previous
time step for the plan being q.

Finally, the motion type is identified by the following equa-
tion:

mg, = argmax

ie{l,2,....nm}

ce. (1) - P(my, =1 | Xegety) -

B. Target Estimation

The goal of the target estimation is to estimate the object of
interaction or the target point o;, at time ¢; given the classified
motion labels m;,.;, and a series of observed human hand
positions X, ¢, .

We propose to estimate the target by the following equation:

oy, = argmax & (1) - P (Xt [Xeortp 150t = 5, Mty)

ie{1,2,...,n,}
where P(X;, |X¢y:¢, 501, = %, My, ) is the likelihood of the cur-
rent human hand position given the past trajectory X ., , and
the current action {my, , o, = i}, and &, (i) is the coefficient to

scale the likelihood. The motivation of introducing the likelihood
is that we want to take advantage of the hand trajectory, since the
human’s action determines the hand trajectory, and vice versa
the hand trajectory carries information about the human’s action.
The motivation of using the scaling factor is that we want to take
advantage of the action history similar to that in Section III-A,
which will be detailed in the following.

First, to compute the likelihood, we formulate the probability
as a Boltzmann policy, which is widely used in many applica-
tions [10], [11]:

P(X3k|xtuitk—110tk = i:mtk) X

€Xp (Vg (th;xtoitk—liotk = 3‘3 mtk)) 3 1= ]-a 2: EEETR L)

where n, is the number of targets and Vj is the value function
as in [10], which assumes that humans are optimizing different
value functions for taking different actions.

Second, we define the i-th component of the coefficient vector
€;, € R" attime #;, as:

e (i) = P (ot =1 | atoity )

g
= Z P(Otk = 3‘|atu=3k_1': Q): 1= 11 2: BERR L)
g=1

%a Oy, =01, , =1
P(or, = ilag,:e, ,,q) = =

7

1
; Ot =0y =1
otherwise

where o is the predicted next target from the last time step #_1
for the plan being g, the computation of which is also deferred
in Section III-C.

C. Action Recognition and Prediction

In[10], the dynamic time warping algorithm is applied to align
the observed action sequence ay,., With the template action
sequences for each plan. The human’s plan g* is recognized
with the minimum alignment distance, and a;, is updated by the
posterior action correction through the alignment results. The
future action vector for any plan g is a; € R"P, where np is
the number of the sequential actions after a;,.;, for plan g, and
my oy, can be retrieved from aj,. my; and of; in Section III-A
and III-B are the values of the first components for m; and o],
respectively. The future action vector a:r for plan ¢* is the best
prediction for the future human actions.

IV. HUMAN TRAJECTORY PREDICTION

This section explains how we predict the trajectory and esti-
mate the duration. We model human movements for each action
in the task as the sigma-lognormal equations, and offline learn
the parameters from the training data. Online, the model param-
eters are adapted every time when the measured data comes. We
propose an adaptation algorithm, which utilizes the knowledge
of the human intention and the target location. Finally, we predict
the trajectory by using the updated model and we estimate the
duration by the stable zero crossing point of the velocity profile
with some threshold.
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A. Sigma-Lognormal Model

Many human movement models have been proposed based
on various techniques such as neural networks [12], minimiza-
tion principals [9], and kinematic theories [13]. Among them,
the kinematic theory and its sigma-lognormal model explain
most of the basic phenomena on human motor control [13],
and it is proved that it is ideal for describing the impulse
response of a neuromuscular network which is composed of
some subsystems controlling the velocity of a movement [13].
It achieves many success in applications like signature verifi-
cation [14] and handwriting learning [15]. We now apply it
to the human-robot collaboration field, which, to the best of
our knowledge, is the first application. The model takes the
following form:

N N
\'}(t) = Z ‘)\rl(t) = ZDi(t)Ai (t: tUi: ,U.,;.,O'?) ;N 2 3:
i=1

i=1

A (t; tos, Hi C’?)

= 1 . — (In(t — to;) — pa)”
Coi/2m(t— tOi)ejp ( 202 ) M

where V() is the velocity of the human hand at time ¢, and
A(t, to, 1, 0?) is a lognormal distribution with the time shift
tp, the expected value of the #’s natural logarithm g and the
standard deviation of the ¢’s natural logarithm o. The veloc-
ity v(¢) is composed of N lognormal distributions A;, each
scaled by variable D;,7 =1,...,N. Since human’s hand is
moving in three dimensions, the number of lognormal distri-
bution N is equal to or larger than 3. For example, simple
reaching or pointing gestures require three weighted lognormals
to describe the speed profile. More complex trajectories require
more lognormals.

An empirical way of deciding IV is to project the velocity
profile to the spaces defined by the z-axis, the y-axis and the
z-axis, and sum up the observed number of bell shapes in each
file. Indeed, Equation (1) can be decomposed into three inde-
pendent scalar equations, and they can be learned and adapted
independently.

B. Offline Model Fitting

To use the sigma-lognormal model for analyzing the hu-
man movement, we need to choose the values for parameters
a = {Ds,toi, i, 02}, =1,..., N such that the model can fit
the training data well. Two categories of parameter extractors
have been proposed in the literature: the Xzero-based extrac-
tor [16] and the prototype-based extractor [17]. The Xzero-based
extractor has closed-form solutions by analyzing several char-
acteristic points located in the original velocity profile, but it
lacks the knowledge of the nature of the movement and it is
easily influenced by the noise in the data. The prorotype-based
extractor takes advantage of a priori information and works well
for stereotypical movements. It first synthesizes the prototype,
then it adjusts the parameters by scaling and offsetting. This
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is a good philosophy for online parameter extraction, but not
suitable for offline model fitting.

We propose to use the Levenberg-Marquardt algorithm [18],
also known as the damped least-squares method, to solve the
following problems: given a set of m data points (¢;, v;) from
the collected trajectories, find e such that the sum of the squares
of the deviations S(«) is minimized:

m
* - _ . R i 2
a' = argmc_:nS(a) = argmin E 1 [lv; — Vv (tj,a) |5
j:

C. Online Parameter Extraction

Since human behavior is time-varying and different people
have different motion styles, it is necessary to adapt the offline
learned model to accommodate such variations. [19] concludes
that the time scaling and shifting account for a large variability
of human movement, and only the modification of u; and the
to; is required through scaling factor Cy; and ¢; in Equation (2)
and Equation (3). In addition to Cy; and ¢.;, we add one more
scaling factor Dy; for D; to account for more variations as in
Equation (4).

tois = Coitoi + tai (2)
pis = pq +In(Cs) 3)
Dz’s = Dsi-Di (4)

Therefore, the sigma-lognormal model becomes V(¢; a*, 3),
where 8 = {Cyi,tei, Dei},i = 1,..., N.The problem of adapt-
ing the sigma-lognormal model is to learn the values of 3. The
initialization of /3 requires that the sigma-lognormal model starts
from the offline learned model in Section IV-B. Thus, the scaling
factors C,; and D,; are set to 1, and the time shifting factor
tg;isset to 0, fori = 1,..., N. As indicated in Section IV-A,
the sigma-lognormal equation in Equation (1) comprises three
scalar equations which can be adapted independently. Hence,
we decouple the parameter §3 into three parts {3;, 5y, 8. } and
adapt them separately.

To adapt B when a new data point is available, two clues are
essential: 1) how the new data point deviates from the model
prediction can direct the modification of the model parameters,
and 2) the integral of the velocity file should be aligned with the
human’s intentions and the target locations.

By the first clue, S is updated using Levenberg-Marquardt
algorithm as in Equation (5) (6) and (7). Note that the operator
“.” indicates an element-wise operation throughout this letter.
Vgt » Dy, s Vz,ep AN Vg g, Vy 1, , Uz 1y, are the model predictions
and the measurements of the velocities in x, y and z directions
attime tx. Vg, , Vg, , Vg, are the gradients of vy ¢, , Uyt , Uz,
with respect to 3z, 8y, B, and Ay, Ay, A, are the non-negative
damping factors, which make the algorithm interpolate be-
tween the Gauss-Newton algorithm and the method of gradi-
ent descent [20]. If values of A’s components are large, the
step goes in the direction for the gradient descent algorithm,
and if values are small, the step will be close to the step in
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the Gauss-Newton algorithm.

Be = Bo— (bnx = V) Voatmane/ (Vartnan)” +a)

)
sz - 'By - (ﬁy’tk - Uystk)vﬁy ﬁystk‘/ ((V.@y {"y,tk)‘z + ;\.y)

(6)
Bz =B - (ﬁzstk - UZ,tk)v.@zﬁz,t;c -/ ((Vﬁzﬁz,tk)‘z + J\z)

)

Second, to take advantage of the human intentions and the
scene information, we further update 3 to minimize the follow-
ing three objectives.

tf
5B) =] / Y(sia® B)ds — drogoll2 )

k

J2(B) = ||Ve, — V (tes 0, B) |13 )
J3(B) = ||V (tg; 2", B) |3 (10)

The objective function (8) implies the predicted displace-
ment from the current time £, to the final time £y should be
close to the displacement to the goal d;,g,, Where the final
time ¢; is obtained from a stable zero-crossing of the model
V(t; a*, B) with a threshold, and d¢,4, is obtained by po — p, -
P:, is the current position of the human hand and po is the
position of the target. In addition, the objective function (9)
and (10) ensure the model precision at the current time £, and
the final time ¢y, respectively. Therefore, to optimize the three
objective functions is to fix the two ends of the future velocity
file and to modify velocities in between so that the human’s
hand can reach the goal at the anticipated final time. Since
(8), (9), (10) may not necessarily be minimized for the same
value of 3, we make weighted sum of the three objectives as
K(ts, B) = v1J1(B) + 72J2(B) + v3J3(5), and update 5;, B,
and j3; by:

B =Ba+ K (t7,8) V5. K./ (VoK) +2,) (D)
By =By + K (t7,8) Vs, K/ ((V5,K)"+2,)  (12)
B:=B: + K (t1.8) Vo, K./ (VoK) +31)  (13)

The outline of the algorithm at time #; is shown in
Algorithm 1. Lines 4-6 receive the position of the human
hand x;,. Lines 5 represents the intent recognition process,
and it determines the current action a;, and the future actions
a'g-. Line 3 obtains the current velocity where JT" is the time
difference between the current time step and the last time step.
Lines 7-10 retrieve the current action model and the future action
models if the action recognition changes. Lines 11-18 illustrate
the model adaptation process. Finally, Lines 19-25 predict the
trajectory for the current action and the predicted actions.

Algorithm 1: Long-term motion prediction algorithm at
time tg.

IDPUt vlltk_]_': Xl:tk_la a‘tk_l » V, vl,?,...,ﬂp
Output £, X;, ., .

oty

I:  x; = PoseEstimation()
2:  ay,,a'q- = IntentRecognition(x1.s, )
3 Vi = (Xe — Xep,)/0T
4: if a;, changed then
5: V(t; o, B) = RetrieveMotionModel(a;, )
6: V1,2,...np(t; @, ) = RetrieveMotionModel(a’4-)
7: endif
8: for Iteration = 1,2,... do
9: Update /3 using Equation (5)(6)(7)
10: end for

11:  t; = ZeroCrossing(V(t; o, 3))
12: for Iteration = 1,2,... do

13: Update /3 using Equation (11)(12)(13)

14: t; = Zero-Crossing(V(t; o*, ), threshold)
15: end for

16: fort=tgyq,...,t5do

17: X(t) =x(tx) + [ V(s;0*, B)ds

18: end for

19: t;’ = Zero-Crossing(Vi 2, . np(t; a*, 3).threshold)
20: for:=1,2,...,npdo

21: Predict X(t), fort = -1}
22: end for
V. EXPERIMENTS
A. Scenario

A computer assembly task is considered. The task includes
three subtasks, “Assemble CPU fan,” “Assemble memory” and
“Assemble system fan,” where human should complete “Assem-
ble CPU fan” first, and then complete either “Assemble memory™
or “Assemble system fan”. Therefore there are two plans in
total. For all subtasks, the action sequence is reaching the part,
obtaining the part and installing the part.

B. Hypothesis

We evaluate the effectiveness of the proposed method through
experiments by verifying the following hypotheses.

® HI1: Our method makes better trajectory prediction and

duration estimation than other baseline methods when the
human’s intentions are known.

® H2: Our method makes good trajectory prediction and

duration estimation when the human’s intentions are un-
known.

® H3: Our proposed adaption algorithm can quickly adapt

the movement model to the motions with the same motion
type but different starting and ending positions.

The conditions that the human’s intentions are known or
unknown reflect whether the human intent recognition module
in Section III is involved or not. The first hypothesis shows the
effectiveness of our trajectory prediction module in Section IV
only, and the second hypothesis shows the effectiveness of the
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overall structure. For the third hypothesis, different starting and
ending positions implies different human behaviors, and this
hypothesis shows the adaptiveness of our method to different
human behavior.

C. Manipulated Variables

We manipulated three variables to evaluate the effectiveness
of our method. The first variable is different methods. Our
algorithm is compared against the following baseline methods:

1) Vector field method [21 ]: This method performs long-term
predictions of human motion by employing a map of
vector fields. The final time of an action for this method
can be estimated by setting a velocity threshold.

2) Minimum jerk model [9]: This model states that hu-
man arms move by minimizing mean-square jerk for
any unconstrained point-to-point movement. As proposed
in [22], the value of the final time can be obtained by a
search algorithm.

3) DTW-based method [23]: This method utilizes dynamic
time warping (DTW) algorithm to align the online activity
with a reference template, then it estimates the expected
duration by proportionally manipulating the alignment
time.

4) Our method without task context: This is our method
without the adaptation steps in Lines 12-15 of Algorithm 1.

The second manipulated variable considers task types. Two
types are considered: (1) the task that only includes a simple
reaching task (“reaching the CPU fan” as in Section V-A), where
the human’s intention is determined and known beforehand,
and (2) the whole task as described in Section V-A, where the
human’s intention is uncertain and needs to be recognized. Our
method and all the 4 baseline methods are applied to the first task
type, while for the second task type, we only test our method.

The third manipulated variable is a set of progress percentages
for the test timings. They are 10%, 30%, 40% 50%, 60%, 70%,
80%, 85% and 90%. For the reaching task, at these progress
percentages of the reaching motion, we will study trajectory pre-
diction and duration estimation, while for the whole computer
assembly task, we will study trajectory prediction and duration
estimation at these progress percentages of the reaching motion
of the second subtask, when the human intent recognition starts
to take an important role to decide on which subtask the human
intends to do.

For data collection, we instructed 6 human subjects to com-
plete the computer assembly task for both plans, then each
human subjects were asked to conduct the task for several times
using either plan randomly. In total, we collected 51 trials, but 2
of them were too noisy to be used, thus 49 trials were utilized in
the experiments. Among them, 42 trials were for offline training
and 7 trials were for testing. The training and the testing sets
were chosen through a random selection to avoid bias. For the
simple reaching task, we only used segments of each trial, and
for the whole task, we used the whole trajectory of each trial.

D. Dependent Measures

To quantify the accuracy of trajectory prediction, we measure
the mean Euclidean distance between the predictions and the
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observed data, where the Euclidean distance error for each trial

attime ¢, is the average of | |X(t) — x(t)||2, ¢ = tg+1, ..., ts.For

duration estimation, we compute the mean absolute percentage
=T

error. The absolute percentage error is |£fT—| x 100%, where T’

is the groundtruth duration.

E. Results

H1: Table I shows the duration estimation results when the
human is conducting a simple reaching task. Our method has
significantly smaller average percentage errors than other base-
line methods at all the test timings except for the timing at the
80% progress, where ours is the second best. By doing paired
t-test, we find that the results of our method are significantly
better than any other baseline method (P < 0.05). Besides,
after the 30% progress, the average percentage error of our
method drops below 5%, while for other baseline methods
except for our method without task context, the errors are always
above 5%. For our method and the minimum jerk method,
the average percentage error drops as time elapses, while for
the other methods, the average percentage error oscillates or
even increases at the latter part. A possible reason is that
our method and minimum jerk method explicitly utilize the
knowledge of the target positions, while the others do not.
Among the baseline methods, the DTW-based method is the
best in the early phase before the 30% progress, the vector field
method is the best in the middle phase from the 30% to the 60%
progress, and our method without task context is the best in the
latter phase after the 60% progress.

Table II shows the trajectory prediction results when the
human is conducting a simple reaching task. Our method has the
least average distance errors at all the test timings except for the
timings at 85% and 90% progress, where ours is the second best
and the third best respectively. By doing paired t-test, we find that
the results of our method are significantly better than any other
baseline method (P < 0.05). Besides, all the average distance
errors of our method remain within 20 mm, and it drops below
10 mm after the 60% progress. For our method, the vector field
method and the minimum jerk method, the average percentage
errors show a trend of decreasing as time elapses. However, the
DTW-based method and our method without task context show
a slight increase in the early phase before the 50% progress.
Among the baseline methods, the minimum jerk method is the
best throughout all the test timings except for the timing at 90%
progress, and the DTW-based method is the worst throughout
all the test timings except for the timing at 10% progress.

H2: Table III displays the results of the trajectory prediction
and the duration estimation for the computer assembly task. For
the current action, the average percentage error of the duration
estimation varies between 1.3% and 14.9%, and it drops below
5% after the 30% progress. The average distance error for
trajectory prediction varies between 3.6 mm to 19.7 mm, and
it drops below 10 mm after the 60% progress. For the predicted
actions, different from the results for the current action, the errors
do not feature a decreasing trend, which means /3 is not the same
among different motions for one task. The average percentage
error of the duration estimation varies between 6.9% and 13.2%,
and the average distance error of the trajectory prediction varies
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TABLEI
AVERAGE ABSOLUTE PERCENTAGE ERROR OF DURATION ESTIMATION FOR A SIMPLE REACHING TASK (UNIT: %)

Time Percentage 10% 30% 40% 50% 60% T0% 80% 85% 90%
Ours 13.6£12.0 39+ 97 20484 4.0+7.0 1.94+35 32431 1.74£36 1.246.1 0.1+52
Vector field 258+103 14.1+7.6 87+6.4 B2+45 6.9+3.9 6.7+4.9 10.0+3.8 10.6+5.8 B4+47
Minimum jerk 25.5+5.5 22.14+ 6.8 224+ 7.7 21.5+8.3 183+ 74 | 144462 10.0+5.2 77+ 4.1 6.1+ 3.6
DTW 15.3+18.1 109+ 12.2 | 1214+ 11.7 | 11.74£10.7 10.8+9.8 13.74£7.1 | 1154106 | 1494+ 167 | 1244 149
Ours w/o task context | 16.1£11.6 141+ 88 128+ 82 9.616.2 99+54 62423 1.1+29 39+49 24451
TABLE II
AVERAGE DISTANCE ERROR OF TRAJECTORY PREDICTION FOR A SIMPLE REACHING TASK (UNIT: MM)
Time Percentage 10% 30% 40% 50% 60% T0% 80% 85% 90%
Ours 16.4+8.7 17.31+4.8 13.0+£33 122434 10.3+3.9 6.3+2.0 51+1.7 4.5+1.0 32407
Vector field 69.0+14.5 | 3891100 | 27.4+103 215492 20.249.3 2244149 1344143 | 104£11.8 74 £83
Minimum jerk 23.846.5 18.01+4.2 17.3+4.2 15.6+4.2 12.84+3.7 9.413.0 59124 43119 3.1+1.5
DTW 4274246 | 55.1+164 | 595+146 | 606158 | 5934165 | 499+ 178 | 4394191 | 4034219 | 3274168
Ours w/o task context 28.1+84 289460 312465 31.546.1 295454 205+45 10.1+1.7 51+£1.2 23105
TABLE IIT
THE AVERAGE PERCENTAGE ERROR OF THE DURATION ESTIMATION AND THE AVERAGE DISTANCE ERROR OF THE TRAJECTORY PREDICTION FOR THE
COMPUTER ASSEMBLY TASK
Time percenlage 10% 30% 40% 50% 60% T0% 80% 85% 90%
time current action | 14.9+11.8 4.9+ 8.6 4.5+4.4 44475 23437 24429 3.14+39 22447 1.3+4.6
error (%) future actions | 11.2+106 | 10.5£133 ENE=] 92+10.6 10.3£11.9 741107 69+116 | 132491 | 11.2+105
trajectory current action 19.7+6.8 14.6+7.6 13.0+56 134476 9.1+59 7.3+35 63126 54+1.0 EGESNI
error (mm) | future actions | 21.4E£13.6 94188 123184 147E£11.4 B.5E6.7 10.4E£13.7 89196 T TEB] 12.74+9.8

Error distance (mm)
- = M N w [
o o o w o o o

wm

1]
trial 1 trial 2 trial 3 trial 4 trial 5 trial & trial 7

Fig.2. The distance errors of the model predictions for adapting to a new task.

between 7.7 mm to 21.4 mm. The largest average distance error
of the trajectory prediction 21.4 mm appears at the 10% progress,
when the human intent recognition module has a difficulty
distinguishing the human’s plan due to the lack of observations.
After the 30% progress, the distance error drops exceedingly,
because the human’s intentions are correctly recognized. Over-
all, the duration estimation is good, since the error is within 5%
for the current action and within 14% for the future actions after
the 30% progress; the trajectory prediction is good, since errors
are less than 25 mm, which is within the safety distance asin [10].

H3: We adapt the sigma-lognormal model which is trained on
the “reaching for the CPU fan” task to a new task “reaching for
the memory,” where the motion type is the same, but the starting
and the ending positions of the human hand are different. Fig. 2
shows the distance errors of the model predictions for 7 trials.
The model parameters are adapted through the first trial to the
seventh trial, and the distance errors are calculated at 10%, 30%,
40% 50%, 60%, 70%,80%, 85% and 90% progress of each trial.
As shown in the figure, the distance errors are large for the first
trial, which can reach up to 40 mm. However, the error drops

drastically after the first trial, which means the model can adapt
to the new reaching task within one trial. Table IV summarizes
the statistics for the results of the trajectory prediction and
the duration estimation, and it shows that the results are com-
parable with the results of our method in Table I and Table II,
where the model is trained and tested on the same reaching task.
For the duration estimation, the percentage error is below 10%
after the 30% progress and below 5% after the 50% progress. For
the trajectory prediction, all the average distance errors remain
within 20 mm, and it drops below 10 mm after the 50% progress.

VI. DISCUSSION

The sigma-lognormal model fits the human motion data better
than the minimum jerk model. Fig. 3 shows the residual diagrams
for the minimum jerk model and the sigma lognormal model
of one trial for the simple reaching task. Both diagrams are
unskewed and include no outliers, and both residuals are nor-
mally distributed with probability P = 0.09 > 0.05 (x? = 4.81,
df = 2) and probability P = 0.18 > 0.05 (x? = 3.41, df = 2)
respectively for D’ Agostino-Pearson’s test. Actually, this nor-
mality conclusion holds for all the other 6 test trials, which
indicates that we can trust the results of the regression analysis.
Note that although normality assumption is not needed for
nonlinear regression, if it is clearly violated, we may not trust
the model. That is why we do the normality test. Two things
to note about the normality: 1) Normality assumption is not
needed for nonlinear regression, but if it is clearly violated,
we may not trust the model; 2) We trained one minimum jerk
model and one sigma lognormal model on all the test data, and
the D’ Agostino-Pearson’s test shows that the residuals for both
models are not normally distributed. This again shows that one
model for all trials is not sufficient to cover all the trends and
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TABLE IV
THE AVERAGE PERCENTAGE ERROR OF THE DURATION ESTIMATION AND THE AVERAGE DISTANCE ERROR OF THE TRAJECTORY PREDICTION FOR
ADAPTING TO ANOTHER TASK

Time Percentage 10% 30% 40% 50% 60% 70% 80% 85% 90%
time error (%) 15.14+16.2 | 12.6 £10.2 5.4+6.3 51462 | 42457 | 35449 | 3.8452 | 1.84+25 | 1.2423
trajectory error(mm) | 19.0£10.3 14.8£7.5 142+109 | 131463 | 91448 | 4327 | 33448 | 1.1£05 | 0.6403
r B minimum jerk 3] S Mukherjee, L. Anvitha, and T. M. Lahari, “Human activity recognition
[ lognormal in rgb-d videos by dynamic images.,” Multimedia Tools Appl., vol. 79,

i

.reaidual (mis)

Fig.3. Histograms and normal fits for the residuals of the minimum jerk model
and the lognormal model.

there are different patterns in human’s movement when doing
the same action. Next, we check the mean absolute residual to
see which model fits the data better. The mean absolute residual
for the minimum jerk models is 1.20 & 1.05 mm, and the mean
absolute residual for the sigma lognormal models is 0.52 + 0.42
mm. The sigma-lognormal model has 56.5% less error. This
shows that the sigma-lognormal model fits the data better than
the minimum jerk model.

VII. CONCLUSION

We proposed a recognition-then-prediction framework for
long-term human hand prediction and action duration estima-
tion, where the prediction horizon relies on how far in the future
we can predict the human actions rather than a preset time.
We improved the recognition method by introducing scaling
vectors, which takes advantage of the task knowledge of ac-
tion transitions. The sigma-lognormal equation was proposed
to model the human’s movement, and an adaptation algorithm
was proposed to accommodate different human behaviors. We
conducted experiments for a computer assembly task. The re-
sults showed the effectiveness of the overall framework and
the effectiveness of the trajectory prediction module only. The
proposed method had significantly smaller average percentage
errors as well as average distance errors. This is a definite
advantage in predicting the long-term human hand trajectory
for collaborative task planning. The experiments also showed
that our adaptation algorithm can quickly adapt the movement
model to the trajectories with the same motion type but different
starting and ending positions.
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