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Abstract

The millimeter wave bands are being increasingly considered for wireless communication to un-
manned aerial vehicles (UAVs). Critical to this undertaking are statistical channel models that describe
the distribution of constituent parameters in scenarios of interest. This paper presents a general modeling
methodology based on data-training a generative neural network. The proposed generative model has
a two-stage structure that first predicts the link state (line-of-sight, non-line-of-sight, or outage), and
subsequently feeds this state into a conditional variational autoencoder (VAE) that generates the path
losses, delays, and angles of arrival and departure for all the propagation paths. The methodology is
demonstrated for 28 GHz air-to-ground channels between UAVs and a cellular system in representative
urban environments, with training datasets produced through ray tracing. The demonstration extends to
both standard base stations (installed at street level and downtilted) as well as dedicated base stations
(mounted on rooftops and uptilted). The proposed approach is able to capture complex statistical relations
in the data and it significantly outperforms standard 3GPP models, even after refitting the parameters

of those models to the data.
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I. INTRODUCTION

Communication with unmanned aerial vehicles (UAVs) is a subject of growing interest, and the
millimeter wave (mmWave) range is an inviting realm for this purpose because of the conjunction
of enormous bandwidths and line-of-sight (LOS) situations [2]-[17]. As with all communication
systems, the design and evaluation of mmWave UAV networks hinges crucially on the availability
of suitable channel models.

As current 3rd Generation Partnership Project (3GPP) channel models, which extend up to
100 GHz for terrestrial users, are only calibrated for UAVs at sub-6 GHz frequencies [18], there is
a pressing need to extend the availability of channel models suitable for UAVs to the mmWave
range. For example, [19] proposes a propagation model for UAV-to-UAV communication at
60 GHz in LOS conditions, and with UAV altitudes ranging between 6 and 15 m. Several other
works have also attempted to model various aggregate statistics of the channel model, such as the
onmidirectional path loss or narrowband fading [20]-[24]. More generally, as mmWave systems
rely on highly directional communication over wide bandwidths, statistical descriptions of the
full double directional characteristics of the channel are required, meaning a description of the
totality of path components (angles of arrival and departure, gains and delays).

Statistical channel models enable producing random instances of the full set of channel param-
eters. The joint statistical distribution of these parameters (path angles, gains, and delays) must
first be distilled from a combination of physical considerations and field measurements [25], [26],
a process that has become increasingly cumbersome as the systems being modelled have grown
in complexity and heterogeneity (new frequency bands, broader bandwidths, massive antenna
arrays, diverse deployments) [27]. In aerial settings, this complexity is further compounded by
additional parameter dependencies on the UAV altitudes, their 3D orientation, or the building
heights, among others [18], [28]-[32]. Altogether, the model parameters are bound to exhibit
decidedly complex relationships that are difficult to establish through analytical or physical
considerations.

Modern data-driven machine-learning methods become an attractive recourse whenever phys-

ically based modeling is difficult. Importantly, these methods entail minimal assumptions and
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can naturally capture intricate probabilistic relationships. In such spirit, this paper considers

data-driven methods to model mmWave air-to-ground channels.

Neural networks (NNs) have been advocated in [33]-[37] for indoor mmWave channel mod-
eling, whereby, upon an input corresponding to some location, the NN outputs the model
parameters for that location; in essence, the parameters are then a regression from the training
dataset, much as in data-based signal power maps and in learning-based planning and prediction
tools [38]—[45]. A strong aspect of all these works is their inherent site-specific nature, a virtue
when it comes to optimizing specific deployments. Alternatively, there is interest in models that
can produce channel parameters broadly representative of some general environment, say an
urban microcellular system.

Generative NNs, which have proven enormously successful with images and text [46]—[48],
offer a natural approach to data-driven channel modeling that can broadly represent complex
settings, and some early works have successfully trialed generative adversarial networks (GANs)
for simple wireless channels [49]-[51]. The present paper propounds a different generative
NN structure, powerful and widely applicable, for air-to-ground channel modeling. For data
provisioning, we rely on the ray tracing tool [52], which has developed substantially for mmWave
communication [53]-[58] and can supply datasets of the size required to train large NNs.

Ray tracing requires a detailed blueprint of the environment, including the size, shape, and lo-
cation of all obstacles, along with their electromagnetic properties. As it employs high-frequency
approximations, ray tracing exhibits some inaccuracies, but is perfectly adequate for our purpose
here, which is to validate the proposed methodology. We hasten to emphasize that, ultimately,
the model is meant to be driven by field data, gathered either through targeted measurement
campaigns or directly supplied by users of the service.

The highlights of this work are as follows:

o Double-directional wideband characterization. As chief point, we demonstrate that the pro-
posed method can capture the directional characteristics of the channel at both transmitter and
receiver along with its wideband nature, meaning the angular, gain, and delay information for
all the paths on each link. This description can be integrated into a standard 3GPP evaluation
methodologies [18], [28] and can provide the full wideband MIMO response given specific
antenna configurations at transmitter and receiver. No prior assumptions are made regarding
the dependencies among parameters, and the model is able to capture relationships that are

nuanced and interesting.
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o Novel two-stage structure. The generative model features a novel two-stage structure where a
first NN determines whether the link is in a state of LOS, non-line-of-sight (NLOS), or outage,
while a second stage employs a conditional VAE to generate the path parameters given that
state. Importantly, several pre-processing steps are introduced to map the path parameters to
a format compatible with the NN outputs.

o Application to UAV mmWave settings. The methodology is demonstrated by characterizing
28 GHz channels connecting UAVs with two distinct classes of ground base stations. For this
application, we demonstrate that trained models can be readily applied to predict complex sys-
tem parameters such as coverage as a function of antenna pattern and base station deployment.

o Intra- and inter-environment generalization. The model is separately trained on data from
various environments, namely sections of Tokyo, Beijing, London, Moscow, and Boston. Then,
these models are tested on new points from the respective datasets as well as on points from
the other datasets. This allows testing the ability of the model trained in one environment to
describe the behavior in new locations within that environment (intra-environment generaliza-
tion) and in locations in other environments (inter-environment generalization).

o Benchmarking against 3GPP models. The proposed generative model is benchmarked against
the existing 3GPP channel models [18], [28], recalibrated to fit the mmWave data used to train
our generative model. In this head-to-head comparison, the generative model proves superior,
highlighting the advantage of techniques that make minimal prior structural assumptions.

o Ability to capture complex statistical relationships. The comparison to 3GPP models shows that
neural networks can capture complex relationships between paths, not described in standard
parametric models. For example, we show the model can capture the variation of angular
spread and number of paths as a function of the distance.

e Publicly available model. The developed model is publicly available [59] and can be readily
incorporated to any simulator of mmWave UAV communication that can accept multipath
parameters as channel descriptions. And, beyond this use case, the underlying modeling
framework may be enticing for other emerging communication scenarios such as terahertz
systems, and as an alternative to channel models in more established contexts.

The paper is organized as follows. Section II frames the problem, Section III sets forth the
proposed generative approach, and Section IV describes the data procurement process. Then,

Section V presents a battery of results that illustrate how the trained model successfully predicts
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the channel’s behavior in unseen locations. Finally, Section VI contrasts the predictive power

of the proposed model against that of the refitted 3GPP model, and Section VII concludes the

paper.

II. PROBLEM FORMULATION

We consider the modeling of channels linking a transmitter with a receiver. The UAV is taken
to be the transmitter while the base station—gNB in 3GPP terminology [18]—is the receiver,
yet, owing to reciprocity, the roles of transmitter and receiver are interchangeable. Each link is

described by the collection of parameters [60]
X:{(Lk7 2X7 EX’ };cxaelix77—k)7 k:]-)"'aK}a (1)

where K is the number of paths whereas L; is the loss of path k, (¢}5,6;) are its azimuth
and elevation angles of arrival, (¢{*, 0}*) are its azimuth and elevation angles of departure, and
T 1s its absolute propagation delay. Unlike 3GPP spatial cluster models (e.g., [28]), we do not
consider angular or delay dispersion within each path. This is not a limitation of the model, but
only a consequence of the tool that produces training datasets with discrete paths; if angular or
delay spread information were available, these aspects could be incorporated.

For the sake of specificity, the number of paths is fixed at K = 20 with Ly = L., for paths
that are not actually present; we set L., = 200dB, which is compatible with the maximum
path loss detectable by the ray tracer. With these settings, the data vector x in (1) contains
6K = 120 parameters per link. Let

u=1[d, 2)

denote the link condition, with d = [dy, dy, d,] the vector connecting the UAV with the gNB and
with ¢ indicating the type of gNB. For air-to-ground modeling, we consider two types of gNBs:
» Standard gNBs, installed at street level and downtilted to serve terrestrial users, but poten-
tially usable for UAV connectivity; and
e Dedicated gNBs, mounted on rooftops and uptilted, intended specifically for UAVs.
One could also consider other aspects, such as the gNB height, within c. Our methodology is

general.
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The goal is to capture the conditional distribution p(x|u), that is, to model the distribution of
the paths in a link as a function of that link’s condition in some environment. As anticipated,

we consider a generative scheme in which

x = g(u,z), 3)

where z is a random vector, termed the latent vector, with some fixed prior distribution p(z),
while g(u,z) is the generating function, to be trained from data.

Once trained, generative models are conveniently applicable in simulations: the locations of
UAVs and gNBs are determined, either deterministically or stochastically according to some
deployment strategy, providing the condition vector u for each link. Random vectors z can then
be produced for each link from the prior p(z) and, from u and z, the path parameters x follow
as per (3). These parameters can be generated for both intended and interfering links and, in
conjunction with the antenna patterns, array configuration, and beam tracking methods, allow
computing quantities of interest such as signal-to-noise ratios (SNRs), signal-to-interference-
plus-noise ratios (SINRSs), or bit rates.

Small-scale dynamics can also be modeled under the premise of local stationarity. Specifically,
given any local motion with some velocity, Doppler shifts can be computed and applied to each
path to derive the time-varying wideband frequency response [60]. Statistical modeling of large-
scale dynamics such as blockage [61], [62] and spatial consistency [28] remain an interesting

avenue of future research.

III. PROPOSED GENERATIVE MODEL
A. Overview

The propounded generative model, sketched in Fig. 1, constructs the generative function as
two cascaded stages, namely a link-state prediction stage followed by a path generation stage.

The latent vector z subsumes three components,

Z = [Zstatev ZNLOS) Zout]~ (4)

The link-state predictor accepts the condition vector u and a random variable 2., from which
it determines the link state s. From s and the two other latent components, znros and Zq,, the
path generation stage then produces the final path parameters x. We next describe the details of

this whole architecture.
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Link-State Prediction Path Generation
Stage Stage
Link
/.\ State s —

Condition Vector u — — Path Parameters x

@
Zstate Condition Vector u —

Latent Variable znp,0s —

\E

Fig. 1: Overall architecture for the two-stage generative model, which accepts a link condition vector u and a
latent vector z = [2state, ZNLOS, Zout] t0 generate random path parameters x. (For the sake of clarity, various

transformations, described in the text, are omitted from this diagram.)

B. Link-State Predictor

As recognized by 3GPP models such as [28], it is crucial to first determine the existence or
lack of the LOS path. To this end, the link-state predictor accepts the condition u defined in (2)

and produces probabilities for the link being in one of three states [63]:

o LOS: The LOS path is present, possibly in addition to NLOS paths;
o NLOS: The LOS path is blocked, but at least one NLOS path is active;
o NoLink: No propagation paths (either LOS or NLOS) exist for this link.

In the sequel, s € {LOS,NLOS, NoLink} denotes the predicted link state while the generative

model mapping u to s is represented by

5 = Gstate(W, Zstate)- %)
Such mapping entails three steps, expounded next.
1) Condition Vector Transformation: The vector u is transformed into a new vector
[Cone, dspLie=1}y, d:Lie=1y, -+ dspLie=cy, dz]l{c:C}] (6)

where c,,. 1s a one-hot coded version of the gNB type ¢ while d, is the vertical distance,

dsp = \/d2 + &2 + o2 ©)
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is the 3D distance, C' is the number of possible gNB types, and 1;._;; is the indicator function
for the event ¢ = i. As c¢ can take C possible values, we can one-hot code c,,, with C' — 1
dimensions. Hence, the transformed vector in (6) has dimension C' — 1 4+ 2C' = 3C' — 1. With
C = 2 (standard and dedicated), the transformed vector in (6) has 3C' — 1 = 5 components. The
motivation for the transformation in (6) is to enable a different behavior of the first layer of the
NN for different types of gNB.

The transformed vector in (6) is passed through a min-max scaler that maps its components
to values between 0 and 1; the limits on this min-max scaler are learned during training. The

resulting transformed and scaled value is denoted by vggate.

2) NN: A fully connected NN, configured as per Table I, generates the link-state probabilities.
The input to this NN is v While its output is a three-way softmax corresponding to the three

states.

3) Sampling: In the final step, a uniform random variable zy .. € [0, 1] samples the link state

s based on the probability outputs from the NN.

TABLE I: Generative model configuration

Link state | Path VAE | Path VAE
prediction encoder decoder
Number of inputs 5 5+ 120 5+20
Hidden units [25, 10] [200, 80] [80, 200]
Number of outputs 3 20 4 20 120 4+ 120
Optimizer Adam Adam
Learning rate 1073 1074
Epochs 50 10000
Batch size 100 100
Number of NN parameters 1653 44520 40720

C. Path Generation Stage

The second stage generates the parameters x in (1) given u and s. This also entails various

steps, described next.

1) Condition Vector Transformation: Again, we begin by transforming u and s, in this case
into

[Conea d3D7 10 loglO(dSD)a dz7 S, (8)
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where ¢y, d3p and d, are as in (6). For this condition vector, we found that including both d3p
and log,(dsq) enabled better modeling with a smaller NN. This five-dimensional vector is then
passed through a min-max scaler to produce a five-dimensional vector with values between 0
and 1. We denote this transformed vector by vpain.

2) NLOS VAE: The next, and most intricate step, is to generate the parameters for the NLOS
paths within x. As explained below, these NLOS paths are represented in a transformed version
denoted by yni,0s. For now, we recall that there are up to K = 20 NLOS paths with 6 parameters
per path, meaning that yn,os is of dimension 6K = 120.

We want to generate ynios from vy, and from some randomness. This mapping should be
trained such that the conditional distribution of yn1,0s given vy, matches the distribution in
the training dataset. There are a large number of methods for training generative models, the
two most common being variants of GANs [46], [47] or VAEs [48]. We found the most success
with a VAE, as it avoids the minimax optimization required by a GAN.

We apply a standard VAE architecture [48] that has itself two stages: the first stage accepts
as inputs a random vector znros along with vy, and it outputs means and variances for the

NLOS components, namely

1y, 0] = gnLos(Vpatn, ZNLOS)- )

The vectors g, and 05 share the dimensions of the sought ynros, hence they combine into
120+120 output values. The entries of znpos are i.i.d. Gaussian with mean zero and unit
variance. In VAE terminology, the dimension of znpos is termed the latent dimension, with
higher such dimensions enabling better fitting to the data but requiring larger training datasets.
In the remainder, the latent dimension is kept at 20.

The sought ynr0s is sampled from the means and variances,

YNLOS = My + gy © Zout, (10)

where z.,,; has 120 zero-mean unit-variance i.i.d. Gaussian entries and © indicates entry-wise
multiplication.

In the VAE paradigm, the generator in (9) is termed the decoder. The VAE also requires
training a so-called encoder that maps data samples ynros and vp.n back to the latent vector
ZnpLos- This encoder attempts to approximate sampling from the posterior density of znros
given ynios and vpen. The encoder and decoder are then jointly optimized to maximize an

approximation of the log-likelihood called the evidence lower bound (ELBO); see [48] for details.
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Similar to standard VAE architectures [48], we approximate the posterior density of znros
given ynpos and vpaen by a Gaussian with independent components. Hence, the encoder takes
as inputs ynios and vpueh, and output a vector of mean and a vector of variances for the latent

variables zn1,0g. Under this assumption, the encoder can be represented as a function

(12, 2] = hnpos(Vpath, YNLOS), (11)

that takes as inputs yxros and vy, and outputs vectors p, and o2 representing the mean and
variance of znros given ynros and vpan. The vectors p, and a’f will have the same dimension
as the latent vector znpos. Given the outputs of the encoder, we can then sample from the

approximate posterior density by

ZNLOS = M> T 0. O E, (12)

where, again, © represents elementwise multiplication and € is i.i.d. zero-mean unit-variance
Gaussian noise.

In our case, the encoder and decoder are embodied by fully connected NNs configured as per
Table I. Since the latent vector zny,0s 1S realized as a 20-dimensional Gaussian vector, the decoder
accepts this 20-dimensional Gaussian vector plus the five-dimensional vector vy, and yields
the 120+120 means and variances. Conversely, the encoder is fed v, and a 120-dimensional
data input and produces means and variances for the 20-dimensional latent vector.

3) NLOS Transformation: As advanced, the generated vector yni,os is a transformed version
of the path parameters, the reason being that those actual parameters are heterogeneous: they
include path losses, angles, and delays. To put them on an equal footing, xnp0s maps onto
ynrLos as follows:

o The path losses are converted to dB-scale path gains and the minimum such value in the
dataset is subtracted out. The resulting excess path gains are then run through a min-max
scaler to lie between 0 and 1; a value of zero corresponds to the maximum path loss (L)
and hence to absence of this path altogether.

o The angles are rotated relative to the LOS direction, and then scaled such that 180°
corresponds to a unit value.

o The LOS delay is subtracted from the rest of delays, and the resulting excess delays are
again scaled to be between 0 and 1.

The above transformations ensure that all values are in a similar range and referenced to the

LOS path. The min-max scalers for the path losses and delays are fit to the training data, and
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TABLE II: Environment comparisons

Building height | Beijing, China | London, UK | Boston, USA
Minimum 3m 3m 2m
Maximum 238 m 283 m 190m
Mean 99.9m 73.6m 42.4m
Median 85.5m 62.5m 32.8m

we note that the mapping of angles and delays relative to the LOS path can take place even if
such LOS path does not exist (because of blockage).

Once yn1os has been generated, the transformation must be undone to obtain the NLOS path
parameters, XNLoOs-

4) Addition of the LOS Path: For the LOS path, when it exists, the delay and angles of
departure and arrival can be computed from sheer geometry while its loss can be computed
from Friis’ law [60]. The final step is the addition, when it exists, of such LOS path to xnr0s,

which renders the full collection of path parameters, x.

IV. RAY TRACING DATA AT 28 GHz

Experimental data on UAV channels is limited, particularly in the mmWave bands [29],
[30], [64]-[66]. In this work, we employ a powerful ray tracing package, Wireless InSite by
Remcom [52], also used in [53], [57]. For our data production, we consider sections of five
cities (Tokyo, Beijing, London, Moscow, and Boston) having varying sizes and distinct types
of terrain, buildings, and foliage. Shown in Fig. 2 are 3D representations of these city sections,
whose blueprints are part of the Wireless Insite package.

It is standard practice to differentiate channel models across environments, e.g., the 3GPP
mmWave model provides separate parameter distributions for distinct types of environment, say
urban macro and urban micro [28]. In a data-driven approach, environment-specific models can
be created by appropriately partitioning the training data. In our case, it is natural to define a
distinct environment for each of the five represented city sections as these have been selected
because of their different characteristics in the first place. This is emphasized by the statistics
provided in Table II. We see, for instance, that the section of Boston has a significantly lower
average building height than the others and a lower maximum building height as well. We can

use this to infer how each city may perform relative to the rest. Furthermore, we can observe
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(a) Tokyo, Japan (b) Beijing, China

(c) London, UK (d) Moscow, Russia

(e) Boston, USA

Fig. 2: 3D representations of the five considered city sections: (a) Tokyo, (b) Beijing, (c) London, (d) Moscow, and

(e) Boston.

other diversifying aspects of each city by means of a visual inspection. For example, Moscow
has buildings that are all nearly the same height and considerable open areas. Although Tokyo
has a comparable amount of open areas, those are concentrated in a single quadrant, in contrast
with the scattered nature of Moscow’s open areas. Because of this, we can expect Moscow to
support better coverage in terms of LOS probability and path loss.

The number of deployed transmitters (UAVs) and receivers (gNBs) is detailed in Table III
for each of the environments. As advanced in earlier sections, two distinct types of gNBs are

manually placed:

« Standard gNBs. These are placed on streets at a height of 2 m, emulating typical locations for
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TABLE III: City sections and deployment parameters

Tokyo, Japan | Beijing, China | London, UK | Moscow, Russia | Boston, USA
Area (m?) 1420 x 1440 | 1650 x 1440 | 1500 x 1480 1440 x 1380 1130 x 1220
Number of UAVs 140 120 120 160 138
Number of standard gNBs 220 180 122 200 95
Number of dedicated gNBs 200 120 93 160 78

5G microcells intended to serve ground users.
o Dedicated gNBs. These are located on rooftops, 30 m above street level, meant to provide

additional coverage to UAVs.

Transmitting UAVs, for their part, are placed at different horizontal locations in each environ-
ment, at one of four possible altitudes: 30, 60, 90 and 120 m.

In total, 58800 UAV-gNB links are created for the Tokyo environment, 36000 for Beijing,
25800 for London, 57600 for Moscow, and 23874 for Boston. The Wireless InSite ray tracing
tool is then run to simulate the channel on every link, producing the path parameters x for each
link (directions of arrival and departure, path losses, and delays). All simulations are conducted
at 28 GHz. The maximum number of reflections is set to six per ray and the maximum number of
diffractions is set to one. This means that, if a diffraction is present, the ray tracer uses additional
logic to determine whether reflections can occur before, after, and between diffractions along
the path between Transmitter (TX) and Receiver (RX). The materials of different objects in the
3D model can also be specified, and both ground and wall surfaces are taken to be made of
concrete with a permittivity of 5.31 F/m.

The datasets thus gathered are utilized to train the model described in Sec. III.

V. MODELING RESULTS

This section describes various features of the learned models, and their ability to capture
interesting wireless phenomena. We also seek to evaluate the generalization ability of the models,
meaning their ability to accurately describe the channel behavior in locations other than those in
the training dataset. As mentioned in the introduction, this ability is a highly desirable attribute,

and hence we test it extensively.
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The links available for each environment are split, 75% for training and 25% for testing. Mod-
els are then trained separately for each environment, which enables assessing the generalization

ability in these two senses:

o Intra-environment. The model trained on the 75% training links of a specific dataset is
evaluated on the 25% test links of that same dataset. This appraises the ability of the model
to generalize to links in the same environment, but at new locations not seen during training.

o Inter-environment. The model trained on a specific dataset is evaluated on another dataset.

This serves to examine the model’s ability to generalize to links in other environments.

All the implementations are based on Tensorflow 2.2; the code, datasets, and pre-trained

models can be found in [59].

A. LOS Probability

To illustrate the functioning of the link-state predictor, Fig. 3 shows the probability of the
link being in the LOS state as a function of the horizontal distance between UAV and gNB.
Precisely, Fig. 3a depicts the actual probabilities in the test data for each of the environments
and Fig. 3b depicts the respective model predictions. In both cases, the results are averaged
over the four possible UAV altitudes. The link-state predictor is seen to accurately determine the
trends in the test data for each of the environments and to reflect the very different behaviors
of standard and dedicated gNBs. We also observe interesting differences across environments.
The LOS probability is uniformly higher in Moscow, both for standard and dedicated gNBs,
consistent with the relatively shorter buildings therein. Beijing, in turn, exhibits a relatively high
LOS probability for standard gNBs yet a relatively low LOS probability for dedicated gNBs, a
contrast that points to an abundance of both reflection opportunities and blockages.

Insights on the impact of the UAV altitude can be drawn from Figs. 4a and 4b, where again
we see the excellent match between the test data and the model predictions thereon. Dedicated
gNBs can provide substantially higher probabilities of LOS coverage at long horizontal distances
provided the UAV is high enough. In contrast, standard gNBs tend to be far more limited in
terms of horizontal coverage.

We will see next how all of the above has a significant impact in other features such as the

path loss and path angular distributions.
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(b) Proposed generative model

Fig. 3: LOS probability in the test locations, averaged over the four possible UAV altitudes (30, 60, 90, and 120 m);

(a) ray-tracing data, (b) generated by the model.

B. Path Loss: Intra-Environment Evaluation

We now turn to evaluating the accuracy of the rest of the parameters. Fundamentally, we want
to measure how close the distribution of the trained generative model in (3) is to the observed
conditional distribution of the test data itself. To this end, let (u;,x;), i = 1,..., Nis be the
test samples, each containing a link condition, u;, and its corresponding path parameters, x;.

To evaluate how closely the learned model fits this test data, for each sample we can compute
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Fig. 4: LOS probability for (a) Moscow, Russia and (b) Tokyo, Japan, parameterized by altitude and horizontal

distance.
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Fig. 5: CDF of the path loss for (a) Boston and (b) Moscow.

some statistic ¢(u;,x;) that is of relevance. As an example of statistic, we compute the path
loss experienced by UAVs and gNBs equipped with omnidirectional antennas, deferring to later
in the paper the consideration of directivity. Using the same conditions u; in the test data, we
generate a sample x" = g(u;,z;) from the trained generative model and some random z;. We
can then compute ¢(u;, x*4) and compare its CDF with that of the actual ¢(u;,x;).

We first evaluate the intra-environment accuracy of the omnidirectional path loss predictions.
Fig. 5 shows the CDF of path losses for the test data of a couple of environments alongside

the CDF of path losses generated by the trained model using the same condition values as the
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test data. An excellent match is observed for both standard and dedicated gNBs. In particular,
the trained generative model is able to capture the multi-slope behavior that arises in some

environments due to the mixture of LOS/NLOS links.

C. Path Loss: Inter-Environment Evaluation

Next, we gauge the model’s ability to make predictions on an environment after having been
trained on a different one. Presented in Fig. 6 are two sets of contrasting such results. On the
left-hand side we have the CDF of the path loss on the Moscow test data as predicted by a
model trained with the Beijing dataset. For standard gNBs the match is satisfactory, indicating
similarity in the respective propagation mechanisms for those gNBs, chiefly reflections. For
dedicated gNBs, conversely, the Beijing model largely overstates the Moscow path loss, pointing
to important discrepancies in the degree of blockage between the two environments. These
observations are fully consistent with those made in Section V-A for the LOS probabilities in
Moscow and Beijing. On the right-hand side of the figure, the same exercise is repeated for
a model trained with London data and tested in the Tokyo environment, and in this case the
agreement is excellent for both standard and dedicated gNBs. We thus see how the proposed
methodology enables assessing the inter-environmental generalizability of models, which turns

out to depend not only on the environments, but further on the type of gNB. The similarities and
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(a) Beijing model on Moscow data. (b) London model on Tokyo data.

Fig. 6: Inter-environment comparisons for (a) a model that fails to accurately predict the path loss on an environment

different than the training one, and (b) a model that does accurately make that prediction.
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discrepancies thereby revealed are valuable and highly non-obvious from a visual inspection of
the environments in Fig. 2.

Fig. 6a shows a somewhat worse match (CDFs are further apart) for the standard case than
what can be observed for its counterpart in Fig. 6b, but is still a far better inter-environment
generalization than for the dedicated case. We infer that loss models for standard deployments
generalize better to other environments, in comparison with models for dedicated deployments.
Besides the two figures that are herein presented supporting this observation, we note that this
is a clear pattern throughout the results. The dedicated model might be harder to generalize due
to varying building heights and densities, and this is an interesting phenomenon that calls for

further research.

D. Angular Distribution

Let us now turn to the path angles. Fig. 7 plots the distribution of those angles as a function
of the 3D distance between the UAV and gNB. The distribution is computed over all the paths
within 30 dB of the strongest path within each link for all the links in the test dataset, and it is
averaged over the four possible UAV altitudes. (For the sake of readability, the links to standard
and dedicated gNBs are combined, but respective plots for the standard and dedicated gNBs, or
plots to separately observe the effects of elevation and horizontal distance, could just as well be
produced.)

Each row in Fig. 7 shows the distribution of one of the angles, ¢}, 6%, %>, 0;*, relative to the
LOS direction (even when the LOS path is blocked). For each environment, the left-hand-side
column is the distribution for the test data whereas the right-hand-side column is the counterpart
generated by the learned model.

The model matches very well the actual angular distribution in the test data. In particular,
it captures an important phenomenon: for all distances and angles, the NLOS paths tend to be
angularly close to the LOS direction. Moreover, the angular spread decreases as the UAV and
gNB are further apart. This behavior makes intuitive sense in that, as the UAV pulls away from
the gNB, there is less local scattering to create angular dispersion. Consistent with this, the

scattering is much wider at the gNB end of the links.
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Fig. 7: Distribution of angles, averaged over the four UAV altitudes, for (a) Tokyo, (b) Beijing, (c) London, (d)

Moscow, and (e) Boston.
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TABLE IV: Uplink single-cell simulation parameters

Item Value

Carrier frequency: 28 GHz

Bandwidth: 400 MHz (4 x 100 MHz aggregation)
gNB height Standard: 2 m; Dedicated: 30 m

UAV: Nyav =16 (4 x 4 UPA)

gNB: Ngng = 64 (8 x 8 UPA)

Spectrum

Array size

Antenna spacing Half-wavelength

UAV: 180° | lower hemisphere coverage [67]

Array vertical orientation Standard gNB: 100° “\, ground coverage, 3 sectors

Dedicated gNB: 0° 1 upper hemisphere coverage
Transmit power UAV: 23 dBm
Losses 6 dB including noise figure [69], [70]

E. SNR Predictions

We finalize by demonstrating a specific application enabled by the generative model. Specif-
ically, we compute the predicted uplink (UAV to gNB) local-average SNR as a function of the
UAV position in the single-cell scenario described in Table 1V, which is consistent with 5G
deployments at 28 GHz [67]. Such uplink SNR is of particular interest since this is usually the
power-limited link direction, and the one envisioned to support high-bit-rate applications [5],
[6].

A gNB is located at (0,0, ~) with h = 2 m and » = 30 m in the standard and dedicates cases,
respectively. In the standard case, the gNB features three sectors with a half-power beamwidth
of 90° per sector and a 100° downtilt (relative to vertical), as customary to serve ground users.
Hence, the connections from UAVs to standard gNBs must necessarily be through sidelobes or
reflected paths [11], [18]. In the dedicated case, the gNB is single-sectored with an upward-facing
array intended for aerial coverage. The UAV, equipped with a single array at its bottom, designed
for lower-hemisphere coverage [67], is at (z,0, z) with € [0,500] m and z € [0,130] m. For
each UAV position and gNB type (standard or dedicated), 100 channels realizations are generated
by the model and used to compute the local-average SNR [68]. The median of these local-average
SNRs is depicted in Fig. 8.

The experiment shows how the SNR at any location within the environment can be predicted

from the model and the specifics of the setting (arrays, powers, and the other details in Table IV).
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Fig. 8: Median predicted local-average SNR as a function of the UAV position for (a) Tokyo, (b) Beijing, (c)

London, (d) Moscow, and (e) Boston. The horizontal lines indicate the altitude of the dedicated gNBs.
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Fig. 9: Level curves for SNR = 10dB across all five environments.

The dedicated gNBs provide much better coverage at large horizontal distances, yet standard
gNBs can provide solid coverage when the horizontal distance is small (below roughly 100 m).
This coverage from standard gNBs is rather surprising: complying with 3GPP specifications [28],
standard gNBs have downtilted antennas with a 30 dB front-to-back gain ratio, which hinder
the connectivity from direct vertical paths. However, the learned model captures reflections
from neighboring buildings within the antenna beamwidth, and the simulations show that these
reflected paths do enable coverage.

Another perspective on these results is provided in Fig. 9, which depicts the (2D distance,
elevation) contours at which the median SNR equals 10 dB for each environment. The coverage
at this SNR 1is seen to be superior when the UAV is horizontally close to the gNB and/or vertically
high (due to increased probability of maintaining LOS). An analysis of Fig. 9 reveals interesting
relations between the physical characteristics of each environment and their respective wireless
channels. An as example, for a dedicated deployment, we can surmise that Beijing is the best
environment at lower altitudes, up to 150 m horizontally; this relates to its sparse building density,
as per Fig. 2b. Beyond 500 m horizontally, however, it is Moscow that best supports a dedicated
deployment, maintaining a certain SNR at low altitudes; this agrees with our initial predictions

about Moscow’s coverage based on the height profile of its buildings and its large open areas.
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VI. BECHMARKING AGAINST 3GPP MODELS

To complete the test-drive of the proposed generative model, it is fitting to benchmark it against
the alternatives offered by existing standards. We focus here on the 3GPP UMi-AV (urban micro
with aerial vehicles) scenario [18], [28], which is the closest to our work. This model is suitable
for mmWave frequencies up to 100 GHz, but its parameters are calibrated for UAVs—meaning
users at altitudes above 22.5 m—only below 6 GHz. In order to provide a fair benchmark for
our proposed architecture, we refit those parameters with the data for each of our environments,

and restrict the comparisons to standard gNBs.

A. LOS Probability

We first examine the probability of LOS, P os. The 3GPP model takes in several parameters
such as the heights of transmitter and receiver and, as well as their horizontal distance, dop =

/@2 + dz [28]. If the UAV height h is between 1.5m and 22.5m, then

(

1 dop < o
Pros = 4 (13)
|2t @ (1-2) o <dw
whereas, if h > 22.5m,
(
1 dop < dy
Pros = 4 (14)
d—l—f-e_? <1—d—1> d2D>d1
{ d2p dap
with
p1 = azlogyg(h) + ay
(15)
dy = max(aslog,y(h) + ag, aq).
The values for the parameters, which in the 3GPP model [28] are
1,08 = [alu Qg, a3, 0y, s, O[ﬁ]
= [18, 36, 294.05, —432.94, 233.98, —0.95], (16)

are herein refitted for each environment. Specifically, for each link we specify the set of condition

variables

u = [log,o(h), dap, h, hens], (17)
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and a binary label y = 1 if the link is LOS and y = 0 otherwise. The 3GPP model can be

viewed as a function
Pros = P(y = 1|u) (18)
= gros(u, ar0s), (19)

mapping the condition vector u to the LOS probability. From the links (u;,y;) on a given

environment, the parameters a;pg can be found by minimizing the binary cross entropy,

J(aros) ==Y [yi log(gros(ui, aros)) (20)

+ (1 —y;) log(1 — gros(ui, arog)) |- 1)

This minimization, which is tantamount to a maximum likelihood estimation of oy s, 1s per-

formed via stochastic gradient descent (see Table V). A distinct set of refitted parameters is

TABLE V: 3GPP Refitting Optimization

Pros Path Loss
Number of inputs 5 6
Number of parameters 6 19
Optimizer Adam
Loss function Binary cross entropy | Mean-squared error
Learning rate 1073
Epochs 50
Batch size 128

obtained for each of the environments in Fig. 2, with the imposition that those parameters
are within a multiplicative interval [0.01, 10] of the nomimal 3GPP values in (16) to prevent
overfitting.

Our proposed generative approach can now be validated against the default 3GPP model and
its refitted version. The horizontal distance, d,p, and the vertical distance, d,, are binned into
sections of 20 m and 5 m, respectively. From a histogram of the test links’ LOS condition over
the bins, the empirical P og of the test data is obtained and contrasted with the prediction from
the three models.

Table VI shows the mean absolute error of the LOS probability over the grid. We observe
that the refitted 3GPP model is significantly better than its default form and that our proposed
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approach, with minimal prior structure, performs similarly or better—sometimes markedly—than

even the refitted 3GPP model on every environment.

B. Path Loss

We employ a similar strategy to refit the 3GPP path loss model. It is important to note
that, unlike with P g, which depends exclusively on the geometry, the path loss is frequency-
dependent. Separately for the LOS and NLOS cases, the 3GPP model accepts as input the

condition vector in (17) and outputs a predicted path loss as some function,

PL = gPL<93> aPL)7 (22)

for specific parameters ap;, whose nominal details are given in [18, Table B-1]. We refit the

model, this time with a mean-squared error criterion (see Table V for details).

st data
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== = Proposed generative model
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Fig. 10: Path loss fitting for Tokyo, Japan.
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TABLE VII: Path loss: Wasserstein-1 distance to test data distribution (dB)

Tokyo, Japan | Beijing, China | London, UK | Moscow, Russia | Boston, USA
Default 3GPP Model 15.8 18.8 17.8 15.5 214
Refitted 3GPP Model 10.7 14.8 12.3 14.3 14.9
Proposed Generative Model 6.70 222 2.95 249 342

An example is presented in Fig. 10, which depicts the CDFs of path losses for the test data, the
default 3GPP model, the refitted 3GPP model, and our proposed approach for Tokyo specifically.
While the refitted 3GPP model performs decidedly better than the default one, our proposed
approach best approximates the distribution of the actual data. To quantify the differences among
the distributions in this and the other environments, we invoke the Wasserstein-1 distance [71].
This metric can be understood as a type of "distance function" between two distributions, and
maintains the same units as the random variable (dB). For two distributions P and (), the

Wasserstein distance equals
W(P,Q) = max \E(f(X)|X ~ P) - E(f(X)|X ~ Q)|, (23)

where the maximization is over all Lipschitz functions satisfying ||V f(z)||< 1 Vz. This metric
is commonly used to train GANs [72] and, for scalar random variables, it can be computed
efficiently as the integrated difference in CDFs [73]. Table VII shows the Wasserstein distance
between the test data and the various models, with the propounded approach outperforming the

rest in every environment.

VII. CONCLUSION

In an age in which the complexity of wireless systems has exploded, generative models are a
fitting engine for statistical channel modeling. This is particularly true for the elaborate settings
encountered in mmWave UAV communication. Under the proviso that abundant data is available,
generative models are perfectly equipped to learn intricate probabilistic relationships and then
produce parameters distributed accordingly. The only assumption is the choice of the parameters
themselves, which can rest on basic principles of radio propagation.

The proposed generative model, publicly available [59], has been shown to learn effectively
and it can hence be calibrated for any desired operating frequency, type of deployment, and
environment for which representative data is available. The model can then capture any de-

pendencies present in the data. In current standard-defined aerial channels, for instance, the
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distributions from which the angles of the multipath components are drawn do not depend on
the distance; in contrast, and as intuition would have it, our model indicates, from the underlying
data, a progressive narrowing of these distributions over distance.

In closing, we recall that, while the model has proved its ability to learn and to made interesting
predictions driven by ray-tracing data, the ultimate objective is to drive it with empirical data.

For this purpose, a measurement collection campaign is underway.
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