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Abstract: Multisensory object-centric perception, reasoning, and interaction have
been a key research topic in recent years. However, the progress in these directions
is limited by the small set of objects available—synthetic objects are not realis-
tic enough and are mostly centered around geometry, while real object datasets
such as YCB are often practically challenging and unstable to acquire due to in-
ternational shipping, inventory, and financial cost. We present OBJECTFOLDER,
a dataset of 100 virtualized objects that addresses both challenges with two key
innovations. First, OBJECTFOLDER encodes the visual, auditory, and tactile sen-
sory data for all objects, enabling a number of multisensory object recognition
tasks, beyond existing datasets that focus purely on object geometry. Second,
OBJECTFOLDER employs a uniform, object-centric, and implicit representation
for each object’s visual textures, acoustic simulations, and tactile readings, mak-
ing the dataset flexible to use and easy to share. We demonstrate the usefulness
of our dataset as a testbed for multisensory perception and control by evaluating
it on a variety of benchmark tasks, including instance recognition, cross-sensory
retrieval, 3D reconstruction, and robotic grasping.
Keywords: object dataset, multisensory learning, implicit representations
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Figure 1: OBJECTFOLDER contains 100 Object Files in the form of implicit neural representa-
tions. Querying each Object File with the corresponding extrinsic parameters we can obtain realistic
object-centric visual, auditory, and tactile sensory data. The OBJECTFOLDER dataset is a potential
testbed for many machine learning and robotics tasks that require multisensory perception.

1 Introduction

We perceive the world not as a single giant entity but often through a series of inanimate objects,
which exist as bounded wholes and move on connected paths. We interact with these objects through
an array of different sensory systems–vision, audition, touch, smell, taste, and proprioception. These
multisensory inputs shape our daily experiences: we observe the surroundings to avoid obstacles,
hear the doorbell ring to realize the guests have arrived, and touch the fabric to sense its degree
of comfort. Cognitive science studies [1, 2] show that both object representation and multisensory
perception play a crucial role in human cognitive development.

Object-centric learning has shown great potential lately in visual reasoning [3], representing physi-
cal scenes [4], modeling multi-agent interactions [5], and improving generalization to unseen object
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compositions [6]. These prior methods, however, often do not model the full spectrum of physical
object properties and sensory modes, including their 3D shape, texture, material, sound, and feel.
While there has been significant progress by “looking”—recognizing objects based on glimpses of
their visual appearance or 3D shape—objects in the world are often modeled as silent and untouch-
able entities.

We identify that this is due to the lack of rich object datasets. Existing object datasets have con-
tributed to most significant progress in image recognition [7, 8] and shape modeling [9, 10], but other
sensory information is minimally considered. Datasets for robotic manipulation research [11, 12]
consist of a selected number of real-world household objects, but these objects are expensive and
often unstable to acquire due to international shipping and inventory. Moreover, it is nontrivial to
virtualize these objects and their multiple sensory modes, limiting their usability for developing
embodied AI agents [13, 14, 15, 16, 17, 18, 19, 20, 21].

Our goal is therefore to create a dataset of 3D objects that are 1) easily accessible to the community
as a standard benchmark, 2) high-quality in terms of visual textures, and 3) augmented with realistic
auditory and tactile sensory data. Towards this end, we introduce OBJECTFOLDER—a multisensory
dataset of implicitly represented Object Files. The concept of an object file can be traced back
to Kahneman et al. [22], where it is defined as the sensory information that has been received about
the object at a particular location. In a similar spirit, we model and represent each object (or its
intrinsics) using an implicit neural representation, which through querying with extrinsic parameters
we can obtain images of the object from different viewpoints, impact sounds of the object at each
position, and tactile sensing of the object at every surface location. These different sensory data of
vision, audio, and touch can be regarded as contemporary multisensory object files.

Specifically, we collect 100 high quality 3D objects from online repositories. For each object, we
model its visual appearance at random object pose, lighting condition, and camera viewpoint; we
perform modal analysis [23] based on its shape, size, and material type to calculate its characteris-
tic vibration modes for audio simulation; and we simulate its touch readings at all surface locations
using DIGIT [24, 25]–a vision-based tactile sensor. Based on recent success on neural implicit repre-
sentations [26, 27], we design a deep neural network that consists of three sub-networks–VisionNet,
AudioNet, and TouchNet, which encode the visual, auditory, and tactile sensory data for each object,
respectively. See Fig. 3. Together, they constitute an Object File that contains the complete multi-
sensory profile for each object instance. Furthermore, we demonstrate the usefulness of our dataset
on four benchmark tasks leveraging multisensory data, including instance recognition, cross-modal
retrieval, 3D reconstruction, and robotic grasping.

Our main contributions are threefold: First, we introduce OBJECTFOLDER, a dataset that makes
multisensory learning with vision, audio, and touch easily accessible to the research community;
Second, all objects in our dataset are compatible to different robotic virtual environments and will be
made publicly available as a standard testbed for robotic multisensory learning; Third, we evaluate
on a suite of benchmark tasks that require multisensory data to facilitate future work in this direction.

2 Related Work

Object-Centric Datasets Many image datasets exist for object recognition, such as ImageNet [7],
MS COCO [28], ObjectNet [8], and OpenImages [29]. These datasets consist of 2D images, while
OBJECTFOLDER is a dataset of 3D objects. ModelNet [9] and ShapeNet [10] are two large-scale
datasets of 3D models, but the collected 3D CAD models either contain no or low-quality visual
textures, making them unsuitable for real-world applications. For research on object manipulation,
datasets are constructed using real-world household objects such as YCB [11] and BigBIRD [12].
Different from them, our goal is to construct a dataset of 3D objects, where realistic visual, auditory,
and tactile sensory data can be easily obtained for each object in virtual environments.
Implicit Neural Representations Coordinate-based multi-layer perceptions (MLP) have recently
been adopted as continuous, memory-efficient implicit representations for a variety of visual sig-
nals such as 3D shape [30, 31], scenes [32, 33], and object appearance [26, 27] with the help of
classic volume rendering techniques [34]. We also use MLP as a compact neural representation to
represent each 3D object. Differently, apart from visual appearance, our mutisensory implicit neural
representation also encodes object-centric auditory and tactile data of the object.
Multisensory Perception for Robotics Recent work shows growing interests in using audio or
touch in conjunction with vision for robotic tasks. Audio is used to recognize object instances [35]
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Figure 2: Example objects in OBJECTFOLDER. See Supp. for the visualization of the entire dataset.

or terrain types [36]; estimate the flow and amount of granular materials [37] or liquid height [38]
in robotic scooping and pouring tasks; study its synergies with the motion of a robot [39]; and
bridge the simulation-to-reality gap for tasks that involve stochastic dynamics [40]. Tactile sensing
is more local compared to vision and audio, and it is shown to improve sample efficiency on a peg
insertion task [41]; benefit robotic grasping [42, 43, 44]; augment vision to enhance 3D shape recon-
struction [45]. Different from the above work that focuses on a particular task that leverages either
auditory or tactile data, we construct an object-centric dataset of all three modalities, democratizing
multisensory learning research using vision, audio, and touch.

3 OBJECTFOLDER

We introduce OBJECTFOLDER, a dataset of 100 implicitly represented 3D objects with vision, au-
dio, and touch. As shown in Fig. 3, each object is represented by an Object File, a compact neural
network that contains all the visual, acoustic, and tactile profiles for the object. Querying it with ex-
trinsic parameters we can obtain visual appearance of the object from different viewpoints, impact
sound of the object at each position, and tactile reading of the object at every surface location. In the
following, we first describe the source of our objects and the annotations (Sec. 3.1). Then we present
the simulation pipeline and how we encode the sensory data using implicit neural representations
for vision (Sec. 3.2), audio (Sec. 3.3), and touch (Sec. 3.4), respectively.

3.1 Objects

We collect 100 high quality 3D objects from online repositories including: 20 objects from 3D
Model Haven2, 28 objects from the YCB dataset3, and 52 objects from Google Scanned Objects4.
We select objects that are of realistic visual textures, approximately homogeneous material property,
and with a material type that is mappable to one of the following categories: ceramic, glass, wood,
plastic, iron, polycarbonate, and steel. We annotate each object with the material type, which will
be used in audio simulation in Sec. 3.3. The dataset contains common household objects of diverse
categories such as bowl, mug, cabinet, television, shelf, fork, and spoon. See Supp. for details.

3.2 Vision

Simulation: We use Blender’s Cycles path tracer [46] to render images. For each object, we first
normalize it into a unit cube and use a point light source at a random location on a unit sphere. We
then render images of the object on a white background from camera viewpoints randomly sampled
on a full sphere. See Fig. 2 for some example views of objects in our dataset.

VisionNet: After rendering images from different camera viewpoints under varied lighting con-
ditions, we use VisionNet to encode the visual appearance for each object. Following prior work
on object-centric neural radiance fields [27], we represent each object as a 7D object-centric neu-
ral scattering function whose input is a 3D location x = (x, y, z) in the object coordinate frame
and the lighting condition at that location (!i,!o), where !i = (�i, ✓i), !o = (�o, ✓o) de-
note the incoming and outgoing light directions, respectively. The output is the volume density
� and fraction of the incoming light that is scattered in the outgoing direction ⇢ = (⇢r, ⇢g, ⇢b).
VisionNet approximates this continuous 7D object-centric representation with an MLP network
Fv : (x, y, z, ✓i,�i, ✓o,�o) �! (�, ⇢r, ⇢g, ⇢b) that maps each input 7D coordinate to its correspond-

2
https://3dmodelhaven.com/

3
http://ycb-benchmarks.s3-website-us-east-1.amazonaws.com/

4
https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google%

20Scanned%20Objects

3
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http://ycb-benchmarks.s3-website-us-east-1.amazonaws.com/
https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google%20Scanned%20Objects
https://app.ignitionrobotics.org/GoogleResearch/fuel/collections/Google%20Scanned%20Objects
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Figure 3: Each Object File implicit neural representation contains three sub-networks–VisionNet,
AudioNet, and TouchNet, which through querying with the corresponding extrinsic parameters we
can obtain the visual appearance of the object from different views, impact sounds of the object at
each position, and tactile sensing of the object at every surface location, respectively.

ing volume density and fraction coefficient for each RGB channel. The amount of light scattered at
a point x can be obtained as follows:

Ls(x,!o) =

Z

S
L(x,!i)f⇢(x,!i,!o)d!i, (1)

where S is a unit sphere and f⇢ evaluates the fraction of light incoming from direction !i at the point
that scatters out in direction !o. Then we use classic volume rendering [34] to render the color of
any ray passing through the object. The expected color C(r) of camera ray r(t) = x0 + t!o can be
obtained as follows:

C(r) =

Z tf

tn

T (t)�(r(t))Ls(r(t),!o)dt,where T (t) = exp(�
Z t

tn

�(r(s))ds. (2)

T (t) denotes the accumulated transmittance along the ray from tn to t; tn and tf are the near and far
integration bounds; and �(r(t)) denotes the volume density at location r(t). Similar to [26], we also
use stratified sampling, positional encoding, and hierarchical volume sampling to increase rendering
quality and efficiency. See [26, 27] for details.

3.3 Audio

Simulation: The goal of audio simulation is to realistically model the impact sound at each posi-
tion of the object based on its shape, size, material type, external force, and the contact location.
Following the standard approach in engineering and acoustics, we use linear modal analysis for
physics-based rigid-body sound synthesis [23, 47].

Firstly, we convert the surface mesh of an object into a volumetric hexahedron mesh, which repre-
sents the original shape with N voxels. The key to modal analysis is to solve the following linear
deformation equation for a 3D linear elastic dynamics model:

Mü+Cu̇+Ku = f , (3)

where u 2 R3N denotes the displacement of elemental nodes in 3D; M,K 2 R3N⇥3N denote
the mass and stiffness matrices of the system; C = ↵M + �K stands for Rayleigh damping; and
f 2 R3N represents the external force applied to the object that stimulates the vibration. Based on
the material type of the object, we obtain its density value ⇢, Young’s Modulus E, Poisson’s ratio r,
and Rayleigh damping parameters ↵ and �. The scale of the object and material parameters ⇢, E, r
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are used to build the mass and stiffness matrices M and K. See Supp. for how we map each material
type to these parameters.

The above equation can be decoupled into the following form through generalized eigenvalue de-
composition KU = ⇤MU:

q̈+ (↵I+ �⇤)q̇+⇤q = UTf , (4)
where u = Uq and ⇤ is a diagonal matrix. The solution to the above equation is a bank of damped
sinusoidal waves with each wave representing a mode signal:

qi = aie
�cit sin(2⇡!it+ ✓i), (5)

where !i is the frequency of the mode, ci is the dampling coefficient, ai is the excited amplitude, and
✓i is the initial phase. Assuming the object is stationary originally, we get the following solution:

✓i = 0, ci =
1

2
(↵+ ��i), !i =

1

2⇡

q
�i � c

2
i . (6)

�i represents the ith mode eigenvalue. We simulate the vibration modes excited by unit forces
f1, f2, f3 for all vertexes and use the obtained modes signals for training AudioNet as detailed next.

AudioNet: As shown in Fig. 3, for each force direction, we train a separate branch to encode
the corresponding modes signals at all vertexes. We obtain the audio spectrogram for each modes
signal and train a MLP to predict the complex spectrogram of dimension F ⇥ T ⇥ 2, where F and
T are the frequency and time dimensions. Particularly, each branch takes the spatial coordinates
(x, y, z)5 and the spectrogram location (f, t) as input, and predict the real and imagninary part of
the complex number for every location in the audio spectrogram. The modes signal can then be
recovered from the spectrogram using inverse short-time Fourier transform (ISTFT). We also use
positional encoding as in VisionNet.

During test time, we directly use vibration modes for sound synthesis following [47]. Any external
force at a vertex can be decomposed into a linear combination of unit forces along the three orthogo-
nal directions: f = k1f1+k2f2+k3f3. The amplitudes of modes a excited by f can be decomposed
into a linear combination of the amplitudes excited by the unit force: a = k1a1 + k2a2 + k3a3,
where a1,a2,a3 denote the amplitudes of modes excited by unit forces f1, f2, f3 for a given vertex.
Because modal analysis is performed on a volumetric hexahedron mesh, for a vertex in the original
polygon mesh, we find its closest four vertexes in the hexahedron and average their modes signals.

Prior work [23, 48] have demonstrated that such physics-based rigid-body sound synthesis pipeline
renders sound that transfers well to real scenes and the objects’ shape, material, and other auditory
attributes can be successfully inferred from the simulated sound. To further demonstrate the realism
of our audio simulation, we also perform a user study on acoustic fidelity that asks participants to
distinguish between the real and simulated audios. Results show that our simulated audio is preferred
by 42% of the total responses, comparing closely to real audio recordings. See Supp. for details.

3.4 Touch

Simulation: We leverage a state-of-the-art touch simulator TACTO [25] for touch simulation.
TACTO is a vision-based touch simulator and uses ray-tracing to simulate high-quality tactile sig-
nals. It can simulate realistic rendering for both contact surfaces and shadows with different contact
geometry. See [25] for details and a comparison of the simulated and real tactile readings. Particu-
larly, we use DIGIT [24] touch sensor and its corresponding camera, lights, and gel mesh configura-
tions in simulation. We choose DIGIT for its compactness, high-resolution of its representation, and
potential applications for robotic in-hand manipulation. Other touch sensors such as Gelsight [49],
BioTac [50], or Ominitact [51] can also be potentially used, and the design of the touch sensor to
use is orthogonal to our work. To obtain touch simulations, we place each object at rest and move
DIGIT to touch each object vertex in vertex normal direction. We constrain the force to range within
a small threshold such that the rendered tactile images do not vary significantly with different forces.
We use the RGB tactile image that contains the local contact geometry as our touch representation.

TouchNet: For each object, we obtain a RGB tactile image of dimension W ⇥H ⇥ 3 that captures
the local geometry information for every vertex on the surface of the polygon mesh. TouchNet takes
the spatial coordinate (x, y, z) of the vertex and the spatial location (w, h) in the tactile image as
input, and predicts the per-pixel value for the three channels of the tactile RGB image. The other
settings are similar to VisionNet and AudioNet.

5For audio simulation, we use vertex spatial coordinates on the hexahedron mesh for modal analysis.
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Ground-Truth

Object File

Figure 4: Comparison of the visual, auditory, and tactile data generated from Object Files and the
corresponding ground-truth simulations. Our implicit neural representations accurately encode the
sensory data for the objects. See Supp. for more examples and a quantitative comparison.

Implicit Original

Vision 7.2 MB 1
Audio 6.3 MB 12.6 GB
Touch 2.1 MB 2.9 GB

Table 1: Storage space comparison.

Fig. 4 shows some examples of the sensory data obtained from
Object Files. The rendered images, impact sounds, and touch
readings well match the ground-truth simulations. See Supp.
for a quantitative comparison on the accuracy of the implicit
representations. Moreover, using implicit neural representa-
tions is much more storage efficient compared to the original
data format. Table 1 shows a comparison between the storage
size with and without using implicit representations. Object
File in the form of an implicit neural network is a much more compact representation of the multi-
sensory data for each object. Note that VisionNet models an object-centric neural scattering func-
tion [27] and thus can generalize to any camera viewpoint under arbitrary lighting conditions, while
rendering and saving images for all scenarios takes infinite space theoretically.

4 Experiments

OBJECTFOLDER is a potential testbed for many perception and control tasks. Next, we evaluate
on four benchmark tasks including instance recognition, cross-sensory retrieval, 3D reconstruction,
and robotic grasping to demonstrate the usefulness of the dataset and the value of multisensory
perception. We show the key results below, and see Supp. for the detailed experiments setup.

4.1 Multisensory Instance Recognition

Methods Acc. (%)

Chance 1.00
Vision (V) 94.8
Audio (A) 98.3
Touch (T) 72.4
V + A 99.5
V + T 97.2
A + T 99.0
V + A + T 99.8

Table 2: Results on multisen-
sory instance recognition.

Identifying the object instance that is interacted with is fundamental
for many robotic applications. In this task, we want to identify
an object based on either its visual appearance, impact sound, or
local contact geometry. We are interested in finding out the amount
of information that is useful to recognize the object instance from
each modality. For the vision modality, we train a ResNet-18 [52]
network that takes an RGB image of the object as input and predicts
the instance label of the object. The settings are the same for audio
and touch except that the input is either a magnitude spectrogram of
the impact sound the object generates or a local tactile RGB image
from a random location on the object surface.

Table 2 shows the results. The accuracy for a random classifier is
1%. The vision classifier achieves high accuracy, because an image
of the object normally captures informative appearance cues that
distinguish the object instance. Under some camera viewpoints, the vision classifier can mistakenly
classify the object. Surprisingly, the audio classifier achieves the best results. This confirms that our
audio simulation pipeline well models the shape, size, and material property of the object instance,
so that a single impact sound can be used to recognize the object. Touch is good at capturing local
geometry of an object, but often does not contain sufficient discriminative cues to recognize the
object especially from a single touch. Therefore, the touch classifier performs worse compared
to vision and audio. Classifiers with multisensory input are more robust, and combining all three
modalities leads to the best result.

4.2 Cross-Sensory Retrieval

Cross-sensory retrieval plays a crucial role in machine perception to understand the relationships
between different modalities. Fig. 5 shows our framework for learning cross-sensory embeddings
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for two modalities. Taking cross-sensory learning with vision and audio as an example, we design
a two-stream network that takes an RGB image and an audio spectrogram of the same object as
input for each stream. The two modalities have disjoint pathways in the early layers to capture the
modality-specific features. A final modality-agnostic network is used to map the shared embedding
to the label space for training with cross-entropy loss. We map the features of both modalities from
the last hidden state to a cross-sensory embedding space through a triplet loss. We either sample an
image or audio from another object as the negative example, and pull the embeddings of the same
object to be closer in the joint embedding space and push the embeddings from different objects
apart. The full model is trained jointly with both the triplet loss and the cross-entropy loss.

M
odality-A

gnostic
N
et

Modality A
Cross-sensory embedding space

Negative

C
lassification

Modality B Encoder B

Push
Pull

Encoder A

Figure 5: Learning cross-sensory embeddings.

Input Retrieved Chance CCA [53] Ours

Vision Audio 0.05 0.57 0.90
Touch 0.05 0.24 0.50

Audio Vision 0.05 0.59 0.92
Touch 0.05 0.31 0.55

Touch Vision 0.05 0.29 0.48
Audio 0.05 0.33 0.64

Table 3: Cross-sensory retrieval results.

Table 3 shows the results for cross-sensory retrieval on the test set, where we retrieve the sensory
data of a different modality by querying from the shared embedding space. We use cosine similarity
to measure the distances between embeddings and retrieve the sample with the smallest distance.
We report mean Average Precision (mAP) which jointly considers the ranking information and the
precision, and compare with random retrieval and a state-of-the-art cross-sensory retrieval method
based on canonical correlation analysis (CCA) [53]. Our models perform more reliable retrievals,
and the results show that the learned cross-sensory embeddings are effective and contain fine-grained
information about objects to correctly retrieve sensory data from the matched object. Similar to
instance recognition, we observe vision and audio provide more reliable global information about
the object compared to touch.

4.3 Audio-Visual 3D Reconstruction

Robots often need to build a mental model of the 3D shape of objects based on just a single glimpse
or the sounds they make during interaction. In this section, we investigate the potential of 3D recon-
struction using either a single image, an impact sound, or their combination. We leverage Occupancy
Network [30], which implicitly represents the 3D surface as the continuous decision boundary of a
deep neural network classifier, as a testbed for this task. Fig. 6 illustrates our IMAGE+AUDIO2MESH
framework for audio-visual 3D shape reconstruction. The image and audio embeddings are fused
through a fusion layer into an audio-visual feature, then combined with coordinate-conditioned fea-
ture maps through Conditional Batch-Normalization to predict occupancy probabilities p. We also
test two of its simplified variants IMAGE2MESH, which represents existing single image 3D recon-
struction approaches that predict the 3D shape from a single view of the object, and AUDIO2MESH,
which performs 3D reconstruction purely from audio.

Methods IoU " Chamfer-L1 # Normal Consistency "
AVERAGE 0.0675 0.1067 0.6312
IMAGE2MESH [30] 0.8809 0.0046 0.9522
AUDIO2MESH 0.8729 0.0048 0.9504
IMAGE+AUDIO2MESH 0.8906 0.0043 0.9535

Table 4: 3D shape reconstruction results. # lower better, " higher better.

We evaluate on a held out test set with standard metrics: IoU, Chamfer-L1 distance, and Normal
Consistency with respect to the ground-truth mesh. Table 4 shows the results. Compared to the
simple AVERAGE baseline that averages the results obtained using the ground-truth mesh of each
of the 100 objects as the prediction, we can see that 3D reconstruction from a single image or
an impact sound performs much better. Augmenting traditional single image 3d reconstruction with
audio achieves the best performance by leveraging the additional acoustic spatial cues. Furthermore,
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as shown in Fig. 7, we apply our IMAGE2MESH model trained on objects in OBJECTFOLDER to
real-world images. Our model generalizes reasonably well to real image, demonstrating the realism
of the objects in our dataset. The last column shows a typical failure case, where the teapot image is
very visually different from objects in our dataset.

Audio
Encoder

Image
Encoder

Fusion layer

O
ccupancy 
N

etw
ork

(", $, %)

!

Figure 6: IMAGE+AUDIO2MESH
framework for 3D reconstruction.

Reconstruction

ShapeNet

Input

Figure 7: 3D shape reconstruction using real-world im-
ages. Last column shows a typical failure case.

4.4 Robotic Grasping with Vision and Touch

Next we show how we combine vision and touch for prediction of grasp stability. The goal is to
use a robotic arm to successfully grasp and hold an object between the robot’s left and right fingers.
For touch data, we infer the RGB tactile image from the corresponding Object File based on the
grasp contact positions of the left and right grippers on the object; For vision data, we obtain images
from an externally mounted camera’s viewpoint at the grasping moment. We label the data as either
“Success” or “Failure” based on whether the object can be held between the robot’s fingers after
being lifted. Fig. 8 shows an example of both a successful grasp and a failure case.

We collect data for 10 objects from OBJECTFOLDER, and then train binary classifiers under different
sample sizes to predict the grasp outcome based on either the vision signal, the touch signal, or their
combination. This experiment is similar to that of [44, 25] except that we obtain touch readings
directly by querying our implicit representation networks. Fig. 9 shows the results. We observe that
it takes significantly less amount of data to reach high accuracy when learning from touch compared
to vision. Leveraging both visual and tactile data achieves the best accuracy. Additionally, we
train a policy for touch-based robotic grasping using TRPO [54]. We achieve a success rate of
75.5% during testing, while that of a random grasping policy is 53.0%. To further demonstrate the
potential of using our dataset on robot manipulation tasks, we also perform an experiment on an
object manipulation task (reach) using Meta-World [55] with three of our objects (cup, bowl, dice).
We achieve 100% success rate for each object. See Supp. for details.

Successful grasp
L

R

L

R

Failed grasp

Figure 8: Examples of a successful grasp and a
failed grasp. L: left finger, R: right finger. Figure 9: Grasp stability prediction.

5 Conclusion

We presented OBJECTFOLDER, a dataset of objects with implicit visual, auditory, and tactile rep-
resentations. It will facilitate research with vision, audio, and touch, and enable multisensory sim-
ulation of objects in robotic virtual environments. Through evaluation on an array of benchmark
tasks, we show the usefulness of our dataset for both perception and control. As future work, we
plan to explore richer object states with more accurate and fine-grained physics, additional sensory
modalities, and textual descriptions.
Acknowledgements: We thank Michelle Guo, Xutong Jin, Shaoxiong Wang, Huazhe Xu, and Samuel
Clarke for helpful discussions on experiments setup and Michael Lingelbach and Jingwei Ji for suggestions
on paper drafts. The work is in part supported by Toyota Research Institute (TRI), Samsung Global Research
Outreach (GRO) program, ARMY MURI grant W911NF-15-1-0479, NSF CCRI #2120095, Amazon Research
Award (ARA), Autodesk, Qualcomm, and Stanford Institute for Human-Centered AI (HAI).
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