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Abstract

Objects play a crucial role in our everyday activities.
Though multisensory object-centric learning has shown
great potential lately, the modeling of objects in prior
work is rather unrealistic. OBJECTFOLDER 1.0 is a recent
dataset that introduces 100 virtualized objects with visual,
acoustic, and tactile sensory data. However, the dataset
is small in scale and the multisensory data is of limited
quality, hampering generalization to real-world scenarios.
We present OBJECTFOLDER 2.0, a large-scale, multisen-
sory dataset of common household objects in the form of
implicit neural representations that significantly enhances
OBJECTFOLDER 1.0 in three aspects. First, our dataset
is 10 times larger in the amount of objects and orders of
magnitude faster in rendering time. Second, we signifi-
cantly improve the multisensory rendering quality for all
three modalities. Third, we show that models learned from
virtual objects in our dataset successfully transfer to their
real-world counterparts in three challenging tasks: ob-
Ject scale estimation, contact localization, and shape re-
construction. OBJECTFOLDER 2.0 offers a new path and
testbed for multisensory learning in computer vision and
robotics. The dataset is available at https://github.
com/rhgao/ObjectFolder.

1. Introduction

Our everyday activities involve perception and manipu-
lation of a wide variety of objects. For example, we begin
the morning by first turning off the alarm clock on the night-
stand, slowly waking up. Then we may put some bread on
a plate and enjoy our breakfast with a fork and knife to kick
off the day. Each of these objects has very different physi-
cal properties—3D shapes, appearance, and material types,
leading to their distinctive sensory modes: the alarm clock
looks round and glossy, the plate clinks when struck with
the fork, the knife feels sharp when touched on the blade.

However, prior work on modeling real-world objects is
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Figure 1. OBJECTFOLDER 2.0 contains 1,000 implicitly repre-
sented objects each containing the complete multisensory profile
of areal object. We virtualize each object by encoding its intrinsics
(texture, material type, and 3D shape) with an Object File implicit
neural representation. Then we can render its visual appearance,
impact sound, and tactile readings based on any extrinsic parame-
ters. We successfully transfer the models learned from our virtu-
alized objects to three challenging tasks on their real-world coun-
terparts. This opens a new path for multisensory learning in com-
puter vision and robotics, where OBJECTFOLDER 2.0 serves as a
rich and realistic object repository for training real-world models.

rather limited and unrealistic. In computer vision, objects
are often modeled in 2D with the focus of identifying and
locating them in static images [15, 24, 39]. Prior works on
shape modeling build 3D CAD models of objects [11,72],
but they tend to focus purely on geometry, and the visual
textures of the objects are of low-quality. Moreover, most
works lack the full spectrum of physical object properties
and focus on a single modality, mostly vision.

Our goal is to build a large dataset of realistic and mul-
tisensory 3D object models such that learning with these
virtualized objects can generalize to their real-world coun-
terparts. As shown in Fig. 1, we leverage existing high-
quality scans of real-world objects and extract their physical
properties including visual textures, material types, and 3D
shapes. Then we simulate the visual, acoustic, and tactile
data for each object based on their object intrinsics, and use
an implicit neural representation network—Object File—to
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encode the simulated multisensory data. If the sensory data
is realistic enough, models learned with these virtualized
objects can then be transferred to real-world tasks involving
these objects.

To this end, we introduce OBJECTFOLDER 2.0, a large
dataset of implicitly represented multisensory replicas of
real-world objects. It contains 1,000 high-quality 3D ob-
jects collected from online repositories [ 1,2, 10, 14]. Com-
pared with OBJECTFOLDER 1.0! that is slow in rendering
and of limited quality in multisensory simulation, we im-
prove the acoustic and tactile simulation pipelines to render
more realistic multisensory data. Furthermore, we propose
anew implicit neural representation network that renders vi-
sual, acoustic, and tactile sensory data all in real-time with
state-of-the-art rendering quality. We successfully transfer
models learned on our virtualized objects to three challeng-
ing real-world tasks, including object scale estimation, con-
tact localization, and shape reconstruction.

OBJECTFOLDER 2.0 enables many applications, includ-
ing 1) multisensory learning with vision, audio, and touch;
2) robot grasping of diverse real objects on various robotic
platforms; and 3) applications that need on-the-fly multi-
sensory data such as on-policy reinforcement learning.

In summary, our main contributions are as follows: First,
we introduce a new large multisensory dataset of 3D ob-
jects in the form of implicit neural representations, which
is 10 times larger in scale compared to existing work. We
significantly improve the multisensory rendering quality for
vision, audio, and touch, while being orders of magnitude
faster in rendering time. Second, we show that learning with
our virtualized objects can successfully transfer to a series
of real-world tasks, offering a new path and testbed for mul-
tisensory learning for computer vision and robotics.

2. Related Work

Object datasets. Objects are modeled in different ways
across different datasets. Image datasets such as Ima-
geNet [15] and MS COCO [39] model objects in 2D.
Datasets of synthetic 3D CAD models such as Model-
Net [72] and ShapeNet [!1] focus on the geometry of
objects without modeling their realistic visual textures.
Pix3D [66], IKEA Objects [38], and Object3D [73] align
3D CAD models to objects in real images, but they are ei-
ther limited in size or make unignorable approximations in
the 2D-3D alignment. BigBIRD [62] and YCB [10] directly
model real-world objects but only for a small number of
object instances. ABO [14] was recently introduced, con-
taining 3D models for over 8K objects of real household
objects, but it focuses only on the visual modality, similar
to the other datasets above.

IThroughout, we refer the OBJECTFOLDER 1.0 [18] dataset as 1.0 and
our dataset as 2.0 for convenience.

Alternatively, OBJECTFOLDER 2.0 contains 1,000 3D
objects in the form of implicit neural representations, each
of which encodes realistic visual, acoustic, and tactile sen-
sory data for the corresponding object. Compared to OB-
JECTFOLDER 1.0 [18], our dataset is not only 10 times
larger in the amount of objects, but also we significantly im-
prove the quality of the multisensory data while being 100
times faster in rendering time. Furthermore, while OBJECT-
FOLDER 1.0 only performs tasks in simulation, we show
that learning with our virtualized objects generalizes to the
objects’ real-world counterparts.

Implicit neural representations. Coordinate-based multi-
layer perceptrons (MLPs) have attracted much attention
lately and have been used as a new way to parameterize dif-
ferent types of natural signals. They are used to learn priors
over shapes [12, 44, 54]; represent the appearance of static
scenes [45, 64], dynamic scenes [49, 55], or individual ob-
jects [25,48]; and even encode other non-visual modalities
such as wavefields, sounds, and tactile signals [18,63].

We also use MLPs to encode object-centric visual,
acoustic, and tactile data similar to [ 18], but our new object-
centric implicit neural representations encode the intrinsics
of objects more realistically and flexibly. Furthermore, in-
spired by recent techniques [23, 28, 40, 42,47,57,74] on
speeding up neural volume rendering [32], we largely re-
duce the rendering time of visual appearance, making infer-
ence of all sensory modalities real-time.

Multisensory learning. A growing body of work lever-
ages other sensory modalities as learning signals in addi-
tion to vision, with audio and touch being the most popu-
lar. For audio-visual learning, inspiring recent work inte-
grates sound and vision for a series of interesting tasks, in-
cluding self-supervised representation learning [33,50,51],
audio-visual source separation [17, 19,21, 77], sound lo-
calization in video frames [60, 68], visually-guided audio
generation [20, 46], and action recognition [22, 71]. For
visuo-tactile learning, the two sensory modalities are used
for cross-modal prediction [37] and representation learn-
ing [36,56]. Touch is also used to augment vision for 3D
shape reconstruction [65, 67], robotic grasping [8, 9], and
object contact localization [43]. Earlier work on modeling
multisensory physical behavior of 3D objects [53] proposes
a system to directly measure contact textures and sounds,
but mainly for the purpose of better modeling virtual object
interaction and creating animations.

OBJECTFOLDER 2.0 is a potential testbed for various
multisensory learning tasks involving all three modalities.
Different from the works above, instead of learning with
certain sensory modalities for a particular task, our goal is
to introduce a dataset of implicitly represented objects with
realistic visual, acoustic, and tactile sensory data, making
multisensory learning easily accessible to the computer vi-
sion and robotics community.
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Figure 2. Example objects in OBJECTFOLDER 2.0. Each dot on
the left represents an object in our dataset with red dots represent-
ing objects from OBJECTFOLDER 1.0.
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3. A Large Repository of Diverse Objects

OBJECTFOLDER 2.0 contains 1,000 3D objects in the
form of implicit neural representations. Among the 1,000
objects, we use all 100 objects from OBJECTFOLDER
1.0 [18], which consists of high quality 3D objects from
3D Model Haven [1], YCB [10], and Google Scanned Ob-
jects [2]. The recently introduced ABO dataset [14] is
another rich repository of real-world 3D objects, contain-
ing about 8K object models with high-quality 3D meshes,
which come from Amazon.com product listings. For each
object, we obtain metadata such as category, material, color,
and dimensions on the real product’s publicly available
webpage. We filter the dataset by material type and only
keep objects of the following materials: ceramic, glass,
wood, plastic, iron, polycarbonate, and steel. We visually
inspect each object’s product images to make sure the meta-
data is correct and keep the object if its material property is
approximately homogeneous. These steps ensure that the
selected objects are acoustically simulatable as will be de-
scribed in Sec. 4.2. In the end, we obtain 855 objects from
the ABO dataset. Additionally, we obtain 45 objects of
polycarbonate material type from Google Scanned Objects.

Fig. 2 shows some example objects in our dataset.” OB-
JECTFOLDER 2.0 is an order of magnitude larger than OB-
JECTFOLDER 1.0 and contains common household items
of diverse categories including wood desks, ceramic bowls,
plastic toys, steel forks, glass mirrors, etc.

4. Improved Multisensory Simulation and Im-
plicit Representations

We propose a new simulation pipeline to obtain the mul-
tisensory data based on the objects’ physical properties.
Each object is represented by an Object File, which is an im-
plicit neural representation network that encodes the com-
plete multisensory profile of the object. See Fig. 1. Im-
plicit representations have many advantages compared to
conventional signal representations, which are usually dis-

ZNote that the original object meshes we use in our dataset all come
from prior datasets [2, 10, 14], and our contribution is a pipeline to create
multisensory object assets based on these mesh models.

crete. We can parameterize each sensory modality as a con-
tinuous function that maps from some extrinsic parameters
(e.g., camera view point and lighting conditions for vision,
impact strength for audio, gel deformation for touch) to the
corresponding sensory signal at a certain location or condi-
tion. Implicit neural representations serve as an approxima-
tion to this continuous function via a neural network. This
makes the memory required to store the original sensory
data independent of those extrinsic parameters, allowing the
implicit representations to be easily streamed to users. Fur-
thermore, thanks to the continuous property of implicit neu-
ral representations, the sensory data can be sampled at arbi-
trary resolutions.

Each Object File has three sub-networks: VisionNet, Au-
dioNet, and TouchNet (see Fig. 3). In the following, we in-
troduce the details of how we simulate the three modalities
and how we use multi-layer perceptrons (MLPs) to encode
the data.

4.1. Vision

Background. Recent work [25] proposes to represent the
appearance of each object by a neural network F;, that mod-
els the object-centric neural scattering function (OSF). F},
takes as input a 3D location x = (z,y, z) in the object
coordinate frame and the lighting condition at that loca-
tion (w;,w,), where w; = (¢;,6;) and w, = (o, 0,) de-
note the incoming and outgoing light directions, respec-
tively. The output is the volume density o and fraction of
the incoming light that is scattered in the outgoing direction
p = (pr, Pg, pv). The amount of light scattered at a point x
can be obtained as follows:

Ly(%,00) = / L(x,wi) o, wiywo)dws, (1)
S

where S is a unit sphere, L(x,w;) denotes the amount of
light scattered at point x along direction w;, and f, evalu-
ates the fraction of light incoming from direction wj at the
point that scatters out in direction wy,.

Classic volume rendering [32] is then used to render the
color of any ray passing through the object. To render a sin-
gle image pixel, a ray is cast from the camera’s eye through
the pixel’s center. We denote the direction of the camera ray
asr(t) = xo + two. A number of points X1, Xz, ..., X are
sampled along the ray. The final expected color C(r) of
camera ray r(t) can be obtained by a-blending the list of
K color values (Ls(x1,Wo), Ls(X2,wo), - - -, Ls (X5, wo))
with the following equation:

K
=Y Ti(1 = exp(—0i6;)) La(Xi, wo),  (2)

where T; = exp(— ZZ 110J5 ) denotes the accumulated
transmittance along the ray, and ¢; = ||x;+1 — X;|| denotes
the distance between two adjacent sample points.
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KiloOSFE. The above process has to be repeated for every
pixel to render an image. Due to the large number of re-
quired forward passes through F;,, this makes it very time-
consuming even on high-end consumer GPUs.

Inspired by many recent works on speeding up neural
rendering [23,28,47,57,74], we build upon KiloNeRF [57]
and introduce KiloOSF as our VisionNet. Instead of using
a single MLP to represent the entire scene, KiloNeRF rep-
resents the static scene with a large number of independent
and small MLPs. Each individual MLP is assigned a small
portion of the scene, making each small network sufficient
for photo-realistic rendering.

Similarly, we subdivide each object into a uniform grid
of resolution s = (s, Sy, s,) with each grid cell of 3D in-
dex i = (i3,4y,1;). Then we define a mapping m from
position x to index i through the following spatial binning:

m(x) = \_(X - bmin)/((bmax - bmin)/S)J7 3)

where by, and by, are the respective minimum and maxi-
mum bounds of the axis aligned bounding box (AABB) en-
closing the object. For each grid cell, a tiny MLP network
with parameters v(3i) is used to represent the corresponding
portion of the object. Then, the color and density values at a
point x and direction r can be obtained by first determining
the index m(x) responsible for the grid cell that contains
this point, then querying the respective tiny MLP:

(Cv 0') = F’u(m(x)) (Xa I‘). “4)

Following KiloNeRF [57], we use a “training with dis-
tillation” strategy to avoid artifacts in rendering. We first
train an ordinary OSF [25] model for each object and then
distill the knowledge of the teacher model into the KiloOSF
model. We also use empty space skipping and early ray ter-
mination to increase rendering efficiency. See [57] for de-
tails. Compared with OBJECTFOLDER 1.0, our new Vision-
Net design significantly accelerates the rendering process at
inference time 60 times (see Table 1) while simultaneously
achieving better visual rendering quality.

4.2. Audio

Background. Linear modal analysis is a standard way to
perform physics-based 3D modal sound synthesis [31, 58,

]. A 3D linear elastic dynamic system can be modeled
with the following linear deformation equation:

Mx + Cx + Kx =T, (5)

where x denotes the nodal displacement, and M, C =
aM + BK, K represent the mass, Rayleigh damping, and
stiffness matrices, respectively.® f represents the exter-
nal nodal force applied to the object that stimulates the
vibration. Through generalized eigenvalue decomposition

3The values of these matrices depend on the object’s scale and material.
See Supp. for the mapping from material type to material parameters.

KU = AMU, the above equation can be reformulated into
the following form:

q+ (oI+ BA)q+ Agq=UTF, (6)
where A is a diagonal matrix, and q satisfies x = Uq.
The solution to the above equation is /N damped sinusoidal
waves, each representing a mode signal. The 7y mode is

¢ = gie” Yt sin(2mw;t), i = {1,2,..., N} 7
where wj;, d;, and g; represent the damped natural frequen-
cies, damping coefficients, and gains of the modes signals,
respectively. Note that the gains g; of each mode are spe-
cific to the contact force and the contact location on the ob-
ject, while the frequencies w; and damping coefficients d;
of each mode are intrinsic parameters of the object.

AudioNet. We convert the surface mesh of each ob-
ject into a volumetric quadratic tedrahedral mesh using a
sequential approach designed for object meshes from the
wild [29], then use Finite Element Methods (FEM) [30] on
the resultant tetrahedral mesh with second-order elements
in Abaqus [5] to perform the modal analysis process de-
scribed above. We simulate the vibration modes from con-
tacting each vertex on the tedrahedral mesh with unit force
in each axis direction. Then, we train an MLP that takes the
vertex coordinate of the tedrahedral mesh as input and pre-
dicts the vector of gains of each mode for that vertex when
contacted by unit force for each axis direction.

At inference time, an object’s impulse response can be
predicted by first using the network to predict the gains g;
of each mode, then constructing the response by summing
the exponentially decaying sinusoids parameterized by the
gains g; predicted from the network, along with the frequen-
cies w; and dampings d; obtained from modal analysis. We
decompose the external force f at a vertex into a linear com-
bination of unit forces along the three orthogonal axis direc-
tions: f = k,f, +k,f, +k.f.. The predicted gains § excited
by f can be obtained as follows: § = k&, + k,&, + k.&.,
where g,,8,,&. denote the the respective gains obtained
from the three branches of AudioNet. Finally, combining
the frequencies w and damping coefficients d, we synthe-
size the audio waveform:

N
S(t) = gie” " sin(2mw;t), ®)
=1

where §;, d;, and w; represent elements of g, d, and w,
respectively.

As opposed to using a volumetric hexahedron mesh for
modal analysis as in OBJECTFOLDER 1.0, the higher-order
tetrahedral meshes we use for modal analysis capture finer
features and surface curvature as well as more precise elas-
tic deformations, at the same representation size. Thus it
can more accurately model the acoustic properties of the ob-
jects [7,27,59]. Moreover, the AudioNet in 1.0 directly pre-
dicts a complex audio spectrogram, which is of much higher
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Figure 3. Each Object File implicit neural representation network contains three sub-networks: VisionNet, AudioNet, and TouchNet.
Compared with OBJECTFOLDER 1.0, we greatly accelerate VisionNet inference by representing each object with thousands of individual
MLPs; for AudioNet, we only predict the parts of the signal that are location-dependent instead of directly predicting the audio spectro-
grams, which significantly improves the rendering quality and also accelerates inference; our new TouchNet can render tactile readings of

varied rotation angles and gel deformations, whereas only a single tactile image can be rendered per vertex in 1.0.

Vision Audio Touch  Total
OBJECTFOLDER 1.0 [18] 3.699 0420 0.010 4.129
OBJECTFOLDER 2.0 (Ours) 0.062 0.035 0.014 0.111

Table 1. Time comparison for rendering one observation sample
for each modality, in seconds.

dimension and is limited to a fixed resolution and temporal
length. We instead only predict the parts of the signal that
are location-dependent, and then analytically obtain the re-
mainder of the modes signal. This significantly improves
the quality of audio rendering with our new implicit repre-
sentation network. See Table 2 and Fig. 4 for a comparison.

4.3. Touch

Background. We use the geometric measurement from a
GelSight tactile sensor [16,75] as the tactile reading. Gel-
Sight is a vision-based tactile sensor that interacts the object
with an elastomer and measures the geometry of the con-
tact surface with an embedded camera. It has a very high
spatial resolution of up to 25 micrometers and can poten-
tially be used to synthesize readings from other tactile sen-
sors [35,52]. To simulate tactile sensing with GelSight, we
need to simulate both the deformation of the contact and the
optical response to the deformation. For our tactile simula-
tion, we aim to achieve the following three goals: 1) Being
flexible to render tactile readings for touches of varied lo-
cation, orientation, and pressing depth; 2) Being fast to effi-
ciently render data for training TouchNet; 3) Being realistic
to generalize to real-world touch sensors.

TouchNet. To achieve the three goals above, we adopt a
two-stage approach to render realistic tactile signals. First,
we simulate the contact deformation map, which is con-
structed from the object’s shape in the contact area and the
gelpad’s shape in the non-contact area to represent the local
shape at the point of contact. We simulate the sensor-object
interaction with Pyrender [4] to render deformation maps
using OpenGL [3] with GPU-acceleration, reaching 700 fps
for data generation.

ObjectFolder 1.0

ObjectFolder 2.0
(Ours)

Ground-truth

Figure 4. Comparing the visual, acoustic, and tactile data rendered
from OBJECTFOLDER 1.0, OBJECTFOLDER 2.0 (Ours), and the
corresponding ground-truth simulations for the YCB mug. See
Supp. for more examples.

We design TouchNet to encode the deformation maps
from contacting each vertex on the object. We represent
the tactile readings of each object as an 8D function whose
input is a 3D location x = (z,y,z) in the object coor-
dinate frame, a 3D unit contact orientation parametrized
as (01, o), gel penetration depth p, and the spatial loca-
tion (w, k) in the deformation map. The output is the per-
pixel value of the deformation map for the contact. Touch-
Net models this continuous function as an MLP network
Fr : (z,y,2,0r,¢7,p,w,h) —> d that maps each input
8D coordinate to its corresponding value in the deforma-
tion map. After rendering the deformation map, we uti-
lize the state-of-the-art GelSight simulation framework—
Taxim [61], an example-based tactile simulation model that
is calibrated with a real GelSight sensor, to render tactile
RGB images from the deformation maps.

Compared to the TouchNet in OBJECTFOLDER 1.0,
which can only render a single tactile image along the ver-
tex normal direction per vertex, our new design of TouchNet
can generate tactile outputs for rotation angles within £15°
and pressing depth in the range of 0.5-2 mm. Furthermore,
with the help of Taxim, the mapping from the deformation
maps to the tactile optical outputs can be easily calibrated
to different real vision-based tactile sensors, producing re-
alistic tactile optical outputs that enable Sim2Real transfer.
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Vision Audio Touch
PSNR1 SSIM{ STFT Distance (x107°) | ENV Distance (x 10’4) l  PSNR1 SSIM 1
OBJECTFOLDER 1.0 [18] 35.7 0.97 4.94 7.65 27.9 0.64
OBJECTFOLDER 2.0 (Ours) 36.3 0.98 0.19 1.29 31.6 0.78

Table 2. Comparing with OBJECTFOLDER 1.0 on the multisensory data rendering quality. | lower better, 1- higher better.

/

Real-world objects

Impact sound collection Tactile data collection
Figure 5. Illustration of real-world objects used in experiments
and our hardware set-up for collecting real-world impact sounds
and tactile data.

4.4. OBJECTFOLDER 1.0 vs. OBJECTFOLDER 2.0

OBJECTFOLDER 2.0 significantly advances OBJECT-
FOLDER 1.0 in multisensory simulation and the design of
implicit neural representations. Table | shows the render-
ing time comparison. Our new network design is orders of
magnitude faster compared to OBJECTFOLDER 1.0, making
rendering of all three sensory modalities real-time. The ren-
dering quality is also greatly improved, especially for audio
and touch as shown in the example of Fig. 4. Our KiloOSF
VisionNet renders images that match the ground-truth well
while being 60x faster than OBJECTFOLDER 1.0. While
directly predicting audio spectrograms cannot capture the
details of the modes signal and leads to artifacts in the back-
ground, our AudioNet renders audio in a much more accu-
rate manner. For touch, to make a fair comparison, we use
the TACTO [70] simulation used in OBJECTFOLDER 1.0
and the tactile readings from real-world GelSight sensors
as the ground truth instead. Our TouchNet output matches
well with the real tactile readings.

Table 2 shows the quantitative comparisons. For visual
and tactile rendering, we compare using standard metrics:
peak signal-to-noise ratio (PSNR) and structural index sim-
ilarity (SSIM) between the rendered image and the ground-
truth image. For audio rendering, we report the STFT dis-
tance, which is the euclidean distance between the spec-
trograms of the ground-truth and the predicted modes sig-
nals, and the Envelope (ENV) Distance, which measures the
Euclidean distance between the envelopes of the ground-
truth and the predicted modes signals. For touch, because
OBJECTFOLDER 1.0 uses the DIGIT [35] tactile sensor,
we compare with the real tactile images collected from a
DIGIT sensor and a GelSight sensor for 1.0 and ours, re-
spectively. Our TouchNet based on GelSight sensors has a
smaller Sim2Real gap.

5. Sim2Real Object Transfer

The goal of building OBJECTFOLDER 2.0 is to enable
generalization to real-world objects by learning with the vir-
tual objects from our dataset. We demonstrate the utility
of the dataset by evaluating on three tasks including object
scale estimation, contact localization, and shape reconstruc-
tion. In each task, we transfer the models learned on OB-
JECTFOLDER 2.0 to real-world objects. See Fig. 5 for an
illustration of the 13 objects used in our experiments, and
the hardware set-up for collecting real impact sounds and
GelSight tactile readings.

5.1. Object Scale Estimation

All sensory modalities of objects are closely related to
their scales. We want to demonstrate that learning with our
virtualized objects can successfully transfer to scale estima-
tion for a real object based on either its visual appearance,
an impact sound, or a sequence of tactile readings. We train
on the rendered multisensory data from our dataset, and test
on 8 real objects from which we have collected real-world
sensory data for all three modalities.

For vision and audio, we train ResNet-18 [26] that takes
either an RGB image of the object or the magnitude spec-
trogram of an impact sound as input to predict object scale*.
From a single local tactile reading, it is almost impossible
to predict the scale of the object. Therefore, we use a recur-
rent neural network to combine features from 10 consecu-
tive touch readings for tactile-based scale prediction. See
Supp. for details.

Table 3 shows the results. “Random” denotes the base-
line that randomly predicts a scale value within the same
range as our models. We compare with models trained on
sensory data from OBJECTFOLDER 1.0. Both OBJECT-
FOLDER 1.0 and our dataset achieve high scale prediction
accuracy on virtual objects. However, models trained on
our multisensory data generalize much better to real-world
objects, demonstrating the realism of our simulation and
accurate encoding of our implicit representation networks.
Among the three modalities, tactile data has the smallest
Sim2Real gap compared to vision and audio.

5.2. Tactile-Audio Contact Localization

When interacting with an object of known shape, accu-
rately identifying the location where the interaction happens

4We define the scale of an object as the length of the longest side of the
axis aligned bounding box (AABB) enclosing the object.
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Virtual Objects  Real Objects

Random 14.5 14.5
%~  Vision 0.80 7.41
< Audio 0.57 6.85
= Touch 0.19 4.92
g Vision 0.79 5.08
S Audio 0.20 4.68
< Touch 0.45 3.51

Table 3. Results on object scale prediction. We report the average
difference between the predicted and the ground-truth scales of the
objects in centimeters.

is of great practical interest. Touch gives local informa-
tion about the contact location, and impact at varied sur-
face locations produces different modal gains for the ex-
cited sound. We investigate the potential of using the im-
pact sounds and/or the tactile readings associated with the
interaction for contact localization.

We apply particle filtering [41] to localize the sequence
of contact locations from which tactile readings or impact
sounds are collected. Particle filters are used to estimate
the posterior density of a latent variable given observations.
Here, observations are either tactile sensor readings when
touching the object or impact sounds excited at the contact
locations. The latent variable is the current contact loca-
tion on the object’s surface. For touch, we extract features
from an FCRN network [34] pre-trained for depth predic-
tion from tactile images. For audio, we extract MFCC fea-
tures from each 3s impact sound. We compare these fea-
tures with particles sampled from the object surfaces that
represent the candidate contact locations. Particles with
high similarity scores to the features of the actual tactile
sensor reading or impact sound are considered more likely
to be the true contact location. In each iteration, we weight
and re-sample the particles based on the similarity scores,
and then update the particles’ locations based on the rela-
tive translations between two consecutive contacts obtained
from the robot end-effector. We choose the 10 particles with
the highest similarity scores as the candidate contact loca-
tions. For each object, we iterate the above process for 5-7
times until the predicted current contact location converges
to a single location on the object’s surface. We perform ex-
periments both in simulation and in real world.

Table 4 shows the results for six objects of complex
shapes. We use the mean Euclidean distance with respect
to the ground-truth contact location as the evaluation met-
ric similar to [6]. We compare the localization accuracy for
using only touch readings, impact sounds, or their combi-
nations, and a baseline that randomly predicts a surface po-
sition as the contact location. We can see that touch-based
contact location is much more accurate than using audio.

@ Contact location candidates
® Ground-truth contact location

’

i:\'i & ? , A

Sim

Real

v
i

Object model Iteration 1 Iteration 2 Iteration 3 Iteration 4

Figure 6. Qualitative results for contact localization with touch
readings and impact sounds. Top: in simulation, bottom: real-
world experiments. The candidate contact locations are shown as
green particles in the particle filter. After several iterations shown
from left to right in each row, the green particles converge to the

ground-truth contact location shown as the red particle.

Combining the two modalities leads to the best Sim2Real
performance. Fig. 6 shows a qualitative example for tactile-
audio contact location with the pitcher object.

5.3. Visuo-Tactile Shape Reconstruction

Single-image shape reconstruction has been widely stud-
ied in the vision community [11, 13,44, 54]. However, in
cases where there is occlusion such as during dexterous ma-
nipulation, tactile signals become valuable for perceiving
the shape of the objects. Vision provides coarse global con-
text, while touch offers precise local geometry. Here, we
train models to reconstruct the shape of 3D objects from a
single RGB image containing the object and/or a sequence
of tactile readings on the object’s surface.

We use Point Completion Network (PCN) [76], a
learning-based approach for shape completion, as a testbed
for this task. For touch, we use 32 tactile readings and map
the associated deformation maps to a sparse point cloud
given the corresponding touching poses. The sparse point
cloud is used as input to the PCN network for generating
a dense and complete point cloud. For vision, instead of
using a series of local contact maps as partial observations
of the object, a global feature extracted from a ResNet-18
network from a single image containing the object is used
to supervise the shape completion process. For shape re-
construction with vision and touch, we use a two-stream
network that merges the predicted point clouds from both
modalities with a fully-connected layer to predict the final
dense point cloud. See Supp. for details.

Table 5 shows the results for six objects of different
shapes. Compared to the “Average” baseline that uses the
average ground-truth mesh of the 6 objects as the predic-
tion, shape reconstructions from a single image and a se-
quence of touch readings perform much better. Combining
the geometric cues from both modalities usually leads to
the best Sim2Real transfer performance. Fig. 7 shows some
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Modalities

Sim  Real Sim Real Sim Real Sim Real Sim Real Sim Real
Random 6.74 6774 1296 1296 428 428 939 939 1453 1453 1421 1421
Audio 1.88 1.79 0.26 1.16 065 467 023 104 0.14 - 0.74 -
Touch 0.04 126 0.03 078 0.18 1.30 0.04 044 0.04 0.91 0.04 3.82
Audio + Touch 0.02 0.59 0.04 036 009 051 0.04 063 023 - 0.30 -

Table 4. Results on audio-tactile contact localization. We report the mean distance w.r.t. the ground-truth contact locations in centimeters.

b

v U

V — <

Modalities

Sim Real Sim Real Sim Real Sim Real Sim Real Sim Real
Average 212 201 297 191 480 326 453 449 244 2.53 2.52 3.29
Vision 025 032 030 072 051 074 038 066 032 0.40 0.49 0.99
Touch 024 056 029 080 035 061 038 043 0.30 0.41 0.36 1.11
Vision + Touch 0.09 0.25 0.18 046 026 043 024 032 0.18 0.24 0.23 1.20

Table 5. Results on visuo-tactile shape reconstruction. We report the Chamfer-L1 distance w.r.t. the ground-truth meshes in centimeters.

Inputs Ground-truth

1=l
WE v - o

Tactile images Visual image Object mesh Real
Figure 7. Qualitative results for visual-tactile shape reconstruction
in simulation (Sim) and real-world (Real) for the square tray and
the coffee mug.

Shape reconstruction

Sim

qualitative results for shape reconstruction with vision and
touch. We can see that the predicted point clouds in both
simulation and real-world experiments accurately capture
the shapes of the two objects, and matches the ground-truth
object meshes well.

6. Broader Impact and Limitations

We will release our dataset and code upon publication
of the paper, so that it can be easily accessible to the com-
munity as a standard benchmark for multisensory learning.
This avoids the need to purchase real-world objects for such
tasks, and can especially benefit people in areas where in-
ternational shipping and purchasing of specific real-world
objects is challenging. Furthermore, our implicit represen-
tation is computationally much cheaper to render multisen-
sory data compared to the initial multisensory simulation,
which is potentially more environmentally friendly.

Bridging the gap between sim and real for multisen-

sory object-centric learning is inherently difficult. While
we have shown Sim2Real transfer for a series of objects,
the objects in our dataset are all rigid-body objects, and we
assume single homogeneous material for the whole object.
However, real-world objects are complex and often contain
several parts, which can be non-rigid and are of different
material types. Furthermore, the 3D space in which these
objects are located is of diverse lighting/noise conditions,
reverberation effects, etc. Sim2Real object transfer is chal-
lenging without modeling all these factors, which we leave
as future work.

7. Conclusion

OBJECTFOLDER 2.0 is a dataset of 1,000 objects in the
form of implicit neural representations aimed at advanc-
ing multisensory learning in computer vision and robotics.
Compared to existing work, our dataset is 10 times larger
in scale and orders of magnitude faster in rendering time.
We also significantly improve the quality and realism of the
multisensory data. We show that models learned with our
virtualized objects successfully transfer to their real-world
counterparts on three challenging tasks. Our dataset offers
a promising path for multisensory object-centric learning in
computer vision and robotics, and we look forward to the
research that will be enabled by OBJECTFOLDER 2.0.
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