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Abstract. For an Fpr-measurable payoff of a European type contingent claim, the recursive utility
process/dynamic risk measure can be described by the adapted solution to a backward stochastic dif-
ferential equation (BSDE). However, for an Fpr-measurable stochastic process (called a position process,
not necessarily F-adapted), mimicking BSDE’s approach will lead to a time-inconsistent recursive utili-
ty/dynamic risk measure. It is found that a more proper approach is to use the adapted solution to a
backward stochastic Volterra integral equation (BSVIE). The corresponding notions are called equilibri-
um recursive utility and equilibrium dynamic risk measure, respectively. Motivated by this, the current
paper is concerned with BSVIEs whose generators are allowed to have quadratic growth (in Z(t, s)). The
existence and uniqueness for both the so-called adapted solutions and adapted M-solutions are estab-
lished. A comparison theorem for adapted solutions to the so-called Type-I BSVIEs is established as
well. As consequences of these results, some general continuous-time equilibrium dynamic risk measures

and equilibrium recursive utility processes are constructed.
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1 Introduction

Let (2, F,P) be a complete probability space on which a one-dimensional standard Brownian motion
W = {W(t);0 < t < oo} is defined, with F = {F; };>¢ being the natural filtration of W augmented by
all the P-null sets in F. Let £ be a (random) payoff at some future time T of a certain European type

contingent claim, and ¢(-) be a consumption rate. Following [17], we let Y'(-) solve the following equation:

Y(t) = B¢+ /tT (£(els), Y (5)) + A(Y () Z(5)* ) ds], € [0,T], (1.1)

hereafter, E[-] = E[-| F;] is the conditional expectation operator, and f : R x R — R is a given map,

called the aggregator,
d
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with ¢ — (Y')(t) being the quadratic variation process of Y (+), and A(Y (t)) is called the variance multipli-
er. Such defined Y () is called a recursive utility process (which has also been called stochastic differential
utility process) of the payoff € and the consumption rate ¢(-). The main feature of such a process Y ()
is that the current value Y (¢) depends on the future values Y'(s), t < s < T of the process. This notion
was firstly introduced by Duffie and Epstein [17] in 1992. It is easy to see that (Y(-), Z(-)) solves (1.1)
if and only if it is an adapted solution to the following backward stochastic differential equation (BSDE,
for short):

T T
Y(t)=§+/t g(s,Y(s),Z(s))ds—/t Z()dW(s), te0,T], (1.2)

with
9(s,y,2) = f(c(s),y) + A(y)2*. (1.3)

Thanks to the discovery of the relation between (1.1) and (1.2), recursive utility process was later extended
to the adapted solution of general BSDEs (see [18, 28, 27]).

Now, if instead of &, we have an Fp-measurable process 1(t), not necessarily F-adapted, which is
called a position process (see [36] for a study of discrete-time cases). It could also be called an anticipated
wealth flow process. For example, it could be an anticipated received dividend process of a stock (which
depends on the uncertain performance of the company), anticipated received mortgage payments (for a
bank, say, with an uncertainty of default or prepayment), anticipated claim payments of an insurance
policy, the random maintenance costs of an owned facility, etc. The feature of such kind of process is
that at time ¢, the actually anticipated value of the process is not F;-measurable. To “calculate” the
recursive utility for such a process at the current time ¢, mimicking (1.1), we might formally solve the
following BSDE:

T T
Y(tir) = $(t) + / oY (t:5), Z(t: 5))ds — / 2(t;5)dW(s), e [LT), (1.4)

with the current time ¢ being a parameter. Intuitively, Y (¢;7) should represent the utility of the process
¥(+) at a future time r, estimated/predicted at the current time ¢. Therefore, the utility at the current

time ¢ should be given by Y (¢;¢t). However, by taking r = ¢ in the above, we obtain

T T
Y(t;t)zw(t)—ir/t g(s,Y(t;s),Z(t;s))ds—/t Z(t:5)dW(s), te[0,T], (1.5)

which is not an equation for the process ¢t — Y (¢;t) since Y (¢;s) appears on the right-hand side of the
above. A careful observation shows that Y (¢;7) obtained through (1.4) has some time-inconsistent nature,
by which we mean the following: If everything is ideal, the value Y (¢;7), which is supposed to be the
utility of the process 1 (:) at a future time r estimated/predicted at the current time ¢ should be equal
to Y (r;r), the realistic utility at future time r. But this seems to have very little hope. In another word,
t — Y (t;t) determined by a family of BSDEs as above seems not to be a good description of the recursive

utility process for the position process ().

Suggested by (1.4)—(1.5), we propose the following modified equation:

T T
Y(t)zw(t)+/t g(s,Y(s),Z(t,s))ds—/t 2t AW (s),  te0,T]. (1.6)

Note that the above modification is simply to force Y (¢;s) = Y'(s;s) in (1.5), then rename Y (¢;¢) to be
Y (t). The advantage of such a modification is that as long as a solution (Y (-), Z(-,-)) of (1.6) exists, Y (+)
is time-consistent. Then, Y (-) could serve as a good description of the recursive utility for the process
¥(+) (by suitably selecting the aggregator g(s,y,z)). However, a couple of natural questions arise: (i)



Is there any convincing mathematical justification for the model (1.6), and (ii) By “brutally” forcing
Y (t;s) = Y(s; s), is the resulting equation (1.6) well-posed? For question (i), we will sketch a convincing
argument in the appendix at the end of the paper, justifying our modification. We will borrow some ideas
from the study of time-inconsistent optimal control problems ([49]). For question (ii), it turns out that
(1.6) is nothing but a so-called backward stochastic Volterra integral equation (BSVIE, for short), which
has been studied since the early 2000 for various cases, and the current paper is actually a continuation
of those investigations. With the well-posedness of (1.6) (see below for details), the map ¢t — Y (¢) will
be called an equilibrium recursive utility process of (). Interestingly, our mathematical justification

presented in the appendix will perfectly justify the word “equilibrium”.

BSVIEs have been studied since 2002 ([29]). Let us now elaborate a little more on BSVIEs. Let
g:[0,TPxRxRxRxQ—R, P[0, T] x Q=R

be two given random fields. We consider the following BSVIE:

T T
Y(t):w(t)—&-/t g(t,s,Y(s),Z(t,s),Z(s,t))ds—/t Z(t,8)dW(s), e [0,T]. (17)

By an adapted solution to BSVIE (1.7), we mean an (R X R)-valued random field (Y, Z2) = {(Y(¢),
Z(t,s));0 < s,t < T} such that

(i) Y (-) is F-progressively measurable (not necessarily continuous),
ii) for each fixed 0 <t < T, Z(t,-) is F-progressively measurable, and
prog y
(iii) equation (1.7) is satisfied in the usual It6 sense for Lebesgue measure almost every ¢ € [0, 7.

Condition (ii) implies that for any ¢ € [0,T), the random variable Z(t,s) is Fs-measurable for any
s € [t,T). In (1.7), g and v are called the generator and the free term, respectively. Let us point out
that in this paper, we only study the BSVIEs with Y(-) being one-dimensional. The case that Y(+)
being higher dimensional will be significantly different in general, and will be investigated in the near
future. However, the Brownian motion W(-) assumed to be one-dimensional is just for convenience of

our presentation.

When Z(s,t) is absent, (1.7) is reduced to the form

T T
Y(t) = (t) + / g(t,5,Y (s), Z(t, 5))ds — / Z(t,8)dW(s), t e [0,T], (18)

which is a natural extension of BSDEs, and is a little more general than (1.6) since g depends on both ¢
and s. BSVIEs of form (1.8), referred to as Type-I BSVIEs, was firstly studied by Lin [29], followed by
several other researchers: Aman and N’Zi [3], Wang and Zhang [44], Djordjevi¢ and Jankovié¢ [15, 16],
Hu and Qksendal [20].

BSVIEs of the form (1.7) (containing Z(s,t)) were firstly introduced by Yong [46, 48], motivated by
the study of optimal control for forward stochastic Volterra integral equations (FSVIEs, for short). We
call (1.7) a Type-II BSVIE to distinguish it from Type-I BSVIEs. Type-II BSVIE (1.7) has a remarkable
feature that its adapted solution, similarly defined as that for Type-I BSVIEs, might not be unique due
to lack of restriction on the term Z(s,t) (with 0 < ¢ < s < T'). Suggested by the natural form of the
adjoint equation in the Pontryagin type maximum principle, Yong [48] introduced the notion of adapted
M-solutions: A pair (Y (+), Z(-,-)) is called an adapted M-solution to (1.7), if in addition to (i)—(iii) stated

above, the following condition is also satisfied:

Y(t) = E[Y ()] + /O t Z(t,5)dW (s), ae.te0,T], as. (1.9)



Under usual Lipschitz conditions, well-posedness was established in [48] for the adapted M-solutions to
Type-1I BSVIEs of form (1.7). This important development has triggered extensive research on BSVIEs
and their applications. For instance, Anh, Grecksch and Yong [4] investigated BSVIEs in Hilbert spaces;
Shi, Wang and Yong [37] studied well-posedness of BSVIEs containing mean-fields (of the unknowns);
Ren [35], Wang and Zhang [45] discussed BSVIEs with jumps; Overbeck and Roder [32] even developed
a theory of path-dependent BSVIEs; Numerical aspect was considered by Bender and Pokalyuk [6];
relevant optimal control problems were studied by Shi, Wang and Yong [38], Agram and (ksendal [2],
Wang and Zhang [43], and Wang [40]; Wang and Yong [41] established various comparison theorems for
both adapted solutions and adapted M-solutions to BSVIEs in multi-dimensional Euclidean spaces.

Recently, inspired by the Four-Step Scheme in the theory of forward-backward stochastic differential
equations (FBSDEs, for short) ([31]) and the time-inconsistent stochastic optimal control problems ([49]),
Wang and Yong [42] established a representation of adapted solutions to Type-I BSVIEs and adapted
M-solutions to Type-II BSVIEs in terms of the solution to a system of (non-classical) partial differential

equations and the solution to a (forward) stochastic differential equation.

We point out that in all the above-mentioned works on BSVIEs, the generator g(t,s,y, 2, 2’) of the
BSVIE (1.7) satisfies a uniform Lipschitz condition in (y, z, z’) so that the generator has a linear growth in
(z,2"). However, when the generator g(s,y, z) of BSVIE (1.6) is given by (1.3), it has a quadratic growth
in z. Hence, a theory needs to be established for BSVIEs with the generators g(t, s, vy, 2, 2') growing
quadratically in z, which are called quadratic BSVIEs (QBSVIEs, for short, if the quadratic growth of
the generator in z needs to be emphasized). We point out that at the moment, we are not able to handle

the case that 2’ — ¢g(t, s,v, 2, 2’) is quadratic, and it is also lack of motivation for that case.

Recall that for BSDE (1.2), when (y,2) — g¢g(s,y, z) satisfies a uniform Lipschitz condition, with
g(+,0,0) being LP-integrable (with some p > 1), for any Fp-measurable LP-integrable random variable
&, it admits a unique adapted solution (Y (+), Z(-)) ([33, 31, 50]) which could be called a recursive utility
process for £&. On the other hand, when z — g¢(s,y,2) has an up to quadratic growth, the BSDE (1.2)
is called a quadratic BSDE (QBSDE, for short). In 2000, Kobylanski [24] established the well-posedness
of QBSDE with & being bounded. Since then, some efforts have been made by researchers to relax the
assumptions on the generator as well as on the terminal value £&. Among relevant works, we would like
to mention Briand and Hu [7, 8], Hu and Tang [21], Briand and Richou [9], and Zhang [51, Chapter 7).
Further, BSDEs with superquadratic growth was investigated by Delbaen, Hu and Bao [10], where some
general negative results concerning the well-posedness can be found. Therefore, one can say that the

theory of recursive utility for terminal payoff £ has reached a pretty mature stage.

The purpose of this paper is to establish the well-posedness of QBSVIEs under certain conditions.
The method introduced by Yong [48] and techniques found in Briand-Hu [7, 8] will be combined and
further developed. In addition, a comparison theorem for adapted solutions of Type-I QBSVIEs will
be established. Consequently, equilibrium recursive utility processes and continuous-time equilibrium
dynamic risk measures will be investigated. See Yong [47] and Wang—Yong [41], Agram [1] for some
earlier works. See also Di Persio [14] for stochastic differential utility, and Kromer—Overbeck [26] for

dynamical capital allocation by means of BSVIEs.

The rest of this paper is organized as follows. In Section 2, we introduce some preliminary notations
and definitions, and present some lemmas which are of frequent use in the sequel. Section 3 is devoted to
the study of existence and uniqueness of adapted solutions for Type-I QBSVIEs, and Section 4 is devoted
to the study of existence and uniqueness of adapted M-solutions for Type-II QBSVIE. A comparison
theorem for adapted solutions to Type-I1 QBSVIEs (1.8) will be established in Section 5, and an application

of Type-I BSVIEs to continuous-time equilibrium dynamic risk measures will be presented in Section 6.



Some conclusion remarks will be collected in Section 7. Finally, a mathematical justification of the BSVIE

model is sketched in the appendix.

2 Preliminaries
For 0 < a < b < T, we denote by B([a,b]) the Borel o-field on [a, ] and define the following sets:

t<s<bl, Ala,b] & {(t,s) | a < s <t <b},
t,s <b} = Ala,b]UAla,b], A*[a,b] = Ac[a,b].
Note that A*[a,b] is a little different from the complement A¢[a,b] of Ala,b] in [a, b]?, since both Ala, b]

and A*[a, b] contain the diagonal line segment. In the sequel we shall deal with various spaces of functions

and processes, which we collect here first for the convenience of the reader:

L'(a,b) = {h: [a,b] = R | h(-) is B([a, b])-measurable, f; |h(s)|ds < oo}7

LF () = {5 Q1 — R | ¢ is Fp-measurable and bounded}
L% (a,b) = {(p a, 0] x @ = R | () is B([a, b]) ® Fp-measurable and bounded}7
Li(a,b) = {gp i [a,b] x Q@ — R | ¢() is F-progressively measurable, Eff lo(s)|2ds < oo},
Ly (a,b) :{90 ) € Li(a,b) |g0 1sbounded},
L3(Q%; Cla, b)) = {(p i [a,b] x @ = R | ¢(-) is continuous, F-adapted, E[ailizb|<p(3)|2] < oo},
L (9Q; Cla, b)) :{go ) € LE(Q; Cla, b)) ‘ sup |o(t )\EL}_Ob(Q)},

a<t<h

LE (9;CYa, b)) {go ) € LE (a,b) | there exists a modulus of continuity p : [0,00) — [0,00)

such that |p(t) — o(s)] < p(|t — s), (¢, ) € [a,b], a.s.},

L#(Ala, b]) {(p :Ala, b)) xQ—R | ¢(t,-) is F-progressively measurable on [t,b], a.e. t€]a, ],

]Ef; ftb lo(t, s)[2dsdt < oo},
Li([a,b]?) = {(p :[a, b2 x Q=R | o(t,-) is F-progressively measurable on [a, b], a.e. t€[a, b],
E[° [*|o(t, 5)[2dsdt < oo},
H2 [a,b] = Li(a,b) x LE(Ala,b]), H2[a,b] = LZ(a,b) x L([a,b]?).

Now, we recall the definitions of adapted solutions and adapted M-solutions for Type-I BSVIE (1.8) and
Type-1I BSVIE (1.7), respectively (see [48]).

Definition 2.1. (i) A pair of processes (Y (-),Z(-,-)) € HA[0,7] is called an adapted solution of
BSVIE (1.8) if (1.8) is satisfied in the usual It sense for Lebesgue measure almost every t € [0, T].

(ii) A pair of processes (Y (-), Z(-,-)) € H?[0,T] is called an adapted solution of BSVIE (1.7) if (1.7)
is satisfied in the usual Itd sense for Lebesgue measure almost every ¢ € [0,7]. Further, it is called an
adapted M-solution of BSVIE (1.7) on [r,T] if, in addition, the following holds:

Y(s) = E.[Y(9)] +/ Z(s,t)dW(t), a.e.selrT]. (2.1)

Here, we recall that E, = [-| F,].



Let M?2[r,T] be the set of all (y(-),z(-,-)) € H?[r,T] satisfying (2.1). Clearly, M?[r,T] is a closed
subspace of H2[r, T]. Further, for any (y(-), z(-,-)) € M?[r, T], we have

Ely(s)? = E[E, [y(s)]|" +E/( I2(5, ) [2dt > ]E/( I2(s,6)2dt,  ae. s € [r,T].

It follows that

E{/TT |y(s)|2ds+/rT/TT|z(s,t)|2dtds}
E[/f |y(s)|2ds+/rT/:|z(s,t)|2dtds+/TT/sTz(s,t)|2dtds]

<E[2/TT |y(s)|2ds+2/TT /ST |z(s,t)\2dtds]

=2[(y(), 2( Ny < 2@ 26N By

1y (), 2Co D3y

which implies that || - || sz 7y is an equivalent norm of || - [|32f. 7] on M?[r, T].
Next, we recall the following definition (see [23] for relevant details).

Definition 2.2. A uniformly integrable F-martingale M = {M(¢) : 0 < ¢t < T} with M(0) = 0 is
called a BMO martingale on [0,T] if

IMO)Eyo.r = sup  [[E-[[M(T) = M(n)]P]]|, < oo,
re700,T]
where 77[0,T)] is the set of all F-stopping times 7 valued in [0, T]].
Sometimes, the norm || - [[gmo(o,r) is written as || - [[gmo,(0,7), indicating the dependence on the

probability P.

Next, let X = {Xy, F+;0 < t < T} be a measurable, adapted process satisfying

T
P[/ |X (s)[?ds < oo] =1
0
Recall the Doléan-Dade exponential of X:
E{X Y 2 eJo X@AW () =3 [§IX()Pds 4 < 10, 7], (2.2)
and define a probability measure P on Fr by
dP = E{X},.dP. (2.3)

Then, we have the following lemma which is a combination of the Girsanov’s theorem (see Karatzas—

Shreve [22] for a proof) and a result found in Kazamaki [23].

Lemma 2.3. Ift — fot X (s)dW (s) is a BMO martingale on [0,T], then E{X}, is a uniformly inte-
grable martingale and the process W = {W(t), F; | 0 <t < T} defined by

W(t) 2 W(t) — /Ot X(s)ds, 0<t<T (2.4)

is a standard Brownian motion on (Q, Fr,P).



Next, we introduce the following spaces. Let 0 <a <b<c¢ < T, and

BMO(a, b) = {(p b x 2 > R | o) € L2(a,b),

ET[/Tbuo(s)FdsMw <o},

BMO(Ala, b)) = {gp Ala,b] x @ = R | ¢(-,-) € L2(Ala, b)),

sup
€T [ab]

O] —_——

2 )2
%) £ esssup  sup H E, / o(t, s) ds ‘ < oo},
10 Moo (aren) = S50 |

BMO([a, b] x [b,c]) = {gp ta, 0] X [b,c] x Q=R | o(-,-) € Lg([a,b] x [b,]),

’ET[/T \go(t,s)\st}Hoo < oo}.

We note that for ¢(-) € BMO(a,b), if we let ¢(s) = 0, s € [0,a), then [ o(r)dW(r); 0 < s < bisa
BMO martingale on [0,b]. Similarly, for ¢(-,-) € BMO(A[a, b)), if we let ¢(t,s) = 0, s € [0,t), then
Jy (t,7)dW(r); 0 < s < b is a BMO martingale on [0,8] for almost all ¢ € [a,b). The situation for
M([a, b] x [b, c]) is also similar. The following lemma plays a basic role in our subsequent arguments.

£ esssup  sup
tefa,b] T€T[b,C]

2
(-, ')||m([a,b]x[b,c])

we refer the reader to [23, Theorem 3.3] for the proof and details.

Lemma 2.4. For K > 0, there are constants ci,ce > 0 depending only on K such that for any BMO
martingale M (-), we have for any one-dimensional BMO martingale N (-) such that ||N(-)|gmoo,r) < K,

allM()lBmos 0.1y < IM()llBymoz0.7) < e2l|M () lIBros(0.1)s
where M(-) £ M(-) — (M, N)(:) and dP = E{N(-)}.dP.

We now consider the following BSDE:

T T
_¢ +/ (5, (5), Z(s))ds — / Z(s)dW (s), € [0,T]. (2.5)
t t
Let us introduce the following hypothesis.

(AO0). Let the generator f:[0,7] x R x R x 2 — R be B([0,7T] x R x R) ® Fr-measurable such that
s = f(s,y,2) is F-progressively measurable for all (y,z) € R x R. There exist constants 3, v, L and a
function h(-) € L*(0,T) such that
s,y 2)l Sh() 4+ Blyl + 512, (s,9.2) € [0.7) x R x R; (2.6)
|f(37yl721) - f(Say27Z2)| < L|y1 - y2| + L<1 + |Zl‘ + |Z2|)|Z1 - 22|a

(s,9i,2) €0, T] xRxR, i=1,2. (2.7)

Lemma 2.5. Let (AO) hold. Then, for any § € L% (2), BSDE (2.5) admits a unique adapted
solution (Y (-), Z(-)) € L (Q; C[0,T]) x BMO(0,T). Moreover,

YO <R, e TV [T ()P ds | (2.8)

Proof. By [51, Theorem 7.3.3], BSDE (2.5) admits a unique adapted solution (Y (:),Z(-)) €

)

L2 (Q;C10,T)) x LZ(0,T). Then, by [51, Theorem 7.2.1], we see that the adapted solution (Y(-),
Z(4) € L (2;C[0,T]) x BMO(0,T). Further, by [8, Proposition 1], we have inequality (2.8). O



3 Adapted Solution to Type-1 QBSVIE

In this section, we will establish the existence and uniqueness of the adapted solution to Type-I1 QBSVIE.
Keep in mind that we may just use “BSVIE”, instead of “Type-I QBSVIE”, for convenience. First, let
us look at the following simple example.

Example 3.1. Consider the one-dimensional BSVIE:

T 2 T
V() = b(t) + /t @ds— /t Z(t, s)dW (s), (3.1)

where ¥(-) € LE.(0,T), and W(-) is a one-dimensional standard Brownian motion. In order to solve

equation (3.1), we introduce a family of BSDEs parameterized by ¢ € [0, T:

T 2 T
n(t,s) = (t) —|—/ @dr —/ C(t,r)dW(r), seltT]. (3.2)

By Lemma 2.5, BSDE (3.2) admits a unique adapted solution (n(t,-),((t,-)) € Lg2(Q;C[t,T]) x
BMO(¢,T). Let
Y (t) =n(t,t) and Z(t,s) =((t,s), (t,8) € A0, T,

then
T §)2 T
Y(t) = () Jr/t @ds f/t Z(t,s)dW(s), tel0,T],

which implies that (Y (), Z(-,-)) is an adapted solution to BSVIE (3.1). The uniqueness of the solutions
to BSVIE (3.1) can be obtained by the following Theorem 3.2. Moreover, the first term Y(-) of the unique
solution to BSVIE (3.1) could be solved explicitly:

Y (t) = n{E[e¥D|F]}, tel0,T] (3.3)
Clearly, from the expression (3.3), we see that as long as

sup E{e’/’(t)} < 00,
tel0,T)

by a usual approximation technique, one could find that BSVIE (3.1) will still have the adapted solution

with Y () given by (3.3). Some general exploration in this direction will be carried out elsewhere.

From the above example, we see that BSVIE (3.1) can be fully characterized by a family of BSDEs
(3.2). The main reason is that the generator of equation (3.1) is independent of y. This suggests us first
consider a special case of Type-I QBSVIE (1.8).

3.1 A special case

Consider the following BSVIE:

T T
Y(t):w(t)+/t g(t,s,Z(t,s))ds—/t Z(1, $)dW (s), (3.4)

where the generator g : A[0,7] x R x  — R and the free term ¢ : [0,7] x @ — R are given maps. We

adopt the following assumption concerning g(-), which is comparable with (A0).

(A1). Let the generator g : A[0,7] x R x 2 — R be B(A[0,7] x R) ® Fr-measurable such that
s+ g(t, s, z) is F-progressively measurable on [¢,T], for all (¢,z) € [0,T) x R. There exist two constants
7, L and a function h(-) € L*(0,T;R) such that

l9(t,5.2)| < h(s) + 2|al% (ts,2) € A0,T] x s

l9(t,s,21) = g(t,5,22)] < L(L+ |21] + [22]) |21 = 22|, (t5,20) € A0, T] xR, i =1,2.



Now, we state the following existence and uniqueness result of BSVIE (3.4).

Theorem 3.2. Let (A1) hold. Then for any ¢(-) € L% (0,T), BSVIE (3.4) admits a unique adapted
solution (Y (-), Z(-,-)) € Lg?(0,T) x BMO(AI0,T7).

Proof. We first show the existence of the adapted solution to BSVIE (3.4). Consider the following
BSDEs parameterized by ¢ € [0, T]:

n(t,s) = (t) +/ g(t,r, ¢(t,r))dr —/ C(t,r)dW(r), selt,T]. (3.5)

For almost all ¢ € [0,7], by Lemma 2.5, under (Al), BSDE (3.5) admits a unique adapted solution
(77(757 ')a C(tv )) € L]%O(Qa C[taT]) X BMO(th) Let

Y(t) =ntt), Z(t,s)=C(ts), (ts) € A0,T],

then (Y (+), Z(+,-)) € Lg°(0,T) x BMO(A[0,T]) and

T T
Y (t) =(t) +/t g(t,s, Z(t,s))ds f/t Z(t,s)dW(s), te€][0,T],

which implies that (Y(-), Z(-,-)) is an adapted solution for BSVIE (3.4).

The uniqueness is followed from the next theorem. O

Consider the following BSVIEs: For ¢ = 1,2,

T T
Vi) =)+ [ ot Zilto)ds [ Zies)dW(s), te 0.1, (3.6
t t
We have the following comparison theorem.

Theorem 3.3. Let gi(-) and go(-) satisty (Al), ¥1(-),v2(-) € LE (0,T). Let (Yi(-),Zi(-,-)) €
L (0,T) x BMO(A[0,T]) be the adapted solution of corresponding BSVIE (3.6). Suppose

Pi(t) < v2(t), it s,2) < ga(tys,2), as., ae (t,s,2) € A0, T] xR, (3.7)

then we have
Yi(t) < Ya(t), as., ae. te€][0,T]. (3.8)

In particular, if g1 () = g2(+) and 91 (-) = 2(+), the comparison implies the uniqueness of adapted solution
to BSVIEs (3.4).

Proof. We note that

mw—nmzmw—wm+l'@w&awm—@Wa@mmMs

T
_ /t [Z0(t, ) — Zo(t, 5)] AW (s). (3.9)
Define the process 6(-,-) such that
0(t,s) =0, (t,s) e A*[0,T]; (3.10)
0, 5)| < C(L+|Z1(L,5)| + | 22(t, 8)]),  (t,5) € A[0,T]; (3.11)
g1(t, s, Z1(t,5)) — g1 (t, s, Za(t, 8)) = [Z1(t, s) — Za(t,5)]0(t, s), (t,s) € A[0,T]. (3.12)



Hereafter, C' > 0 stands for a generic constant which could be different from line to line. Then, for almost
all t € [0,T], W(¢; ) defined by

W(t;s) = W(s) — /05 O(t,r)dr, s€10,T] (3.13)

is a Brownian motion on [0,7] under the equivalent probability measure P; defined by
dP; 2 £{0(t, ")}, dP.

The corresponding expectation is denoted by EF. Thus, by (3.9) and (3.13), we have
T
Y1 (t) — Yg(t) = ’ll)l (t) — ¢2(t) + / [91 (t, S, Zz(t, S)) — gg(t, S, Zg(t, 8))} ds
t

T
_ /t [Z1(t,5) — Za(t, 5)] AW (£; 5).

Taking the conditional expectation with respect to P; on the both sides of the above equation and then
by (3.7), we have

- T
Yl(t) - }/Q(t) = ]EE‘Pt |:w1 (t) - ¢2(t) + /t [gl (ta S, ZQ(t7 S)) - QQ(t, S, ZQ(tv S))] d5:| g 07 a.s.

Hence, (3.8) follows. O

Remark 3.4. Theorem 3.2 and Theorem 3.3 are both concerned with the BSVIE (3.4), a very special
case of Type-I BSVIE (1.8), in which, the generator g(-) is independent of the variable y. This makes
the BSVIE (3.4) much easier to handle. Even though, Theorem 3.2 and Theorem 3.3 serve as a crucial
bridge to the proof of the results for general Type-I BSVIEs.

3.2 The general case

In this subsection, we will consider the following Type-I BSVIE:

T T
Y (t) =(t) +/ g(t,s,Y(s), Z(t,s))ds —/ Z(t,s)dW (s), t € 10,77 (3.14)
t ¢
We first introduce the following assumption, which is comparable to (A0).

(A2). Let the generator g : A[0,7] x R xR x Q = R be B(A[0,T] x R x R) ® Fr-measurable such
that s — g(t, s,y, z) is F-progressively measurable on [t,T] for all (¢,y,z) € [0,T] x R x R. There exist

two constants L and - such that:
l9(t, 5,9, 2) S L(L+[y]) + 212 ¥t s,,2) € AD,T] x R x R

lg(t, 5,91, 21) — g(t, 8,92, 22)| < L{|yx — ya| + (1 + |21] + |22]) |21 — 22|},
V(t,s,yi,zi) € A[O,T} x R x ]R, = 1,2
At the same time, we introduce the following additional assumption which will be used to establish a

better regularity for the adapted solutions.

(A3). Let g: [0,T]> x R x R x 2 — R be measurable such that for every (t,y,z) € [0,7] x R x R,
s+ g(t,s,y,z) is F-progressively measurable. There exists a modulus of continuity p : [0,00) — [0, 00)

(a continuous and monotone increasing function with p(0) = 0) such that

l9(t,s,9.2) —g(t', 5,9, 2) < p(|t =t + 1yl +12*), V.t s€[0,T], (y,2) ERxR.
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Note that in (A3), the generator g(t,s,y, z) is defined for (¢,s) in the square domain [0,T]? instead
of the triangle domain A[0,T], and the uniform continuity of the map t — f(¢,y, 2) (uniform for (y, z)
in any bounded set) is assumed. Now, we state the main result of this subsection.

Theorem 3.5. Let (A2) hold. Then for any ¢(-) € LE (0,T), BSVIE (3.14) admits a unique adapted
solution (Y (-), Z(-,-)) € Lg°(0,T) x BMO(A[0,T)).

We will prove Theorem 3.5 by means of contraction mapping theorem. For any (U(-),V(-,-)) €
L (0,T) x BMO(A[0,T]), consider the following BSVIE:

T T
V() = w(t) + / ot 5, U(s), Z(t, s))ds — / Z(t, 5)dW (s). (3.15)
t t
By Theorem 3.2, BSVIE (3.15) admits a unique adapted solution (Y'(-),Z(-,-)) € Lg°(0,T) x BMO
(A[0,T]). Thus, the map
F(U(),V(,)) £ (Y()aZ(7))v (U(),V(,)) € LEO(O7T) X BMO(A[OvT]) (316)
is well-defined. In order to prove Theorem 3.5, we present the following lemma.

Lemma 3.6. Let (A2) hold and € € (0, 57]. Then for any ¢(-) € LE (0,T), the map I'(-,-) defined
by (3.16) satisfies the following:
I'(B.) C B, (3.17)

where B. is defined by the following:

B. A {(U(.)y(., ) € Lg(T —&,T) x BMO(A[T — &,T)) |

3.18
VO age ey <2600 + 1 IV Eramery < A} o
with 5 L
A= ?evl\w(')lloo + Z2O DI O lloo+y+2,
Proof. For any (U(-),V(-,-)) € B, consider a family of BSDEs (parameterized by ¢ € [0,T]):
T T
n(t,s) = (¢) +/S g(t,r,U(r),C(t,r))dr 7/5 Clt,rydW(r), selt,T]. (3.19)

Note that U(-) is bounded. For almost all ¢t € [T'—¢,T], by Lemma 2.5, the above BSDE admits a unique
adapted solution (n(t,-),((t,-)) € Lg*(; Ct,T]) x BMO(¢,T'). Let
Y(t) =n(t,t), Z(ts)=C((s), ()€ Al —eT] (3.20)

Then by Theorem 3.2, (Y (-), Z(-,-)) € Lg2(0,T) x BMO(A[0, T) is the unique adapted solution to BSVIE
(3.15). The rest of the proof is divided into two steps.

Step 1: Estimate of |Y (*)|loo-

For BSDE (3.19), by (A2), we have
l9(t,r, U), Ol S LA+ U)) + S 1¢P-
Thus, note that € € (0, 537], by Lemma 2.5 with h(s) = L(1 + |U(s)|), ¥y = and 8 = 0, we have
ol < | [ev(wu)m fST(1+\U(r)\)dr)} < B0l (VO e )]

(3.21)
<Ol Tt <s<T

)
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which is equivalent to
In(t,s)| <20v( )l +1, T—e<t<s<T. (3.22)

Consequently, noting Y (¢) = n(t,t), one has
1Y (e (r—e,1y < 2/9()|loo + 1.

Step 2: Estimate of || Z(-, ')HZBTO(A[T—E,T])‘

Define
$y) £ (M —qly| - 1); yeR. (3.23)
Then, we have
¢'(y) =7 —1sen(y), ¢"(y) =™, (3.24)
which leads to ¢ (y) = v|¢'(y)| + 1. Applying Itd’s formula to s — ¢(n(t, s)), we have

B((1)) — d(n(t, )
T 1 T
_ / & 1(t, ) (e, U(r), (1, 7))dr + / & (n(t, )¢t ) Pdr (3.25)
T
T / & (n(t, )¢t AW (1), s € [t,T].

Taking conditional expectation on the both sides of (3.25) and by (A2), we have
1 T
s(n(t9) + 3B [ ¢ it m)leter)ar]

T T
< B0 O ) + LB [ [ 16t I+ [06ar] + Z8.[ [ 16 ttemlIce. )]

Combining this with (3.24), one obtains

T T
onft9) + 8. [ [ enPar] <o(lo)le) + L[ [ 16l wehdr]. (320

Then, noting that ¢(n(t, s)) > 0, we simply drop it to get

E.| /ST 12(t,7)dr| < 26(J()lloc) + 2LE, | /ST 16/ Gr(t, )| (L4 U () )|

< 2 olvOle ¢ 2L @Ol 2080+ ¢ 2 Ol 4 L 2D b2,
7’ gl 7’ gl

Hence,

2 1 _
12 ) s ear—e ) < ?ewnw e ;e2<w+1>nw< Meot1+2 — 4. (3.27)

This proves our claim. O
The next result is concerned with the local solution of BSVIE (3.14).

Proposition 3.7. Let (A2) hold and the map I'(-,-) be defined by (3.16). Then there is € > 0 such
that T'(-,-) is a contraction on B., where B, is defined by (3.18). This implies that BSVIE (3.14) admits
a unique adapted solution on [T — ¢, T].
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Proof. Let ¢ € (0, 5. For any (U(-), V(-,-), (U(-),V(-,-)) € Be, set

(Y (), Z(,) =DU),V(-,) and (Y(),Z(-) =TUE), V(") (3.28)
that is,
T T
n(t )+ / ot U(r), C(t,r))ds — / C(tr)dW (1), (3.29)
T T
n(t, +/ g(t,r, U(r), ((t, r))drf/ C(t, r)dW (r), (3.30)
and

Y () =n(t,t), Y(t)=7tt), Ztr)=CEr), Ztr) =Ctr). (3.31)
By Lemma 3.6, (Y (), Z(-,-)) and (Y (-), Z(-,-)) € B.. By (A2), for almost all ¢ € [T'—e, T], we can define

the process 0(t,-) in an obvious way such that:

0(t,s) =0, (t,s)e[T—eT]x]0,1, (3.32)
0(t,5)] < L+ [C(t9)[ + KL 8)]), (t,8) € AT =&, T, (3.33)
g(t7 S, [7(8)7 C(t7 8)) - g(tv S, (7(8)7 g@? 8)) = [C(t7 5) - Z(t’ 3)}9(ta S)' (334)

Note that (Y(:),¢(-,-)), (Y(-),C(-,-)) € B.. Thus, by (3.32)—(3.33),

< 3L*T + 3L%|<(-, )

2 207
”9("')”BMO(A[T—5,T]) ||BMO (A[T— ET])+3L 1<C )HBMO AlT— £7T])]

< 3L°T +6L2A. (3.35)

Thus, for almost all t € [T — ¢, T fo (t,r)dW (r);0 < s < T is a BMO martingale and

2

‘ / O(t,r)dW (r) < 3LT + 6L2A. (3.36)
0 BMO(0,T)
By Lemma 2.3, W (¢;-) defined by
W(t;s) & W(s) —/ O(t,r)dr, s€10,T] (3.37)
0

is a Brownian motion on [0, 7] under the equivalent probability measure P;, which is defined by
dP; 2 £{0(t, )}, dP. (3.38)
Denote the expectation in P, by EFt. Combining (3.29), (3.30), and (3.34)-(3.37), we have
T ~
) =) + [ (¢t = St esr)
S
T ~
= [ [ottr U010 - glt, T, 6(e,1)] i (339)

Taking square and then taking conditional expectation with respect to P; on the both sides of the above

equation, we have (noting T —e <t < s<T)
it 7t + B2 [ i) - o]
== {[ [ (o000 - o T ct0r) )] )
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_ T ~ 2
<E{] / (L) -0 )ar] ) (3.40)
SLAT = tPIUC) = UO iz r—ery < L2ENUE) = UO e (r—eiry-

Let s = ¢, by (3.31) and (3.40), we have
1Y () =Y Olligr-er < LPENUE) = UOIs (r—eir)- (3.41)

Also, by (3.31), (3.40), (3.36), and Lemma 2.4, there is a constant C (which is depending on ||¥(-)||eo
and is independent of t) such that

s B[ [ (70,0 - 20,00 = s w[ [ i) - Sorpa]

Se[th] sE[t,T]
_ T - -
<C sup EY| / C(t,r) = St Pdr| < CL22UC) = UO (i) (3.42)
Thus,
1Z() = ZC ) Esoapr—ery < CLENUC) = UG e (r—em)- (3.43)
Combining (3.41)—(3.43), we see that for some small € > 0, the map I'(-,-) is a contraction on the set B..
Hence, BSVIE (3.14) admits a unique adapted solution on [T — &, T]. O

Let us make some comments on the above local existence of the unique adapted solution.

s
A
T
® @
T—e¢
A[0,T—¢]
A[0,T—e]
T—e¢ T g
(Figure 1)

We have seen that (Y (s), Z(t, s)) is defined for (¢,s) € A[T — ¢, T}, the region marked (D in the above
figure. Now, for any ¢ € [0,T — €], we can rewrite our Type-I BSVIE as follows:

T—e T—¢
V() = T (1) + / o(t, .Y (), Z(t,5))ds — / Z(t, )W (s), tel(0,T -], (3.44)
where
T T
WT=5(8) = (1) + /T gt Y (), 2(t,9))ds - /T | Z0,5)aW(s), el T—e] (3.45)

If 7=¢(-) € LY. _(0,T —¢), then (3.44) is a BSVIE on [0,T — ¢]. However, unlike BSDEs, having
(Y(s),Z(t,s)) defined on A[T —¢&,T], »T=(t);t € [0, T — €] has still not been defined yet. Since, on the
right-hand side of (3.45), although Y'(s) with s € [T — ¢, T)] has already been determined, Z(t, s) has not
been defined for (¢,s) € [0,T —e] x [T'—¢, T}, the region marked (2) in the above figure, which is needed to
define 1T —¢(t). Moreover, we need that ¢7~%(t) is Fp_.-measurable (not just Fp-measurable). Hence,
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(3.45) is actually a stochastic Fredholm integral equation (SFIE, for short) to be solved to determine
pT=2(t);t € [0, T — €.

Now, we are at the position to prove Theorem 3.5.

Proof of Theorem 3.5. The proof will be divided into three steps.
Step 1: Estimate of |Y (-)|?.

For given ¢(-) € LE, (0,T), we can find a constant C > 0 such that ||¢(-)]|2, < C and (by (A2))
229(t, 5,5,0)] < C + Cla]* + Cly*, V(t,5,2,y) € A, T] x R x R. (3.46)
Let us consider the following (integral form of) ordinary differential equation:
alt)y=C —|—/ Ca(s)ds +/ Cla(s) + 1]ds, te€0,T). (3.47)
t t
It is easy to see that the unique solution to the above ordinary differential equation is given by
~ I\ oGy 1
a(t) = (o+7)e — =, telo,T],
2 2
which is a (continuous) decreasing function. Thus,

()13 < C = a(T) < a(0).

By Proposition 3.7, there exists an € > 0 (depending on ||1)(+)||s) such that T'(-,-) defined by (3.16) is
a contraction on B.. Therefore, a Picard iteration sequence converges to the unique adapted solution
(Y(-),Z(-,-)) of the BSVIE on [T — ¢,T]. Namely, if we define:

(¥O(), 29, ) = 0, o)
(YHH1(), 2541 )) = T(VE(), Z4(,)), k>0 '
that is,
(YO(‘)7Z0<'7 )) = Oa
T T
(L 8) = (1) + / ot YE(r), Lt r))dr — / CHL(t, r)dW (1),
YRR = ), 29 () = (M (Ls), (ts) € AT — &, T),
then
Jim [[(V50), Z5) = (VO 206D ey siiar_emy = 0 (3.49)

Next, for almost all ¢ € [T — ¢,T], similar to (3.33), (3.34), (3.37), and (3.38), there exists a process
6% +1(t,-) such that

g(t,r, Yk(r), (7)) — g(t, 7, YE(r),0) = CFHL(t, m)0F T (¢, ), (3.50)

and s
WA (1 5) 2 W (s) — / O+t r)dr, s € [0,T] (3.51)
0

is a Brownian motion on [0, 7] under the corresponding equivalent probability measure Pf“ defined by

PEHL = £{6% (¢, )}, dP.
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For simplicity, we denote IP’fH by PF*1 here, suppressing the subscript ¢t. The corresponding expectation
is denoted by EF+1. Tt follows that

P s =0+ [ gt Y, - [T e)

=p(t) + /Tg(t,r, Yk(r), 0)dr — /T CkJrl(t,r)dWlHl(t; T). (3.52)

S

Applying the It6 formula to the map s ~ |n**1(¢,s)[? and taking conditional expectation EFf! =
EEFL[.| F,] for any 7 € [T — ¢, 5], by (3.46), we have

BE 40,0 + BE [ [ N npar]

S

— EiH [\w(t)ﬂ ERH [ / ' (8, ) g(t, 7, YR(r), O)dr] (3.53)

T T
<C+ c/ Ek+! [|nk+1(t,r)|2]dr + C/ {E’;+1 [|Y’“(r)|2} + 1}dr.
We now prove the following inequality by induction:
Y*®)> < alt), te[l—eT], foranyk>D0. (3.54)

In fact, by (3.48), it is obvious to see |[Y°(#)|?> = 0 < «(t). Suppose |Y*(t)|? < a(t) for any t € [T —¢,T),
then

E+ [mkﬂ(t, s)|2} <C+ 5/T EF+1 [mk-i-l(t, r)ﬂ dr+C /T[a(r) + 1]dr. (3.55)
In light of (3.47), by the comparison theorem of ordinary differential equations, we have
EE [ (8 )] < as). (3.56)
Let 7 = s and s = t, we have
YO <alt), te|lT—eT). (3.57)

Thus, by induction, (3.54) holds. Then by (3.49), we have
Y()|? <a(t), te[lT—e¢T). (3.58)

Step 2: A related stochastic Fredholm integral equation is solvable on [0,T — ¢].

We now solve SFIE (3.45) on [0,T — ¢]. Let us introduce a family of BSDEs parameterized by
te0,T —¢]:

T T
n(t,s) = ¥(t) +/ g(t,r, Y (r),¢(t,r))dr —/ Ct,r)dW(r), se[T—¢eT). (3.59)

By Lemma 2.5, the above BSDE admits a unique adapted solution (7(t,-),((t,-)) on [T —¢,T]. Note
that (3.58), similar to (3.56), we have

|n(tv 5)|2 < a(s), s € [T - 5aT]' (360)
Similar to (3.27), we have

esssup ||C(t,-)||2n < 00. 3.61

s 1606 o e.my (3.61)
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Let " ==(t) = n(t,T—¢) and Z(t,s) = ((t,s), we have (T ~=(), Z(-,-)) € LE, __(0,T—¢) x BMO([0,T —
gl x [T —&,T)]) and (T=¢(-), Z(+,-)) is a solution to SFIE (3.45). Moreover, by (3.60), we have

WO =Int,T - ) <a(T —e) <a(0), te[0,T—el (3.62)
Next, we will prove the solution to SFIE (3.45) is unique. Let

(waa(.)’ Z('7 ))7 (&Tﬁs(')v Z(? )) € L?-'OT,E(OaT - 5) X m([O,T - 6] X [T - EvT])'
be two solutions to SFIE (3.45). Then

T

W0 =30 = [ (ot Y (9. 2(09) — glts Y(5), Z(t.5) s (3.63)

T—e

—/T [Z(t,s)—é(t, $)[dW(s), tel0,T —el.
T—¢

For almost all ¢ € [0,T — €], similar to (3.33), (3.34), (3.37), and (3.38), there is a process 6(t,-) such
that:

g(t,s,Y(s), Z(t,5)) = g(t,5,Y (s), Z(t,5)) = [Z(t,5) = Z(t,5)|0(t, 5), (3.64)

and s
Wt s) 2 W(s) - / 0t r)dr, s € [0,T] (3.65)
0

is a Brownian motion on [0, 7] under the corresponding equivalent probability measure P;. The corre-
sponding expectation is denoted by EF*. Combining (3.63)—(3.65), we have

T

$TE(t) — T2 (1) = — / [Z(t, s) — Z(t, s)}dW(t; s), telo,T—e. (3.66)

T—e¢
Taking conditional expectation EE;LE[ -] = EP*[-| Fr_.] on the both sides of the equation (3.66), we have
Ef_[v7 () - 97 ()] =0, te[.T—] (3.67)

Note that T ~¢(t) is Fr_.-adapted for any ¢t € [0,7 — ¢]. It follows that

YT () =T5(t), as., t€[0,T —el. (3.68)
By (3.66)—(3.68), we have
/T [Z(t, s)— Z(t,s)| dW(t;s) =0, te[0,T — e, (3.69)
T—e
which implies
Z(t,s) = Z(t,s), as., (t,s)€[0,T —¢] x [T —e,T). (3.70)

Combining (3.68)—(3.70), SFIE (3.45) admits a unique solution.
Step 3: Complete the proof by induction.

Combining Steps 1 and 2, we have uniquely determined

Y (t), te [T —eT],

(3.71)
Z(t,s), (ts) € AT - T (10,7 —e] x [T - &,7]).
Now, we consider BSVIE (3.44) on [0,T —¢]. By (3.62), we see that the above procedure can be repeated.
We point out that the introduction of «(+) is to uniformly control the terminal state ¢(T —¢), (T — 2¢),
etc. Then we can use induction to finish the proof of the existence and uniqueness of adapted solution
to BSVIE (3.14). O
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Remark 3.8. When the terminal condition (-) is bounded, the well-posedness of QBSVIE (3.14) is
established by Theorem 3.5. If ¢(-) is unbounded, the unboundedness of #(-) will bring some essential
difficulties in establishing the solvability of QBSVIE (3.14). At the moment, we are not able to overcome

the difficulties. We hope to come back in our future publications.

We now would like to look at some better regularity for the adapted solution of BSVIEs under

additional conditions. More precisely, we introduce the following assumption.

Theorem 3.9. Let (A2)~(A3) hold. Then for any i(-) € LE, (;CV[0,T]), BSVIE (3.14) admits a
unique adapted solution (Y (-), Z(-,)) € L (Q; C[0,T]) x BMO(A[0,T]).

Proof. Without loss of generality, let us assume that
[p(t) — @) < p(lt = 1)), Vit €0,T]

with the same modulus of continuity p(-) given in (A3).

By Theorem 3.5, BSVIE (3.14) admits a unique adapted solution (Y'(-),Z(,-)) € Lg(0,T) x
BMO(A[0,T]). We just need to prove that Y (-) € L(9;CI[0,T]), i.e., Y(-) is continuous. Consider
the following family of BSDEs (parameterized by ¢ € [0,T]):

T T
n(t,s) = P(t) —|—/ g(t,r, Y (r),C(t,r))dr —/ C(t,r)dw(r), sel0,T]. (3.72)

By Lemma 2.5, for any ¢ € [0,7], BSDE (3.72) admits a unique adapted solution (n(t,-),((t,-)) €
L (£;C[0,T]) x BMO(0,T). By Theorem 3.5, we have Y (t) = n(t,t), Z(t,s) = ((t,s) for any (t,s) €
A[0,T]. Now, let 0 <t <t < T. Similar to (3.33), (3.34), (3.37), and (3.38), there is a process 0(¢,t'; )
such that

g(t',5,Y (s),C(t, ) = g(t',5,Y (5),((t', 5)) = [C(t, ) — C(t', )]0(L, 1 5), (3.73)

and s
W(t,t';s) = W(s) 7/ 0(t,t';r)dr, s€l0,T] (3.74)
0

is a Brownian motion on [0, 7] under the corresponding equivalent probability measure P; ;. The corre-
sponding expectation is denoted by EFt+. Combining (3.72), (3.73), and (3.74), we have

T
n(t,s) —n(t',s) = (t) — b(F') — / (€t r) — (', P)AW (t, 25 17)
T
+ / 9t Y (1), C(t 7)) — gt m, Y (), C(t, 1) ]dr

Taking conditional expectation E.t [-]= Eqt [ |Fs] on the both sides of the above equation, we have

P

b =t s) = B2 [ = vt + [ " (9l Y (0, — g€ Y (), )|

Combining this with (A3), by Lemma 2.4, we have
T
) = )| < ED [l00) ~ v (@) + [ latt,n Y (). C) = gt (1), (e, 1)) ]
T
<pllt = 1)+ (= C DB [ [ (¥ (6)]+1C( ) ]

<O+ Y Olzzom)oe = ¢ + Colle — ¢ DEE | [ fote.rPar]

S
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< CO+ YOl o)l = D) + Collt — ¢ DICE o, or)
1+ Y Ol om)ellt = 1)+ Collt = £ DICE vy

< COHY Oz o) + 1€ s, cap et = £

= OO+ Y Ollzgom + 120, lmsio, sy et — 1),

where C' > 0 is a generic constant (which could be different from line to line). This leads to

lim [ sup |n(t,s) fn(t’,s)ﬂ =0, as.
[t—t'|=0 L sg(0,1]

On the other hand, since n(t,-) € L*(©; C[0,T]) for any ¢ € [0,T], one has

lim |n(t,s) —n(t,s')| =0, Vtel0,T], as. (3.75)

|s—s’|—0

Tt follows that (¢, s) — n(t, s) is continuous, i.e.,

lim  |n(t',s") —n(t,s)| =0, V¥(t,s)€[0,T] as.

(t',5")=(t,s)

Consequently, ¢ — n(t,t) = Y (t) is continuous. O

4 Adapted M-solution to Type-11 QBSVIE

We now consider the following one-dimensional Type-IT QBSVIE:

Y(t) = () —I—/t g(t,s,Y(s), Z(t,s), Z(s,t))ds —/t Z(t,s)dW (s), te[0,T]. (4.1)

Since Z(s,t) is presented in the generator g(-), we shall consider the adapted M-solution. Let us first

introduce the following assumption:

(A4). Let the generator g : A0, T| x RxR xR xQ — R be B(A[0,T] x R x R x R) ® Fp-measurable
such that s — g(t, s,9, 2, 2) is F-progressively measurable on [¢t, T] for all (¢,y,z,2") € [0,T] x Rx R x R.
There exist two constants L and  such that:

lg(t, s,y,2,2")| < L(1+|y|) + %|z|27 V(t,s,y,2,2") € A[0,T] x R x R x R;
|9(t757y1a2172/1) _g(tﬂsﬁy2722aazé)| < L<|y1 - yQ‘ + (1 + |Zl| + |22D|Z1 - 22| + ‘Zi - Zé|)7
V(t,s,yi,2i,2) € A0, T] x RxR xR, i=1,2.

Note that in (A4), we have assumed that 2z’ — g(t,s,y, 2, 2’) is bounded. This will allow us to use
the results for Type-I QBSVIEs. Therefore, the following result can be regarded as a byproduct of the
results for Type-I QBSVIEs from the previous section. The case that allowing 2z’ — g(t, s, vy, 2, 2) to be
unbounded seems to be more difficult and might be treated in our future investigations. Now, here is the
main result of this section.

Theorem 4.1. Let (A4) hold. Then for any ¢(-) € LE (0,T), Type-Il QBSVIE (4.1) admits a
unique adapted M-solution (Y (-), Z(,-)) € M?[0,T]( (L°(0,T) x BMO(A[0,TY)).

Proof. For any (y(-),2(-,-)) € M?[0,T)], consider the following BSVIE:
T T
YO =00+ [ 9t Y. 20005, 0)ds — [ ZaW(s), tep 1 (42)
t t
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In light of (A4), by Theorem 3.5, BSVIE (4.2) admits a unique adapted solution (Y (-),Z(-,-)) €
Lz (0,7) x BMO(A[0,T]). Determine Z(s,t);(t,s) € A[0,T] by martingale representation theorem,
ie., .
Y(s) = E[Y (s)] +/‘ Z(s,)dW (1), s € [0,T).
0
This means that BSVIE (4.2) admits a unique adapted M-solution (Y (-), Z(:,-)) € M?[0,T]. Thus the
map
()20, ) 2 (V20,0 (0, 2() € M2(0,T) (43)

is well-defined. In order to prove BSVIE (4.1) admits a unique adapted M-solution, we need to prove
that T'(-,-) has a fixed point in M?2[0,T]. The proof is divided into two steps.

Step 1. There is an € > 0 such that I'(-,-) is a contraction on M2[T — &, T] and hence BSVIE (4.1)
admits a unique adapted M-solution on [T — ¢, T].

For any (y(-), 2(+,)), (¥(-), 2(+,-)) € M?[T — &, T], with € > 0 undetermined, set

T T
Y1) =¢(t)+/t gt .Y (), Z(t, ), (s t))ds—/t Z(t, s)dW (s), (4.5)
Y(t) = ¢(t) +/t g(t,s,Y (), Z(t, 8),Z(s,t))ds —/t Z(t, s)dW (s), (4.6)
and
Y (s) = B[Y (s)|Fr_.] + /T _ Z(s,)dW (1), s € [T —&,T], (@7)
Y (s) = B[Y (s)|Fr_c] + /T Sf Z(s,t)dW (t), s € [T —e,T). (4.8)

Similar to Lemma 3.6, noting that z’ — g(¢,s,y,2,2") is bounded, there is an & > 0 such that
C(y(-),2(-,-)) € Be for any (y(-),z2(-,-)) € M?(T — ¢,T), where B, is defined by (3.18). Thus, we
have

(Y(')7Z('v'))7 (?()72(7)) € B.. (4.9)
By (A4), for any t € [T — €, T], there is a process (¢, -) such that:

0(t,s) =0, te[T—eT], se€l0,t], (4.10)
|0(t, s)] < L(1+|Z(t,s)] + \Z(t,s)\), (t,s) € A[T —¢,T], (4.11)
g(t, s, }7(5), Z(t,s),z(s,t)) — g(t, s, lN/(s), Z(t7 $),2(s,1))

= [Z(t,s) — Z(t,5)|0(t,s), (t,s) € A[T —e,T). (4.12)

Similar to (3.36), we have

2 2 2
10C, ) B xi0apr—ey) < 3L°T + 6L2A. (4.13)

For almost all t € [T — ¢, T], by Lemma 2.3, W(¢;-) defined by
W(t;s) = W(s) —/ o(t,r)dr, s€][0,T] (4.14)
0

is a Brownian motion on [0,7] under the equivalent probability measure P;, which is defined by

dP, £ £{0(t, ")}, dP. (4.15)
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The corresponding expectation is denoted by EFt. Combining (4.5)(4.6) and (4.12)-(4.14), we have

Y(t)—-Y(t)+ /t [Z(t,s) — Z(t,s)|dW (t, s)

T ~
= /t [9(t.5, Y (5), Z(t,5), 2(5,1)) = (¢, 5,V (5), Z(t,5), Z(5.1))| ds. (4.16)

Taking square and then taking the conditional expectation E]f’t [-] = EF[-| F], we have
- T -
YO - TOP + 57| [ 12(05) - Zt.5)Pds
¢
- T ~ 2
7 [ [ (0t Y(5). 2005),25,1) = g(t,5.7 (5), Z(8,).5(5.) ) ]
¢
5 [ =
< I?EP [/t (1 (5) = F(3)] + (s, ) — (s, )\)ds} . (4.17)

By (Y(-),Z(,),(Y(-),Z(-,-)) € Be and Lemma 2.4, there is a constant C' > 0 (which is depending on
I (4)]|oo and is independent of ¢) such that
T
Y (t) = V(1) +E, [/ 1Z(t,5) = Z(t, 5) ds|
T ' ~ 2
< CE, [/t (1Y (5) = ¥ (3)] +](s. 1) — 2(s. 1)) s

< O(T - t)E, [/tT <|Y(s) —Y(8)? + |2(s,) — E(s,t)\2>ds]. (4.18)

Thus, integrating the above on [T — ¢, T], we obtain

E/T Y (t) — 2dt+]E/T / Z(t, s)|?dsdt

C’eIEl/T / Y(s)2 + |2(s,t) — 3(s, )] }dsdt, (4.19)

with a possible different constant C' > 0. By the variation of constants formula, we obtain

E/T:l (t) — |dt+]E/TE/ Z(t, s)|?dsdt

T

< C<E /T ) /t 12(5, £) — 3(s, t)|2dsdt < CeE / () — §(0)[2dt. (4.20)

T—¢
The constant appears above is generic (only depends on the constants L, v, T, and ||%(+)]|co, and is
independent of ¢ > 0). Therefore, when ¢ is small enough, f(, -) is a contraction on M?(T — ¢,T).
Consequently, BSVIE (4.1) admits a unique adapted solution on [T'— ¢, T]. Further, by (4.9), the unique
adapted M-solution (Y'(-), Z(-,-)) also belongs to L (T — &, T) x BMO(A[T — ¢, T)).

S
A
T
@ ©)
®
T—e
A0, T—¢]
@
A*[0,T—¢]
T—¢ T -t
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(Figure 2)

The above determined Y (t) for ¢t € [T —e, T and determined Z(t, s) for (¢, s) € A[T —e,T)] (the region
marked (D in the above figure) by using Type-I BSVIEs, and for (¢, s) € A*[T — e, T] (the region marked
@ in the above figure) by using martingale representation.

Step 2. BSVIE (4.1) admits a unique adapted M-solution on [0, 7.

By Step 1, BSVIE (4.1) admits a unique solution on [T — &,T]. For almost every s € [T — &,T],
Ep_c[Y(s)] € L%, (), by martingale representation theorem, there is a unique Z(-,-) € L*(T —
e, T; LA(0,T — ¢)) such that:

T—e¢
Er_.[Y(s)] =E[Y(s)] +/0 Z(s, t)dW(t), sel[T—e,T]. (4.21)

Hence, we have uniquely determined (Y (t), Z(¢,s)) for (t,s) € [T —¢,T] x [0,T] (the region marked (D,
® and @) and the following is well-defined:

ngs(tv&Z) :g(t,S,Y(S)7Z,Z(S,t)), (ta S) € [Ovad X [T*{;‘,T] (422)
Note that [0, T —e] x [T'—¢, T is the region marked ) in the above Figure 2. Now, consider the following

SFIE:

T T

0T (45, Z (L, 5))ds — / Z(t,5)dW(s), te[0,T—e.  (4.23)
T—e

BT (1) = (t) + /

T—¢
Similar to the Step 2 of the proof of Theorem 3.5, SFIE (4.23) admits a unique solution (T (-), Z(,))
on [0,T —¢] x [T —e&,T] and the following estimate holds:

WO < a(0), te[0,T ¢, (4.24)
where a(-) solves an equation similar to (3.47). The above uniquely determined
Y(t), tell—eT],

Z(t,s), (t,s)¢€ ([T —&,T) x [()7TD U ([O,T—g] x [T — E,T]). (4.25)

Now, we consider

T—¢ T—e
Y(t) =9 5() +/ g(t,s,Y (s), Z(t,s), Z(s,1))ds —/ Z(t,s)dW (s) (4.26)
¢ t
on [0,T —e¢]. Since ¥T7¢(:) € LE, __(0,T —¢), (4.26) is a BSVIE on [0,T —¢]. Then the above procedure

can be repeated. Since the step-length € > 0 can be fixed, we then could use induction to complete the

proof. O
5 A Comparison Theorem for Type-1 BSVIEs
Consider the following BSVIEs: For ¢ = 1,2,

Yi(t):¢l(t)+/t gz(t,s,Yl(s),Z’(t,s))ds—/t Zi(t,$)dW(s), te[0,T). (5.1)

We assume that the generators g'(-), i = 1,2 of BSVIEs (5.1) satisfy (A2). Then by Theorem 3.5, BSVIE
(5.1) admits a unique adapted solution (Yi(-),Z%(-,-)) € L(0,T) x BMO(A[0,T]) for any i(-) €
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L% (0,T). In order to study the comparison theorem of the solutions to BSVIE (5.1), we introduce the
following BSVIE:

T T
V() = (1) +/ G(t, 5,V (s), Z(t, 5))ds —/ Z(t,5)dW(s), te[0,T], (5.2)
t t
with the generator g(-) also satisfies (A2). Further, we adopt the following assumption.

(C). Let the generator g : A[0,T] x R x R x Q — R satisfy that y — g(t, s, y, z) is nondecreasing for
any (t,s,2z) € A[0,T] x R.

We present the comparison theorem for BSVIE (5.1) now.
Theorem 5.1. Let g'(-),g?(-) and g(-) satisfy (A2) and let g(-) satisfy (C). Suppose
gt (t,s,y,2) < glt,s,y,2) < g*(t,8,y,2), V(y,z) €ERxR, as., ae. (t,5) € A0, T]. (5.3)
Then for any ¢'(-),1?(-) € LY, (0,T) satisfying
PL(t) < Y3(t), as., ae. t€0,T), (5.4)
the corresponding unique adapted solutions (Y*(-), Z*(-,-)), i = 1,2 of BSVIEs (5.1) satisfy
Yi(t) <Y3(t), as., ae. tec0,7T). (5.5)
If, in addition, the generators g'(-), g>(-) and g(-) satisfy (A3), and
gt (t,s,y,2) < glt,s,y,2) < g(t,s,y, 2), Y(t,y,2) € [0,T] x R xR, a.s., a.e. s €[0,T]. (5.6)
Then for any ¢'(-),¢*(-) € LE, (Q; CV[0,T)) satisfying
Pt <YA(t), te€[0,T], as., (5.7)
the corresponding unique adapted solutions (Y(-), Z%(-,-)), i = 1,2 of BSVIEs (5.1) satisfy
Yit) <Y3(t), te€0,7T], as. (5.8)
Proof. Let ¢(-) € L (0,T) such that
P < Y(t) <Y3(t), as., ae t€[0,T]. (5.9)

Without loss of generality, let
(oo < L, (5.10)

where (-) = %'(-),%?(),¥(-). By Theorem 3.5, BSVIE (5.1) admits a unique adapted solution
(Y1(), Z1(,-)) € L (0,T) x BMO(A0,T)) for i = 1. Set Yo(-) = Y(-) and consider

Yl(t):w(t)—i—/t g(t,s,m(s),zl(t,s))ds—/t Zu(t,s)dW (s), te[0,T]. (5.11)

By Theorem 3.2, there is a unique adapted solution (Yi(-), Z1(-,-)) € Lg(0,T) x BMO(A[0,T1]) to the
above BSVIE. By (5.3), we have

gl(t,s,f’o(s),z) < g(t,s,ffo(s),z), Vz € R, as., a.e. (t,s) € A[0,T]. (5.12)

Combining this and (5.9), by Theorem 3.3, for almost all ¢ € [0, 7], there exists a measurable set 2} C
satisfying P(Q}) = 0 such that

Yo(t) = V() < Yi(t), w e Q\Q}, ae. t € [0,T). (5.13)
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Next, we consider the following BSVIE

Ya(t) = o(¢) —l—/t g(t,s,Y1(s), Zo(t,s))ds —/t Zs(t,s)dW(s), te][0,T]. (5.14)

Let (}72(), 22(~, -)) be the unique solution to the above equation. Since y — g(t, s, y, z) is nondecreasing,
by (5.13), we have

g(t, s,Yo(s),2) < g(t,s,Yi(s),2), VzeR, as., ae. (t,5) € A0, T]. (5.15)

Similar to the above, for almost everywhere t € [0, 7], there exists a measurable set Q7 C Q satisfying
P(Q?) = 0 such that
Yi(t) < Ya(t), we Q\Q2, ae. t €0,T). (5.16)

By induction, we can construct a sequence (Yi(-), Z(-,-)) and QF satisfying P(Q2F) = 0 such that

~ _ T _ _ T _
Yk+1(t) = Qlj(t) + [ g(ta S5, Yk(s)v Zk+1(ta 5))d8 - l Zk-i-l(t? S)dW(S)v te [OvT]v (517)
and
Yit) = Yolt) < Vi(t) < Va(t) < -+, we Q) ( U Q;f), a.e. t€[0,T]. (5.18)
k=1

Note that P[Q\ (Uy>, QF)] = 0. We may assume that
[¥(#)] < a(0), t€l0,T], (5.19)

where 9(-) = '(-),%?(-),%(:) and a(-) solves an ODE of form (3.47). By Proposition 3.7, there is an
£ > 0 such that Y;(-) is Cauchy in LX(T —€,T) and

klim V() — Y(')HL]E?C(Tfe,T) = 0. (5.20)
—00
Combining (5.18) and (5.20), we have

Yi(t) <Y(t), as., ae tc[T—¢T). (5.21)

Next, consider the following SFIEs:

T T
PIT=2 (1) =¢1(t)+/T gl(t,s,yl(s),zl(t,s))ds—/T 2Nt AW (s), te[0.T—c;  (5.22)
) ) T*E 7 ) T 775
was(t) zw(t)+/T7 g(t,s,Y(s),Z(t,s))d8—47 Z(t,s)dW(s), te][0,T —c¢]. (5.23)

Similar to the Step 2 in Theorem 3.5, the above SFIEs (5.22) and (5.23) admit unique solutions
(VT2 (), Z (), (WT=2(), Z(-,")) € L?T_€(07T —¢) x BMO([0,T — €] x [T — ¢,T]), respectively.
Similar to (3.62), we have

[T < a(0), [T < a(0), te[0,T ¢l (5.24)
For almost all t € [0,T — ¢, similar to (3.33)—(3.34) and (3.37)—(3.38), there is a process 6(t, -) such that:
gt(t,s,Y1(s), Z (t,5)) — g*(t,5,Y'(s), Z(t,5)) = [Zl(t, s) — Z(t,s)]6(t, s), (5.25)

and

Wt s) 2 W(s) - /0 o, r)dr, s € [0,T] (5.26)

24



is a Brownian motion on [0, 7] under the corresponding equivalent probability measure P;. The corre-
sponding expectation is denoted by EF*. Combining (5.22)—(5.23) and (5.25)—(5.26), we have

PHTE() — T E()

T
=yH(t) —P(t) + /T_ [9'(t,5, Y (5), Z(t,5)) — 4(t,5,Y (5), Z(t, 5)) ] ds
- / U D s) - 2 9)dW (s s), te 0,7 (5.27)
T—¢

Since y — §(t, s,y, ) is nondecreasing for any (¢, s,z) € A[0,T] x R, by (5.21), we have
gt s, Y'(s),2) < g(t,s,Y(s),2), (t,82) €0,T]x[T—¢T]xR. (5.28)

Taking conditional expectation E?’* [-]=EF[-|-], on the both sides of (5.27), by (5.3), (5.28) and (5.21),

we have

YT — T (t)

- B T _ B B
B[00 =00+ [ 0050, Z(05) = g6,V (9. Z(8,5)) s
- T
SEP[ 0 =00+ [ [0 s Y 020 gt Y (9. Zs)]as] (5.29)

<0, tel0,T—c¢]
Now, we consider the following BSVIEs:
T—e¢ T—¢
yt(t) = phTE(t) +/ gl (t,s,y*(s), 2 (t, 5))ds — / 2t 8)dW(s), te€[0,T —¢]; (5.30)
t t

T—e T—e¢
g(t) = T 5 (t) +/t g(t,s,7(s), 2(t, s))ds — /t Z(t,s)dW(s), te[0,T —¢]. (5.31)

By Theorem 3.5, the above equations (5.30), (5.31) admit unique solutions (y*(-), z1(-,-)), (%(-), 2(-,-)) €
L2(0,T — ) x BMO(A0,T — ¢]), respectively. By the Step 3 in the proof of Theorem 3.5, we have

yl(t) - Yl(t)v Zl(tv S) =7 (ta S)a (t, S) € A[Oa T— 6]; (532)
§t) = Y (1), 2(t,5) = Z(t,s), (t,5) € A[D,T —e]. (5.33)
Hence, by induction, we have
Y(t) <Y(t), as., ae. tcl0,T]. (5.34)
Similarly, we can prove that
Y(t) <Y%(t), as., ae. tc][0,T]. (5.35)
Thus, the inequality (5.5) holds.
Next, by what we have proved,
Yi(t) <Y3(t), as., tel0,T]. (5.36)

Let {tx}r>1 C [0,7T] be all the rational numbers in [0,7]. For any fixed tx, by (5.36), there is a Q) C Q
satisfying P(Q) = 0 such that:
Y7 (tx) < Ya(ty), w € O\, . (5.37)

Let Q = Ukt 1, then P(€2) = 0. By (5.37), we have

Yi(t) < Ya(t), t€ {tptrs1, we QL (5.38)
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By Theorem 3.9, there is a Q C Q satisfying P(Q) = 0 such Y;(-,w), i = 1,2 are continuous for any
w € Q\Q. For any fixed w € Q\(Q2UQ), by (5.38), we have

Yi(t,w) < Ya(t,w), t€{tr}rz1- (5.39)
Since Y;(-,w), ¢ = 1,2 are continuous on [0, 7] and {tx}x>1 C [0,T] is dense on [0, T], we have
Yi(t,w) < Yao(t,w), te€]0,T)]. (5.40)
Note that P(Q\(Q2UQ)) = 0, we have
Yi(t) < Ya(t), te€]0,T], as. (5.41)

This completes the proof. O]

6 Continuous-Time Equilibrium Dynamic Risk Measures

We have seen the so-called equilibrium recursive utility process in the introduction section, which serves
as a very important motivation of studying BSVIEs. In this section, we will look another closely related
application of BSVIEs.

Static risk measures have been studied by many researchers. Among many of them, we mention
Artzner—-Delbaen—Eber—Heath [5], Follmer—Schied [19], and the references cited therein. For discrete-
time dynamic risk measures, we mention Riedel [36] and Detlefsen—Scandolo [13], and the references

cited therein.

We now look at continuous-time dynamic risk measures. Any § € LE () represents the payoff of
certain European type contingent claim at the maturity time T. According to El Karoui—Peng—Quenez

[18], we introduce the following definition.

Definition 6.1. A map p: [0,7] x LE (2) — R is called a dynamic risk measure if the following are
satisfied:

(i) (Adaptiveness) For any £ € LE (Q), t = p(t;§) is F-adapted;
(ii) (Monotonicity) For any &, £ € LE () with £ > €, one has p(t; &) < p(t;€), for all t € [0, T7;
(iii) (Translation Invariant) For any £ € LE (2) and ¢ € R, p(t;£ +¢) = p(t; &) — c.
Further, p is said to be convex if the following holds:
(iv) (Convexity): & — p(t;&) is convex;
and p is said to be coherent if the following are satisfied:
(v) (Positive Homogeneity): For any & € LE (2) and A > 0, p(t; A§) = Ap(t;§);
(vi) (Subadditivity): For any &, & € LE (), p(t; € + €) < p(t;€) + p(t;€).

Each item in the above definition can be naturally explained. For example, (ii) means that between
two gains, the one dominantly larger one has a smaller risk; (vi) means that combining two investments

will have smaller risk. The following is a combination of the results from [18] and [24] (see also [7], [8],

[9])-
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Proposition 6.2. Let g : [0,7] x R — R be measurable such that z — g(t, z) is convex and grow at
most quadratically. Then for any £ € LE (€2), the following BSDE:

T T
Y(t) = —£+/t 9(8,2(8))d8—/t Z(s)dW (s), t€l0,T], (6.1)

admits a unique adapted solution (Y (), Z(-)) = (Y (-;€), Z(-;€)). Let p: [0,T] x LE (Q2) — R be defined
by the following:
p(t,§) =Y(5:€), (t,€) €[0,T] x L, ().

Then p is a dynamic convex risk measure.

One of the most interesting examples is the following.

T T
1
Y(t) = —§—|—/ E|Z(s)\2ds —/ Z(s)dW (s), te][0,T].
t t
The above admits a unique adapted solution (Y'(-), Z(+)), and

p(t, ) =Y () = vlnE{e_%

ft} 2 4(6), telo,T],

is called a dynamic entropic risk measure for &.

Now, if we have an Fr-measurable wealth flow process ¢ (-) instead of just a terminal payoff £, then
formally, the corresponding dynamic risk should be measured via the following parameterized BSDE:

Yt r) = —u(t) + / (5, Y (t,9), Z(t,))ds — / Z(t, )W (s)), (rt) € Al0,T],

and the current dynamic risk should be Y (¢;¢). But, similar to the introduction section, simply taking

r =t in the above leads to the following:

T T
Yt 6) = —ob(t) + /t (5, Y (1, 8), Z(t, 5))ds — /t Z(t,5)dW (s)), t € [0,T],

which is not a closed form equation for the pair (Y (¢,t), Z(t,s)) of processes. As we indicated in the
introduction, Y'(¢,r) above has some hidden time-inconsistency nature. One expects that the dynamic
risk measure should be time-consistent. Namely, the value of the risk today (for a process ¥ (+)) should
match the one that one expected yesterday. Therefore, it is natural to use BSVIEs to describe/measure

the dynamic risk of the process ¥(-). We now make this precise.

We call ¥(-) € L, (0,T) a position process (a name borrowed from [36]), and % (t) could represent the
total (nominal) value of certain portfolio process which might be a combination of certain (say, European
type) contingent claims (which are mature at time 7', thus they are usually only Fr-measurable), some
current cash flows (such as dividends to be received, premia to be paid), positions of stocks, mutual funds,
and bonds, and so on, at time the current time ¢. Thus, the position process v (-) is merely Fr-measurable

(not necessarily F-adapted). Now, mimicking Definition 6.1, we introduce the following.

Definition 6.3. A map p : [0,7] x LR (0,T) — Lg°(0,T) is called an equilibrium dynamic risk

measure if the following hold:

(i) (Past Independence) For any 1 (:),¢2(:) € LE (0,T), if

P1(s) = a(s), as., ae. st T,

for some t € [0,T), then
p(t;¢1() = p(t;42()),  ass.
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(ii) (Monotonicity) For any 11 (-),v2(-) € LE, (0,T), if
P1(s) < iha(s), as., ae. se[t,T],

for some t € [0,T), then
pls;n() = p(s;2(),  as., seltT].
(ili) (Translation Invariance) There exists a deterministic integrable function r(-) such that for any

¥(-) € Lg,(0,T), )
p(t; "/}() + C) = p(t; ¢()) - Cef" r(s)ds7 a.s., t € [O>T]'

Further, p is said to be convex if the following holds:

(iv) (Convexity) For any ¢1(-),%2(:) € LE, (0,T) and A € [0, 1],

p(t; Ap1 () + (1 = N)eha () < Ap(E91() + (1= A)p(t;92(+)),  as., t€[0,T].

And p is said to be coherent if the following are satisfied:

(v) (Positive Homogeneity) For any #(-) € L% (0,T) and A > 0,

p(tX() = Ap(t4()),  as., t€0,T].
(vi) (Subadditivity) For any 1 (-),%2(-) € LE (0,T),
p(t91() +92() < p(t41() + p(t902(),  as., ¢ €[0,T].

The word “equilibrium” indicates the time-consistency of the risk measure p which is some kind of
modification of the naive one. Similar situation has happened in the study of time-inconsistent optimal
control problems (see [49]). The meaning of each item is similar to the static case. In (iii), the function

r(+) is the riskless interest rate.

Let us now look at the following Type-I BSVIE:

Y(t)=—-v) + /tT g(t,s,Y(s), Z(t,s))ds — /tT Z(t,s)dW(s), te€]0,T]. (6.2)
We have the following result.
Proposition 6.4. Let the generator be given by
9(t, s,y,2) =r(s)y + go(t, s, 2); (¢, 8,y,2) € A0, T] x R x R,

satisfying (A2), where r(-) is a non-negative deterministic function. Then the following are true:

(i) The map ¥(-) — p(t;1(+)) is translation invariant.

(ii) Suppose z +— go(t, s, z) is convex, 5o is p(-) — p(t; ().

(iii) Suppose z — go(t, s, z) is positively homogeneous and sub-additive, so is ¥(-) — p(t;9(+)).

By Theorem 5.1, the proof of Proposition 6.4 is very similar to [47, Corollary 3.4, Proposition 3.5], we
omit them here. By Proposition 6.4, we can construct a large class of equilibrium dynamic risk measures
by choosing suitable generator g(-) of BSVIE (6.2). More precisely, we have the following result.

Theorem 6.5. Let the generator g(t,s,y,z) = r(s)y+go(t, s, 2); (¢, 8,y,2) € A xR x R satisfy (A2),
where r(-) is a non-negative deterministic function and z — go(t, s, z) is convex, then ¥ (-) — p(t;1(+))
is an equilibrium dynamic convex risk measure. If z — go(t,s, z) is positively homogeneous and sub-

additive, then 9 (-) — p(t;(-)) is an equilibrium dynamic coherent risk measure.
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From Proposition 6.4, the proof of the above result is obvious. According to the above results, we can

have some examples of equilibrium dynamic risk measures by the choices of go(t, s, z): If

go(t,s,z) = g(tas)‘ZL g(tv 5) =0,

then, it is sub-additive and positively homogeneous in z. The corresponding equilibrium dynamic risk

measure is coherent. If
go(t,s,2) = g(t,s)\/1+ 2|2, g(t,s) =0,

then, it is convex in z. The corresponding equilibrium dynamic risk measure is convex. If

go(t,s,2) = g(t,s)|z|*,  glt,s) =0,

then one has an entropy type equilibrium dynamic risk measure.

7 Concluding Remarks

Recursive utility process (or stochastic differential utility process) and dynamic risk measures for terminal
payoff can be described by the adapted solutions to proper BSDEs. For Fp-measurable position process
¥(+), instead of the terminal payoff £, one could also try to find its recursive utility process and/or dynamic
risk. One possibility is again to use BSDEs. However, one immediately finds that the resulting processes
(recursive utility or dynamic risk measure) are kind of time-inconsistent nature. Type-I BSVIEs turn
out to be a proper tool for describing them. This serves one of major motivations of studying BSVIEs.
Recall from [46, 48], we know that mathematical extension of BSDEs and optimal control of forward
stochastic Volterra integral equations are other two motivations. To meet the needs for the equilibrium
recursive utility processes and equilibrium dynamic risk measures, we have to allow the generator of the
BSVIE to have a quadratic growth in Z(t, s). We have developed a theory of Type-I1 QBSVIEs, including
the well-posedness, regularity and a comparison theorem, etc. in this paper. As a byproduct, we also
have obtained the well-posedness of Type-II QBSVIEs. Then a theory of equilibrium recursive utility

and equilibrium dynamic risk measures are successfully established with the results of Type-I QBSVIEs.

Acknowledgement. The authors would like to thank two anonymous referees for their suggestive
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8 Appendix.

In this appendix, we will sketch an argument supporting the BSVIE model for the equilibrium recursive
utility process/equilibrium dynamic risk measure of a position process 9 (-). The idea is adopted from
[49]. Let ¢ (-) be a continuous Fp-measurable process. Let IT = {t;, | 0 < k < N} be a partition of [0, 7]

with 0 = tg < t; < ... <ty_1 <ty = T. The mesh size of II is denoted by |[II|| £ [Jmax [tiv1 — til-
XV
Let

N
Pr(t) = Z Ukl ) (1),
k=1

with
Y = Y(ty) € L%, (4G R), k=1,2,---,N.

We assume that

lim sup E[pM(t) —(t)|> = 0.
Il —0 te[0,T]

We first try to specify the time-consistent recursive utility process for 1™ (-), making use of BSDEs. Then

let |TI]] — 0 to get our BSVIE time-consistent recursive utility process model for ) (-).

For {(t) | t € (ty—1,tn]} = {W¥n}, its recursive utility at ¢ € [ty_1,tn] is given by YV (¢), where
(YN(.), ZN (")) is the adapted solution to the following BSDE:

YN () = gy + /t (s, YN (5), 25 (s))ds — /t ZN($)dW(s), € [tn1tn]. (8.1)

Here, g : [0,7] x R x R — R is an aggregator. Next, for {o''(¢) | t € (ty_2,tn]}, the recursive utility at
t € (tny—2,tn—1] is denoted by YV ~1(t) and we should have

tN—1

T
YNTHt) = s +/ g(s,YN(S),ZN_l(S))dS+/ 9(s, YN (s), 2V (s))ds
- : (8.2)

—/T ZN=L(s)dW (s), t€ (tn_a,tn_1]-

t

Note that due to the time-consistent requirement, we have to use the already determined Y% (-) in the
drift term over [ty—1,7T]. On the other hand, since ¢y _; is still merely Fr-measurable, (8.2) has to be
solved in [t, T] although t € (ty_2,ty_1]. Hence, in the martingale term, Z~~1(-) has to be free to choose
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over the entire [ty_», 7] and the already determined Z™ (-) cannot be forced to use there (on [tx_1,T)).
Whereas, in the drift term over [ty _1,T], it seems to be fine to either use already determined ZV(-) or
to freely choose ZV~1(.), since the time-inconsistent requirement is not required for Z part. However,
we use ZNV~1(-) in the drift, which will enable us to avoid a technical difficulty for BSVIEs later.

Similarly, the recursive utility on (¢x_35,¢n_2] should be
tN—1

T
YNZ2(t) = -z +/ 9(s, YN (s), Z¥7%(s))ds +/ 9(s, YN H(s), 2V 72 (s))ds

tn—1 tn—2

tn_2 T
+/ g(s,YNfQ(s),ZNfz(s))ds—/ ZN=2(s)dW (s), t€ (ty_3,tN_2).

t

This procedure can be continued inductively. In general, we have
N ti . ti
YE@) =k + Y / g(s,Y"(s), Z"(s))ds +/ 9(s,Y*(s), Z"(s))ds
i=k+1 7 ti-1 ¢
T
— / Zk(s)dW(s), te (tk—latk]-
t
Let us denote
N N
Yn(t) = Z Yk(t)]'(tk—htk](t)’ Zn(t, S) = Z Zk(s)l(tka,tk](t)'
k=1 k=1
Then
T T
YI(t) = ¢T(1) +/ g(s,Y(s), 21 (t, 5))ds — / ZM(t,8)dW (s), te€0,T).
t t

Let ||II]| — 0, by the stability of adapted solutions to BSVIEs ([48]), we obtain

T T
Y(t) = (1) —i—/t g(s,Y(s), Z(t,s))ds —/t Z(t,s)dW(s), te][0,T], (8.3)

which is the BSVIE that we expected. Moreover, it is found that if Y(-) is a utility process for (),
the current utility Y (¢) depends on the (realistic) future utilities Y'(r); ¢ < r < T, which is the main
character of recursive utility process. Finally, we note that if we restrict ZN¥N=1(-) on [ty_1,T] in (8.2),
etc., then we will end up with the following BSVIE:

T T
YO =00+ [ 96.¥(0). Z0s5)ds - [ 2(tsaW(s), te o)
¢ t
which is technically difficult since in general, s — Z(s, s) is not easy to define.

Finally, we would like to point out a fact about BSVIEs and BSDEs. Let us first look at the following
general BSDE:

Y(t)=¢ —&—/t 9(s,Y(s), Z(s))ds — /t Z(s)dW (s), t€0,T]. (8.4)

Under standard conditions, for any £ in a proper space, the above BSDE admits a unique solution
Y(),Z()=XY(;T,8),Z(-;T,£)). By the uniqueness of adapted solutions of BSDEs, we have

Y($T,8) =Y (7Y (s T.6), ZT,§) = Z(t7Y(1;T,€),  Vo<t<7<T

This can be referred to as a (backward) semi-group property of BSDEs ([34]). However, there is no way
to talk about the (backward) semi-group property for BSVIEs. To illustrate this point, let us look at the
following simple BSVIE:

Y(t) = tW/(T) — / U2 dW(s),  te o)



We can directly check that the adapted solution is given by
Y(t)=tW(t), Z(t,s)=t, (t,s) € A0, T7.

We see that the above Y (+) really could not be related to any (backward) semi-group property. The point

that we want to make is that time-consistency and semi-group property are irrelevant.
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