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1. INTRODUCTION
The goal of this paper is to relate linear models on central simple algebras to local root numbers.

1.1. Main results. Let E/F be a quadratic extension of local nonarchimedean fields of charac-
teristic zero and n : F*/NE* — {41} the quadratic character associated to this extension. We
fix a nontrivial additive character ¢ : F' — C*. Let A be a central simple algebra (CSA) over F of
dimension 4n? with a fixed embedding E — A and let B be the centralizer of F in A. Then B is a
CSA over E of dimension n?. Let G = A* and H = B>, both viewed as algebraic groups over F.

Let m be an irreducible admissible representation of G. We say that 7 is H-distinguished if
Hompg (m, C) # 0.

Let G' = GLy,(F) and 7" be the Jacquet-Langlands transfer of = to G'. Let H' = GL,(F) x
GL,(F), embedded in G’ as the centralizer of diag[l,—1,---,1,—1]. We say that «’ is H'-
distinguished if

Hompg (7', C) # 0.
These Hom spaces are all at most one dimensional [ , , BM]. Let e(n") = e(n’,4) be
the local root number. It equals &1 and is independent of the choice of 1 as 7’ is self-dual and

symplectic.
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Theorem 1.1. Let the notation be as above. If w is H-distinguished then the following two condi-
tions hold.

(1) The Langlands parameter of ©' takes value in Sp(2n,C). If @ is generic, this is equivalent
to ' being H'-distinguished.
(2) e()e(r" @ n)n(—=1)" = (=1)". Here r is the integer so that A = M,(C) with C' a central
division algebra, or in other words, r is the split rank of G.
Conversely, if ' satisfies conditions (1) and (2) above, and assume that either (a) 7' is supercus-
pidal or (b) 7 is supercuspidal and G = GL, (D) where D is a quaternion algebra over F (split or
not), then 7 is H-distinguished.

This is the combination of Theorem 4.1, Theorem 7.3 and Proposition 7.4. When n = 1, this
recovers the theorem of Saito and Tunnell. In general it confirms a conjecture of Prasad and Takloo-
Bighash [ , Conjecture 1] in many cases. The conjecture of Prasad and Takloo-Bighash
assumes further that 7’ is generic, but it is not necessary according to the result of Suzuki [Suz].
We will extend the converse implication to the case m being a discrete series representation in a
subsequent paper, at least when G = GL,, (D). It requires some techniques of a different nature.
We however should note that the converse implication, as stated in the theorem, is not expected
to hold if 7 is not a discrete series representation.

The motivation of this paper comes from the conjecture of Sakellaridis and Venkatesh on the
canonical factorization of linear periods. Before we attack the global factorization problem, there
are many local issues that need to be addressed. This paper deals with the first main local issue:
characterizing the existence of linear models using local root numbers.

Our argument is based on relative trace formulae proposed by Guo | |. Tt exploits a novel
idea of making use an involution on the space of test functions which we would like to call it
the involution method. We will outline the argument below. There is a different approach to
this type of problems, first used by Waldspurger to prove the local Gross—Prasad conjecture for
orthogonal groups. It makes use of the (usual) local trace formula technique and the theory of
twisted endoscopy. This seems applicable to our problem at hand, but our approach is much
simpler and conceptual. For one implication, one can also prove it using Prasad’s global-to-local

argument. See Remark 4.2. It however does not seem to give any results in the other direction.

Remark 1.2. In a previous version of this paper that has been circulated for a while, the theorem is
proved under the working hypothesis of the full fundamental lemma and Howe’s finiteness conjecture
for symmetric spaces. It turns out that in the present situation, both can be bypassed. So now
the result is unconditional. Also certain germ expansions of the orbital integrals and spherical
characters were developed and played a definitive role in the argument in that version. We avoids

them in the present version and hence the argument is much simpler.

1.2. Outline of the argument. We very briefly outline the argument using the involution method.

We will assume 7 and 7’ are supercuspidal representations in this subsection for simplicity.
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Assume that 7 is H-distinguished and we fix a nonzero element | € Homg (7w, C). Then one

attaches to 7 a distribution on G by
To(f) = )_Uw(Ho)i(v), feCZ(G).

This distribution is not identically zero. In particular we can pick f to be an essential matrix
coefficient of 7 so that J(f) # 0. Here and below by an essential matrix coefficient we mean that
f becomes a matrix coefficient of 7 after integration along the center of G.

It is relatively easy to prove that 7’ is H’-distinguished. Lapid and Mao [ | defined the
following H'-invariant linear form on 7/. Let P’ be the usual mirabolic subgroup of G’ and N’ the
upper triangular unipotent subgroup of G’. Let W = W(x’, 1)) be the Whittaker model of #’. Then
for W e W(x', 1), put

(W) = W (h)dh.
N'NH\P'NnH'

Lapid and Mao showed that this integral is absolutely convergent and defines a nonzero H’-invariant
linear form on #’. It is a curious fact that if 7’ is H'-distinguished then so is 7’ ® n (this in fact
holds for all irreducible generic representations). So we also put
L,(W) = W (h)n(det h)dh.
N'NH'\P'NH'
We define a distribution on G’ by

La(f) = Y U (fYW)L,(W), [ e C2(E),
w

where W runs over an orthonormal basis of W (7', ).

Guo proposed a relative trace formula in | |. There is a notion of smooth matching of
orbits and the test functions on G and on G’. We are going to recall it in the main context of the
paper. It follows from the work of C. Zhang | | that the smooth transfer of functions exists.
Strictly speaking his result only covers the cases when H = GL,(E). In general there is a little
bit of extra work on the matching of orbits. Once we have this matching of orbits, the argument
of C. Zhang goes through without any difficulty and can be copied vabatim. Now we assume the
full fundamental lemma of Guo for the moment to streamline the argument. In the actual proof
of Theorem 1.1, we will use a global version of the argument below to bypass the full fundamental
lemma. Assuming the full fundamental lemma, we can show that there is a nonzero constant ()

so that

(1'1) Iﬁ’(f/) - H(?T)Jﬂ(f%
whenever f and f’ are smooth transfer of each other.

Here is the most important observation that is the starting point of this series of work. We refer
to this as the involution method. There is an involution f’+— " on C°(G’) given by

f"(g9) = f'(wgw), w is the longest Weyl group element in G’.
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On the one hand, Lapid and Mao | ] have shown that
I(7'(W)) = e(x)U(W), W eW(n' ).

It then follows that

Lo (f") = e(a)e(n" @ n)n(=1)"In ().
On the other hand, the property of smooth matching of test functions implies that if f’ and f
match and f has only elliptic orbital integrals, then f™ and (—1)"f also match. We will show

that if we take f to be an essential matrix coefficient of 7 then f has only elliptic orbital integrals.

Therefore we conclude that

e(r")e(n' @ n)n(=1)"r(m) Jx(f) = e(x)e(x" @ n)n(=1)" Lo (f') = L (f*) = (=1)"K(m) J=(f),

for all matrix coefficient f. Since we can take some essential matrix coefficient f so that J.(f) # 0
and k() # 0. We conclude that e(7’)e(n’ @ n)n(—1)" = (—1)". This proves one implication of the
theorem.

The converse implication is more involved. Assume that 7’ is H'-distinguished. We first define
two “minimal unipotent orbital integrals” on G’, which we denote by O((4,n, f'). We show by a

lengthy computation that if f’ is an essential matrix coefficient of 7/, then

O(CJM 7, f,) = CI?T/(f/)v

where C' is some nonzero constant. In particular there is an essential matrix coefficient f’ such that

O(¢4,m, f') # 0. For this choice of f/, by the result of Lapid and Mao again, we have

0(47777, f,) :O(C+7773f/w) = ( ) ( ®77) ( )nO(C+a77¢f)
and thus

O(Ce,m, f1) + e(w)e(n" @ m)n(=1)"O(¢-,n, f') # 0.
This, together with the fact that e(n’)e(n’ @ n)n(—1)" = (—1)", imply that

Oy, f1) + (=1)"O(C—ym, ') # 0.

Now using the involution method and the condition e(7')e(n’ ® n)n(—1)" = (—1)" again, we can
show that any regular orbital integral of f’ vanishes if this orbit does not match one on G. Thus
there is a function f € CZ°(G) that matches f’. By direct computation we have (up to some

nonzero constant we omit)

/H F()dh = O(Cor, 1) + (—1)7O(C_m, f) £0.

Using global arguments we can show that there is an H-distinguished irreducible representation 7
of G such that either I/(f’) # 0 or Ing,(f") # 0, 7" being the Jacquet-Langlands transfer of 7
to G’. But since f’ is an essential matrix coefficient of 7/, we see that 7 is isomorphic to either 7

or 7 ®n. But as 7 is H-distinguished, so is 7 ® n. We have thus shown that 7 is H-distinguished
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because 7 is trivial on H. Note that if we had the full fundamental lemma, we should have been
able to conclude that 7 is isomorphic to 7.

In summary, the main theorem relates the epsilon factor and some geometric data. In the
argument, we are making use of the involution both on the spectral and geometric side of the
relative trace formula. One applies to the spherical characters (spectral) and pulls out the epsilon
factor, the other applies to smooth transfer (geometric) and pulls out (—1)". The interplay between

geometric and spectral information is always the theme of the trace formula.

1.3. Organization of the paper. The paper is divided into two parts, Section 2 to 4 is the first
and Section 5 to 7 is the second. The first part proves one implication of theorem (computing local
root number of distinguished representations), while the second part proves the other implication.
Each part contains three sections and are ordered as “orbital integrals”, “spherical characters”,

“proof of the main results”. The precise content of each section is reflected by the table of contents.

1.4. Acknowledgement. I thank Wei Zhang for bringing the problem with linear periods to my
attention and Réphael Beuzart-Plessis, Pierre-Henri Chaudouard, Qirui Li, and Miyu Suzuki for
many helpful discussions. I thank Ye Tian and Shouwu Zhang for their constant support. I am
also grateful to the anonymous referee whose comments improve and clarify several arguments in
the paper. This work is partially supported by the NSF grant DMS #1901862.

2. ORBITAL INTEGRALS AND SMOOTH TRANSFER

In this section, we assume that F/F is a quadratic field extension of either local or global fields

of characteristic zero.
2.1. The split side. Let us define a permutation matrix o € G’ by
1 2 - n n+l n+2 -+ 2n
J:<1 3 . -1 2 4 .. 2n)'
Recall that H' is the fixed point of the involution

0(g) = Addiag[l, —1,---,1,—1],

on G'. Then 0~ 'H'c embeds in G’ as n x n diagonal blocks. Let
S ={g7'0(9) lgeG}cd

This is a closed subvariety of G’ over F. Elements of S’ are all of the form

A B
0(0 D>01, A =1,+BC, D?=1,+CB, AB=BD, DC=CA.

The group H' x H' acts on G’ by left and right multiplication and the group H’ acts on S’ by
conjugation. We say that an element in S” (or the orbit it represents) is f-semisimple or f-regular

if it is so (in the usual sense) in G'. We say that an element g € G’ (or the orbit it represents)
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is f-semisimple or #-regular if its image in S’ is so. We say an element in S’ is f-elliptic if it is
f-regular and its stabilizer in H' is an elliptic torus and an element in G’ f-elliptic if its image in
S’ is so.

In | ], the following results are proved.
Lemma 2.1. We have the following assertions.
A B
(1) An element s = o (C’ D) ot € 8" is O-regular if and only if A is reqular in M,(F) in

the usual sense and det(A? —1,) # 0. It is O-elliptic if and only if A is elliptic in M, (F)
in the usual sense.
A; B;
(2) Let s; = o C’Z DZ o7l €8, i=1,2, be O-reqular. Then s; and sy are in the same
i Di
H'-orbit if and only if A1 and Ag are in conjugate in My (F).

(3) Every 0-regular orbit in G' contains an element of the form

1, a 1
o o,
1TL 1TL

and a is reqular in GL,(F') in the usual sense and det(a—1,) # 0. Moreover it is 6-elliptic

if and only if a is reqular and elliptic in GLy,(F') in the usual sense.

Let f/ € C°(G') and g € G’ be a f-regular element. By the determinant function on H', we
mean det h = det b’ det h” where h = (b, 1) € H', 1/, h" € GL,(F). If F is a local field, we define
the orbital integral

o9 1) = | ' (ghs)n(cet ha)dhydh,
(H'x H")\H'x H'
If F' is a global field, we define the global orbital integral by the same formula, integrating over the
adelic points instead. Here are below in this paper, for any group G which acts on some set X we

denote by G, the stabilizer of x in G,. To see that 7 is trivial on (H x H), we may assume that

1
g=o0 <1n 1a> o~ ! where a € GL,(F) is regular in the usual sense. Then (H x H), consists of
n n

hl
elements of the form (h1, he) where hi' = hy = o < h’) o=t and W € GL,(F) commutes with

a. Then n(det hy) = n(det )2 = 1. As the orbit is closed, this integral is absolutely convergent.
The orbital integral is thus well-defined.
Let us define a transfer factor for a f-regular g € G’ by

) = n(det B), g*em»=a(g §>a*.

Since g is §-regular we have A%2 — 1,, = BC is nonsingular. Thus the definition make sense. Let w

be the longest Weyl group element in G’, i.e. the matrix with antidiagonal elements all ones. Note
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that wo = ocw. A little computation gives
Q(wgw)
Q(g)

For later use we also need to consider the “Lie algebra” of H'\G'. Let

X\ _
s’_{a< >01’X,Y6Mn(F)}.
Y

The group H' acts on s’ by conjugation. An element in o v o1 is f-regular (resp. f-elliptic)

(2.1) = n(det(A4% - 1,)).

if XY is invertible and is regular (resp. elliptic) in GL,(F') in the usual sense. Let f' € C°(s').
Then we define the orbital integral

Oty = [ S0 mnaet .

if v is f-regular.
Let f/ € C>°(G’). We define f/ € C°(S') as
Pla~o9) = | f(hg)dn, g€
We fix a H'-invariant neighbourhood «w’ of 0 € s’ so that the Calyey transform
cio’ =8, e (149711 -¢)
is defined and is a homeomorphism, and denote by Q' be its image in G'. We define f; € C2°(s') as
, Fe(9), €eu;

71(6) = ,

0, {Ew.

Then one checks that

O, f1) =O(g,n, ['), vew, ) =g "0(g).

Indeed one may take g =1 + 7.

2.2. Nonsplit side: orbits. Let us recall the setting. Let A be a CSA over F of dimension 4n?
with a fixed embedding £ — A. Let B be the centralizer of E in A, which itself is a CSA of
dimension n? over E. We fix a 7 € F*\F*2 so that E = F[,/7]. Then conjugating by /7 is an
involution on A whose set of fixed points is B. We denote this involution by 6. We denote by v4
and vp the reduced norm on A and B respectively.

Put G = A*, H = B*, both viewed as algebraic groups over F', and
S=H\G={g'(9) |geG}, p:G—=5, gr g '0g),

as usual. We also let s = A?=~1 the (—1)-eigenspace of 6, which is isomorphic to the tangent space
of § at 1.



The group H acts on S and s by conjugation. We say that an element s € S is #-semisimple or
f-regular if it is semisimple or regular semisimple in G in the usual sense. We say that an element
X € s is f-semisimple if X2 € B is semisimple. We say that X € s is f-regular if X? is invertible
and regular in the usual sense. Assume that X € s is invertible in A. Then we claim that the
reduced characteristic polynomial of X2 have coefficients in F, i.e. vg(A — X?) € F[\]. We note
that X and elements in F' commute and X+/7 = —y/7X. Thus conjugation by X is an extension
of the Galois conjugate of E/F. Therefore

v(A — X?) =vp(A — X 1X2X) = vp(\ — X?2).

Thus vp(A — X?2) € F[\]. We say an element X € s is f-elliptic if X? is regular semisimple in B
(in the usual sense) and its reduced characteristic polynomial is irreducible over F'.

Let us study the #-regular orbits in s under the action of H.

Lemma 2.2. Assume that X1, X5 € s are both 0-reqular. Then X1 and X9 are conjugate by an

element in H if and only if X? and X3 are conjugate by an element in H.

Proof. The “only if” direction is clear. Let us show the “if” direction. By replacing X; by its
H-conjugate, we may assume that we in fact have X? = X2 € B.

We note that the case where n = 1 is clear and can be checked by hand directly. Even though we
have assume that F is a field, when n = 1, the analogue of this lemma even holds when E = F' x F.
We will call this the quaternion algebra case. We are going to reduce the general case to this one.

Let us first assume that X; hence Xy are both #-elliptic. The argument in this paragraph is
communicated to me by Qirui Li, and it is implicit in his thesis. Put L = F[\]/(vg(A — X3?)).
This is a degree n field extension of F. We embed L in A by sending A to X2. Let D be the
centralizer of L in A. Then D is a quaternion algebra over L. Since §(L) = L, we have §(D) = D.
We let D~ = sND. Then X{,X2 € D~. We note that L N EF = F as elements in F but not
in F' do not commute with X7 while elements in L commute with X;. But £ C D and hence
K =L®FE = E[\/(vg(A — X?)) is a quadratic etale algebra over L and D N B = K. By the
quaternion algebra case, we conclude that there is an h € K so that X; = hXyh~!. This proves
the lemma when X; and Xy are f-elliptic.

In general, when X; and X5 are both f-regular, let us reduce to the f-elliptic case. First we note
that

va(A— X1) = vg(\* — X?).
In fact, as reduced characteristic polynomials are invariant under base field extensions we may
extend the base field to the algebraic closure of F' and the equality is obvious. We also note that
if f(\) € F[)] is irreducible then f(\?) is either irreducible or decomposes as f(\?) = p(A\)p(—\)
where p € F[)] is irreducible and p(\) # p(—\).
The reduced characteristic polynomial (as an element of B) of X? decomposes

vp(A = X7) = p1(N) -+ BN @ () - G(N),
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where p1,---pg and qi,--- g are all irreducible polynomials in F[A], and p;(\) = p;(A\2) € F[}],
i = 1,---,a, are irreducible while g;(A\?) = ¢j(A\)gj(=)), j = 1,---b. Therefore the reduced

characteristic polynomial of X; (as an element of A) factors as

va(A = X1) =p1(A) - pa(N) @1 (M) @1 (=A) -+ - gp(A)gp (= A).

As X? = X2, we conclude that the reduced characteristic polynomial of X» (as an element of A) is
the same as that of Xj.

Let us put V = D" as a right D-module and then A is identified with End(V') where the action
of elements in A is from the left. Let us also put W; = Ker p;(X1) = Kerp;(X?),i=1,--- ,a and
U; = Ker ¢;(X1)qj(—X1) = Ker ¢;(X?), j =1,--- ,b. Then

V=&  -W,eU1 & ®U,.

By definition, these W;’s and U;’s are X; invariant. Since X7 = X3, they are also X, invariant.

Therefore we have
X1, X0 € EndD(Wl) X - X EndD(Wa) X EHdD(Ul) X - X EndD(Ub).

As A contains E, and X? = X22 commute with E, each of these endomorphism spaces contains
E. Moreover X1 and X, anti-commutes with E, i.e. \/7X; = —X;v/—7, i = 1,2, in each of these
endomorphism spaces. It is also clear from the construction that X; and Xy are f-elliptic in each
of these endomorphism spaces, as p;’s and ¢;’s are irreducible in F'[\]. Therefore we are reduced to
the f-elliptic case. O

We now turn to the case of the symmetric space S. We may write an element g € Gasg = g*t+g~
where gt € B and g~ € 5. Then g € S if and only if (¢7)2 —1 = (¢g7)? and gT¢g~ = g~ g*. We say
that s € S is #-semisimple or f-regular if it is so in G in the usual sense. One can prove, in the same
way as | ] that s = sT + s~ € S is f-regular if and only if vg((s*)? —1) # 0 and s is regular
in B in the usual sense. In particular we have s~ is invertible (in A). By the same argument as in
the case of 5, we see that if s = s™ + s~ is f-regular, then the reduced characteristic polynomial of
st is in F[\]. We say that s = s™ 4 s~ is #-elliptic if it is f-regular and the reduced characteristic
polynomial of sT is irreducible over F'. We say that an element in G is §-semisimple, or f-regular,
or f-elliptic if its image in S is so. One also proves, by the same argument as | | that every
f-regular orbit in G' contains an element of the form g = 1 4+ a where a € s and vg(a? — 1) # 0.

Moreover g is f-elliptic if and only if a is f-elliptic.

Lemma 2.3. Suppose that s; = s;L +s; €8,1=1,2, are O-regular. Then s1 and sz are in the

same H-orbit if and only if sf and 53' are conjugate by H in B.
Proof. Only the “if” direction needs proof. Let us put

a;=s;(1+sH)tes i=12
9



By assumption sj, 1 = 1,2, are regular in B. As a? = (s;F — 1)(3;-F + 1)~ i = 1,2, we see that
a1 and ag are f-regular elements in s. Then that sf and S;_ are in the same H-orbit implies that
so are of and o. By lemma 2.2, this is equivalent to that a; and as are in the same H-orbit. So

choose h € H such that h™taih = az. Then h=*a?h = . Therefore
(h'sth = 1)(h~"sth+1)7" = (sf —1)(s +1)7.
This implies that h_lsfh = 82+. Combing this with h~la1h = o, i.e.
hlsTh(1+h tsth) ™ = s5 (14 s5)7Y,
we get h~1s] h = s, and hence h~ls1h = so. O

2.3. Nonsplit side: orbital integrals. Assume that F is a local field. Let f € C°(G) and g € G

be f-semisimple. Define the orbital integral

09, f) = / / F(highs)dhydhs.
(HxH)g\HxH

This integral is absolutely convergent. If F' is a global field, then we define the orbital integral by
the same formula, integrating over the adelic points of H x H instead.

For the rest of this subsection, let us assume that F' is local. We prove a formula which is usually
referred to as “parabolic descent” of orbital integrals.

Write G = GL,(C) where C is a central division algebra. If dim C is even, then there is an
embedding E — C and we let D be the centralizer of E in C. We have H is isomorphic to GL, (D).
Let r = 71 + --- 4+ 75 be a partition of r and P = MgNg, Pe = My Ng the (standard upper
triangular) parabolic subgroups of G and H corresponding to this partition of r respectively. We
also put C~ be the subspace of C' consisting of element ¢ such that ce = —ec for all e € E. If dim C
is odd, then r is even Cr = C ® E is again a central division algebra and H ~ G L, 5(CE). Let
r =r1+---+7rs be a partition of r by even r;’s . and P = MgNg, Pqg = My Ny the (standard
upper triangular) parabolic subgroups of G and H corresponding to this partition of r respectively,
ie. Mg~ GL;, (C) x -+ GL. (C), Mg ~ GL,, /2(Cg) X - -+ x GL,_/2(CE).

Let ¢ € Mg be f-regular (in G). Note that this implies that it is also f-regular for the pair
(Mg, Mpg). Let f € C°(G). By definition

O(g,f) = / f(hlghQ)dhlth.
(HxH)g\HxH

Choose an open compact subgroup K of H in good position with Py. Put

frlg) = /K F(gF)dk,  FP(g) = bpu(9)t [ Faclgn)dn.

Ng
Let hy = kyminq and hy = nomseks be the Iwasawa decompositions of A1 and heo respectively, where

mi,me € My, ni,ne € Ny and k1, ko € K. Then, up to some nonzero constant depending only
10



on the choice of the measures, we have
(2.2) O(g, f) = / / fK(mlnlgngmg)(Sp(mlmgl)dnldngdmldmg.
(MHXMH) \MHXMH NHXNH
Lemma 2.4. The map
Ng x Ng — Ng, (n1,ng) — g~ 'nigny
1s bijective and submersive everywhere.
Proof. Let ng and ng be the Lie algebra of Ny and Ng respectively. The tangent map at the point
(n1,n2) is given by
Agl(nymp) : e X g = 0, (§1,&2) = g7 méigna + g nignaés.

As ny and ng are both unipotent, the determinant of dd, is independent of n; and ng, and equals

dog = d5g|(171) which we now compute. First note that if m, me € My, then we have
|det Sy, gms| = Spy; (M1ma) " |det dé,|.

As g is f-regular, we may assume that g = 1+ a where a € s Nng. Then direct computation shows

that the determinant of dd, equals the multiplication of the determinant of
ng —»ng, X—(1- CL2)71X,

and the determinant of
ng —sNng, X +— Xa—aX.

As g is f-regular, both determinant are nonzero. This proves that  is submersive at any 6-regular

element g. 0

Let us put
Alg) = dps(g) ™ |det ds, |,
where d, is as in the above lemma. As dp, (m) = dp, (m)% if m € Mg, it follows from (the proof of)
the above lemma that A(g) is bi-My-invariant. Then by making a change of variable u = g~ 'nigns
in the integral (2.2), we see that

/ A(9)6p (9)2 frc (magums)dp, (myimy V) dudms dmy
MHXMH g\ MHXMH) NG

A(g)5PG (mlgm2>%fK(mlngU)dUdmlde
(MHXMH)Q\(MHXMH) NH

—~~
ro
w

~

Il

A(g)/ f(PG)(mlng)dmldmg.
(MpxMp)g\(MpxMp)

This last integral is an orbital integral on Mg of the function fFe).
To end this subsection, let us explain that if g is f-regular but not -elliptic in G, then there is
a proper parabolic subgroup Pg of the above form so that g € Mg. In fact let s = g710(g) and

s =sT 4+ 5. Then st is regular but not elliptic in B. If dim C is even (resp. odd), we can find a
11



nontrivial partition of r =7y 4+ --- + 7y (resp. § = 5 +---+ %), and the parabolic subgroups Pg
and Py so that s™ € My. But s* is regular and s~ commutes with s we see that s~ € s N ng.
Therefore s € Mg and g € Mg.

Lemma 2.5. Assume that f € CX(QG) satisfies that fP) =0 for all parabolic subgroups of G.
Then all non-0-elliptic orbital integrals of f vanish. In particular all non-0-elliptic orbital integrals

of matrixz coefficients of a supercuspidal representation vanish.

Proof. This follows from the parabolic descent of the orbital integrals. O

We end this subsection by defining the orbital integrals on s. Let f € C2°(s) and a € s that is
f-regular. Then we put

O(a, f) _/ f(h~tah)dh.
H
Let f € C°(G). We define f € C°(S9) as

flaoto) = [ fhg)an. g
We fix a H-invariant neighbourhood w of 0 € s so that the Calyey transform
ctw— S, (141 -9)
is defined and is a homeomorphism, and denote by  be its image in G. For any f € C°(G) we
define f; € C(s) as
fe(9), Eew

fi(§) = 0. cdw

Then one checks that
O(W:nvfh) = O(Qﬂ%f)a v Ew, C(’}’) :g—lg(g)'
Indeed one may take g =1+ 7.

2.4. Smooth matching. We first consider the smooth matching of orbits.
Let g € G and ¢’ € G’ be #-regular elements. Let s = g7 '0(g) = s + s~ and s’ = ¢~ 10(¢') =

A B
(C Ik We say that g and ¢’ match if the reduced characteristic polynomial of st equals the

characteristic polynomial of A.

Lemma 2.6. The matching of orbits defines an injective map from the 0-reqular H x H-orbits in
G to the O-reqular H' x H'-orbits in G'.

Proof. This follows from Lemma 2.1 and Lemma 2.3. g

We next study the matching of #-elliptic orbits. For this we just need the case F' being a local
field. The next lemma shows that the #-elliptic orbits in G’ coming from G consist of “half” of the

all #-elliptic orbits in G’.
12



Lemma 2.7. Assume that F is a local field. Let r is the split rank of G. The image of the 6-

a v
elliptic elements of G in G' consists of elements g € G’ such that ¢10(g') = ;g with o
c

being elliptic and n(det(a? — 1)) = (—1)".

Proof. Let us begin with the following claim.

Claim. Let f(A\) € F[\] be an irreducible polynomial of degree n, and n((—1)"f(0)) = (—1)"
where 7 is the split rank of G. Then there is a f-elliptic X € s so that vg(A — X?) = f()).
Conversely, if X € s is f-elliptic, then n(vp(X?)) = (=1)".

Assuming this claim for the moment, the lemma follows directly. Indeed if ¢ = 14+ a where a € s

and a? is elliptic in B. We have s = g7 160(g), s = sT 4+ s~. A simple computation gives
st=(010+d®)(1-a®', s =-2a(1-a*)"".

Then the reduced characteristic polynomial of sT is irreducible since that of a? is. If ¢ matches

some ¢’ € G’, then st and @' has the same characteristic polynomial. In particular @’ is elliptic in
GL,(F) and

n(det(a” — 1)) = n(vp((s7)* = 1)) = n((s7)%) = n(a®) = (-1)".

The last equality follows from the claim. Conversely, assume that a’ is elliptic without eigenvalue
+1 and n(det(a’?—1)) = (—1)". Consider (¢’ —1)(a’+1)~! which is again elliptic. Then its reduced
characteristic polynomial f(\) has the property of being irreducible and 7n((—1)"f(0)) = (—1)". By
the claim there is an a € s so that vg(A — a?) = f()\). Let g = 1 + a then we check directly that g
matches ¢'.

We now prove the claim. Let us write A = M, (C) where C' is a central division algebra over F
whose invariant is % with rm = 2n and (m, h) = 1. Note that r being odd will force h to be odd.

Let us prove the the first assertion. The existence of X when A is a quaternion algebra is easy
to prove. We are going to reduce the general case to this one. Assume first that f is irreducible
in E[A]. Let L = F[A]/(f(A\)) and K = L ® E. Then K is a field of degree n over E. Therefore
there is an embedding K — B. We let u be the image of A, then vg(A —u) = f(\). Now assume
that f()) is not irreducible over E. Then f()\) = p(A\)p()\) where p()) is an irreducible polynomial
in E[A]. This implies that n = deg f is even and f(0) is a norm, which in turn implies that r is
even. In this case A is isomorphic to Ms(C’) where C' is a CSA over F and B is isomorphic to
C' ® E. Therefore there is an embedding K = L ® E — B. We let u be the image of A, then
v(A —u) = f(A).

We will prove that for such a u € B we can find an X € s so that u = X2. Let D be the centralizer
of L in A, then K = L ® E is a subfield of D. By the local class field theory, inv(D) = hr/2.
In other words, D is a quaternion division algebra if and only if 7 is odd. By the local class field
theory, we have that ng,p(vp(uv)) = 1k (u) = (=1)". Then the existence of X is reduced to the

case of quaternion algebras, which is clear.
13



We now prove the second assertion. We just need to reverse the above argument. Suppose that
X € 5 is f-elliptic. Then as above, consider the reduced characteristic polynomial f(\) of X2 € B,
which is irreducible over E. Then define L = F[)\]/(f(\)), K = L ® E and D just as above. Then
X? € K C D, and by the local class field theory we have ng,/p(vp(X?)) = nx,(X?) = (—1)". This
finishes the proof of the claim and thus the proof of the lemma. O

Lemma 2.8. Suppose that g € G and g € G’ match and are 0-elliptic. Then

Q /
Qwg'w) _ (—1)",
Q(g")
where r is the split rank of G. Conversely if a O-elliptic element ¢ € G’ satisfies the above identity,
then there is a O-elliptic g € G so that g and g’ match.

Proof. This follows from Lemma 2.7 and the identity (2.1). O

We define the smooth matching of orbital integrals. Assume that F' is a local field. We say that
a function f € C2°(G) and a function f' € C2°(G’) match if

O(g, f), for all f-regular matching g € G and ¢’ € G';

QgNO(g' 0, ') =
0, ¢’ does not match any g € G.

Proposition 2.9. Given f € C°(G), there is an f' that matches f. Given f" with O(¢',n, f') =0
for all 6-regular g’ not matching any g € G, there is an f € C°(G) that matches f'.

Proof. If A = My, (F) or A = M,(D) where D is a quaternion over F, this is the result of
C. Zhang [ ]. The general case can be proved by exactly the same method. We omit the
details. 0

Lemma 2.10. Assume that f and f' match and all orbital integrals but the 0-elliptic ones vanish.
Then (—1)"f and f™ also match.

Proof. Tt follows from a simple change of variables that O(¢’,n, f) = O(wg'w,n, f’). Thus
O(g',n, f) = 0 if ¢’ is not B-elliptic or not match any element in G. If ¢’ matches g € G

and they are f-elliptic, it is straightforward to check that wg’w and g also match. Then we have

Q(g")O(g",n, f) = (—1)"Qwg'w)O(wg'w, n, f') = O(g, ).
This proves the lemma. O

Let us consider the matching of orbits and orbital integrals on the level of Lie algebra. We will

be brief since it is almost identical to the case of symmetric spaces. We just need the case F' being
a local field.

X
We say that two O-regular elements a € s and (Y ) match if the reduced characteristic

polynomial of a? and the characteristic polynomial of XY are the same. This sets up an injective
14



map from @-regular orbits in s to the set of f-regular orbits in 5. Moreover the image of #-elliptic
X
orbits in s under this map consists of f-elliptic orbits in s’ represented by elements (Y > with

n(det XY) = (—1)". We define a transfer factor w on s’ by

()

If feC*(s) and f € C°(s'), we say that they match if
O(v, f), for all f-regular matching v and 7/,

w( O m, f') = ey _
0, if 4" does not match any element in s.

Then again given f € C2°(s) there is an f' € C2°(s') that matches it. Conversely if f’ satisfies
the condition that O(v/,n, f') = 0 for all 4's that do not match any element in s, then there is an
f € C(s) that matches f’. The main point to consider the Lie algebra version of matching is the

following result [ , Theorem 5.16]. If f € C°(s), we define its Fourier transform by

fl) = [ reperrenan,
5
Similarly we have the Fourier transform of functions on C2°(s’).

Proposition 2.11. There is a constant co that is an eighth root of unity, such that if f € C°(s)
and [ € C°(s') match, then so do cof and f'.

Though not stated explicitly in the theorem, this constant is computed at the end of | ]
when H = GL,(FE). It is a ratio of Weil indices and hence an eighth root of unity. The general

case follows by a similar computation.

Lemma 2.12. Suppose that f € C°(G) and f' € C(G') match. Then f; and n(—2)"f; also

match.
Proof. If a € 5 and £ € ' are f-regular and match, then so are 1 +a € G and 1+ £ € G'. We have

O(a, fy) =01 +a, f), O(mn, f;) =00+&mn, )
One also checks that
QL+ &) =n(—2)"w(&).

The lemma then follows. OJ

2.5. The fundamental lemma. Assume that E/F is an unramified quadratic extension of local
fields. Let H be the usual Hecke algebra of GLg,(F), i.e. bi-GLg,(0p)-invariant compactly sup-
ported function on GLa,(F). We consider the case A = M, (F) and B = M, (FE). Note that in

this case G = G’. The fundamental lemma is the following conjecture.

Conjecture 2.13. The functions f = f' € H match.
15



The main result of | ] is to confirm this conjecture in the case f = f’ being the unit element
of H.

Proposition 2.14. The functions f = f' = 1qL,,(o,) match.
We expect that Conjecture 2.13 should follows from Proposition 2.14 by a global argument.

2.6. Categorical quotients. We briefly explain the orbits and orbital integrals in terms of cate-
gorical quotients. Let (@ be the n-dimensional affine space over F. Let ¢ : s — () be the morphism

so that for all v € 5, g(7y) is the coefficients of the characteristic polynomial of v2. Let ¢’ : ' — Q
X
be the morphism so that for all v/ = (Y ) € s, ¢'(7) is the coefficients of the characteristic

polynomial of XY
Lemma 2.15. The morphism q:s — Q and ¢' : s — Q are categorical quotients.

Proof. This is a geometric statement so we may and will base change to the algebraic closure F
of F. Over the F, the statement for ¢ and ¢ are the same. Simple linear algebra yields that ¢’ is
surjective, and f-regular elements form an open subset of s’ which is the complement of a principal

divisor. The lemma then follows from the criterion of Igusa [ , Theorem 4.13]. O

The induced map s'(F) — Q(F) is surjective while s(F) — Q(F) is not. Let Qp_reg C @ be the
open subscheme whose inverse image is the set of f-regular elements in 5. Two f-regular elements
v € s(F) and 4/ € §/'(F) match if and only if ¢(v) = ¢(7) € Q(F). Assume that F is a local field.
There is a unique measure on Qg—_eg(F') so that for all f € C°(s) and f’ € C°(s") we have

/fﬁﬁvzl% 00 1)at)

and

[ roneear= [ o6 e ()

5/ Qefreg(F)
The measure on Qy_reg(F) is given by the Weyl integraion formula, c.f. | , p. 106], see
also [ , p- 1829].

3. SPHERICAL CHARACTERS

For the rest of this paper, E/F is a quadratic extension of nonarchimedean local fields of char-

acteristic zero.

3.1. The split side. Let 7’ be an irreducible generic representation of G’. We say that 7’ is
H'-distinguished if Homp: (7', C) # 0. If «’ is H'-distinguished, then it is self-dual and has trivial

central character [ ], and moreover Hom g/ (7', C) is one dimensional | ]

Lemma 3.1. Suppose that @' is an irreducible generic representation of G'. Then «' is H'-

distinguished if and only if 7' @ n is H'-distinguished.
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Proof. By | , Corollary 1.1], " is H'-distinguished if and only if it admits a Shalika model
(see the loc. cit. for a explanation of Shalika models). It follows directly from the definition of the
Shalika model that 7’ has a Shalika model if and only if 7’ ® n has a Shalika model. The lemma
then follows. U

Let P’ be the usual mirabolic subgroup of G’, N’ be the upper triangular unipotent subgroup of
G’. Recall that we have fixed a nontrivial additive character ¢ and it naturally defines a generic
character of N as usual. Let W = W(n', 1) the corresponding Whittaker model of 7’. Define

(W) = W(p)dp, W e W(x' ).
H'ON/\H'NP’
By | , Proposition 3.2] this integral is absolutely convergent and ! defines a nonzero element
in Homg: (7,C). As n’ ® n is also H'-distinguished, we put
(W) = W (p)n(det p)dp, W € W(x', ).
H'NN'\H'NP’
This defines a nonzero element in Hom g (7' @ n, C).

We denote by e(n') = e(n’, 1) = £1 the local root number. The second equality follows from the

fact 7’ is self-dual and is of symplectic type.

Recall that w € G’ is the longest weyl group element.

Proposition 3.2. We have [(7'(w)W) = e(x")I(W) and (7" (w)W) = e(n’ @ n)n(—=1)"1,(W) for
any W € W(n',1).

Proof. The first equality is [ , Theorem 3.2]. The second one follows from the first one and
the fact that g — W (g)n(det g) is a Whittaker function for 7’ ® 7. O

Define a spherical character as follows. For any f' € C°(G’), put

Lu(fy="Y U«(fIW)(W),

Wew(r' )

where the sum runs over an orthonormal basis of W (7', ).
Define an involution f' — f" on C°(G') as follows by setting f“(g) = f/(wgw).

Corollary 3.3. We have I (f™) = e(n')e(w' @ n)n(=1)" L (f) for any f' € CX(G").

Proof. We have

Lo(f*)y="Y_ U« (w)a (f) (w)W)l,(W

Wew(my)

~—

This proves the corollary. U
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3.2. The nonsplit side. Let m be an irreducible admissible unitary representation of G. We
say that 7 is H-distinguished if Homp (7, C) # 0. In this case, by [BM], 7 is self-dual and this
Hom space is one dimensional. We fix a nonzero element ! € Homp (7, C) and define the abstract

spherical character attached to m by
(3.1) Te(f) =Y _Um (o)), | e CE(G),

where v runs over an orthonormal basis of 7. We also note that 7 is H-distinguished if and only if

T ®n is, as 7 is trivial on H.

3.3. Global arguments. We recall the relative trace formulae of Guo and derive some conse-
quences from it.

We assume that A = M,.(C) where C is a central division algebra over F of dimension d?, with
invariant 7. Note that ¢ and d are coprime. Thus 7 and cr have the same parity.

We first globalize the CSAs.

Lemma 3.4. We can find the following data.

(1) A quadratic extension of number fields L/ K that splits at all archimedean places, a set of
inert finite places S, |S| = 2n — cr, and a nonarchimedean inert place vy of K such that
Ly, /Ky, is isomorphic to E/F. Note that S contains at least two places.

(2) A CSA A over K with an embedding L — A whose centralizer is B, with the property that
(Ayy, Buyy) is isomorphic to (A, B), the invariant of Ay is 1/2n ifv € S, and A, ~ Ma,(K,)
for allv & SU{vp}.

Proof. The existence of L/K is clear. The existence of A and B follows from the global class field
theory. O

Put G = A* and H = B*, both viewed as algebraic groups over K. Let Z be the center of G.

We now globalize the representation .

Lemma 3.5. With the A and B found in the previous lemma, we can find an irreducible cuspidal

automorphic representation I1 of G(Ak), such that the integral

[ o
H(K)Z(Ax)\H(AK)

is not identically zero, where 11, ~ m, II, is the trivial representation of G(K,) if v € S, 1L, is a
supercuspidal H(K,,)-distinguished representation for some split place w of K, and I, is unramified

at all other nonarchimdean places u.

Proof. This follows from | , Theorem 4.1]. All we need to note is that G(K,) is compact

modulo the center if v € S and H/Z has no rational characters. t
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Remark 3.6. The last condition that “II,, is unramified” will not be used in our argument. It is
however needed in order to implement the idea of Prasad, c.f. Remark 4.2. If we drop this last
condition, then the lemma also holds if we only assume that 7 is a discrete series representation,
ctf. | , Remark 16.4.1].

Let us now recall the relative trace formula of Guo and Jacquet. This is a slight extension
of the relative trace formula presented in | ]. We start from the nonsplit side. Let o be
an irreducible cuspidal automorphic representation of G(Ax). We say that o is globally H(Ag)-
distinguished if there is a ¢ € ¢ such that

P(p) = ¢(h)dh # 0.

/H(K)Z(AK)\H(AK)
If o is globally H (A )-distinguished, define a global distribution

Jo(£) =Y P(o(f)p)P(p), feCX(G(AK)),

where ¢ runs through an orthonormal basis of o. Then o is globally H (A )-distinguished if and
only if J, # 0.

We next consider the split side. We denote by G’ = GLg, x and H' the subgroup of G’ which
is the centralizer of diag[l,—1,---,1,—1]. Let Z’ be the center of G’. Let ¢’ be an irreducible

cuspidal automorphic representation of G'(Ag). For ¢ € o', we define the global linear period

Pl(p) = o(W)dh, Pl(p) = / o(h)(det h)dh.
Z' (A )M (K)\H' (Ak)

/Z’(AK)H’(K)\H’(AK)
We say that o’ is globally H'(A)-distinguished if P’ is not identically zero. We define a global

spherical character attached to o’ by
I () =Y P'(o'(£)0) By ),
©

where ¢ runs through an orthonormal basis of ¢’. In the Appendix, we will show that I, factors
as a product of certain L-functions and the local spherical characters I,,. In particular if f' = ®f,
I (f) # 0, then I, (f;) # 0.

Let f = ®f, € C°(G(Ak)) and f' = @f) € CX(G'(Ak)), we say that £ and £’ match if for all
places v of K, the test functions f, and f] match. Remark that we explained only the matching
at nonsplit nonarchimedean places, but at the split places (including the archimedean ones), the
matching is trivial: if v is split, then G(K,) = G'(K,) and we simply take f, = f.

Proposition 3.7. Let o be an irreducible cuspidal automorphic representation of G(Ag) with the
property that oy, ~ 7, o, is the trivial representation if v € S, and oy, is an H(Ly,)-distinguished
supercuspidal representation of G(Ky,) for some split place w. Let o’ be the Jacquet-Langlands

transfer of o to G'(Ak). Suppose that £ € C(G(Ak)) and ' € C(G'(Ak)) match. Assume that
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f, (and hence £)) is supported in the O-regular locus if v € S and £, = £, is an essential matriz

coefficient of o. Then (with the suitable choice of measures) we have
Jo(£) 4+ Joen(f) = I/ (£) 4+ Lygy(f).

Proof. This is proved in | , Theorem 6.1, identity (6.3)] in a slightly different setting and
our case can be handled in exactly the same way. Note that as we take the trivial representations
of G(K,), which is compact (modulo center), all orbits appearing in the relative trace formula are

automatically #-elliptic. O

Proposition 3.8. Let m be an irreducible H -distinguished supercuspidal representation and ' =
JL(m) be its Jacquet—Langlands transfer to G'. If  is H-distinguished, then 7’ is H'-distinguished.

Proof. By assumtion, for some f € C2°(G), we have J(f) # 0. By Lemma 3.5, we can find

— an irreducible cuspidal automorphic representation o,

—an f € C*(G(Ak)) with £,, = f,
so that they satisfy the conditions in Proposition 3.7 and with J,(f) # 0. By | , Lemma 4.3],
if we suitably modify this f at some nonsplit place of K, then we can even achieve J,(f) + Jyg,(f) #
0. Let f' € C°(G'(Ak)) be a test function that matches f. In particular f' = f] can be taken to

be any test function that matches f. Using Proposition 3.7, we conclude that
(3.2) Jo(£) + Joon(f) = I (f') + Lygy(f') # 0.

It follows that either I,/(f') # 0 or Iyg,(f') # 0, ie. either ¢’ or ¢’ ® n is globally H'(Ak)-
distinguished. As 7’ is a local component of ¢/, we conclude that either 7’ or 7’ ® n is H'-

distinguished, but they are equivalent by Lemma 3.1. ]

Remark 3.9. As suggested by the anonymous referee, there is a different proof of this proposition
without using the relative trace formula. The argument even works without the supercuspidal
assumption. We briefly explain the arguments. First by a result of Suzuki, we are reduced to the
case  being a disrete series representation. In this case 7’ is a discrete series representation and
by | , Proposition 3.4], 7’ is H'-distinguished if and only if 7’ is symplectic in the sense that the
image of Weil-Deligne representation attached to 7’ is contained in Sps,(C). As remarked before,
by | , Remark 16.4.1] the assertion in Lemma 3.5 still holds for 7 if we drop the requirement
that “Il, is unramified for all other places”. Let II' be the Jacquet-Langlands transfer of II to
GLan(Ak). Tt is cuspidal because II), = II,, is supercuspidal. Now II is self-dual as it is globally
distinguished by H(Af), then II' is self-dual by the automorphic Chebotarev density theorem.
As TI' is cuspidal, it is either orthogonal (all local components are orthogonal and L(s,IT’, Sme)
has a simple pole at s = 1) or symplectic (all local components are symplectic and L(s, I, A?)
has a simple pole at s = 1). It cannot be orthogonal because 1T, is H'-distinguished and is thus
symplectic. Therefore IT' is symplectic and so are all its local components. In particular 7 is

symplectic and hence H’-distinguished.
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4. COMPUTING LOCAL ROOT NUMBERS

We restate one implication of the main theorem as follows.

Theorem 4.1. Let w be an irreducible H-distinguished representation of G. Let ©’ be its Jacquet—

Langlands transfer to G'. Then 7' is H'-distinguished and
e(r)e(r’ @ n)n(—1)" = (-1)"
where 1 is the split rank of G.

The proof occupies this section.

4.1. The supercuspidal case. We present a proof which is essentially the one explained in the

Introduction, but bypasses the full fundamental lemma using a global variant of the argument.

Proof of Theorem 4.1 assuming w is supercuspidal. Assume that 7 is H-distinguished and super-
cuspidal. Let us keep the notation from the proof of Proposition 3.8, in particular the identity (3.2).
We can find matching test functions f € C°(G(Ak)) and £’ € C°(G'(Ak)) so that

(4.1) To(6) + Joeon(£) = L (E) + Lyo() # 0

with the property that f = f,, is essentially a matrix coefficient of 7. The function f" = f] matches
f. By the parabolic descent of orbital integrals, i.e. Lemma 2.5, O(g, f) = 0 if g is not 6-elliptic in
G. Thus by Lemma 2.10, we have that (—1)"f and f" also match. Let f"* be the test function
obtained by f’ by replacing f’ = f; by f*. Then (—1)"f and f* match. Now by the factorization
of (split) linear periods (see Appendix) and Corollary 3.3, we have

L (£) = e(m)e(r" @ mn(=1)" 1 ('),  Iorgn(f™) = e(r)e(r’ @ n)n(=1)"Lorey(£).
Therefore
(=1)"(Jo(£) + Jogn(£)) = e(r)e(r’ @ m)n(—=1)" (Lo (') + Lyran(£'))-

Comparing this with (4.1) we get

e(m)e(n’ @nn(—1)" = (-1)".
This proves the theorem when 7 is supercuspidal. ]

Remark 4.2. There is a different argument in the supercuspidal case following the idea of Prasad
which we present here for the comparison of methods. Let us keep the notation from the proof
of Theorem 4.1. Recall that 7 is a local component of a globally distinguished representation o.
By (4.1) we conclude that either I,/ or I/g, is not identically zero. By the factorization of split
linear periods (see Appendix), this implies that

1 1
L(g, O'/)L(i,al & 7]) ?é 0,
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and hence
[Lelo)e(o], @no) = 1.
v

Now if v & S U {vp}, then either v splits or o), is unramified, then

e(oy)e(o, ® ny)me(—1)" = 1.
If v € S, then o), is the Steinberg representation of G'(K,) and it is well-known that

e(o)e(oy, @ mo)me(—1)" = —1.
The only place remaining is v = vg where o, ~ «’. Since |S| = 2n — cr which has the same parity
with r, it follows that

e(m)e(m" @ nuy Jnwe (—1)" = (=1)7,

This finishes the proof.

4.2. Reduction to the supercuspidal case. Let us setup some notation before we proceed. If
G = GL,(C) where C' is a central division algebra of dimension d?>over F,r=r1+ro+---+r,

p1,- - ps are irreducible representations of GL,, (C),- -, GL,,(C) respectively, we denote by

pL X e X s

the full parabolic induced representation (from the usual standard upper triangular parabolic sub-
group corresponding to the partition r» = r; + ---rg). We make the convention that all parabolic
inductions are normalized. We also denote by v the absolute value of the reduced norm of any CSA.
Suppose that » = sl and p is a supercuspidal representation (not necessarily unitary) of GL4(C).
Assume that C' = F first. Then G = G’ and

poI/X-"XpI/l_l

has an unique irreducible quotient which is a discrete series representation of G and any irreducible
discrete series representation of G is obtained in this way. In general assume that p’ is the Jacquet—

Langlands transfer of p to GLgq(F') and then it is an irreducible quotient of
T x e x Tyt

as above. Put v, = v%. Then the induced representation

pxpyp---xpuf,_l

has a unique quotient representation which is a discrete series representation. All discrete series
representations of G arise in this way. Such a representation, or equivalently the set {p,--- , pl/llfl},
is called a segment. Let

A= {p7 e 7pr)71}7 A, = {p/7 U 7P/VZ/_1}7
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be two segments (or equivalently two discrete series representations). We say that A and A’ are
linked if AUA' is again a segment but neither one is contained in the other (in particular v, = v,/).
We say that A proceeds A’ if they are linked and p' = pyg for some j > 0.

To each irreducible representation 7’ of G/, there is an associated to Weil-Deligne representation.
Let WDp = Wpg x SLy(C) be the Weil-Deligne group, then the local Langlands correspondence

gives rise to a representation
(f)ﬂl :WDp — GLG((C)

If 7 is supercuspidal, then ¢,/ is an irreducible representation of Wg and is trivial on SLo(C). If

7' is a segment of the form
{7—’ e 771/[_1}’

then ¢ = ¢, K Syml_1 where ¢, is the irreducible representation of Wy associated to 7 and
Sym!~! is the (unique) dimension I algebraic representation of SLy(C). The local root number of

7’ is given by
e(n') = e(¢nr) = €(¢7)" det(—Frob | pIr) 1,

where I stands for the inertia subgroup of Wg, and ¢F stands for the subspace of ¢, on which
I acts trivially. Let us note that if ¢, is not one-dimensional, then ¢{F = 0. This is because any
Ip-fixed subspace will be Wg-stable, and by the irreducibility of ¢, it should be either 0 or the
whole space. But apparently Ir cannot act trivially on ¢, since it is not one dimensional. Therefore

it must be zero.

Proof of Theorem /4.1 in general. Theorem 4.1 very quickly reduces to the case of discrete series
representations as we have the following classification result of M. Suzuki [Suz]. Assume 7 is H-
distinguished, then Suzuki’s result states that 7 is a quotient of Ay X --- x A; where A;’s are all
irreducible discrete series representations and A; does not proceed A;, and after relabeling A;’s, we
can find an a so that s—a is even, and Ay, --- , A, are all distinguished and Ag49;—1 >~ A;/+2z‘ for all
i=1,---,(s—a)/2. Here A;, 1 <i < a, is distinguished means the following. The representation
A, is a discrete series representation of GL,,(C). There is an embedding of E* in to GL,, (C') whose
centralizer is denoted by H;. We say that A; is distinguished if there is an H;-invariant linear form
on it.
By this classification, if we assume Theorem 4.1 for the discrete series representation, we have

S

e(me(m @mn(=1)" = [T e(Ae(Ai @ mn(-1)" = (~1)"F 7 = (=1)".

i=1
Therefore it is enough to prove Theorem 4.1 when 7 is a discrete series representation.
Assume that 7 is a discrete series representation of G and we write it as a segment

l—

{:OVP I >pr })
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where p is an irreducible supercuspidal representation of GL¢(C) and sdl = 2n, sl = r. The case
s =1 and p being one-dimensional has been taken care of by | | so for the rest of the proof we
assume that p is not one dimensional.

Assume first that [ is even. Note that this implies that r is even. In this case by [B)N, Proposi-

tion 5.6] (or rather its proof), p is self-dual. It is easy to see that 7’ is a segment

where 7 is a self-dual supercuspidal representation, and I’ is a multiple of [ which is again even.
Let ¢, be the representation of the Weil group of F' associated to 7. As we have assumed that p is
not one-dimensional, ¢, is not one-dimensional and so ¢¥ = 0. Then easy computation with the

root numbers gives

[N

e(x)e(r’ @ ) = (det 6, (~1))% (det ey (1)) 7 = n(—1)".

which proves the theorem. Now assume that [ is odd. Note that in this case sd is even and hence
there is an embedding E* — GL4(C). Again by [BM, Proposition 5.6] (or rather its proof), p is
distinguished, in the sense that there is an Hs-invariant linear form on p where Hj is the centralizer
of E* in GLs(C). Let p’ be the Jacquet-Langlands transfer to GLgq(F). Then p’ is a segment

{rv= 2 - ,7'1/(12;1},

and 7’ is a segment

{rv %, ,Tl/lagl}.

Let ¢» and ¢,y be the Weil-Deligne representation corresponding to 7’ and p’ respectively, and ¢,
be the irreducible representation of the Weil group associated to 7. Again by our assumption ¢
is not one dimensional and thus ¢/F = 0. If a is even, then the same computation as in the case

being even gives that both

e(Sn)e(Srran)(—1)" = e(bp)e(dpan)n(~1)*"? = 1.

If a is odd, then a and la are both odd and dim ¢, is even. We have

dim ¢

e(@r)e(Dman)n(=1)" = €(dp)e(dpen)n(—1)*"? = e(dr)e(¢ran)n(—1) " 2
In any case we have
e(dn)e(Dran)n(—1)" = e(Bp)e(dpan)n(=1)*"2.
Thus by the supercuspidal case (p is supercuspidal by assumption), we conclude that
€(@n)e(Pmen)n(—1)" = (-1)° = (=1)".

Here the second equality follows from the fact that s and r have the same parity as sl = r and [ is

odd. This finishes the proof of Theorem 4.1. O
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5. MINIMAL UNIPOTENT ORBITAL INTEGRALS

5.1. Definitions. Let us consider the following elements in G’

1, 1,\ _
<+=a< )ol, ¢ =1

The orbits represented by (4 are not f-semisimple in G’ and hence are not closed orbits. The goal
of this subsection is to define the “orbital integrals” on them. We just need to treat the case (.
Let f' € C°(G'). Put

0(87 CJrv 7, f/)

h L, 1, (h . .
_ / o™ 5 ) o1 p(det hy)|det hg|*dhdhadhs.
GLy (F)3 ha I I

Lemma 5.1. The above integral is absolutely convergent when Rs >> 0 and has a meromorphic

continuation to the whole complex plane. It is holomorphic at s = 0. Moreover its value at zero

n(—=1)"y /M . Fuls (o— (0 h) a—l) n(det h)dh.

Here the partial Fourier transform is defined by

ey ) Lol ) e

and vy = H?:_ol ~v(i,m, %) where y(s,n,v) is the gamma factor defined by Tate. Note that v(s,n,1))

18 holomorphic and nonzero at all s = 1.

equals

Proof. Simple change of variables gives

h
O(s, (s, 1) = /GL . fi (U <0 > 01> n(det h)|det h|*dh.

X
Note that we put fi(X) = f; (a (O ) 01>, then f1 € C°(M,(F)). The the above integral

is the zeta integral considered by Godement and Jacquet for the representation 7o det of GL,,(F).
Thus by | , Theorem 3.3], we have

Z(sim, 1) = /G oy et

is absolutely convergent when Rs >> 0 and has a meromorphic continuation to the whole complex
plane. Moreover by the remark after | , Proposition 3.3] we have

HV(S—@TZ:WZ(SW’]C{/) = Z(”—Saﬂafl),

=1
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where flv is a Fourier transform defined by
(X)) = / ( )fl(Ym(—Tr XY)dy,
n(F

and ~y(s,n,1) is the gamma factor defined by Tate. Note that as n is not trivial, v(s,n,) is

holomorphic and nonzero for all s € R. Thus
Z(0,n, f1) Hv — i) Z(n,m, i)

We applying this to the integration O(s,(4,n, f’). The left hand side just equals O(0, (4,7, f').
The right hand side equals

-1
v(2,m,9) x / / f (a ( Y) a—1> Y(— Tr hY )n(det h)|det h|"dhdY
= w(F) JGLn(F) 0

Note that |det h|"dh equals the additive measure on M, (F'). Making a change of variable h — —h
gives the desired result. 0
We define
O(€+7 7, f/) = O(Sv C-‘r) 7, fl)|8:07 O(€—7 7, f/) = O(C—H 7, f/w)'
Then it is clear that the distributions f' — O((x,n, f') are nonzero left H'-invariant and right

(H',n)-invariant, and are supported on the closure of the orbits of (..
We also need the counterparts of O((4,n, f') on the Lie algebra s’. Similar to the above lemma,
for f' € C(s'), the integral

h
O4(s, f) = /GL . f! <a (o )0_1) n(det h)|det h|*dh,

is absolutely convergent when Rs >> 0 and has meromorphic continuation to the whole complex

plane. Moreover it is holomorphic at s = 0 and its value equals

n(—1)"y /M - Fuf <a (0 X) 01> n(det X)dX.

This value is denote by Oy (f). Similarly we have O_(f’) which is by definition O_(f") = O4+(f™).
It is easy to see that if f' € C°(G’), we have

O(Cx,m, ') = O(fy).
5.2. An unfolding identity. Let £ € M, (F') is the matrix with all (i,7 — 1) entries being
1,9 = 2,3,---,2n, and all other entries being zero. Note that £ = o (1 61’_> o~ where
n

&1,— € My(F) is of the same shape as £_.
Let f' € C°(G') and we define a function on G’ x G’ by

Woloon) = [ (o7 g (T Eu)du
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Proposition 5.2. Let f' € C°(G') and Wy as above. Then

(5.1) O(Cesn, ') = 77(—1)”7/[{ Wy (hi, ho)n(he)dhidhs,

'AN'\H'NP’ /(H’ﬂN’)\H’

where v 1s as in Lemma 5.1 and the integral on the right hand side is absolutely convergent.

Proof. This is a rather technical computation. We proceed in steps.

Step 1: We check that the right hand side of (5.1) is absolutely convergent.

We are going to make use of the following notation in this step. Let T” be the diagonal torus
of G'. Let T} be diagonal torus in P/, Ny = N’ N H' and K; be a maximal compact subgroup
in GL,,(F) x GL,,_1(F). Then we have the Iwasawa decomposition P’ N H' = NyT1K;. Similarly
let T5 be the diagonal torus in H', No = N’ N H' and K3 be a maximal compact subgroup in H'.
Then we have the Iwasawa decomposition H' = NoThK5. We let § be the modulus character of T”
with respect to N’ and d1, d2 be the modulus character of T7 and 75 with respect to N1 N Mps and
Ny respectively, where Mp: ~ GL,,(F) x GL,,—1(F) is the reductive part of P’. If a is a diagonal
matrix in G’, we let a; be its i-th diagonal entry. Let us also put ¢(z) = max{log|z|,log|z|~'} and

s(a) = e s(ai).

Let r and v be the function on G’ defined by r(g) = |detg|i and v(g) = 1 + |le2ng|| where |||
stands for the L* norm on Fy,. Choose a large integer N which will be determined later, and

apply [BP, Lemma 2.4.3] to rVuf, we end up with the estimate
_ 1 _ _
|Wf(a1k1,a2k:2)| <<\deta1 1(L2|4(1—|— ]a1,2n71|) N(1—|— |a272n\) N

I (1+ )N 1 (1+

i=1 i=1

_N L
> 6(a1a2)5<(a1)d§(a2)d7

a1,i+1 a2,i+1

for some integer d > 0, where a; € T}, k; € K;, i =1, 2.
Therefore to prove the convergence of the right hand side of (5.1), we need to prove that

2n—2

—N 2n—1 _N
1 i B - (117‘ a2,'
/ |det a, 1a2|4(1 + ’a1,2n71|) N(l + |a272n|) N H (1 + ) ) H (1 " i )
T JTs i—1 a1,i41 i1 a2.i+1
1
d(aras)2d1(ar) " oa(as) " s(ar)%s(az) dardas
is absolutely convergent for sufficiently large N. Note that
1 1 n a
5(a1)261(ay) "t = |detar|2, O(an)? H az2i—1
i | @2,2

Thus we need to prove that both integrals

2n—2
/ |deta1|i(1 +laran_1))™N H <1+
T

i=1
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and

a2,

>_N ¢(az)?day

n 5 . 2n—2
/ H|a2,2i—1!1\a2,2i|7(1 + laran—1])™N H <1 +
T>

i=1 i=1

2,41

are absolutely convergent for sufficiently large V. Both of these are implied by the following claim,
which can be proved via a simple change of variable.
Claim. Let s1,--- , s, be real numbers. Fix d > 0. If sy +---+ s >0forall k=1,--- ,n, then

we can find a large N so that the integral

/Fx(l + \xn\)—Nﬁ (1 -

is absolutely convergent.

Zy

—-N n
) [Tl (i) day - - - Ay,
i=1

Ti41

This proves the absolute convergence of the right hand side of (5.1).
Step 2: We reduce (5.1) to an equality on the Lie algebra.
By lemma 5.1, the left hand side of (5.1) equals

n(—1)"y /M - Fu (o <o h) a—l) n(det h)dh.

Let us now compute the right hand side of (5.1). Plugging in the definition of W/, we have

RHS of (5.1) :/

/ £/ (hy Yuhg)p(Tr € _u)n(det hy)dudhidhsy
H'NN'\H'nP" JH'NN'\H’ JN'

= / / £/ (h7 Yuhg)p(Tr € _u)n(det hy)dudhidhsy
H'NN'\H'nP’ JN'nH'\N' JH'

:/ / F7(h3 '™ 0(u)hg) b (Tr €_u)n(det hy)dudhs.
H'NN'\H'nP’ JN'NH'\N’

The second equality is valid as the inner two integrals are absolutely convergent. The third identity
is the definition of f’ Note that the map

N'NH\N' =n'ns, u—cHu0(u))
is submersive of determinant one everywhere and bijective. Moreover
Y(Tréu) = p(—Tré ), ifu en' N, c(u) =u"10(u).
We thus conclude that the right hand side of (5.1) equals

(5.2) So(hy Muha )y (Tr E_u)n(det ho)dudhs.

/H/mN'\H/mP/ n/Ns’
28



As Fy is a bijection from Cg°(s’) to itself, to prove Proposition 5.2, it is enough to prove that for
any f1 € C(s’), we have

/ fi <a ( h) 01> n(det h)dh
GLn(F) 0

F L fi(h™ uh)p(Tr € u)n(det h)dudh,

(5.3)

/H'mN'\H’mP’ W’
where the measure dh on the left hand side is the additive measure.

Step 3: Computing the right hand side of (5.3) via Fourier inversion formula.

For the rest of the proof, we are going to temporarily use the following notation. We let G; =
GL,(F), By be the upper triangular Borel subgroup, N its unipotent subgroup, By — and N; _ be
the opposite of By and NN respectively. We let by, ny, by _, ny _ be the Lie algebra of By, N1, By —
and Np _ respectively. Similarly we put G = GL,,—1(F'), and define the corresponding subgroup
Ba, Ny, By _, Ny _ and their Lie algebras bg, no, by _, na _. The group G2 is embedded in G via

a
a ( 1> and so are their subgroups.

ha

Claim: For any f' € C(s'), any h =0 ( ) o=t € H', we have

ha

F /(W uh)p(Tr & u)du

n’Ns’

hy turh
:|deth21h1|"/ / £ <o <h_1 , 2 1) 0_1) (Tr &, _ug)duy dus.
ng J Ny 2 U211

The right hand side is absolutely convergent.
In fact, this is an application of the Fourier inversion formula. Explicitly the left hand side of

the claim equals

/ / / f (a ( . X) 0’1> (- Tthl_lulhg)w(Tr u)Y(Tr &y, —ug)d X duidus.
ny J by n(F) h2 U2h1

The integral is convergent in this order. Make a change of variable X +— hy L X hy. Then the integral

above equals

Lot )
ny Jby n(F) h2_1UQh1

(— Tr Xup )b (Trug )p(Tr & _ug)|det hy hy|"d X duydus.

Applying Fourier inversion formula to the inner two integrals, we obtain that this integral equals

hQ_IU3h1
// f'lo . o1 ) (Tr &1 _ug)|det hy thy " dugdus.
ny JNy o U211

This proves the claim.
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Thus to prove (5.3), we only need to compute

T o o & i) oo
(54) N1\G1 J N2\G2 Jn1 J Ny h;lu2h1

1/)(T1" 517_11,2) |det h;lhl \"n(det hlhg)du;J,dUthgdhl.

It is straightforward to see that we can (and will) change the order of the inner two integrals or
the out two integrals. Combining the integral against us and h; and making a change of variable

h1 +— hghy, we have that

h
(5.4):/ / /f’ ol _, ") o ) (Tr &4 _ug)|det by |"(det hy)dusdhydhs.
No\G2 JG1 Jm hy “ughahy

Step 4. An unfolding argument.
It is clear from Step 3 that to prove Proposition 5.2, it is enough to prove the following claim.
Claim: For any f € C°(My(F)), we have

f(0) = /N . F(htuh)y(Tr &, _u)dudh.

To prove the claim, we replace the integration over No\Go with the integration over By _ and
recall that we are using the right invariant Haar measure on By _. We temporarily introduce the
following notation. We let A;, ¢ = 0,--- ,n — 1 be the subgroup of By _ consisting of elements
whose upper left ¢ x ¢ block is the identity matrix. We let L;, i = 0,--- ,n — 1, be the subspace
of ny consisting of matrices whose upper left (i + 1) x (i + 1) block is zero. Let us introduce the

following auxiliary integral
I; :/ / f(h;luzhlﬁb(Trfly,ul)duldhl

The measure dh; is the right invariant measure on A;. Of course, Ij is the right hand side of the
equality in the claim, while the I,,_; = 0. We are going to prove that I; = I; ;1 for all ¢ and this
will prove the claim.

Let h; € A;. We write h; = ah;11 where h;11 € A;11 and a takes the following form
a=1v;, x; R ’Ul'EFZ', l‘iGFX.

The measure dh; decomposes as
dhi = ‘l‘i|_(n_i_2)d$id’l}idhi+1,

where dx; is the multiplicative measure on F'*.
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Let u; € L;. We write u; = ¢ + uj+1 where u;4+1 € L;j+1 and c¢ takes the following form

Oi+1 Wiyt
c= 0 ) wi+1€F”1.

0n—i—2

Then we have

I; —/Ai+1 /F /FX /Fi+1 /me(h;lla_l(ﬁuz’+1)ahz’+1)¢(ﬁ€1,—(c+Uz’+1))

]xi\_(”_i_z)dui+1dcdxidvidhi+1.
Let us make change of variables ¢ — aca™! and u; 41 — au; 16~ . Let us note that
-1 -1
Tr&—aca™ = (vi, z)wiyr, Tré—auipia™ = Tré v,

and
daca™ = |z;|de,  dauiiia™ = |z 2dugy .

Then we have

e R A I Y (=X Ty LAV P (e e G ey
Ajp1 JF; JFX Fitl L1
]mi |dui+1 dcd$idvidhi+l .

Note that |z;|dz; gives the additive measure on F. We apply the Fourier inversion formula to the

integration over w;y; and (v;, z;). It follows that

I; :/ / F(hi i hig ) (Tr & - uigr)dug i dhg.
Aiv1 JLip

The right hand side is precisely the definition of I;;;. This proves the claim.
This finishes the proof of Proposition 5.2. O

5.3. Matching. We now consider matching of unipotent orbital integrals in G and G’. Let f €
C°(G). We put

o(.1) = [ f(uyan.
This is the orbital integral of f on the minimal orbit represented by 1 € G. By definition we have
fo(0) = 0(1, f).

Proposition 5.3. Suppose that f € CX(G) and f' € CX(G') are matching test functions. Then

O, 1) = 5eon(~2)"(O(Gem £) + (-1’ O, ),

where ¢ is the constant appearing in Proposition 2.11 (i.e. Fourier transform commutes with

matching).
31



Proof. According to the definition, this identity is equivalent to

1 T
£4(0) = 5o(0+(f3) + (=1)"O-(£))-
As f,(0) and n(—2)" fh/ are also matching test functions, it is enough to prove that for all matching
feCP(s) and f' € CX(s"), we have

1

F(0) = 50(0+(f) + (=1)"O-(f"))-

As Fourier transform is a bijection from C2°(s) (resp. C2°(s')) to itself, and cof and f also match,

it is enough to prove that

(55) F(0) = 504 () + (-17 0_(7)).

o~

On the left hand side, the distribution f — f(0) is represented by the constant functions 1 on s.

-~ X
On the right hand side, f" — O, (f’) is represented by the function (Y ) — n(det X) and

—~ X
/= O_(f") is represented by the function (Y ) — n(det Y). It follows that
1 ~ ~
f1= 504 + (=1)"0-(f)

X X
is represented by the function <Y ) — n(det X) if <Y ) matches an element in s. This

function is precisely the transfer factor. Recall that we have the categorical quotient Q =s//H ~
s'//H' and the quotient morphism ¢ : s — @ and ¢’ : § — Q. Therefore for some compatible choice

of the measures (see the discussion at the end of Subsection 2.6), we have
Fo) = [sada= [ 060
5 QG—reg(F)
and

5O F)+ (~070-(F) = [ Fewtdy = [ ol fe()ad ().
s/ Qefreg(F)
Since f and f’ match, we have O(v',n, f)w(v') = O(~, f) if v and 7' match and O(v/, n, fw(y') =0

if 4/ does not match any v € s. The desired equality (5.5) then follows. This proves the lemma. [

6. MINIMAL UNIPOTENT ORBITAL INTEGRALS OF MATRIX COEFFICIENTS

6.1. A functional equation. Let Z’ be the center of G’ and 7’ be an irreducible generic (unitary)
representation of G/ and W = W(x' 1) be its Whittaker model. Let us recall some work of
Matringe | ]. Let F, be the n-dimensional vector space over F (row vectors) and e, =
0,---,0,1) € F,,. Let W e W(n', %) and ¢ € C°(F,). Put

Ws.t.W.0) = [

h
W (h)$(enho)|det ha|*HF2|det hol* ' "2dh, h=0| oL,
N'NH'\H' ho
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We will only make use of this integral when t = 0 or t = —%. By | , Proposition 4.16], for
a fixed t, this integral is convergent when the real part of s is large, and it has a meromorphic
continuation (in the variable s) to the whole complex plane. Moreover there is a v'"(s, 7, v) in
C(q™**) that does not depend on W and ¢ so that

(6.1) ¥ (555 W.8) =2 )0, W)

where Zs is the Fourier transform of ¢, and W(g) = W(w?g™!), w being the longest Weyl element
in G’. Tt is expected that

in 1
(6.2) h/l (s, ', V)| =[v(s+ 92’ T $)y(2s, ', /\27 P)|.
It is showed in | | that the analogous equality (without the absolute value) holds for L-factors,
and

(s, 7, ) L(s + 5,7 ) L(2s, 7', A?)
L(—s+4,7)L(1 — 25,7, A2)

is a unit in C[g™*]. Thus at least the zero and poles of 4 (s, 7/, %) is controlled by the L-functions.
If W e W(r', 1), we define the following integral

(W) = / W(h)dh, 1H(W)= W (h)n(det h)dh.
Z'(H'NN")\H'

/Z’(H’ON’)\H’

Lemma 6.1. Assume that 7' (hence 7’ @ n) be an H'-distinguished discrete series representation

of G'. Then the defining integrals of 1% and l# are absolutely convergent and

B 1 ’}/lin(syﬂ',,d))
)= 5 S, 0)

Here (s,1,v) is the gamma factor of the trivial character defined by Tate, which as a simple pole

" I O )
s:ol W), (W) = 2n (s, 1,9) s:()l77 ().

at s = 0. The ratios of the gamma factors at s = 0 are holomorphic and nonzero.

Proof. We prove the identity for 7’. The one for 7’ ® 7 is identical. The lemma is a consequence of
the functional equation (6.1). Let us evaluate both sides of (6.1) when s — 0+.

First the right hand side. By | , Corollary 4.10], as 7’ is a discrete series representation,
the defining integral of W(s, 0, W, ¢) is convergent when fs > 0. Moreover as 7’ is H'-distinguished,
L(2s,7',A?) and hence ¥(s,0, W, ¢), have a simple pole at s = 0. We have

U(s,0,W,¢) = / W (h)d(enzhs)|z[2™|det hy|[*T2|det ho|*~2d2dh.
Z'(N'nH')\H' J 7'

As s approaches 0+, the inner integral has a simple zero and its leading term (as a function of s)
equals that of v(2ns,1,1)¢(0), which is independent of hy. Thus
1 (s, 7, )

. lin ! =5 ?
S 90U, 0. W) = 50O T S
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Now let us evaluate the left hand side of (6.1). We have

1 1 —~ ~ ~ o~
v <, ——, W, (;5) = / W(h)(;ﬁ(enhg)n(det h1h2)|det hg‘dhldhg.
2 2 N/mH/\H/

It is not hard to see that the right hand side is absolutely convergent. We decompose

1,_
h2 = pzu, u = et )
Un—1 1

where p is in the mirabolic subgroup of GL,(F), u,—1 € F,,—1 and z is in the center of GL,,(F).

Then we have

1 1 = ~ o~ o~
v (2’_2’W’ ¢> = /Fn_l /FX l(ﬂ-(u+)W)¢(un—17Z)dun—ldza

1
where ut = o ( " > o~ ! and the measures are all additive. As [ is H'-invariant, we conclude
u

that

1 1 = ~ =
¥ (515 17.3) = 60UT) = 6OI(W)
The last inequality follows from | , Proposition 3.9].

The upshot of the above computation is that for all W € W and ¢ € C2°(F,), we have

1 Y (s, 7, 4)

—¢(0 (W) = ¢(0)I(W).

O | 1w = souw)
Of course we can choose ¢ with ¢(0) # 0. All terms in this identity not involving W are nonzero.
We thus have proved the desired identity. O

6.2. Minimal orbital integrals of matrix coefficients.

Lemma 6.2. Let ' be an H'-distinguished supercuspidal representation of G'. Let f' € C°(G")
be an essential matrixz coefficient of ©'. Then

v(s; 1, %)
~yin (s 7! ) 1s=0
where d(n") stands for the formal degree of @'. In particular there is an essential matriz coefficient
of ™ so that

O(C—anf/) = 27”7(_1)n’yd(7r/) IW’(f/)v

O(Ceim, f') + e(@)e(n’ @ m)n(=1)"O(¢-,n, f') # 0.
Proof. Suppose that

| f(zg)dz = {7 (g)Wh, Wa), Wi, Wa € W(', ).
Then by | , Lemma 4.4], we have

/ Wei(2g1, 92)dz = Wi(g2)Wa(g1).
Z/

By Proposition 5.2, we have

O(Cq,m, f1) = n(=1)" 1% (W1) 1, (Ws).
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Using Lemma 6.1, we have

L(W1)ly(W2).

OCsn. 1) = (1) )

Y (s, 7, 1))
Note that {(W1)l,(Ws) = d(n’) I (f'). This proves the first assertion. The last assertion is because

v(s,1,)
ylin(s, @', 1)

O(C—ﬂ?a f,) = O(C-‘r? m, f/w) = an(—l)nfyd(ﬂ'/)

@) @ mn(=1)" L (f").

Therefore

OCa, s )+ e(n)elr @ myn(~1)"O(C- 1, /) = Amn(~1)yd(n') o 12 ¥)

fyhn(& 7T/, 1/}) s=0

This proves the lemma. H

Iﬂ"(f/) 7é 0.

Remark 6.3. It is well-known that the formal degree d(n’) equals 5 |v(0,7’, Ad,%)|. Since it is
expected that

in 1
(s 7 ) = (s + 5o ) (28,7 A ).
The constant on the right hand side of the equality in the lemma should, up to some sign, simplify
to v |’Y(O> ﬂ-/v Sme, @Z’)|

7. DISTINGUISHED REPRESENTATIONS

7.1. Global arguments. The goal of this subsection is to prove a globalization result. We assume
that E/F is local.

Proposition 7.1. Assume that f € C°(G) has the property that [ f(h)dh # 0. Then one can
find the following data.

(1) Let L/K be a quadratic extension of global fields which splits at all archimedean places and
there is a place vy of K so that Ly, /K,, ~ E/F.

(2) Let A be a CSA over K containing L, such that there is a place vi of K such that A® K,
s a central division algebra. Let B be the centralizer of L in A. Let G = A*, H = B>, both
being algebraic groups over K.

(3) Let vy be a split nonarchimedean place of K, m,, be an H(K,,)-distinguished supercuspidal
representations of G(IKy,).

(4) Let f = ®f, € C(G(Ar)) be a test function so that
(&) fuo = fuo:

(b) £, becomes a constant after integration over the center of G(K,,) (note that G(K,,) is
compact modulo its center);

(c) £y, is an essential matrixz coefficient of m,, and fH(sz) f,, (h)dh # 0;

(d) we fix a nonsplit place nonarchimedean place vs;

(e) for all other places w # v;, i = 1,2,3, we choose an arbitrary test function £, in

C2(G(Kw)) with [y e fu(h)dh £ 0;
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(f) for the place vs, we choose a test function f,, supported in a small neighbourhood of
identity with fH(KUS) o, (h)dh # 0 so that if v € G(K) and H(Axg)yH(Ax)Nsupp f # 0,
then v € H(K).

Proof. We only need to explain how to achieve the choice of f,,, i.e. the test function in (4)(f). Let
v € G(Ak) and H(Ag)YH(Ag)Nsupp f # (). For the CSA’s A and B, we have the same discussion
as in Section 2. Consider s = v~ 16(y) and the coefficients of the reduced characteristic polynomial
of (s —1)%. We viewed it as an element in A%. Of course H(Ax)yH(Ak) contains an element
in G(K) if and only if the coefficients of the reduced characteristic polynomial of (s — 1)? lie in
K™. Moreover for any place w # v3, these coefficients lie in some fixed compact subset €2, of K},
containing zero (because we have assumed that fH( Ku) f,(h)dh # 0). Therefore by the product

formula we can choose a sufficiently small neighbourhood €2, of zero in K3, so that

K" n ] ={0}.
Let U,, be the inverse image of Q,, in G(K,,), then U,, contains H(K,,) by definition. We also
note that

Uy, x [ H(Kw)(supp ) H(Ky) | NG(K) = H(K).
wva
Indeed if 7 lies in the left hand side, then the reduced characteristic polynomial of (s —1)? € B(K)
is of the form A\". By assumption A(K,,) is a central division algebra, which means that s =1 €
A(Ky, ), hence in A(K). This is equivalent to that v € H(K). Having all this, we can thus choose
an f,, supported in U,,. Then if v € suppf N G(K) then v € H(K). O

Corollary 7.2. Let f € CX(G) and f' € CX(G") be matching test functions. Assume that
fH f(h)dh # 0. Then there is an irreducible H-distinguished representation T of G, 7' being its
Jacquet-Langlands transfer to G', such that either I.(f") # 0 or Iugy,(f") # 0.

Proof. We plug the test function obtained in Proposition 7.1 in to the relative trace formula. Then

S 0g.) =Y (),

GEH(K\G(K)/H(K)
where o on the right hand side ranges over all globally #H (A )-distinguished automorphic repre-

we have

sentation of G(Ak). Note that the group G and H are anisotropic so there is no convergence issue.

By the choice of the test function f, the left hand side reduces to only one term, i.e. ¢ = 1. Thus

the left hand side equals
/ £(h)dh # 0.
H(AF)

Therefore there is at least one o on the right hand side such that J,(f) + Jyg,(f) # 0. We now
apply the simple relative trace formula of Guo, c.f. identity (3.2), to conclude that

Iy (F') 4+ Iynoyen(f) # 0.
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Thus one of the two terms are nonzero. The corollary then follows from the factorization of split

linear periods. O

7.2. Distinguished representations. Now is the time to reap the fruit of our long labor. We
consider assumption (a) in Theorem 1.1 first. Let us restate the converse implication of the main

theorem as follows.

Theorem 7.3. Let ©' be an irreducible H'-distinguished supercuspidal representation of G' and w

its Jacquet—Langlands transfer to G. Assume that
e(m)e(n’ @n)n(—1)" = (=1)",
where r stands for the split rank of G, then w is H-distinguished.

Proof. By Lemma 6.2, there is an essential matrix coefficient f’ of 7’ so that

(71) O(C—i-vn) f/) + (‘UTO(C—;??, f/) 7é 0.

By parabolic descent (which we did not make explicit but is very similar to the one on G),
O(d',n, f') = 0 if ¢ is B-regular but not -elliptic. We now consider the function on the #-elliptic
locus of G’ given by

g = U0 0, [).
This function is bi-H'(F)-invariant by definition. We now consider
g = U0 0, ).

On the one hand, we have

Qg0 ,n, f) = Qg )O(wg'w,n, ') = Qwg'w)O(d',n, f'),
since wg'w is in the same H'(F) x H'(F) double coset as ¢’. On the other hand we have
(7.2) Qg0 0, f) = e(x)e(x" @ m)n(=1)"Q(g)O(g", n, ).

This can be seen as follows. Suppose that
| 1z = (@ Wi
Za(F)

where Wi, W» are in the Whittaker model W of 7’. Let us denote temporarily this f’ by fiy, v,
Then the linear form

(W17 WQ) '_> Q(g/)0<gl7 777 f{/Vl,WQ)

defines an element (could be zero) in
Hompy (7', C) ® Hompy (7' @ n, C).

Then by the uniqueness of linear periods | ], we can find a constant A (could be zero), depending

on g and 7’ but not on W7 and W5 so that

Qg)O(d s, f') = AU (W)l (Wo).
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Moreover
(fI//V1 Wa )w = fflr’(w)Wl ! (w)Wa

and hence Q(¢")O(¢',n, ) = Al(7'(w)W1)l, (7' (w)W>). By Proposition 3.2, we get (7.2). We

thus conclude that
Q(wg'w) = Q(g")e(m)e(r @ n)n(=1)",

if O(g',n, f') # 0. Since e(m)e(mr @ n)n(—1)" = (—1)", by Lemma 2.8, we conclude that ¢’ matches
a f-elliptic element in G. In conclusion, we have shown that if ¢’ is not -elliptic or does not match
any element in G, then O(¢,n, f') = 0. By Proposition 2.9, there is an f € C2°(G) which matches
f’. By Proposition 5.3 and the nonvanishing result (7.1), we conclude that O(1, f) # 0.

By Corollary 7.2, we can find an H-distinguished representation 7 of G so that either Iy, (f’) #
0 or Iyp(r)en( f’) # 0. However by our very choice, f is essentially a matrix coefficient of 7/. Thus
we conclude that 7/ = JL(7) or JL(7) ® 7. This implies that either 7 = 7 or 7 = 7 ® 7. Note that 7
is H-distinguished and thus so is T®n as 7 is trivial on H. It follows that 7 is H-distinguished. [

The following proposition takes care of the final piece of the main theorem, i.e. assumption (b)

in Theorem 1.1.

Proposition 7.4. Assume that G = GL,,(D) where D is the quaternion division algebra over F'.
Let 7 be an irreducible supercuspidal representation of G and 7' be its Jacquet—Langlands transfer to
G'. Assume that n > 1 and e(7")e(r’ @ n)n(—=1)" = (=1)". Then 7’ is supercuspidal. In particular

the converse implication under the assumption (b) holds.

Proof. Assume that 7’ is not supercuspidal. Then it is a discrete series representation of G’. Let
us keep the notation from Subsection 4. By the classification of discrete series representation of G’,

7’ is a the unique irreducible quotient of

where 7 is a supercuspidal representation of GLy,,/4(F). By | , Theorem B.2.b.1)], 2n is the
least common multiple of 2 and 2n/q, ¢ > 1. It then follows that ¢ = 2 and n is odd. By the
calculation in Subsection 4.2 (note that we assume n > 1), we have e(n')e(n’ @ n)n(—=1)" = 1 #
(—1)™. This is a contradiction and hence 7’ is supercuspidal.

The converse implication of Theorem 1.1 under the assumption (b) then follows from Theo-
rem 7.3. t

APPENDIX A. FACTORIZATION OF SPLIT LINEAR PERIODS

In this appendix we factorize global linear periods into local linear forms. The main idea is
already in the work of Bump, Friedberg, Jacquet and Matringe on linear periods. We just need to

make the constants explicit.
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A.1. Setup. We consider a slightly more general setting to allow twists in the linear periods. We
also make minor modifications in our notation for convenience. We let F' be a global field and
¥ : F\Ap — C* a nontrivial additive character. We denote by G,, = GL, r, Z, be its center, P,
the mirabolic subgroup, N,, the upper triangular unipotent subgroup. We let ¢ : G, x G, = Gop,
be the embedding so that the image is the centralizer of diag[l,—1,---,1,—1].

As we are going to make precise factorization with no ambiguity on the constants, we need to
normalize our measures carefully. For the unipotent groups, e.g. N, we use the self-dual measures
both locally and globally. For G, let us choose the following measure. Let v be any place of F.
we write g = (gij) € Gn(Fy), gij € Fy, and put

d*g = (det 9)7' [[dgijs  dg = Cr, (1R, (2) -+~ Cr, (n)dg.

When v, is unramified, under the measure dg the volume of G, (0, ) equals 1. If g = (g,) € Gn(AR),

dg =[] dg.

A.2. Integral representation. Let ¢ € S(A’) (row vector), and e, = (0,---,0,1). Put

we put

fs(s, h) = |det h[s/ ¢(aenh)|a|™da,
Ag

and for Rs >> 0, define the Eisenstein series

E(s,h, ¢) = > fo(s,7vh),
YEZn (F) P (F)\Gn(F)
By | , Lemma 4.2] the integral is absolutely convergent and has a meromorphic continuation to

the whole complex plane, with at most simples poles at s = 0 or s = 1. The residue at s = 1 equals

vol(F*\AL) 30)

n

where (E stands for the Fourier transform

Hy) = ()¢ (‘zy)da.

¢
A%
Let 7 be an irreducible cuspidal automorphic representation of G, (Ar) and ¢ € 7. Let us now

consider the integral

I(s,0,x, )

/ o(1(h1, ha))E(25, ho, ¢)|det hyhy ' [*~2 y(det hyhy V)dhydhs.
Zon(Ap) (G X Gn) (F)\(Gn X Gn)(AR)

This integral is absolutely convergent away from the poles of the Eisenstein series and has at most

simple poles at s =0 and s = % We have

1 ~
Res,_1 (s, X, ¢,6) = 5~ vol(F*\AR)$(0) P, X),
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where P(ip, x) is the (split) linear period

P(SD’ X) = / (,O(L(hl, hg))x(det hlhgl)dhldhg
Z27L(AF)(GnXGn)(F)\(GnXG’H)(AF)

A.3. Factorization. Let ¢ € m and

W(g) = / o(ng)Pm)dn
NZTL(F)\NQH(AF)

be the Whittaker function. Let W(my,,,) be the Whittaker model of , for each place v. We fix
a factorization W, = ®,W,, into local Whittaker functions, W, € W(m,,,). We also assume that
the Schwartz function ¢ is factorizable, i.e. ¢ = ®@,¢, where ¢, € S(F)'). Put

I’U(S7 W'UJ X’U? ¢U)
:/ Wy (1(ha, ha))B(enha)xo(det hihy ) |det 7y |*~ 2 |det ho| ™t 2 dRydhs.
(N X N ) (Fu )\ (G X i) ()

By | ], this integral is convergent for Rs > 0 and in particular at s = % For all s we can
choose data so that this integral does not vanish. For a nonarchimedean place v, if v, is unramified,

Xv is unramified, Wy is G, (op, )-fixed, Wy (1) = 1, ¢, = 1on , we have
I’U<3a Xvs W, ¢v) = L(s, Ty @ Xo) L(28, 7y, /\2)-

Moreover we have

I(S, ®5 X5 <f>) = HIU(S7 an Xvs ¢U)7

when s >> 0.
Let us compute Iv(%, Wy, Xv, &v). We decompose ha = pu where p € P, and u € G, is of the

1,_
form | " !

) . Thus ¢(enh2) = ¢(enu) and the measure |det ha|dhy decomposes as dgpdu where
* *

drp is the right invariant measure and du is the additive measure on F'. Here note that if we
a v
write p = ( 1), then dgp = dadv. By [ , Corollary 4.18], a linear form on m, that is

(G X Pp), xi;b)-invariant is also (¢(G,, x Gp), x; )-invariant. It follows that
v v

1

I’U<77 W’Ua X’U? ¢U) ==

5 Wo(e(h1, h2))po(enha)x(det hihg H)dhydhs

/(\NHXNn)(Fv)\(GnXGH)(FU)

= / Wy (t(h1, pu))dy (equ)x(det hyp~tu~t)dhidgpdu
(N X Np) (Fo)\(Gn X Pn) (F)

—5:(0) / W (u(h, p))x(det by )dhydpp.
(NnXNp)(Fu)\(Gn X Pr)(Fy)

Let us define the local (split) linear periods by
o) = [ W, (u(r, p)x(det hip~)dhidzp,

(N X N ) (Fo)\(Gr X Pn)(Fy)
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and its normalized version

P’U W’U)X’U
PE(WQMXU) = 1 ( ) N
L(§,7rv ®Xv)L(1a7rva/\ )
Then we have
1
(A1) P(p,x) = nvol(F*\AL)~ 1L(2,7r®x) Ress—1 L(s, 7, A?) HP W, Xo)-

Note that almost all terms equal one in the product.

A.4. Spherical characters. With this we can factor the spherical character defined in the main
body of the paper. We define the inner product on 7 and on W(m,, 1,) are given as follows. On 7,

we define

(p,¢) = / v(9)¢'(9)dg.
On W(my, ¢,) we define

(W, W3)

W, ( )W/( )dRP, <anW1/;>u = m

wowi = |
N2n(Fv)\P2n(Fv)

Note that if ¢, is unramified, W, is Ga,(0p,)-fixed, W, (1) = 1, then
<Wv7 ‘/Vv>h =

Then if W, is the Whittaker function attached to ¢ and W, = ®,W,, then we have

(A2) (o) = PR S T T v, W

v

Recall that (in the present notation), for f = ®f, € C°(Gan(Ar)), we have defined
Z P(x )P(i0,m),

where ¢ runs over an orthonormal basis of m. we have also defined its local version

Iﬂ—’U(f'U) — Z PU(Wv(fv)Wv, 1)Pv(Wv777v)‘

- Wy, W)

where W, runs over an orthogonal basis of W(m,,1,). We also have its normalized version

Pi (o fo) Wo, 1) PE(Wa,
B ) = 3 P e R,
where W, runs over an orthogonal basis of W(my, ¥y). If E,/F, is unramified, 1, is unramified, m,
is an unramified representation, f, = lgr,,(op,). then IEFU( fo) =1
If 7 does not admits nonzero linear period, then I is identically zero. Otherwise I, is not
identically zero and  is self-dual. It then follows from the factorization of linear periods (A.1) and

the factorization of inner product (A.2) that

L(3,m)L(5, 7 ®n) Ress—1 L(s,m,A?)

Il 7rv

_n x\ Al —1
Ix(f) = 5 vol(F"\AF) L(L. . Sym?)
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