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1. Introduction

The goal of this paper is to relate linear models on central simple algebras to local root numbers.

1.1. Main results. Let E/F be a quadratic extension of local nonarchimedean fields of charac-

teristic zero and η : F×/NE× → {±1} the quadratic character associated to this extension. We

fix a nontrivial additive character ψ : F → C×. Let A be a central simple algebra (CSA) over F of

dimension 4n2 with a fixed embedding E → A and let B be the centralizer of E in A. Then B is a

CSA over E of dimension n2. Let G = A× and H = B×, both viewed as algebraic groups over F .

Let π be an irreducible admissible representation of G. We say that π is H-distinguished if

HomH(π,C) 6= 0.

Let G′ = GL2n(F ) and π′ be the Jacquet–Langlands transfer of π to G′. Let H ′ = GLn(F ) ×
GLn(F ), embedded in G′ as the centralizer of diag[1,−1, · · · , 1,−1]. We say that π′ is H ′-

distinguished if

HomH′(π
′,C) 6= 0.

These Hom spaces are all at most one dimensional [AG09, JR96, BM]. Let ε(π′) = ε(π′, ψ) be

the local root number. It equals ±1 and is independent of the choice of ψ as π′ is self-dual and

symplectic.
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Theorem 1.1. Let the notation be as above. If π is H-distinguished then the following two condi-

tions hold.

(1) The Langlands parameter of π′ takes value in Sp(2n,C). If π′ is generic, this is equivalent

to π′ being H ′-distinguished.

(2) ε(π′)ε(π′ ⊗ η)η(−1)n = (−1)r. Here r is the integer so that A = Mr(C) with C a central

division algebra, or in other words, r is the split rank of G.

Conversely, if π′ satisfies conditions (1) and (2) above, and assume that either (a) π′ is supercus-

pidal or (b) π is supercuspidal and G = GLn(D) where D is a quaternion algebra over F (split or

not), then π is H-distinguished.

This is the combination of Theorem 4.1, Theorem 7.3 and Proposition 7.4. When n = 1, this

recovers the theorem of Saito and Tunnell. In general it confirms a conjecture of Prasad and Takloo-

Bighash [PTB11, Conjecture 1] in many cases. The conjecture of Prasad and Takloo-Bighash

assumes further that π′ is generic, but it is not necessary according to the result of Suzuki [Suz].

We will extend the converse implication to the case π being a discrete series representation in a

subsequent paper, at least when G = GLn(D). It requires some techniques of a different nature.

We however should note that the converse implication, as stated in the theorem, is not expected

to hold if π is not a discrete series representation.

The motivation of this paper comes from the conjecture of Sakellaridis and Venkatesh on the

canonical factorization of linear periods. Before we attack the global factorization problem, there

are many local issues that need to be addressed. This paper deals with the first main local issue:

characterizing the existence of linear models using local root numbers.

Our argument is based on relative trace formulae proposed by Guo [Guo96]. It exploits a novel

idea of making use an involution on the space of test functions which we would like to call it

the involution method. We will outline the argument below. There is a different approach to

this type of problems, first used by Waldspurger to prove the local Gross–Prasad conjecture for

orthogonal groups. It makes use of the (usual) local trace formula technique and the theory of

twisted endoscopy. This seems applicable to our problem at hand, but our approach is much

simpler and conceptual. For one implication, one can also prove it using Prasad’s global-to-local

argument. See Remark 4.2. It however does not seem to give any results in the other direction.

Remark 1.2. In a previous version of this paper that has been circulated for a while, the theorem is

proved under the working hypothesis of the full fundamental lemma and Howe’s finiteness conjecture

for symmetric spaces. It turns out that in the present situation, both can be bypassed. So now

the result is unconditional. Also certain germ expansions of the orbital integrals and spherical

characters were developed and played a definitive role in the argument in that version. We avoids

them in the present version and hence the argument is much simpler.

1.2. Outline of the argument. We very briefly outline the argument using the involution method.

We will assume π and π′ are supercuspidal representations in this subsection for simplicity.
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Assume that π is H-distinguished and we fix a nonzero element l ∈ HomH(π,C). Then one

attaches to π a distribution on G by

Jπ(f) =
∑
v

l(π(f)v)l(v), f ∈ C∞c (G).

This distribution is not identically zero. In particular we can pick f to be an essential matrix

coefficient of π so that Jπ(f) 6= 0. Here and below by an essential matrix coefficient we mean that

f becomes a matrix coefficient of π after integration along the center of G.

It is relatively easy to prove that π′ is H ′-distinguished. Lapid and Mao [LM17] defined the

following H ′-invariant linear form on π′. Let P ′ be the usual mirabolic subgroup of G′ and N ′ the

upper triangular unipotent subgroup of G′. LetW =W(π′, ψ) be the Whittaker model of π′. Then

for W ∈ W(π′, ψ), put

l(W ) =

∫
N ′∩H′\P ′∩H′

W (h)dh.

Lapid and Mao showed that this integral is absolutely convergent and defines a nonzero H ′-invariant

linear form on π′. It is a curious fact that if π′ is H ′-distinguished then so is π′ ⊗ η (this in fact

holds for all irreducible generic representations). So we also put

lη(W ) =

∫
N ′∩H′\P ′∩H′

W (h)η(deth)dh.

We define a distribution on G′ by

Iπ′(f
′) =

∑
W

l(π′(f ′)W )lη(W ), f ′ ∈ C∞c (G′),

where W runs over an orthonormal basis of W(π′, ψ).

Guo proposed a relative trace formula in [Guo96]. There is a notion of smooth matching of

orbits and the test functions on G and on G′. We are going to recall it in the main context of the

paper. It follows from the work of C. Zhang [Zha15] that the smooth transfer of functions exists.

Strictly speaking his result only covers the cases when H = GLn(E). In general there is a little

bit of extra work on the matching of orbits. Once we have this matching of orbits, the argument

of C. Zhang goes through without any difficulty and can be copied vabatim. Now we assume the

full fundamental lemma of Guo for the moment to streamline the argument. In the actual proof

of Theorem 1.1, we will use a global version of the argument below to bypass the full fundamental

lemma. Assuming the full fundamental lemma, we can show that there is a nonzero constant κ(π)

so that

(1.1) Iπ′(f
′) = κ(π)Jπ(f),

whenever f and f ′ are smooth transfer of each other.

Here is the most important observation that is the starting point of this series of work. We refer

to this as the involution method. There is an involution f ′ 7→ f ′w on C∞c (G′) given by

f ′w(g) = f ′(wgw), w is the longest Weyl group element in G′.
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On the one hand, Lapid and Mao [LM17] have shown that

l(π′(W )) = ε(π′)l(W ), W ∈ W(π′, ψ).

It then follows that

Iπ′(f
′w) = ε(π′)ε(π′ ⊗ η)η(−1)nIπ′(f

′).

On the other hand, the property of smooth matching of test functions implies that if f ′ and f

match and f has only elliptic orbital integrals, then f ′w and (−1)rf also match. We will show

that if we take f to be an essential matrix coefficient of π then f has only elliptic orbital integrals.

Therefore we conclude that

ε(π′)ε(π′ ⊗ η)η(−1)nκ(π)Jπ(f) = ε(π′)ε(π′ ⊗ η)η(−1)nIπ′(f
′) = Iπ′(f

′w) = (−1)rκ(π)Jπ(f),

for all matrix coefficient f . Since we can take some essential matrix coefficient f so that Jπ(f) 6= 0

and κ(π) 6= 0. We conclude that ε(π′)ε(π′ ⊗ η)η(−1)n = (−1)r. This proves one implication of the

theorem.

The converse implication is more involved. Assume that π′ is H ′-distinguished. We first define

two “minimal unipotent orbital integrals” on G′, which we denote by O(ζ±, η, f
′). We show by a

lengthy computation that if f ′ is an essential matrix coefficient of π′, then

O(ζ+, η, f
′) = CIπ′(f

′),

where C is some nonzero constant. In particular there is an essential matrix coefficient f ′ such that

O(ζ+, η, f
′) 6= 0. For this choice of f ′, by the result of Lapid and Mao again, we have

O(ζ−, η, f
′) = O(ζ+, η, f

′w) = ε(π′)ε(π′ ⊗ η)η(−1)nO(ζ+, η, f
′)

and thus

O(ζ+, η, f
′) + ε(π′)ε(π′ ⊗ η)η(−1)nO(ζ−, η, f

′) 6= 0.

This, together with the fact that ε(π′)ε(π′ ⊗ η)η(−1)n = (−1)r, imply that

O(ζ+, η, f
′) + (−1)rO(ζ−, η, f

′) 6= 0.

Now using the involution method and the condition ε(π′)ε(π′ ⊗ η)η(−1)n = (−1)r again, we can

show that any regular orbital integral of f ′ vanishes if this orbit does not match one on G. Thus

there is a function f ∈ C∞c (G) that matches f ′. By direct computation we have (up to some

nonzero constant we omit)∫
H
f(h)dh = O(ζ+, η, f

′) + (−1)rO(ζ−, η, f
′) 6= 0.

Using global arguments we can show that there is an H-distinguished irreducible representation τ

of G such that either Iτ ′(f
′) 6= 0 or Iτ ′⊗η(f

′) 6= 0, τ ′ being the Jacquet–Langlands transfer of τ

to G′. But since f ′ is an essential matrix coefficient of π′, we see that π is isomorphic to either τ

or τ ⊗ η. But as τ is H-distinguished, so is τ ⊗ η. We have thus shown that π is H-distinguished
4



because η is trivial on H. Note that if we had the full fundamental lemma, we should have been

able to conclude that π is isomorphic to τ .

In summary, the main theorem relates the epsilon factor and some geometric data. In the

argument, we are making use of the involution both on the spectral and geometric side of the

relative trace formula. One applies to the spherical characters (spectral) and pulls out the epsilon

factor, the other applies to smooth transfer (geometric) and pulls out (−1)r. The interplay between

geometric and spectral information is always the theme of the trace formula.

1.3. Organization of the paper. The paper is divided into two parts, Section 2 to 4 is the first

and Section 5 to 7 is the second. The first part proves one implication of theorem (computing local

root number of distinguished representations), while the second part proves the other implication.

Each part contains three sections and are ordered as “orbital integrals”, “spherical characters”,

“proof of the main results”. The precise content of each section is reflected by the table of contents.

1.4. Acknowledgement. I thank Wei Zhang for bringing the problem with linear periods to my

attention and Räphael Beuzart-Plessis, Pierre-Henri Chaudouard, Qirui Li, and Miyu Suzuki for

many helpful discussions. I thank Ye Tian and Shouwu Zhang for their constant support. I am

also grateful to the anonymous referee whose comments improve and clarify several arguments in

the paper. This work is partially supported by the NSF grant DMS #1901862.

2. Orbital integrals and smooth transfer

In this section, we assume that E/F is a quadratic field extension of either local or global fields

of characteristic zero.

2.1. The split side. Let us define a permutation matrix σ ∈ G′ by

σ =

(
1 2 · · · n n+ 1 n+ 2 · · · 2n

1 3 · · · 2n− 1 2 4 · · · 2n

)
.

Recall that H ′ is the fixed point of the involution

θ(g) = Ad diag[1,−1, · · · , 1,−1],

on G′. Then σ−1H ′σ embeds in G′ as n× n diagonal blocks. Let

S′ = {g−1θ(g) | g ∈ G′} ⊂ G′

This is a closed subvariety of G′ over F . Elements of S′ are all of the form

σ

(
A B

C D

)
σ−1, A2 = 1n +BC, D2 = 1n + CB, AB = BD, DC = CA.

The group H ′ × H ′ acts on G′ by left and right multiplication and the group H ′ acts on S′ by

conjugation. We say that an element in S′ (or the orbit it represents) is θ-semisimple or θ-regular

if it is so (in the usual sense) in G′. We say that an element g ∈ G′ (or the orbit it represents)
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is θ-semisimple or θ-regular if its image in S′ is so. We say an element in S′ is θ-elliptic if it is

θ-regular and its stabilizer in H ′ is an elliptic torus and an element in G′ θ-elliptic if its image in

S′ is so.

In [Guo96], the following results are proved.

Lemma 2.1. We have the following assertions.

(1) An element s = σ

(
A B

C D

)
σ−1 ∈ S′ is θ-regular if and only if A is regular in Mn(F ) in

the usual sense and det(A2 − 1n) 6= 0. It is θ-elliptic if and only if A is elliptic in Mn(F )

in the usual sense.

(2) Let si = σ

(
Ai Bi

Ci Di

)
σ−1 ∈ S′, i = 1, 2, be θ-regular. Then s1 and s2 are in the same

H ′-orbit if and only if A1 and A2 are in conjugate in Mn(F ).

(3) Every θ-regular orbit in G′ contains an element of the form

σ

(
1n a

1n 1n

)
σ−1,

and a is regular in GLn(F ) in the usual sense and det(a− 1n) 6= 0. Moreover it is θ-elliptic

if and only if a is regular and elliptic in GLn(F ) in the usual sense.

Let f ′ ∈ C∞c (G′) and g ∈ G′ be a θ-regular element. By the determinant function on H ′, we

mean deth = deth′ deth′′ where h = (h′, h′′) ∈ H ′, h′, h′′ ∈ GLn(F ). If F is a local field, we define

the orbital integral

O(g, η, f ′) =

∫
(H′×H′)g\H′×H′

f ′(h1gh2)η(deth2)dh1dh2.

If F is a global field, we define the global orbital integral by the same formula, integrating over the

adelic points instead. Here are below in this paper, for any group G which acts on some set X we

denote by Gx the stabilizer of x in Gx. To see that η is trivial on (H ×H)g we may assume that

g = σ

(
1n a

1n 1n

)
σ−1 where a ∈ GLn(F ) is regular in the usual sense. Then (H ×H)g consists of

elements of the form (h1, h2) where h−11 = h2 = σ

(
h′

h′

)
σ−1 and h′ ∈ GLn(F ) commutes with

a. Then η(deth2) = η(deth′)2 = 1. As the orbit is closed, this integral is absolutely convergent.

The orbital integral is thus well-defined.

Let us define a transfer factor for a θ-regular g ∈ G′ by

Ω(g) = η(detB), g−1θ(g) = σ

(
A B

C D

)
σ−1.

Since g is θ-regular we have A2 − 1n = BC is nonsingular. Thus the definition make sense. Let w

be the longest Weyl group element in G′, i.e. the matrix with antidiagonal elements all ones. Note
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that wσ = σw. A little computation gives

(2.1)
Ω(wgw)

Ω(g)
= η(det(A2 − 1n)).

For later use we also need to consider the “Lie algebra” of H ′\G′. Let

s′ =

{
σ

(
X

Y

)
σ−1

∣∣∣ X,Y ∈Mn(F )

}
.

The group H ′ acts on s′ by conjugation. An element in σ

(
X

Y

)
σ−1 is θ-regular (resp. θ-elliptic)

if XY is invertible and is regular (resp. elliptic) in GLn(F ) in the usual sense. Let f ′ ∈ C∞c (s′).

Then we define the orbital integral

O(γ, η, f ′) =

∫
H′γ\H′

f ′(h−1γh)η(deth)dh,

if γ is θ-regular.

Let f ′ ∈ C∞c (G′). We define f̃ ′ ∈ C∞c (S′) as

f̃ ′(g−1θ(g)) =

∫
H′
f ′(hg)dh, g ∈ G′.

We fix a H ′-invariant neighbourhood ω′ of 0 ∈ s′ so that the Calyey transform

c : ω′ → S′, ξ 7→ (1 + ξ)−1(1− ξ)

is defined and is a homeomorphism, and denote by Ω′ be its image in G′. We define f ′\ ∈ C∞c (s′) as

f ′\(ξ) =

 f̃ ′(c(ξ)), ξ ∈ ω′;

0, ξ 6∈ ω′.

Then one checks that

O(γ, η, f ′\) = O(g, η, f ′), γ ∈ ω′, c(γ) = g−1θ(g).

Indeed one may take g = 1 + γ.

2.2. Nonsplit side: orbits. Let us recall the setting. Let A be a CSA over F of dimension 4n2

with a fixed embedding E → A. Let B be the centralizer of E in A, which itself is a CSA of

dimension n2 over E. We fix a τ ∈ F×\F×,2 so that E = F [
√
τ ]. Then conjugating by

√
τ is an

involution on A whose set of fixed points is B. We denote this involution by θ. We denote by νA

and νB the reduced norm on A and B respectively.

Put G = A×, H = B×, both viewed as algebraic groups over F , and

S = H\G = {g−1θ(g) | g ∈ G}, ρ : G→ S, g 7→ g−1θ(g),

as usual. We also let s = Aθ=−1 the (−1)-eigenspace of θ, which is isomorphic to the tangent space

of S at 1.
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The group H acts on S and s by conjugation. We say that an element s ∈ S is θ-semisimple or

θ-regular if it is semisimple or regular semisimple in G in the usual sense. We say that an element

X ∈ s is θ-semisimple if X2 ∈ B is semisimple. We say that X ∈ s is θ-regular if X2 is invertible

and regular in the usual sense. Assume that X ∈ s is invertible in A. Then we claim that the

reduced characteristic polynomial of X2 have coefficients in F , i.e. νB(λ − X2) ∈ F [λ]. We note

that X and elements in F commute and X
√
τ = −

√
τX. Thus conjugation by X is an extension

of the Galois conjugate of E/F . Therefore

νB(λ−X2) = νB(λ−X−1X2X) = νB(λ−X2).

Thus νB(λ −X2) ∈ F [λ]. We say an element X ∈ s is θ-elliptic if X2 is regular semisimple in B

(in the usual sense) and its reduced characteristic polynomial is irreducible over F .

Let us study the θ-regular orbits in s under the action of H.

Lemma 2.2. Assume that X1, X2 ∈ s are both θ-regular. Then X1 and X2 are conjugate by an

element in H if and only if X2
1 and X2

2 are conjugate by an element in H.

Proof. The “only if” direction is clear. Let us show the “if” direction. By replacing X1 by its

H-conjugate, we may assume that we in fact have X2
1 = X2

2 ∈ B.

We note that the case where n = 1 is clear and can be checked by hand directly. Even though we

have assume that E is a field, when n = 1, the analogue of this lemma even holds when E = F ×F .

We will call this the quaternion algebra case. We are going to reduce the general case to this one.

Let us first assume that X1 hence X2 are both θ-elliptic. The argument in this paragraph is

communicated to me by Qirui Li, and it is implicit in his thesis. Put L = F [λ]/(νB(λ − X2
1 )).

This is a degree n field extension of F . We embed L in A by sending λ to X2
1 . Let D be the

centralizer of L in A. Then D is a quaternion algebra over L. Since θ(L) = L, we have θ(D) = D.

We let D− = s ∩ D. Then X1, X2 ∈ D−. We note that L ∩ E = F as elements in E but not

in F do not commute with X1 while elements in L commute with X1. But E ⊂ D and hence

K = L ⊗ E = E[λ]/(νB(λ − X2
1 )) is a quadratic etale algebra over L and D ∩ B = K. By the

quaternion algebra case, we conclude that there is an h ∈ K so that X1 = hX2h
−1. This proves

the lemma when X1 and X2 are θ-elliptic.

In general, when X1 and X2 are both θ-regular, let us reduce to the θ-elliptic case. First we note

that

νA(λ−X1) = νB(λ2 −X2
1 ).

In fact, as reduced characteristic polynomials are invariant under base field extensions we may

extend the base field to the algebraic closure of F and the equality is obvious. We also note that

if f(λ) ∈ F [λ] is irreducible then f(λ2) is either irreducible or decomposes as f(λ2) = p(λ)p(−λ)

where p ∈ F [λ] is irreducible and p(λ) 6= p(−λ).

The reduced characteristic polynomial (as an element of B) of X2
1 decomposes

νB(λ−X2
1 ) = p̃1(λ) · · · p̃a(λ)q̃1(λ) · · · q̃b(λ),
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where p1, · · · pa and q1, · · · qb are all irreducible polynomials in F [λ], and pi(λ) = p̃i(λ
2) ∈ F [λ],

i = 1, · · · , a, are irreducible while q̃j(λ
2) = qj(λ)qj(−λ), j = 1, · · · b. Therefore the reduced

characteristic polynomial of X1 (as an element of A) factors as

νA(λ−X1) = p1(λ) · · · pa(λ)q1(λ)q1(−λ) · · · qb(λ)qb(−λ).

As X2
1 = X2

2 , we conclude that the reduced characteristic polynomial of X2 (as an element of A) is

the same as that of X1.

Let us put V = Dr as a right D-module and then A is identified with End(V ) where the action

of elements in A is from the left. Let us also put Wi = Ker pi(X1) = Ker p̃i(X
2
1 ), i = 1, · · · , a and

Uj = Ker qj(X1)qj(−X1) = Ker q̃j(X
2
1 ), j = 1, · · · , b. Then

V = W1 ⊕ · · ·Wa ⊕ U1 ⊕ · · · ⊕ Ub.

By definition, these Wi’s and Uj ’s are X1 invariant. Since X2
1 = X2

2 , they are also X2 invariant.

Therefore we have

X1, X2 ∈ EndD(W1)× · · · × EndD(Wa)× EndD(U1)× · · · × EndD(Ub).

As A contains E, and X2
1 = X2

2 commute with E, each of these endomorphism spaces contains

E. Moreover X1 and X2 anti-commutes with E, i.e.
√
τXi = −Xi

√
−τ , i = 1, 2, in each of these

endomorphism spaces. It is also clear from the construction that X1 and X2 are θ-elliptic in each

of these endomorphism spaces, as p̃i’s and q̃j ’s are irreducible in F [λ]. Therefore we are reduced to

the θ-elliptic case. �

We now turn to the case of the symmetric space S. We may write an element g ∈ G as g = g++g−

where g+ ∈ B and g− ∈ s. Then g ∈ S if and only if (g+)2 − 1 = (g−)2 and g+g− = g−g+. We say

that s ∈ S is θ-semisimple or θ-regular if it is so in G in the usual sense. One can prove, in the same

way as [Guo96] that s = s+ + s− ∈ S is θ-regular if and only if νB((s+)2− 1) 6= 0 and s+ is regular

in B in the usual sense. In particular we have s− is invertible (in A). By the same argument as in

the case of s, we see that if s = s+ + s− is θ-regular, then the reduced characteristic polynomial of

s+ is in F [λ]. We say that s = s+ + s− is θ-elliptic if it is θ-regular and the reduced characteristic

polynomial of s+ is irreducible over F . We say that an element in G is θ-semisimple, or θ-regular,

or θ-elliptic if its image in S is so. One also proves, by the same argument as [Guo96] that every

θ-regular orbit in G contains an element of the form g = 1 + a where a ∈ s and νB(a2 − 1) 6= 0.

Moreover g is θ-elliptic if and only if a is θ-elliptic.

Lemma 2.3. Suppose that si = s+i + s−i ∈ S, i = 1, 2, are θ-regular. Then s1 and s2 are in the

same H-orbit if and only if s+1 and s+2 are conjugate by H in B.

Proof. Only the “if” direction needs proof. Let us put

αi = s−i (1 + s+i )−1 ∈ s, i = 1, 2.
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By assumption s+i , i = 1, 2, are regular in B. As α2
i = (s+i − 1)(s+i + 1)−1, i = 1, 2, we see that

α1 and α2 are θ-regular elements in s. Then that s+1 and s+2 are in the same H-orbit implies that

so are α2
1 and α2

2. By lemma 2.2, this is equivalent to that α1 and α2 are in the same H-orbit. So

choose h ∈ H such that h−1α1h = α2. Then h−1α2
1h = α2

2. Therefore

(h−1s+1 h− 1)(h−1s+1 h+ 1)−1 = (s+2 − 1)(s+2 + 1)−1.

This implies that h−1s+1 h = s+2 . Combing this with h−1α1h = α2, i.e.

h−1s−1 h(1 + h−1s+1 h)−1 = s−2 (1 + s+2 )−1,

we get h−1s−1 h = s−2 and hence h−1s1h = s2. �

2.3. Nonsplit side: orbital integrals. Assume that F is a local field. Let f ∈ C∞c (G) and g ∈ G
be θ-semisimple. Define the orbital integral

O(g, f) =

∫∫
(H×H)g\H×H

f(h1gh2)dh1dh2.

This integral is absolutely convergent. If F is a global field, then we define the orbital integral by

the same formula, integrating over the adelic points of H ×H instead.

For the rest of this subsection, let us assume that F is local. We prove a formula which is usually

referred to as “parabolic descent” of orbital integrals.

Write G = GLr(C) where C is a central division algebra. If dimC is even, then there is an

embedding E → C and we let D be the centralizer of E in C. We have H is isomorphic to GLr(D).

Let r = r1 + · · · + rs be a partition of r and PG = MGNG, PH = MHNH the (standard upper

triangular) parabolic subgroups of G and H corresponding to this partition of r respectively. We

also put C− be the subspace of C consisting of element c such that ce = −ec for all e ∈ E. If dimC

is odd, then r is even CE = C ⊗F E is again a central division algebra and H ' GLr/2(CE). Let

r = r1 + · · · + rs be a partition of r by even ri’s . and PG = MGNG, PH = MHNH the (standard

upper triangular) parabolic subgroups of G and H corresponding to this partition of r respectively,

i.e. MG ' GLr1(C)× · · ·GLrs(C), MH ' GLr1/2(CE)× · · · ×GLrs/2(CE).

Let g ∈ MG be θ-regular (in G). Note that this implies that it is also θ-regular for the pair

(MG,MH). Let f ∈ C∞c (G). By definition

O(g, f) =

∫
(H×H)g\H×H

f(h1gh2)dh1dh2.

Choose an open compact subgroup K of H in good position with PH . Put

fK(g) =

∫
K
f(gk)dk, f (PG)(g) = δPG(g)

1
2

∫
NG

fK(gn)dn.

Let h1 = k1m1n1 and h2 = n2m2k2 be the Iwasawa decompositions of h1 and h2 respectively, where

m1,m2 ∈ MH , n1, n2 ∈ NH and k1, k2 ∈ K. Then, up to some nonzero constant depending only
10



on the choice of the measures, we have

(2.2) O(g, f) =

∫
(MH×MH)g\MH×MH

∫
NH×NH

fK(m1n1gn2m2)δP (m1m
−1
2 )dn1dn2dm1dm2.

Lemma 2.4. The map

NH ×NH → NG, (n1, n2) 7→ g−1n1gn2

is bijective and submersive everywhere.

Proof. Let nH and nG be the Lie algebra of NH and NG respectively. The tangent map at the point

(n1, n2) is given by

dδg|(n1,n2) : nH × nH → nG, (ξ1, ξ2) 7→ g−1n1ξ1gn2 + g−1n1gn2ξ2.

As n1 and n2 are both unipotent, the determinant of dδg is independent of n1 and n2, and equals

dδg = dδg|(1,1) which we now compute. First note that if m1,m2 ∈MH , then we have

|det dδm1gm2 | = δPH (m1m2)
−1|det dδg|.

As g is θ-regular, we may assume that g = 1 + a where a ∈ s∩ nG. Then direct computation shows

that the determinant of dδg equals the multiplication of the determinant of

nH → nH , X 7→ (1− a2)−1X,

and the determinant of

nH → s ∩ nG, X 7→ Xa− aX.

As g is θ-regular, both determinant are nonzero. This proves that δ is submersive at any θ-regular

element g. �

Let us put

∆(g) = δPG(g)−
1
2 |det dδg|−1,

where δg is as in the above lemma. As δPH (m) = δPG(m)
1
2 if m ∈MG, it follows from (the proof of)

the above lemma that ∆(g) is bi-MH -invariant. Then by making a change of variable u = g−1n1gn2

in the integral (2.2), we see that

(2.3)

O(g, f) =

∫
(MH×MH)g\(MH×MH)

∫
NG

∆(g)δPG(g)
1
2 fK(m1gum2)δPH (m1m

−1
2 )dudm1dm2

=

∫
(MH×MH)g\(MH×MH)

∫
NH

∆(g)δPG(m1gm2)
1
2 fK(m1gm2u)dudm1dm2

= ∆(g)

∫
(MH×MH)g\(MH×MH)

f (PG)(m1gm2)dm1dm2.

This last integral is an orbital integral on MG of the function f (PG).

To end this subsection, let us explain that if g is θ-regular but not θ-elliptic in G, then there is

a proper parabolic subgroup PG of the above form so that g ∈ MG. In fact let s = g−1θ(g) and

s = s+ + s−. Then s+ is regular but not elliptic in B. If dimC is even (resp. odd), we can find a
11



nontrivial partition of r = r1 + · · ·+ rs (resp. r
2 = r1

2 + · · ·+ rs
2 ), and the parabolic subgroups PG

and PH so that s+ ∈ MH . But s+ is regular and s− commutes with s+ we see that s− ∈ s ∩ nG.

Therefore s ∈MG and g ∈MG.

Lemma 2.5. Assume that f ∈ C∞c (G) satisfies that f (P ) = 0 for all parabolic subgroups of G.

Then all non-θ-elliptic orbital integrals of f vanish. In particular all non-θ-elliptic orbital integrals

of matrix coefficients of a supercuspidal representation vanish.

Proof. This follows from the parabolic descent of the orbital integrals. �

We end this subsection by defining the orbital integrals on s. Let f ∈ C∞c (s) and a ∈ s that is

θ-regular. Then we put

O(a, f) =

∫
H
f(h−1ah)dh.

Let f ∈ C∞c (G). We define f̃ ∈ C∞c (S) as

f̃(g−1θ(g)) =

∫
H
f(hg)dh, g ∈ G.

We fix a H-invariant neighbourhood ω of 0 ∈ s so that the Calyey transform

c : ω → S, ξ 7→ (1 + ξ)−1(1− ξ)

is defined and is a homeomorphism, and denote by Ω be its image in G. For any f ∈ C∞c (G) we

define f\ ∈ C∞c (s) as

f\(ξ) =

 f̃(c(ξ)), ξ ∈ ω;

0, ξ 6∈ ω.
Then one checks that

O(γ, η, f\) = O(g, η, f), γ ∈ ω, c(γ) = g−1θ(g).

Indeed one may take g = 1 + γ.

2.4. Smooth matching. We first consider the smooth matching of orbits.

Let g ∈ G and g′ ∈ G′ be θ-regular elements. Let s = g−1θ(g) = s+ + s− and s′ = g′−1θ(g′) =(
A B

C D

)
. We say that g and g′ match if the reduced characteristic polynomial of s+ equals the

characteristic polynomial of A.

Lemma 2.6. The matching of orbits defines an injective map from the θ-regular H ×H-orbits in

G to the θ-regular H ′ ×H ′-orbits in G′.

Proof. This follows from Lemma 2.1 and Lemma 2.3. �

We next study the matching of θ-elliptic orbits. For this we just need the case F being a local

field. The next lemma shows that the θ-elliptic orbits in G′ coming from G consist of “half” of the

all θ-elliptic orbits in G′.
12



Lemma 2.7. Assume that F is a local field. Let r is the split rank of G. The image of the θ-

elliptic elements of G in G′ consists of elements g′ ∈ G′ such that g′−1θ(g′) =

(
a′ b′

c′ d′

)
with a′

being elliptic and η(det(a′2 − 1n)) = (−1)r.

Proof. Let us begin with the following claim.

Claim. Let f(λ) ∈ F [λ] be an irreducible polynomial of degree n, and η((−1)nf(0)) = (−1)r

where r is the split rank of G. Then there is a θ-elliptic X ∈ s so that νB(λ − X2) = f(λ).

Conversely, if X ∈ s is θ-elliptic, then η(νB(X2)) = (−1)r.

Assuming this claim for the moment, the lemma follows directly. Indeed if g = 1 +a where a ∈ s

and a2 is elliptic in B. We have s = g−1θ(g), s = s+ + s−. A simple computation gives

s+ = (1 + a2)(1− a2)−1, s− = −2a(1− a2)−1.

Then the reduced characteristic polynomial of s+ is irreducible since that of a2 is. If g matches

some g′ ∈ G′, then s+ and a′ has the same characteristic polynomial. In particular a′ is elliptic in

GLn(F ) and

η(det(a′2 − 1)) = η(νB((s+)2 − 1)) = η((s−)2) = η(a2) = (−1)r.

The last equality follows from the claim. Conversely, assume that a′ is elliptic without eigenvalue

±1 and η(det(a′2−1)) = (−1)r. Consider (a′−1)(a′+1)−1 which is again elliptic. Then its reduced

characteristic polynomial f(λ) has the property of being irreducible and η((−1)nf(0)) = (−1)r. By

the claim there is an a ∈ s so that νB(λ− a2) = f(λ). Let g = 1 + a then we check directly that g

matches g′.

We now prove the claim. Let us write A = Mr(C) where C is a central division algebra over F

whose invariant is h
m with rm = 2n and (m,h) = 1. Note that r being odd will force h to be odd.

Let us prove the the first assertion. The existence of X when A is a quaternion algebra is easy

to prove. We are going to reduce the general case to this one. Assume first that f is irreducible

in E[λ]. Let L = F [λ]/(f(λ)) and K = L ⊗ E. Then K is a field of degree n over E. Therefore

there is an embedding K → B. We let u be the image of λ, then νB(λ − u) = f(λ). Now assume

that f(λ) is not irreducible over E. Then f(λ) = p(λ)p(λ) where p(λ) is an irreducible polynomial

in E[λ]. This implies that n = deg f is even and f(0) is a norm, which in turn implies that r is

even. In this case A is isomorphic to M2(C
′) where C ′ is a CSA over F and B is isomorphic to

C ′ ⊗ E. Therefore there is an embedding K = L ⊗ E → B. We let u be the image of λ, then

νB(λ− u) = f(λ).

We will prove that for such a u ∈ B we can find an X ∈ s so that u = X2. Let D be the centralizer

of L in A, then K = L ⊗ E is a subfield of D. By the local class field theory, inv(D) = hr/2.

In other words, D is a quaternion division algebra if and only if r is odd. By the local class field

theory, we have that ηE/F (νB(u)) = ηK/L(u) = (−1)r. Then the existence of X is reduced to the

case of quaternion algebras, which is clear.
13



We now prove the second assertion. We just need to reverse the above argument. Suppose that

X ∈ s is θ-elliptic. Then as above, consider the reduced characteristic polynomial f(λ) of X2 ∈ B,

which is irreducible over E. Then define L = F [λ]/(f(λ)), K = L⊗ E and D just as above. Then

X2 ∈ K ⊂ D, and by the local class field theory we have ηE/F (νB(X2)) = ηK/L(X2) = (−1)r. This

finishes the proof of the claim and thus the proof of the lemma. �

Lemma 2.8. Suppose that g ∈ G and g′ ∈ G′ match and are θ-elliptic. Then

Ω(wg′w)

Ω(g′)
= (−1)r,

where r is the split rank of G. Conversely if a θ-elliptic element g′ ∈ G′ satisfies the above identity,

then there is a θ-elliptic g ∈ G so that g and g′ match.

Proof. This follows from Lemma 2.7 and the identity (2.1). �

We define the smooth matching of orbital integrals. Assume that F is a local field. We say that

a function f ∈ C∞c (G) and a function f ′ ∈ C∞c (G′) match if

Ω(g′)O(g′, η, f ′) =

O(g, f), for all θ-regular matching g ∈ G and g′ ∈ G′;

0, g′ does not match any g ∈ G.

Proposition 2.9. Given f ∈ C∞c (G), there is an f ′ that matches f . Given f ′ with O(g′, η, f ′) = 0

for all θ-regular g′ not matching any g ∈ G, there is an f ∈ C∞c (G) that matches f ′.

Proof. If A = M2n(F ) or A = Mn(D) where D is a quaternion over F , this is the result of

C. Zhang [Zha15]. The general case can be proved by exactly the same method. We omit the

details. �

Lemma 2.10. Assume that f and f ′ match and all orbital integrals but the θ-elliptic ones vanish.

Then (−1)rf and f ′w also match.

Proof. It follows from a simple change of variables that O(g′, η, f ′w) = O(wg′w, η, f ′). Thus

O(g′, η, f ′w) = 0 if g′ is not θ-elliptic or not match any element in G. If g′ matches g ∈ G

and they are θ-elliptic, it is straightforward to check that wg′w and g also match. Then we have

Ω(g′)O(g′, η, f ′w) = (−1)rΩ(wg′w)O(wg′w, η, f ′) = O(g, f).

This proves the lemma. �

Let us consider the matching of orbits and orbital integrals on the level of Lie algebra. We will

be brief since it is almost identical to the case of symmetric spaces. We just need the case F being

a local field.

We say that two θ-regular elements a ∈ s and

(
X

Y

)
match if the reduced characteristic

polynomial of a2 and the characteristic polynomial of XY are the same. This sets up an injective
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map from θ-regular orbits in s to the set of θ-regular orbits in s′. Moreover the image of θ-elliptic

orbits in s under this map consists of θ-elliptic orbits in s′ represented by elements

(
X

Y

)
with

η(detXY ) = (−1)r. We define a transfer factor ω on s′ by

ω

((
X

Y

))
= η(detX).

If f ∈ C∞c (s) and f ′ ∈ C∞c (s′), we say that they match if

ω(γ′)O(γ′, η, f ′) =

O(γ, f), for all θ-regular matching γ and γ′,

0, if γ′ does not match any element in s.

Then again given f ∈ C∞c (s) there is an f ′ ∈ C∞c (s′) that matches it. Conversely if f ′ satisfies

the condition that O(γ′, η, f ′) = 0 for all γ′s that do not match any element in s, then there is an

f ∈ C∞c (s) that matches f ′. The main point to consider the Lie algebra version of matching is the

following result [Zha15, Theorem 5.16]. If f ∈ C∞c (s), we define its Fourier transform by

f̂(ξ) =

∫
s
f(γ)ψ(Tr ξγ)dγ.

Similarly we have the Fourier transform of functions on C∞c (s′).

Proposition 2.11. There is a constant c0 that is an eighth root of unity, such that if f ∈ C∞c (s)

and f ′ ∈ C∞c (s′) match, then so do c0f̂ and f̂ ′.

Though not stated explicitly in the theorem, this constant is computed at the end of [Zha15]

when H = GLn(E). It is a ratio of Weil indices and hence an eighth root of unity. The general

case follows by a similar computation.

Lemma 2.12. Suppose that f ∈ C∞c (G) and f ′ ∈ C∞c (G′) match. Then f\ and η(−2)nf ′\ also

match.

Proof. If a ∈ s and ξ ∈ s′ are θ-regular and match, then so are 1 + a ∈ G and 1 + ξ ∈ G′. We have

O(a, f\) = O(1 + a, f), O(ξ, η, f ′\) = O(1 + ξ, η, f ′).

One also checks that

Ω(1 + ξ) = η(−2)nω(ξ).

The lemma then follows. �

2.5. The fundamental lemma. Assume that E/F is an unramified quadratic extension of local

fields. Let H be the usual Hecke algebra of GL2n(F ), i.e. bi-GL2n(oF )-invariant compactly sup-

ported function on GL2n(F ). We consider the case A = M2n(F ) and B = Mn(E). Note that in

this case G = G′. The fundamental lemma is the following conjecture.

Conjecture 2.13. The functions f = f ′ ∈ H match.
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The main result of [Guo96] is to confirm this conjecture in the case f = f ′ being the unit element

of H.

Proposition 2.14. The functions f = f ′ = 1GL2n(oF ) match.

We expect that Conjecture 2.13 should follows from Proposition 2.14 by a global argument.

2.6. Categorical quotients. We briefly explain the orbits and orbital integrals in terms of cate-

gorical quotients. Let Q be the n-dimensional affine space over F . Let q : s→ Q be the morphism

so that for all γ ∈ s, q(γ) is the coefficients of the characteristic polynomial of γ2. Let q′ : s′ → Q

be the morphism so that for all γ′ =

(
X

Y

)
∈ s′, q′(γ′) is the coefficients of the characteristic

polynomial of XY .

Lemma 2.15. The morphism q : s→ Q and q′ : s′ → Q are categorical quotients.

Proof. This is a geometric statement so we may and will base change to the algebraic closure F

of F . Over the F , the statement for q and q′ are the same. Simple linear algebra yields that q′ is

surjective, and θ-regular elements form an open subset of s′ which is the complement of a principal

divisor. The lemma then follows from the criterion of Igusa [VP89, Theorem 4.13]. �

The induced map s′(F )→ Q(F ) is surjective while s(F )→ Q(F ) is not. Let Qθ−reg ⊂ Q be the

open subscheme whose inverse image is the set of θ-regular elements in s′. Two θ-regular elements

γ ∈ s(F ) and γ′ ∈ s′(F ) match if and only if q(γ) = q(γ′) ∈ Q(F ). Assume that F is a local field.

There is a unique measure on Qθ−reg(F ) so that for all f ∈ C∞c (s) and f ′ ∈ C∞c (s′) we have∫
s
f(γ)dγ =

∫
Qθ−reg(F )

O(γ, f)dq(γ)

and ∫
s′
f ′(γ′)ω(γ′)dγ′ =

∫
Qθ−reg(F )

O(γ′, η, f ′)ω(γ′)dq′(γ′).

The measure on Qθ−reg(F ) is given by the Weyl integraion formula, c.f. [RR96, p. 106], see

also [Zha15, p. 1829].

3. Spherical characters

For the rest of this paper, E/F is a quadratic extension of nonarchimedean local fields of char-

acteristic zero.

3.1. The split side. Let π′ be an irreducible generic representation of G′. We say that π′ is

H ′-distinguished if HomH′(π
′,C) 6= 0. If π′ is H ′-distinguished, then it is self-dual and has trivial

central character [Mat15a], and moreover HomH′(π
′,C) is one dimensional [JR96].

Lemma 3.1. Suppose that π′ is an irreducible generic representation of G′. Then π′ is H ′-

distinguished if and only if π′ ⊗ η is H ′-distinguished.
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Proof. By [Mat17, Corollary 1.1], π′ is H ′-distinguished if and only if it admits a Shalika model

(see the loc. cit. for a explanation of Shalika models). It follows directly from the definition of the

Shalika model that π′ has a Shalika model if and only if π′ ⊗ η has a Shalika model. The lemma

then follows. �

Let P ′ be the usual mirabolic subgroup of G′, N ′ be the upper triangular unipotent subgroup of

G′. Recall that we have fixed a nontrivial additive character ψ and it naturally defines a generic

character of N ′ as usual. Let W =W(π′, ψ) the corresponding Whittaker model of π′. Define

l(W ) =

∫
H′∩N ′\H′∩P ′

W (p)dp, W ∈ W(π′, ψ).

By [LM15b, Proposition 3.2] this integral is absolutely convergent and l defines a nonzero element

in HomH′(π,C). As π′ ⊗ η is also H ′-distinguished, we put

lη(W ) =

∫
H′∩N ′\H′∩P ′

W (p)η(det p)dp, W ∈ W(π′, ψ).

This defines a nonzero element in HomH′(π
′ ⊗ η,C).

We denote by ε(π′) = ε(π′, ψ) = ±1 the local root number. The second equality follows from the

fact π′ is self-dual and is of symplectic type.

Recall that w ∈ G′ is the longest weyl group element.

Proposition 3.2. We have l(π′(w)W ) = ε(π′)l(W ) and lη(π
′(w)W ) = ε(π′ ⊗ η)η(−1)nlη(W ) for

any W ∈ W(π′, ψ).

Proof. The first equality is [LM17, Theorem 3.2]. The second one follows from the first one and

the fact that g 7→W (g)η(det g) is a Whittaker function for π′ ⊗ η. �

Define a spherical character as follows. For any f ′ ∈ C∞c (G′), put

Iπ′(f
′) =

∑
W∈W(π′,ψ)

l(π′(f ′)W )lη(W ),

where the sum runs over an orthonormal basis of W(π′, ψ).

Define an involution f ′ 7→ f ′w on C∞c (G′) as follows by setting f ′w(g) = f ′(wgw).

Corollary 3.3. We have Iπ′(f
′w) = ε(π′)ε(π′ ⊗ η)η(−1)nIπ′(f

′) for any f ′ ∈ C∞c (G′).

Proof. We have

Iπ′(f
′w) =

∑
W∈W(π,ψ)

l(π′(w)π′(f ′)π′(w)W )lη(W )

=
∑

W∈W(π′,ψ)

l(π′(w)π′(f ′)W )lη(π′(w)W )

= ε(π′)ε(π′ ⊗ η)η(−1)n
∑

W∈W(π′,ψ)

l(π′(f ′)W )lη(W ).

This proves the corollary. �
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3.2. The nonsplit side. Let π be an irreducible admissible unitary representation of G. We

say that π is H-distinguished if HomH(π,C) 6= 0. In this case, by [BM], π is self-dual and this

Hom space is one dimensional. We fix a nonzero element l ∈ HomH(π,C) and define the abstract

spherical character attached to π by

(3.1) Jπ(f) =
∑
v

l(π(f)v)l(v), f ∈ C∞c (G),

where v runs over an orthonormal basis of π. We also note that π is H-distinguished if and only if

π ⊗ η is, as η is trivial on H.

3.3. Global arguments. We recall the relative trace formulae of Guo and derive some conse-

quences from it.

We assume that A = Mr(C) where C is a central division algebra over F of dimension d2, with

invariant c
d . Note that c and d are coprime. Thus r and cr have the same parity.

We first globalize the CSAs.

Lemma 3.4. We can find the following data.

(1) A quadratic extension of number fields L/K that splits at all archimedean places, a set of

inert finite places S, |S| = 2n − cr, and a nonarchimedean inert place v0 of K such that

Lv0/Kv0 is isomorphic to E/F . Note that S contains at least two places.

(2) A CSA A over K with an embedding L→ A whose centralizer is B, with the property that

(Av0 ,Bv0) is isomorphic to (A,B), the invariant of Av is 1/2n if v ∈ S, and Av 'M2n(Kv)

for all v 6∈ S ∪ {v0}.

Proof. The existence of L/K is clear. The existence of A and B follows from the global class field

theory. �

Put G = A× and H = B×, both viewed as algebraic groups over K. Let Z be the center of G.

We now globalize the representation π.

Lemma 3.5. With the A and B found in the previous lemma, we can find an irreducible cuspidal

automorphic representation Π of G(AK), such that the integral∫
H(K)Z(AK)\H(AK)

ϕ(h)dh

is not identically zero, where Πv0 ' π, Πv is the trivial representation of G(Kv) if v ∈ S, Πw is a

supercuspidal H(Kw)-distinguished representation for some split place w of K, and Πu is unramified

at all other nonarchimdean places u.

Proof. This follows from [PSP08, Theorem 4.1]. All we need to note is that G(Kv) is compact

modulo the center if v ∈ S and H/Z has no rational characters. �
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Remark 3.6. The last condition that “Πu is unramified” will not be used in our argument. It is

however needed in order to implement the idea of Prasad, c.f. Remark 4.2. If we drop this last

condition, then the lemma also holds if we only assume that π is a discrete series representation,

c.f. [SV17, Remark 16.4.1].

Let us now recall the relative trace formula of Guo and Jacquet. This is a slight extension

of the relative trace formula presented in [FMW18]. We start from the nonsplit side. Let σ be

an irreducible cuspidal automorphic representation of G(AK). We say that σ is globally H(AK)-

distinguished if there is a ϕ ∈ σ such that

P (ϕ) =

∫
H(K)Z(AK)\H(AK)

ϕ(h)dh 6= 0.

If σ is globally H(AK)-distinguished, define a global distribution

Jσ(f) =
∑
ϕ

P (σ(f)ϕ)P (ϕ), f ∈ C∞c (G(AK)),

where ϕ runs through an orthonormal basis of σ. Then σ is globally H(AK)-distinguished if and

only if Jσ 6= 0.

We next consider the split side. We denote by G′ = GL2n,K and H′ the subgroup of G′ which

is the centralizer of diag[1,−1, · · · , 1,−1]. Let Z ′ be the center of G′. Let σ′ be an irreducible

cuspidal automorphic representation of G′(AK). For ϕ ∈ σ′, we define the global linear period

P ′(ϕ) =

∫
Z′(AK)H′(K)\H′(AK)

ϕ(h)dh, P ′η(ϕ) =

∫
Z′(AK)H′(K)\H′(AK)

ϕ(h)η(deth)dh.

We say that σ′ is globally H′(AK)-distinguished if P ′ is not identically zero. We define a global

spherical character attached to σ′ by

Iσ′(f
′) =

∑
ϕ

P ′(σ′(f ′)ϕ)P ′η(ϕ),

where ϕ runs through an orthonormal basis of σ′. In the Appendix, we will show that Iσ′ factors

as a product of certain L-functions and the local spherical characters Iσ′v . In particular if f ′ = ⊗f ′v,
Iσ′(f

′) 6= 0, then Iσ′v(f
′
v) 6= 0.

Let f = ⊗fv ∈ C∞c (G(AK)) and f ′ = ⊗f ′v ∈ C∞c (G′(AK)), we say that f and f ′ match if for all

places v of K, the test functions fv and f ′v match. Remark that we explained only the matching

at nonsplit nonarchimedean places, but at the split places (including the archimedean ones), the

matching is trivial: if v is split, then G(Kv) = G′(Kv) and we simply take fv = f ′v.

Proposition 3.7. Let σ be an irreducible cuspidal automorphic representation of G(AK) with the

property that σv0 ' π, σv is the trivial representation if v ∈ S, and σw is an H(Lw)-distinguished

supercuspidal representation of G(Kw) for some split place w. Let σ′ be the Jacquet–Langlands

transfer of σ to G′(AK). Suppose that f ∈ C∞c (G(AK)) and f ′ ∈ C∞c (G′(AK)) match. Assume that
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fv (and hence f ′v) is supported in the θ-regular locus if v ∈ S and fw = f ′w is an essential matrix

coefficient of σw. Then (with the suitable choice of measures) we have

Jσ(f) + Jσ⊗η(f) = Iσ′(f
′) + Iσ′⊗η(f

′).

Proof. This is proved in [FMW18, Theorem 6.1, identity (6.3)] in a slightly different setting and

our case can be handled in exactly the same way. Note that as we take the trivial representations

of G(Kv), which is compact (modulo center), all orbits appearing in the relative trace formula are

automatically θ-elliptic. �

Proposition 3.8. Let π be an irreducible H-distinguished supercuspidal representation and π′ =

JL(π) be its Jacquet–Langlands transfer to G′. If π is H-distinguished, then π′ is H ′-distinguished.

Proof. By assumtion, for some f ∈ C∞c (G), we have Jπ(f) 6= 0. By Lemma 3.5, we can find

– an irreducible cuspidal automorphic representation σ,

– an f ∈ C∞c (G(AK)) with fv0 = f ,

so that they satisfy the conditions in Proposition 3.7 and with Jσ(f) 6= 0. By [FMW18, Lemma 4.3],

if we suitably modify this f at some nonsplit place of K, then we can even achieve Jσ(f)+Jσ⊗η(f) 6=
0. Let f ′ ∈ C∞c (G′(AK)) be a test function that matches f . In particular f ′ = f ′v0 can be taken to

be any test function that matches f . Using Proposition 3.7, we conclude that

(3.2) Jσ(f) + Jσ⊗η(f) = Iσ′(f
′) + Iσ′⊗η(f

′) 6= 0.

It follows that either Iσ′(f
′) 6= 0 or Iσ′⊗η(f

′) 6= 0, i.e. either σ′ or σ′ ⊗ η is globally H′(AK)-

distinguished. As π′ is a local component of σ′, we conclude that either π′ or π′ ⊗ η is H ′-

distinguished, but they are equivalent by Lemma 3.1. �

Remark 3.9. As suggested by the anonymous referee, there is a different proof of this proposition

without using the relative trace formula. The argument even works without the supercuspidal

assumption. We briefly explain the arguments. First by a result of Suzuki, we are reduced to the

case π being a disrete series representation. In this case π′ is a discrete series representation and

by [LM17, Proposition 3.4], π′ is H ′-distinguished if and only if π′ is symplectic in the sense that the

image of Weil–Deligne representation attached to π′ is contained in Sp2n(C). As remarked before,

by [SV17, Remark 16.4.1] the assertion in Lemma 3.5 still holds for π if we drop the requirement

that “Πu is unramified for all other places”. Let Π′ be the Jacquet–Langlands transfer of Π to

GL2n(AK). It is cuspidal because Π′w = Πw is supercuspidal. Now Π is self-dual as it is globally

distinguished by H(AK), then Π′ is self-dual by the automorphic Chebotarev density theorem.

As Π′ is cuspidal, it is either orthogonal (all local components are orthogonal and L(s,Π′, Sym2)

has a simple pole at s = 1) or symplectic (all local components are symplectic and L(s,Π′,∧2)
has a simple pole at s = 1). It cannot be orthogonal because Π′w is H ′-distinguished and is thus

symplectic. Therefore Π′ is symplectic and so are all its local components. In particular π′ is

symplectic and hence H ′-distinguished.
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4. Computing local root numbers

We restate one implication of the main theorem as follows.

Theorem 4.1. Let π be an irreducible H-distinguished representation of G. Let π′ be its Jacquet–

Langlands transfer to G′. Then π′ is H ′-distinguished and

ε(π′)ε(π′ ⊗ η)η(−1)n = (−1)r

where r is the split rank of G.

The proof occupies this section.

4.1. The supercuspidal case. We present a proof which is essentially the one explained in the

Introduction, but bypasses the full fundamental lemma using a global variant of the argument.

Proof of Theorem 4.1 assuming π is supercuspidal. Assume that π is H-distinguished and super-

cuspidal. Let us keep the notation from the proof of Proposition 3.8, in particular the identity (3.2).

We can find matching test functions f ∈ C∞c (G(AK)) and f ′ ∈ C∞c (G′(AK)) so that

(4.1) Jσ(f) + Jσ⊗η(f) = Iσ′(f
′) + Iσ′⊗η(f

′) 6= 0

with the property that f = fv0 is essentially a matrix coefficient of π. The function f ′ = f ′v0 matches

f . By the parabolic descent of orbital integrals, i.e. Lemma 2.5, O(g, f) = 0 if g is not θ-elliptic in

G. Thus by Lemma 2.10, we have that (−1)rf and f ′w also match. Let f ′w be the test function

obtained by f ′ by replacing f ′ = f ′v0 by f ′w. Then (−1)rf and f ′w match. Now by the factorization

of (split) linear periods (see Appendix) and Corollary 3.3, we have

Iσ′(f
′w) = ε(π′)ε(π′ ⊗ η)η(−1)nIσ′(f

′), Iσ′⊗η(f
′w) = ε(π′)ε(π′ ⊗ η)η(−1)nIσ′⊗η(f

′).

Therefore

(−1)r(Jσ(f) + Jσ⊗η(f)) = ε(π′)ε(π′ ⊗ η)η(−1)n(Iσ′(f
′) + Iσ′⊗η(f

′)).

Comparing this with (4.1) we get

ε(π′)ε(π′ ⊗ η)η(−1)n = (−1)r.

This proves the theorem when π is supercuspidal. �

Remark 4.2. There is a different argument in the supercuspidal case following the idea of Prasad

which we present here for the comparison of methods. Let us keep the notation from the proof

of Theorem 4.1. Recall that π is a local component of a globally distinguished representation σ.

By (4.1) we conclude that either Iσ′ or Iσ′⊗η is not identically zero. By the factorization of split

linear periods (see Appendix), this implies that

L(
1

2
, σ′)L(

1

2
, σ′ ⊗ η) 6= 0,
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and hence ∏
v

ε(σ′v)ε(σ
′
v ⊗ ηv) = 1.

Now if v 6∈ S ∪ {v0}, then either v splits or σ′v is unramified, then

ε(σ′v)ε(σ
′
v ⊗ ηv)ηv(−1)n = 1.

If v ∈ S, then σ′v is the Steinberg representation of G′(Kv) and it is well-known that

ε(σ′v)ε(σ
′
v ⊗ ηv)ηv(−1)n = −1.

The only place remaining is v = v0 where σ′v0 ' π
′. Since |S| = 2n− cr which has the same parity

with r, it follows that

ε(π′)ε(π′ ⊗ ηv0)ηv0(−1)n = (−1)r,

This finishes the proof.

4.2. Reduction to the supercuspidal case. Let us setup some notation before we proceed. If

G = GLr(C) where C is a central division algebra of dimension d2 over F , r = r1 + r2 + · · · + rs,

ρ1, · · · ρs are irreducible representations of GLr1(C), · · · ,GLrs(C) respectively, we denote by

ρ1 × · · · × ρs

the full parabolic induced representation (from the usual standard upper triangular parabolic sub-

group corresponding to the partition r = r1 + · · · rs). We make the convention that all parabolic

inductions are normalized. We also denote by ν the absolute value of the reduced norm of any CSA.

Suppose that r = sl and ρ is a supercuspidal representation (not necessarily unitary) of GLs(C).

Assume that C = F first. Then G = G′ and

ρ× ρν × · · · × ρνl−1

has an unique irreducible quotient which is a discrete series representation of G and any irreducible

discrete series representation of G is obtained in this way. In general assume that ρ′ is the Jacquet–

Langlands transfer of ρ to GLsd(F ) and then it is an irreducible quotient of

τ × · · · × τνq−1

as above. Put νρ = νq. Then the induced representation

ρ× ρνρ · · · × ρνl−1ρ

has a unique quotient representation which is a discrete series representation. All discrete series

representations of G arise in this way. Such a representation, or equivalently the set {ρ, · · · , ρνl−1ρ },
is called a segment. Let

∆ = {ρ, · · · , ρνl−1ρ }, ∆′ = {ρ′, · · · , ρ′νl′−1ρ′ },
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be two segments (or equivalently two discrete series representations). We say that ∆ and ∆′ are

linked if ∆∪∆′ is again a segment but neither one is contained in the other (in particular νρ = νρ′).

We say that ∆ proceeds ∆′ if they are linked and ρ′ = ρνjρ for some j > 0.

To each irreducible representation π′ of G′, there is an associated to Weil–Deligne representation.

Let WDF = WF × SL2(C) be the Weil–Deligne group, then the local Langlands correspondence

gives rise to a representation

φπ′ : WDF → GL2n(C).

If π′ is supercuspidal, then φπ′ is an irreducible representation of WF and is trivial on SL2(C). If

π′ is a segment of the form

{τ, · · · , τνl−1},

then φπ′ = φτ � Syml−1 where φτ is the irreducible representation of WF associated to τ and

Syml−1 is the (unique) dimension l algebraic representation of SL2(C). The local root number of

π′ is given by

ε(π′) = ε(φπ′) = ε(φτ )l det(−Frob | φIFτ )l−1,

where IF stands for the inertia subgroup of WF , and φIFτ stands for the subspace of φτ on which

IF acts trivially. Let us note that if φτ is not one-dimensional, then φIFτ = 0. This is because any

IF -fixed subspace will be WF -stable, and by the irreducibility of φτ , it should be either 0 or the

whole space. But apparently IF cannot act trivially on φτ since it is not one dimensional. Therefore

it must be zero.

Proof of Theorem 4.1 in general. Theorem 4.1 very quickly reduces to the case of discrete series

representations as we have the following classification result of M. Suzuki [Suz]. Assume π is H-

distinguished, then Suzuki’s result states that π is a quotient of ∆1 × · · · ×∆s where ∆i’s are all

irreducible discrete series representations and ∆i does not proceed ∆j , and after relabeling ∆i’s, we

can find an a so that s−a is even, and ∆1, · · · ,∆a are all distinguished and ∆a+2i−1 ' ∆∨a+2i for all

i = 1, · · · , (s− a)/2. Here ∆i, 1 ≤ i ≤ a, is distinguished means the following. The representation

∆i is a discrete series representation of GLri(C). There is an embedding of E× in to GLri(C) whose

centralizer is denoted by Hi. We say that ∆i is distinguished if there is an Hi-invariant linear form

on it.

By this classification, if we assume Theorem 4.1 for the discrete series representation, we have

ε(π)ε(π ⊗ η)η(−1)n =

s∏
i=1

ε(∆i)ε(∆i ⊗ η)η(−1)ri = (−1)r1+···ra = (−1)r.

Therefore it is enough to prove Theorem 4.1 when π is a discrete series representation.

Assume that π is a discrete series representation of G and we write it as a segment

{ρν−
l−1
2

ρ , · · · , ρν
l−1
2

ρ },
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where ρ is an irreducible supercuspidal representation of GLs(C) and sdl = 2n, sl = r. The case

s = 1 and ρ being one-dimensional has been taken care of by [Cho] so for the rest of the proof we

assume that ρ is not one dimensional.

Assume first that l is even. Note that this implies that r is even. In this case by [BM, Proposi-

tion 5.6] (or rather its proof), ρ is self-dual. It is easy to see that π′ is a segment

{τν−
l′−1
2 , · · · , τν

l′−1
2 },

where τ is a self-dual supercuspidal representation, and l′ is a multiple of l which is again even.

Let φτ be the representation of the Weil group of F associated to τ . As we have assumed that ρ is

not one-dimensional, φτ is not one-dimensional and so φIFτ = 0. Then easy computation with the

root numbers gives

ε(π′)ε(π′ ⊗ η) = (detφτ (−1))
l′
2 (detφτ⊗η(−1))

l′
2 = η(−1)n.

which proves the theorem. Now assume that l is odd. Note that in this case sd is even and hence

there is an embedding E× → GLs(C). Again by [BM, Proposition 5.6] (or rather its proof), ρ is

distinguished, in the sense that there is an Hs-invariant linear form on ρ where Hs is the centralizer

of E× in GLs(C). Let ρ′ be the Jacquet–Langlands transfer to GLsd(F ). Then ρ′ is a segment

{τν−
a−1
2 , · · · , τν

a−1
2 },

and π′ is a segment

{τν−
la−1

2 , · · · , τν
la−1

2 }.

Let φπ′ and φρ′ be the Weil–Deligne representation corresponding to π′ and ρ′ respectively, and φτ

be the irreducible representation of the Weil group associated to τ . Again by our assumption φτ

is not one dimensional and thus φIFτ = 0. If a is even, then the same computation as in the case l

being even gives that both

ε(φπ′)ε(φπ′⊗η)η(−1)n = ε(φρ′)ε(φρ′⊗η)η(−1)sd/2 = 1.

If a is odd, then a and la are both odd and dimφτ is even. We have

ε(φπ′)ε(φπ′⊗η)η(−1)n = ε(φρ′)ε(φρ′⊗η)η(−1)sd/2 = ε(φτ )ε(φτ⊗η)η(−1)
dimφτ

2 .

In any case we have

ε(φπ′)ε(φπ′⊗η)η(−1)n = ε(φρ′)ε(φρ′⊗η)η(−1)sd/2.

Thus by the supercuspidal case (ρ is supercuspidal by assumption), we conclude that

ε(φπ′)ε(φπ′⊗η)η(−1)n = (−1)s = (−1)r.

Here the second equality follows from the fact that s and r have the same parity as sl = r and l is

odd. This finishes the proof of Theorem 4.1. �
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5. Minimal unipotent orbital integrals

5.1. Definitions. Let us consider the following elements in G′

ζ+ = σ

(
1n 1n

1n

)
σ−1, ζ− = tζ+.

The orbits represented by ζ± are not θ-semisimple in G′ and hence are not closed orbits. The goal

of this subsection is to define the “orbital integrals” on them. We just need to treat the case ζ+.

Let f ′ ∈ C∞c (G′). Put

O(s, ζ+, η, f
′)

=

∫
GLn(F )3

f ′

(
σ

(
h1

h2

)(
1n 1n

1n

)(
h3

1n

)
σ−1

)
η(deth3)|deth3|−sdh1dh2dh3.

Lemma 5.1. The above integral is absolutely convergent when <s >> 0 and has a meromorphic

continuation to the whole complex plane. It is holomorphic at s = 0. Moreover its value at zero

equals

η(−1)nγ

∫
Mn(F )

Fψf ′\

(
σ

(
h

0

)
σ−1

)
η(deth)dh.

Here the partial Fourier transform is defined by

Fψf ′\

(
σ

(
X

Y

)
σ−1

)
=

∫
Mn(F )

f ′\

(
σ

(
X ′

Y

)
σ−1

)
ψ
(
TrX ′X

)
dX ′,

and γ =
∏n−1
i=0 γ(i, η, ψ) where γ(s, η, ψ) is the gamma factor defined by Tate. Note that γ(s, η, ψ)

is holomorphic and nonzero at all s = i.

Proof. Simple change of variables gives

O(s, ζ+, η, f
′) =

∫
GLn(F )

f ′\

(
σ

(
h

0

)
σ−1

)
η(deth)|deth|sdh.

Note that we put f1(X) = f ′\

(
σ

(
X

0

)
σ−1

)
, then f1 ∈ C∞c (Mn(F )). The the above integral

is the zeta integral considered by Godement and Jacquet for the representation η ◦ det of GLn(F ).

Thus by [GJ72, Theorem 3.3], we have

Z(s, η, f1) =

∫
GLn(F )

f1(h1)η(h1)|deth1|sdh1

is absolutely convergent when <s >> 0 and has a meromorphic continuation to the whole complex

plane. Moreover by the remark after [GJ72, Proposition 3.3] we have

n∏
i=1

γ(s− i, η, ψ)Z(s, η, f∨1 ) = Z(n− s, η, f1),
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where f∨1 is a Fourier transform defined by

f∨1 (X) =

∫
Mn(F )

f1(Y )ψ(−TrXY )dY,

and γ(s, η, ψ) is the gamma factor defined by Tate. Note that as η is not trivial, γ(s, η, ψ) is

holomorphic and nonzero for all s ∈ R. Thus

Z(0, η, f1) =
n∏
i=1

γ(n− i, η, ψ)Z(n, η, f∨1 ).

We applying this to the integration O(s, ζ+, η, f
′). The left hand side just equals O(0, ζ+, η, f

′).

The right hand side equals

n−1∏
i=0

γ(i, η, ψ)×
∫
Mn(F )

∫
GLn(F )

f

(
σ

(
Y

0

)
σ−1

)
ψ(−TrhY )η(deth)|deth|ndhdY

Note that |deth|ndh equals the additive measure on Mn(F ). Making a change of variable h 7→ −h
gives the desired result. �

We define

O(ζ+, η, f
′) = O(s, ζ+, η, f

′)|s=0, O(ζ−, η, f
′) = O(ζ+, η, f

′w).

Then it is clear that the distributions f ′ 7→ O(ζ±, η, f
′) are nonzero left H ′-invariant and right

(H ′, η)-invariant, and are supported on the closure of the orbits of ζ±.

We also need the counterparts of O(ζ±, η, f
′) on the Lie algebra s′. Similar to the above lemma,

for f ′ ∈ C∞c (s′), the integral

O+(s, f ′) =

∫
GLn(F )

f ′

(
σ

(
h

0

)
σ−1

)
η(deth)|deth|sdh,

is absolutely convergent when <s >> 0 and has meromorphic continuation to the whole complex

plane. Moreover it is holomorphic at s = 0 and its value equals

η(−1)nγ

∫
Mn(F )

Fψf ′
(
σ

(
X

0

)
σ−1

)
η(detX)dX.

This value is denote by O+(f). Similarly we have O−(f ′) which is by definition O−(f ′) = O+(f ′w).

It is easy to see that if f ′ ∈ C∞c (G′), we have

O(ζ±, η, f
′) = O±(f ′\).

5.2. An unfolding identity. Let ξ− ∈ M2n(F ) is the matrix with all (i, i − 1) entries being

1, i = 2, 3, · · · , 2n, and all other entries being zero. Note that ξ− = σ

(
ξ1,−

1n

)
σ−1 where

ξ1,− ∈Mn(F ) is of the same shape as ξ−.

Let f ′ ∈ C∞c (G′) and we define a function on G′ ×G′ by

Wf ′(g1, g2) =

∫
N ′
f ′(g−11 ug2)ψ(Tr ξ−u)du.
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Proposition 5.2. Let f ′ ∈ C∞c (G′) and Wf ′ as above. Then

(5.1) O(ζ+, η, f
′) = η(−1)nγ

∫
H′∩N ′\H′∩P ′

∫
(H′∩N ′)\H′

Wf ′(h1, h2)η(h2)dh1dh2,

where γ is as in Lemma 5.1 and the integral on the right hand side is absolutely convergent.

Proof. This is a rather technical computation. We proceed in steps.

Step 1 : We check that the right hand side of (5.1) is absolutely convergent.

We are going to make use of the following notation in this step. Let T ′ be the diagonal torus

of G′. Let T1 be diagonal torus in P ′, N1 = N ′ ∩ H ′ and K1 be a maximal compact subgroup

in GLn(F ) ×GLn−1(F ). Then we have the Iwasawa decomposition P ′ ∩H ′ = N1T1K1. Similarly

let T2 be the diagonal torus in H ′, N2 = N ′ ∩H ′ and K2 be a maximal compact subgroup in H ′.

Then we have the Iwasawa decomposition H ′ = N2T2K2. We let δ be the modulus character of T ′

with respect to N ′ and δ1, δ2 be the modulus character of T1 and T2 with respect to N1 ∩MP ′ and

N2 respectively, where MP ′ ' GLn(F ) × GLn−1(F ) is the reductive part of P ′. If a is a diagonal

matrix in G′, we let ai be its i-th diagonal entry. Let us also put ς(x) = max{log|x|, log|x|−1} and

ς(a) = max
1≤i≤n

ς(ai).

Let r and ν be the function on G′ defined by r(g) = |det g|
1
4 and ν(g) = 1 + ‖e2ng‖ where ‖·‖

stands for the L∞ norm on F2n. Choose a large integer N which will be determined later, and

apply [BP, Lemma 2.4.3] to rNνf , we end up with the estimate

|Wf (a1k1, a2k2)| �|det a−11 a2|
1
4 (1 + |a1,2n−1|)−N (1 + |a2,2n|)−N

2n−2∏
i=1

(
1 +

∣∣∣∣ a1,ia1,i+1

∣∣∣∣)−N 2n−1∏
i=1

(
1 +

∣∣∣∣ a2,ia2,i+1

∣∣∣∣)−N δ(a1a2) 1
2 ς(a1)

dς(a2)
d,

for some integer d > 0, where ai ∈ Ti, ki ∈ Ki, i = 1, 2.

Therefore to prove the convergence of the right hand side of (5.1), we need to prove that∫
T1

∫
T2

|det a−11 a2|
1
4 (1 + |a1,2n−1|)−N (1 + |a2,2n|)−N

2n−2∏
i=1

(
1 +

∣∣∣∣ a1,ia1,i+1

∣∣∣∣)−N 2n−1∏
i=1

(
1 +

∣∣∣∣ a2,ia2,i+1

∣∣∣∣)−N
δ(a1a2)

1
2 δ1(a1)

−1δ2(a2)
−1ς(a1)

dς(a2)
dda1da2

is absolutely convergent for sufficiently large N . Note that

δ(a1)
1
2 δ1(a1)

−1 = |det a1|
1
2 , δ(a2)

1
2 δ2(a2)

−1 =
n∏
i=1

∣∣∣∣a2,2i−1a2,2i

∣∣∣∣ 12 .
Thus we need to prove that both integrals∫

T1

|det a1|
1
4 (1 + |a1,2n−1|)−N

2n−2∏
i=1

(
1 +

∣∣∣∣ a1,ia1,i+1

∣∣∣∣)−N ς(a1)dda1,
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and ∫
T2

n∏
i=1

|a2,2i−1|
3
4 |a2,2i|−

1
4 (1 + |a1,2n−1|)−N

2n−2∏
i=1

(
1 +

∣∣∣∣ a2,ia2,i+1

∣∣∣∣)−N ς(a2)dda2
are absolutely convergent for sufficiently large N . Both of these are implied by the following claim,

which can be proved via a simple change of variable.

Claim. Let s1, · · · , sn be real numbers. Fix d > 0. If s1 + · · ·+ sk > 0 for all k = 1, · · · , n, then

we can find a large N so that the integral

∫
F×

(1 + |xn|)−N
n−1∏
i=1

(
1 +

∣∣∣∣ xixi+1

∣∣∣∣)−N n∏
i=1

|xi|siς(xi)ddx1 · · · dxn

is absolutely convergent.

This proves the absolute convergence of the right hand side of (5.1).

Step 2 : We reduce (5.1) to an equality on the Lie algebra.

By lemma 5.1, the left hand side of (5.1) equals

η(−1)nγ

∫
Mn(F )

Fψf ′\

(
σ

(
h

0

)
σ−1

)
η(deth)dh.

Let us now compute the right hand side of (5.1). Plugging in the definition of Wf ′ , we have

RHS of (5.1) =

∫
H′∩N ′\H′∩P ′

∫
H′∩N ′\H′

∫
N ′
f ′(h−11 uh2)ψ(Tr ξ−u)η(deth2)dudh1dh2

=

∫
H′∩N ′\H′∩P ′

∫
N ′∩H′\N ′

∫
H′
f ′(h−11 uh2)ψ(Tr ξ−u)η(deth2)dudh1dh2

=

∫
H′∩N ′\H′∩P ′

∫
N ′∩H′\N ′

f̃ ′(h−12 u−1θ(u)h2)ψ(Tr ξ−u)η(deth2)dudh2.

The second equality is valid as the inner two integrals are absolutely convergent. The third identity

is the definition of f̃ ′. Note that the map

N ′ ∩H ′\N ′ → n′ ∩ s′, u 7→ c−1(u−1θ(u))

is submersive of determinant one everywhere and bijective. Moreover

ψ(Tr ξ−u) = ψ(−Tr ξ−u
′), if u′ ∈ n′ ∩ s′, c(u′) = u−1θ(u).

We thus conclude that the right hand side of (5.1) equals

(5.2)

∫
H′∩N ′\H′∩P ′

∫
n′∩s′

f ′\(h
−1
2 uh2)ψ(Tr ξ−u)η(deth2)dudh2.
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As Fψ is a bijection from C∞c (s′) to itself, to prove Proposition 5.2, it is enough to prove that for

any f ′1 ∈ C∞c (s′), we have

(5.3)

∫
GLn(F )

f ′1

(
σ

(
h

0

)
σ−1

)
η(deth)dh

=

∫
H′∩N ′\H′∩P ′

∫
n′∩s′
F−1ψ f ′1(h

−1uh)ψ(Tr ξ−u)η(deth)dudh,

where the measure dh on the left hand side is the additive measure.

Step 3 : Computing the right hand side of (5.3) via Fourier inversion formula.

For the rest of the proof, we are going to temporarily use the following notation. We let G1 =

GLn(F ), B1 be the upper triangular Borel subgroup, N1 its unipotent subgroup, B1,− and N1,− be

the opposite of B1 and N1 respectively. We let b1, n1, b1,−, n1,− be the Lie algebra of B1, N1, B1,−

and N1,− respectively. Similarly we put G2 = GLn−1(F ), and define the corresponding subgroup

B2, N2, B2,−, N2,− and their Lie algebras b2, n2, b2,−, n2,−. The group G2 is embedded in G1 via

a 7→

(
a

1

)
and so are their subgroups.

Claim: For any f ′ ∈ C∞c (s′), any h = σ

(
h1

h2

)
σ−1 ∈ H ′, we have

∫
n′∩s′
F−1ψ f ′(h−1uh)ψ(Tr ξ−u)du

=|deth−12 h1|n
∫
n2

∫
N1

f ′

(
σ

(
h−12 u1h1

h−12 u2h1

)
σ−1

)
ψ(Tr ξ1,−u2)du1du2.

The right hand side is absolutely convergent.

In fact, this is an application of the Fourier inversion formula. Explicitly the left hand side of

the claim equals∫
n1

∫
b1

∫
Mn(F )

f ′

(
σ

(
X

h−12 u2h1

)
σ−1

)
ψ(−TrXh−11 u1h2)ψ(Tru1)ψ(Tr ξ1,−u2)dXdu1du2.

The integral is convergent in this order. Make a change of variable X 7→ h−12 Xh1. Then the integral

above equals ∫
n1

∫
b1

∫
Mn(F )

f ′

(
σ

(
h−12 Xh1

h−12 u2h1

)
σ−1

)
ψ(−TrXu1)ψ(Tru1)ψ(Tr ξ1,−u2)|deth−12 h1|ndXdu1du2.

Applying Fourier inversion formula to the inner two integrals, we obtain that this integral equals∫
n1

∫
N1

f ′

(
σ

(
h−12 u3h1

h−12 u2h1

)
σ−1

)
ψ(Tr ξ1,−u2)|deth−12 h1|ndu3du2.

This proves the claim.
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Thus to prove (5.3), we only need to compute

(5.4)

∫
N1\G1

∫
N2\G2

∫
n1

∫
N1

f ′

(
σ

(
h−12 u3h1

h−12 u2h1

)
σ−1

)
ψ(Tr ξ1,−u2)|deth−12 h1|nη(deth1h2)du3du2dh2dh1.

It is straightforward to see that we can (and will) change the order of the inner two integrals or

the out two integrals. Combining the integral against u3 and h1 and making a change of variable

h1 7→ h2h1, we have that

(5.4) =

∫
N2\G2

∫
G1

∫
n1

f ′

(
σ

(
h1

h−12 u2h2h1

)
σ−1

)
ψ(Tr ξ1,−u2)|deth1|nη(deth1)du2dh1dh2.

Step 4. An unfolding argument.

It is clear from Step 3 that to prove Proposition 5.2, it is enough to prove the following claim.

Claim: For any f ∈ C∞c (Mn(F )), we have

f(0) =

∫
N2\G2

∫
n1

f(h−1uh)ψ(Tr ξ1,−u)dudh.

To prove the claim, we replace the integration over N2\G2 with the integration over B2,− and

recall that we are using the right invariant Haar measure on B2,−. We temporarily introduce the

following notation. We let Ai, i = 0, · · · , n − 1 be the subgroup of B2,− consisting of elements

whose upper left i × i block is the identity matrix. We let Li, i = 0, · · · , n − 1, be the subspace

of n1 consisting of matrices whose upper left (i + 1) × (i + 1) block is zero. Let us introduce the

following auxiliary integral

Ii =

∫
Ai

∫
Li

f(h−1i uihi)ψ(Tr ξ1,−ui)duidhi.

The measure dhi is the right invariant measure on Ai. Of course, I0 is the right hand side of the

equality in the claim, while the In−1 = 0. We are going to prove that Ii = Ii+1 for all i and this

will prove the claim.

Let hi ∈ Ai. We write hi = ahi+1 where hi+1 ∈ Ai+1 and a takes the following form

a =

1i

vi xi

1n−i−2

 , vi ∈ Fi, xi ∈ F×.

The measure dhi decomposes as

dhi = |xi|−(n−i−2)dxidvidhi+1,

where dxi is the multiplicative measure on F×.
30



Let ui ∈ Li. We write ui = c+ ui+1 where ui+1 ∈ Li+1 and c takes the following form

c =

0i+1 wi+1

0

0n−i−2

 , wi+1 ∈ F i+1.

Then we have

Ii =

∫
Ai+1

∫
Fi

∫
F×

∫
F i+1

∫
Li+1

f(h−1i+1a
−1(c+ ui+1)ahi+1)ψ(Tr ξ1,−(c+ ui+1))

|xi|−(n−i−2)dui+1dcdxidvidhi+1.

Let us make change of variables c 7→ aca−1 and ui+1 7→ aui+1a
−1. Let us note that

Tr ξ1,−aca
−1 = (vi, xi)wi+1, Tr ξ1,−aui+1a

−1 = Tr ξ1,−ui+1,

and

daca−1 = |xi|dc, daui+1a
−1 = |xi|n−i−2dui+1.

Then we have

Ii =

∫
Ai+1

∫
Fi

∫
F×

∫
F i+1

∫
Li+1

f(h−1i+1(c+ ui+1)hi+1)ψ((vi, xi)wi+1)ψ(Tr ξ1,−ui+1)

|xi|dui+1dcdxidvidhi+1.

Note that |xi|dxi gives the additive measure on F . We apply the Fourier inversion formula to the

integration over wi+1 and (vi, xi). It follows that

Ii =

∫
Ai+1

∫
Li+1

f(h−1i+1ui+1hi+1)ψ(Tr ξ1,−ui+1)dui+1dhi+1.

The right hand side is precisely the definition of Ii+1. This proves the claim.

This finishes the proof of Proposition 5.2. �

5.3. Matching. We now consider matching of unipotent orbital integrals in G and G′. Let f ∈
C∞c (G). We put

O(1, f) =

∫
H
f(h)dh.

This is the orbital integral of f on the minimal orbit represented by 1 ∈ G. By definition we have

f\(0) = O(1, f).

Proposition 5.3. Suppose that f ∈ C∞c (G) and f ′ ∈ C∞c (G′) are matching test functions. Then

O(1, f) =
1

2
c0η(−2)n(O(ζ+, η, f

′) + (−1)rO(ζ−, η, f
′)),

where c0 is the constant appearing in Proposition 2.11 (i.e. Fourier transform commutes with

matching).
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Proof. According to the definition, this identity is equivalent to

f\(0) =
1

2
c0(O+(f ′\) + (−1)rO−(f ′\)).

As f\(0) and η(−2)nf ′\ are also matching test functions, it is enough to prove that for all matching

f ∈ C∞c (s) and f ′ ∈ C∞c (s′), we have

f(0) =
1

2
c0(O+(f ′) + (−1)rO−(f ′)).

As Fourier transform is a bijection from C∞c (s) (resp. C∞c (s′)) to itself, and c0f̂ and f̂ ′ also match,

it is enough to prove that

(5.5) f̂(0) =
1

2
(O+(f̂ ′) + (−1)rO−(f̂ ′)).

On the left hand side, the distribution f 7→ f̂(0) is represented by the constant functions 1 on s.

On the right hand side, f ′ 7→ O+(f̂ ′) is represented by the function

(
X

Y

)
7→ η(detX) and

f ′ 7→ O−(f̂ ′) is represented by the function

(
X

Y

)
7→ η(detY ). It follows that

f ′ 7→ 1

2
(O+(f̂ ′) + (−1)rO−(f̂ ′))

is represented by the function

(
X

Y

)
7→ η(detX) if

(
X

Y

)
matches an element in s. This

function is precisely the transfer factor. Recall that we have the categorical quotient Q = s//H '
s′//H ′ and the quotient morphism q : s→ Q and q′ : s′ → Q. Therefore for some compatible choice

of the measures (see the discussion at the end of Subsection 2.6), we have

f̂(0) =

∫
s
f(a)da =

∫
Qθ−reg(F )

O(γ, f)dq(γ),

and

1

2
(O+(f̂ ′) + (−1)rO−(f̂ ′)) =

∫
s′
f ′(γ′)ω(γ′)dγ′ =

∫
Qθ−reg(F )

O(γ′, η, f ′)ω(γ′)dq′(γ′).

Since f and f ′ match, we have O(γ′, η, f ′)ω(γ′) = O(γ, f) if γ and γ′ match and O(γ′, η, f ′)ω(γ′) = 0

if γ′ does not match any γ ∈ s. The desired equality (5.5) then follows. This proves the lemma. �

6. Minimal unipotent orbital integrals of matrix coefficients

6.1. A functional equation. Let Z ′ be the center of G′ and π′ be an irreducible generic (unitary)

representation of G′ and W = W(π′, ψ) be its Whittaker model. Let us recall some work of

Matringe [Mat15b]. Let Fn be the n-dimensional vector space over F (row vectors) and en =

(0, · · · , 0, 1) ∈ Fn. Let W ∈ W(π′, ψ) and φ ∈ C∞c (Fn). Put

Ψ(s, t,W, φ) =

∫
N ′∩H′\H′

W (h)φ(enh2)|deth1|s+t+
1
2 |deth2|s−t−

1
2 dh, h = σ

(
h1

h2

)
σ−1.
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We will only make use of this integral when t = 0 or t = −1
2 . By [Mat15b, Proposition 4.16], for

a fixed t, this integral is convergent when the real part of s is large, and it has a meromorphic

continuation (in the variable s) to the whole complex plane. Moreover there is a γlin(s, π, ψ) in

C(q±s) that does not depend on W and φ so that

(6.1) Ψ

(
1

2
− s,−1

2
, Ŵ , φ̂

)
= γlin(s, π′, ψ)Ψ(s, 0,W, φ).

where φ̂ is the Fourier transform of φ, and Ŵ (g) = W (w tg−1), w being the longest Weyl element

in G′. It is expected that

(6.2) |γlin(s, π′, ψ)| = |γ(s+
1

2
, π′, ψ)γ(2s, π′,∧2, ψ)|.

It is showed in [Mat15b] that the analogous equality (without the absolute value) holds for L-factors,

and

γlin(s, π′, ψ)L(s+ 1
2 , π
′)L(2s, π′,∧2)

L(−s+ 1
2 , π̃
′)L(1− 2s, π̃′,∧2)

is a unit in C[q±s]. Thus at least the zero and poles of γlin(s, π′, ψ) is controlled by the L-functions.

If W ∈ W(π′, ψ), we define the following integral

l#(W ) =

∫
Z′(H′∩N ′)\H′

W (h)dh, l#η (W ) =

∫
Z′(H′∩N ′)\H′

W (h)η(deth)dh.

Lemma 6.1. Assume that π′ (hence π′ ⊗ η) be an H ′-distinguished discrete series representation

of G′. Then the defining integrals of l# and l#η are absolutely convergent and

l(W ) =
1

2n

γlin(s, π′, ψ)

γ(s,1, ψ)

∣∣∣
s=0

l#(W ), lη(W ) =
1

2n

γlin(s, π′ ⊗ η, ψ)

γ(s,1, ψ)

∣∣∣
s=0

l#η (W ).

Here γ(s,1, ψ) is the gamma factor of the trivial character defined by Tate, which as a simple pole

at s = 0. The ratios of the gamma factors at s = 0 are holomorphic and nonzero.

Proof. We prove the identity for π′. The one for π′⊗ η is identical. The lemma is a consequence of

the functional equation (6.1). Let us evaluate both sides of (6.1) when s→ 0+.

First the right hand side. By [Mat15b, Corollary 4.10], as π′ is a discrete series representation,

the defining integral of Ψ(s, 0,W, φ) is convergent when <s > 0. Moreover as π′ is H ′-distinguished,

L(2s, π′,∧2) and hence Ψ(s, 0,W, φ), have a simple pole at s = 0. We have

Ψ(s, 0,W, φ) =

∫
Z′(N ′∩H′)\H′

∫
Z′
W (h)φ(enzh2)|z|2ns|deth1|s+

1
2 |deth2|s−

1
2 dzdh.

As s approaches 0+, the inner integral has a simple zero and its leading term (as a function of s)

equals that of γ(2ns,1, ψ)φ(0), which is independent of h2. Thus

lim
s→0+

γlin(s, π′, ψ)Ψ(s, 0,W, φ) =
1

2n
φ(0)

γlin(s, π′, ψ)

γ(s,1, ψ)

∣∣∣
s=0

l#(W ).
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Now let us evaluate the left hand side of (6.1). We have

Ψ

(
1

2
,−1

2
, Ŵ , φ̂

)
=

∫
N ′∩H′\H′

Ŵ (h)φ̂(enh2)η(deth1h2)|deth2|dh1dh2.

It is not hard to see that the right hand side is absolutely convergent. We decompose

h2 = pzu, u =

(
1n−1

un−1 1

)
,

where p is in the mirabolic subgroup of GLn(F ), un−1 ∈ Fn−1 and z is in the center of GLn(F ).

Then we have

Ψ

(
1

2
,−1

2
, Ŵ , φ̂

)
=

∫
Fn−1

∫
F×

l(π(u+)Ŵ )φ̂(un−1, z)dun−1dz,

where u+ = σ

(
1n

u

)
σ−1 and the measures are all additive. As l is H ′-invariant, we conclude

that

Ψ

(
1

2
,−1

2
, Ŵ , φ̂

)
= φ(0)l(Ŵ ) = φ(0)l(W ).

The last inequality follows from [LM15b, Proposition 3.9].

The upshot of the above computation is that for all W ∈ W and φ ∈ C∞c (Fn), we have

1

2n
φ(0)

γlin(s, π′, ψ)

γ(s,1, ψ)

∣∣∣
s=0

l#(W ) = φ(0)l(W ).

Of course we can choose φ with φ(0) 6= 0. All terms in this identity not involving W are nonzero.

We thus have proved the desired identity. �

6.2. Minimal orbital integrals of matrix coefficients.

Lemma 6.2. Let π′ be an H ′-distinguished supercuspidal representation of G′. Let f ′ ∈ C∞c (G′)

be an essential matrix coefficient of π′. Then

O(ζ+, η, f
′) = 2nη(−1)nγd(π′)

γ(s,1, ψ)

γlin(s, π′, ψ)

∣∣∣
s=0

Iπ′(f
′),

where d(π′) stands for the formal degree of π′. In particular there is an essential matrix coefficient

of π′ so that

O(ζ+, η, f
′) + ε(π′)ε(π′ ⊗ η)η(−1)nO(ζ−, η, f

′) 6= 0.

Proof. Suppose that ∫
Z′
f ′(zg)dz = 〈π′(g)W1,W2〉, W1,W2 ∈ W(π′, ψ).

Then by [LM15a, Lemma 4.4], we have∫
Z′
Wf ′(zg1, g2)dz = W1(g2)W2(g1).

By Proposition 5.2, we have

O(ζ+, η, f
′) = η(−1)nγl#(W1)lη(W2).

34



Using Lemma 6.1, we have

O(ζ+, η, f
′) = 2nη(−1)nγ

γ(s,1, ψ)

γlin(s, π′, ψ)

∣∣∣
s=0

l(W1)lη(W2).

Note that l(W1)lη(W2) = d(π′)Iπ′(f
′). This proves the first assertion. The last assertion is because

O(ζ−, η, f
′) = O(ζ+, η, f

′w) = 2nη(−1)nγd(π′)
γ(s,1, ψ)

γlin(s, π′, ψ)

∣∣∣
s=0

ε(π′)ε(π′ ⊗ η)η(−1)nIπ′(f
′).

Therefore

O(ζ+, η, f
′) + ε(π′)ε(π′ ⊗ η)η(−1)nO(ζ−, η, f

′) = 4nη(−1)nγd(π′)
γ(s,1, ψ)

γlin(s, π′, ψ)

∣∣∣
s=0

Iπ′(f
′) 6= 0.

This proves the lemma. �

Remark 6.3. It is well-known that the formal degree d(π′) equals 1
2n |γ(0, π′,Ad, ψ)|. Since it is

expected that

|γlin(s, π′, ψ)| = |γ(s+
1

2
, π′, ψ)γ(2s, π′,∧2, ψ)|.

The constant on the right hand side of the equality in the lemma should, up to some sign, simplify

to γ · |γ(0, π′, Sym2, ψ)|.

7. Distinguished representations

7.1. Global arguments. The goal of this subsection is to prove a globalization result. We assume

that E/F is local.

Proposition 7.1. Assume that f ∈ C∞c (G) has the property that
∫
H f(h)dh 6= 0. Then one can

find the following data.

(1) Let L/K be a quadratic extension of global fields which splits at all archimedean places and

there is a place v0 of K so that Lv0/Kv0 ' E/F .

(2) Let A be a CSA over K containing L, such that there is a place v1 of K such that A⊗Kv1

is a central division algebra. Let B be the centralizer of L in A. Let G = A×, H = B×, both

being algebraic groups over K.

(3) Let v2 be a split nonarchimedean place of K, πv2 be an H(Kv2)-distinguished supercuspidal

representations of G(Kv2).

(4) Let f = ⊗fw ∈ C∞c (G(AF)) be a test function so that

(a) fv0 = fv0;

(b) fv1 becomes a constant after integration over the center of G(Kv1) (note that G(Kv1) is

compact modulo its center);

(c) fv2 is an essential matrix coefficient of πv2 and
∫
H(Kv2 )

fv2(h)dh 6= 0;

(d) we fix a nonsplit place nonarchimedean place v3;

(e) for all other places w 6= vi, i = 1, 2, 3, we choose an arbitrary test function fw in

C∞c (G(Kw)) with
∫
H(Kw)

fw(h)dh 6= 0;
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(f) for the place v3, we choose a test function fv3 supported in a small neighbourhood of

identity with
∫
H(Kv3 )

fv3(h)dh 6= 0 so that if γ ∈ G(K) and H(AK)γH(AK)∩supp f 6= ∅,
then γ ∈ H(K).

Proof. We only need to explain how to achieve the choice of fv3 , i.e. the test function in (4)(f). Let

γ ∈ G(AK) and H(AK)γH(AK)∩ supp f 6= ∅. For the CSA’s A and B, we have the same discussion

as in Section 2. Consider s = γ−1θ(γ) and the coefficients of the reduced characteristic polynomial

of (s − 1)2. We viewed it as an element in AnK . Of course H(AK)γH(AK) contains an element

in G(K) if and only if the coefficients of the reduced characteristic polynomial of (s − 1)2 lie in

Kn. Moreover for any place w 6= v3, these coefficients lie in some fixed compact subset Ωw of Kn
w,

containing zero (because we have assumed that
∫
H(Kw)

fw(h)dh 6= 0). Therefore by the product

formula we can choose a sufficiently small neighbourhood Ωv3 of zero in Kn
v3 so that

Kn ∩
∏

Ωw = {0}.

Let Uv3 be the inverse image of Ωv3 in G(Kv3), then Uv3 contains H(Kv3) by definition. We also

note that Uv3 × ∏
w 6=v3

H(Kw)(supp fw)H(Kw)

 ∩ G(K) = H(K).

Indeed if γ lies in the left hand side, then the reduced characteristic polynomial of (s− 1)2 ∈ B(K)

is of the form λn. By assumption A(Kv1) is a central division algebra, which means that s = 1 ∈
A(Kv1), hence in A(K). This is equivalent to that γ ∈ H(K). Having all this, we can thus choose

an fv3 supported in Uv3 . Then if γ ∈ supp f ∩ G(K) then γ ∈ H(K). �

Corollary 7.2. Let f ∈ C∞c (G) and f ′ ∈ C∞c (G′) be matching test functions. Assume that∫
H f(h)dh 6= 0. Then there is an irreducible H-distinguished representation τ of G, τ ′ being its

Jacquet–Langlands transfer to G′, such that either Iτ ′(f
′) 6= 0 or Iτ ′⊗η(f

′) 6= 0.

Proof. We plug the test function obtained in Proposition 7.1 in to the relative trace formula. Then

we have ∑
g∈H(K)\G(K)/H(K)

O(g, f) =
∑
σ

Jσ(f),

where σ on the right hand side ranges over all globally H(AK)-distinguished automorphic repre-

sentation of G(AK). Note that the group G and H are anisotropic so there is no convergence issue.

By the choice of the test function f , the left hand side reduces to only one term, i.e. g = 1. Thus

the left hand side equals ∫
H(AF )

f(h)dh 6= 0.

Therefore there is at least one σ on the right hand side such that Jσ(f) + Jσ⊗η(f) 6= 0. We now

apply the simple relative trace formula of Guo, c.f. identity (3.2), to conclude that

IJL(σ)(f
′) + IJL(σ)⊗η(f

′) 6= 0.
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Thus one of the two terms are nonzero. The corollary then follows from the factorization of split

linear periods. �

7.2. Distinguished representations. Now is the time to reap the fruit of our long labor. We

consider assumption (a) in Theorem 1.1 first. Let us restate the converse implication of the main

theorem as follows.

Theorem 7.3. Let π′ be an irreducible H ′-distinguished supercuspidal representation of G′ and π

its Jacquet–Langlands transfer to G. Assume that

ε(π′)ε(π′ ⊗ η)η(−1)n = (−1)r,

where r stands for the split rank of G, then π is H-distinguished.

Proof. By Lemma 6.2, there is an essential matrix coefficient f ′ of π′ so that

(7.1) O(ζ+, η, f
′) + (−1)rO(ζ−, η, f

′) 6= 0.

By parabolic descent (which we did not make explicit but is very similar to the one on G),

O(g′, η, f ′) = 0 if g′ is θ-regular but not θ-elliptic. We now consider the function on the θ-elliptic

locus of G′ given by

g′ 7→ Ω(g′)O(g′, η, f ′).

This function is bi-H ′(F )-invariant by definition. We now consider

g′ 7→ Ω(g′)O(g′, η, f ′w).

On the one hand, we have

Ω(g′)O(g′, η, f ′w) = Ω(g′)O(wg′w, η, f ′) = Ω(wg′w)O(g′, η, f ′),

since wg′w is in the same H ′(F )×H ′(F ) double coset as g′. On the other hand we have

(7.2) Ω(g′)O(g′, η, f ′w) = ε(π′)ε(π′ ⊗ η)η(−1)nΩ(g′)O(g′, η, f ′).

This can be seen as follows. Suppose that∫
ZG(F )

f ′(zg′)dz = 〈π′(g′)W1,W2〉

where W1,W2 are in the Whittaker model W of π′. Let us denote temporarily this f ′ by f ′W1,W2
.

Then the linear form

(W1,W2) 7→ Ω(g′)O(g′, η, f ′W1,W2
)

defines an element (could be zero) in

HomH′(π
′,C)⊗HomH′(π

′ ⊗ η,C).

Then by the uniqueness of linear periods [JR96], we can find a constant A (could be zero), depending

on g and π′ but not on W1 and W2 so that

Ω(g′)O(g′, η, f ′) = Al(W1)lη(W2).
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Moreover

(f ′W1,W2
)w = f ′π′(w)W1,π′(w)W2

and hence Ω(g′)O(g′, η, f ′w) = Al(π′(w)W1)lη(π′(w)W2). By Proposition 3.2, we get (7.2). We

thus conclude that

Ω(wg′w) = Ω(g′)ε(π)ε(π ⊗ η)η(−1)n,

if O(g′, η, f ′) 6= 0. Since ε(π)ε(π ⊗ η)η(−1)n = (−1)r, by Lemma 2.8, we conclude that g′ matches

a θ-elliptic element in G. In conclusion, we have shown that if g′ is not θ-elliptic or does not match

any element in G, then O(g′, η, f ′) = 0. By Proposition 2.9, there is an f ∈ C∞c (G) which matches

f ′. By Proposition 5.3 and the nonvanishing result (7.1), we conclude that O(1, f) 6= 0.

By Corollary 7.2, we can find an H-distinguished representation τ of G so that either IJL(τ)(f
′) 6=

0 or IJL(τ)⊗η(f
′) 6= 0. However by our very choice, f ′ is essentially a matrix coefficient of π′. Thus

we conclude that π′ = JL(τ) or JL(τ)⊗η. This implies that either π = τ or π = τ ⊗η. Note that τ

is H-distinguished and thus so is τ ⊗η as η is trivial on H. It follows that π is H-distinguished. �

The following proposition takes care of the final piece of the main theorem, i.e. assumption (b)

in Theorem 1.1.

Proposition 7.4. Assume that G = GLn(D) where D is the quaternion division algebra over F .

Let π be an irreducible supercuspidal representation of G and π′ be its Jacquet–Langlands transfer to

G′. Assume that n > 1 and ε(π′)ε(π′ ⊗ η)η(−1)n = (−1)n. Then π′ is supercuspidal. In particular

the converse implication under the assumption (b) holds.

Proof. Assume that π′ is not supercuspidal. Then it is a discrete series representation of G′. Let

us keep the notation from Subsection 4. By the classification of discrete series representation of G′,

π′ is a the unique irreducible quotient of

τν−
q−1
2 × · · · × τν

q−1
2

where τ is a supercuspidal representation of GL2n/q(F ). By [DKV84, Theorem B.2.b.1)], 2n is the

least common multiple of 2 and 2n/q, q > 1. It then follows that q = 2 and n is odd. By the

calculation in Subsection 4.2 (note that we assume n > 1), we have ε(π′)ε(π′ ⊗ η)η(−1)n = 1 6=
(−1)n. This is a contradiction and hence π′ is supercuspidal.

The converse implication of Theorem 1.1 under the assumption (b) then follows from Theo-

rem 7.3. �

Appendix A. Factorization of split linear periods

In this appendix we factorize global linear periods into local linear forms. The main idea is

already in the work of Bump, Friedberg, Jacquet and Matringe on linear periods. We just need to

make the constants explicit.
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A.1. Setup. We consider a slightly more general setting to allow twists in the linear periods. We

also make minor modifications in our notation for convenience. We let F be a global field and

ψ : F\AF → C× a nontrivial additive character. We denote by Gn = GLn,F , Zn be its center, Pn

the mirabolic subgroup, Nn the upper triangular unipotent subgroup. We let ι : Gn × Gn → G2n

be the embedding so that the image is the centralizer of diag[1,−1, · · · , 1,−1].

As we are going to make precise factorization with no ambiguity on the constants, we need to

normalize our measures carefully. For the unipotent groups, e.g. Nn, we use the self-dual measures

both locally and globally. For Gn, let us choose the following measure. Let v be any place of F .

we write g = (gij) ∈ Gn(Fv), gij ∈ Fv, and put

d∗g = (det g)−1
∏
v

dgij , dg = ζFv(1)ζFv(2) · · · ζFv(n)d∗g.

When ψv is unramified, under the measure dg the volume of Gn(oFv) equals 1. If g = (gv) ∈ Gn(AF ),

we put

dg =
∏
v

dgv.

A.2. Integral representation. Let φ ∈ S(AnF ) (row vector), and en = (0, · · · , 0, 1). Put

fφ(s, h) = |deth|s
∫
A×F

φ(aenh)|a|nsda,

and for <s >> 0, define the Eisenstein series

E(s, h, φ) =
∑

γ∈Zn(F )Pn(F )\Gn(F )

fφ(s, γh),

By [JS81, Lemma 4.2] the integral is absolutely convergent and has a meromorphic continuation to

the whole complex plane, with at most simples poles at s = 0 or s = 1. The residue at s = 1 equals

vol(F×\A1
F )

n
φ̂(0),

where φ̂ stands for the Fourier transform

φ̂(y) =

∫
AnF
φ(x)ψ(txy)dx.

Let π be an irreducible cuspidal automorphic representation of G2n(AF ) and ϕ ∈ π. Let us now

consider the integral

I(s, ϕ, χ, φ)

=

∫
Z2n(AF )(Gn×Gn)(F )\(Gn×Gn)(AF )

ϕ(ι(h1, h2))E(2s, h2, φ)|deth1h
−1
2 |

s− 1
2χ(deth1h

−1
2 )dh1dh2.

This integral is absolutely convergent away from the poles of the Eisenstein series and has at most

simple poles at s = 0 and s = 1
2 . We have

Ress= 1
2
I(s, χ, ϕ, φ) =

1

2n
vol(F×\A1

F )φ̂(0)P (ϕ, χ),
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where P (ϕ, χ) is the (split) linear period

P (ϕ, χ) =

∫
Z2n(AF )(Gn×Gn)(F )\(Gn×Gn)(AF )

ϕ(ι(h1, h2))χ(deth1h
−1
2 )dh1dh2.

A.3. Factorization. Let ϕ ∈ π and

Wϕ(g) =

∫
N2n(F )\N2n(AF )

ϕ(ng)ψ(n)dn

be the Whittaker function. Let W(πv, ψv) be the Whittaker model of πv for each place v. We fix

a factorization Wϕ = ⊗vWv into local Whittaker functions, Wv ∈ W(πv, ψv). We also assume that

the Schwartz function φ is factorizable, i.e. φ = ⊗vφv where φv ∈ S(Fnv ). Put

Iv(s,Wv, χv, φv)

=

∫
(Nn×Nn)(Fv)\(Gn×Gn)(Fv)

Wv(ι(h1, h2))φ(enh2)χv(deth1h
−1
2 )|deth1|s−

1
2 |deth2|s+

1
2 dh1dh2.

By [Mat15a], this integral is convergent for <s > 0 and in particular at s = 1
2 . For all s we can

choose data so that this integral does not vanish. For a nonarchimedean place v, if ψv is unramified,

χv is unramified, Wv is G2n(oFv)-fixed, Wv(1) = 1, φv = 1onFv
, we have

Iv(s, χv,Wv, φv) = L(s, πv ⊗ χv)L(2s, πv,∧2).

Moreover we have

I(s, ϕ, χ, φ) =
∏
v

Iv(s,Wv, χv, φv),

when <s >> 0.

Let us compute Iv(
1
2 ,Wv, χv, φv). We decompose h2 = pu where p ∈ Pn and u ∈ Gn is of the

form

(
1n−1

∗ ∗

)
. Thus φ(enh2) = φ(enu) and the measure |deth2|dh2 decomposes as dRpdu where

dRp is the right invariant measure and du is the additive measure on Fnv . Here note that if we

write p =

(
a v

1

)
, then dRp = dadv. By [Mat15b, Corollary 4.18], a linear form on πv that is

(ι(Gn × Pn), χ−1v )-invariant is also (ι(Gn ×Gn), χ−1v )-invariant. It follows that

Iv(
1

2
,Wv, χv, φv) =

∫
(Nn×Nn)(Fv)\(Gn×Gn)(Fv)

Wv(ι(h1, h2))φv(enh2)χ(deth1h
−1
2 )dh1dh2

=

∫
(Nn×Nn)(Fv)\(Gn×Pn)(Fv)

Wv(ι(h1, pu))φv(enu)χ(deth1p
−1u−1)dh1dRpdu

=φ̂v(0)

∫
(Nn×Nn)(Fv)\(Gn×Pn)(Fv)

Wv(ι(h1, p))χ(deth1p
−1)dh1dRp.

Let us define the local (split) linear periods by

Pv(Wv, χv) =

∫
(Nn×Nn)(Fv)\(Gn×Pn)(Fv)

Wv(ι(h1, p))χ(deth1p
−1)dh1dRp,
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and its normalized version

P \v(Wv, χv) =
Pv(Wv, χv)

L(12 , πv ⊗ χv)L(1, πv,∧2)
.

Then we have

(A.1) P (ϕ, χ) = n vol(F×\A1
F )−1L(

1

2
, π ⊗ χ) Ress=1 L(s, π,∧2)

∏
v

P \v(Wv, χv).

Note that almost all terms equal one in the product.

A.4. Spherical characters. With this we can factor the spherical character defined in the main

body of the paper. We define the inner product on π and on W(πv, ψv) are given as follows. On π,

we define

〈ϕ,ϕ′〉 =

∫
Z2n(AF )G2n(F )\G2n(AF )

ϕ(g)ϕ′(g)dg.

On W(πv, ψv) we define

〈Wv,W
′
v〉 =

∫
N2n(Fv)\P2n(Fv)

Wv(p)W ′v(p)dRp, 〈Wv,W
′
v〉\ =

〈Wv,W
′
v〉

L(1, πv × π∨v )
.

Note that if ψv is unramified, Wv is G2n(oFv)-fixed, Wv(1) = 1, then

〈Wv,Wv〉\ = 1.

Then if Wϕ is the Whittaker function attached to ϕ and Wϕ = ⊗vWv, then we have

(A.2) 〈ϕ,ϕ′〉 =
2nRess=1 L(s, π × π∨)

vol(F×\A1
F )

∏
v

〈Wv,W
′
v〉\.

Recall that (in the present notation), for f = ⊗fv ∈ C∞c (G2n(AF )), we have defined

Iπ(f) =
∑
ϕ

P (π(f)ϕ,1)P (ϕ, η),

where ϕ runs over an orthonormal basis of π. we have also defined its local version

Iπv(fv) =
∑
Wv

Pv(πv(fv)Wv,1)Pv(Wv, ηv)

〈Wv,Wv〉
.

where Wv runs over an orthogonal basis of W(πv, ψv). We also have its normalized version

I\πv(fv) =
∑
Wv

P \v(πv(fv)Wv,1)P \v(Wv, ηv)

〈Wv,Wv〉\
,

where Wv runs over an orthogonal basis of W(πv, ψv). If Ev/Fv is unramified, ψv is unramified, πv

is an unramified representation, fv = 1GL2n(oFv )
, then I\πv(fv) = 1.

If π does not admits nonzero linear period, then Iπ is identically zero. Otherwise Iπ is not

identically zero and π is self-dual. It then follows from the factorization of linear periods (A.1) and

the factorization of inner product (A.2) that

Iπ(f) =
n

2
vol(F×\A1

F )−1
L(12 , π)L(12 , π ⊗ η) Ress=1 L(s, π,∧2)

L(1, π, Sym2)

∏
v

I\πv(fv).
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