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1. Introduction

In the relative Langlands program, one often seeks to establish a comparison of two relative trace

formulae in order to establish a connections between period integrals on the one hand, and special

values of L-functions on the other. In [Guo96] such a result, as a generalization of Waldspurger’s

formula for toric periods, was conjectured for automorphic representations of GL2n(AF ), with the

period integrals corresponding to the subgroups GLn(AF )×GLn(AF ) or GLn(AE), where E/F is

a quadratic extension of number fields. The case of GLn(AF ) × GLn(AF ) is referred to as “linear

periods” and was first introduced and studied by Jacquet and his collaborators [FJ93,JR96]. This

note seeks to establish the necessary analytic properties of relative orbital integrals arising from

the geometric side of the corresponding relative trace formula to pursue this conjecture.

Let F be a p-adic field of characteristic zero and η : F× → {±1} be a nontrivial quadratic

character. Let G = GL2n,F and H = GLn,F ×GLn,F with an embedding

(h1, h2) 7→

(
h1

h2

)
, h1, h2 ∈ GLn,F .
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Put

θ(g) =

(
1n

−1n

)
g

(
1n

−1n

)
.

Then H = {g ∈ G | θ(g) = g}. Let

S = {g−1θ(g) | g ∈ G} ⊂ G

This is a closed subvariety of G over F and H acts on S by conjugation. We prove some standard

harmonic analysis results on S, e.g. density of regular semisimple orbital integrals, representability

of Fourier transform of orbital integrals, representability of spherical characters, etc. Note that these

results are not expected for general symmetric spaces, as indicated by various counterexamples of

Rader and Rallis [RR96]. This means that the symmetric space S is of a particular good shape in

this regard. Our argument follows closely the traditional route. The new ingredient is a detailed

study of the nilpotent orbital integrals, which is needed in verifying the homogeneity properties of

the nilpotent orbital integrals. This study leads to some very interesting linear algebra problems.

One of them is the following: classify pairs of n × n matrices (A,B) with AB being nilpotent, up

to the equivalence relation

(A,B) ∼ (A′, B′)⇔ ∃ h1, h2 ∈ GLn(F ), s.t. A′ = h−1
1 Ah2, B′ = h−1

2 Bh1.

This innocent looking problem is in fact equivalent to the classification of nilpotent orbits and is

(surprisingly) not easy, c.f. Section 3 for a solution.

Due to the very nature of the subject, this paper is leaning towards the technical side. We

describe our results more precisely in the rest of the introduction for the convenience of future

reference. The most applicable result perhaps is Theorem 1.5 which asserts that the spherical

characters arising in this context are represented by locally integrable functions.

Elements of S are all of the form(
a b

c d

)
, a2 = d2 = 1n + bc, ab = bd, dc = ca.

We say that an element x ∈ S is θ-semisimple (resp. θ-regular semisimple) if it is semisimple (resp.

regular semisimple) in GLn,F (in the usual sense) and det(a2 − 1n) 6= 0. We say that an element

x ∈ G is θ-semisimple (resp. θ-regular semisimple) if its image in S is so.

Let f ∈ C∞c (G) and g ∈ G be a θ-semisimple element. We define the θ-semisimple orbital

integral

O(g, η, f) =

∫
(H×H)g\H×H

f(h1gh2)η(deth2)dh1dh2,

where (H × H)g = {(h, h′) ∈ H × H | hgh′ = g}. This integral is absolutely convergent. Let

D(G)H×H,η be the space of left H-invariant and right (H, η)-invariant distributions on G. Then

O(g, η, ·) ∈ D(G)H×H,η for all θ-regular semisimple g ∈ G.
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Theorem 1.1. The set {O(g, η, ·) | g ∈ G is θ-regular semisimple} is weakly dense in D(G)H×H,η.

This means that if f ∈ C∞c (G) and O(g, η, f) = 0 for all θ-regular semisimple g ∈ G, then λ(f) = 0

for all λ ∈ D(G)H×H,η.

We also consider the tangent space of S at the point represented by the identity element in G.

This is a vector space s together with an action of the group H. By way of analogy with the group

case, we will refer to it as the “Lie algebra” of S. Explicitly it can be described as follows. We

have s = Mn,F ×Mn,F , considered as a subspace of M2n,F consisting of matrices of the form(
0 X

Y 0

)
, X, Y ∈Mn,F .

The group H acts on s by conjugation. An element in s is θ-semisimple or θ-regular semisimple if

it is so in M2n,F . The locus of θ-semisimple and θ-regular semisimple elements in s are denoted by

sθ−ss and sθ−reg respectively.

Let γ ∈ sθ−ss and f ∈ C∞c (s), we define an orbital integral

O(γ, η, f) =

∫
Hγ\H

f(h−1γh)η(deth)dh,

where Hγ = {h ∈ H | h−1γh = γ}. The integral is absolutely convergent.

Let D(s)H,η be the (H, η)-invariant distributions on s. Then O(γ, η, ·) ∈ D(s)H,η for all θ-regular

semisimple γ in s.

Theorem 1.2. The set {O(γ, η, ·) | γ ∈ sθ−reg} is weakly dense in D(s)H,η.

Let us fix an H-invariant inner product on s by 〈γ, δ〉 = Tr γδ, where on the right hand side the

product and the trace are taken in M2n,F . Thus we can speak of the Fourier transform of elements

in C∞c (s) and hence the Fourier transform of distributions on s. The following result is proved

in [Zha15, Theorem 6.1].

Proposition 1.3. Let γ ∈ s be θ-regular semisimple. Then the Fourier transform of the distribution

O(γ, η, ·) is represented by a locally integrable (H, η)-invariant function on s. This function is locally

constant on sθ−reg.

We will define “θ-nilpotent orbital integrals” in this note and prove the following result.

Proposition 1.4. The Fourier transform of θ-nilpotent orbital integrals are represented by locally

integrable functions on s. This function is locally constant on sθ−reg.

This proposition is the technical heart of the note. The hard part is that, as opposed to the

case of the classical orbital integrals or the nonsplit analogue of this paper treating orbital integrals

on GLn(E)\GL2n(F ) [Guo98], the naive integration on the θ-nilpotent orbits is not absolutely

convergent in our case and some subtle regularization process is needed to define “θ-nilpotent

orbital integrals”.
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A standard consequence of this proposition is the representability of the relative spherical

characters. Let π be an irreducible representation of G. Assume that HomH(π,C) 6= 0 and

HomH(π̃, η) 6= 0 where π̃ is the contragredient of π. Fix nonzero elements l ∈ HomH(π,C) and

l̃η ∈ HomH(π̃, η). Define a distribution on G by

Jπ(f) =
∑
ϕ

l(π(f)ϕ)l̃η(ϕ̃), f ∈ C∞c (G).

Here ϕ runs through a basis of π while ϕ̃ runs through the dual basis. Then Jπ ∈ D(G)H×H,η.

Theorem 1.5. The distribution Jπ is represented by a left H-invariant and right (H, η)-invariant

locally integrable function on G.

We end this introduction with a question. Let (G,H) be a general symmetric space in the sense

that G is a reductive group over F and H is the fixed point in G of an involution. Rader and

Rallis [RR96] showed using many counterexamples that the results in this note in general do not

hold for (G,H). That is, regular semisimple orbital integrals might not be weakly dense in the

space of all invariant distributions; the spherical characters might not be representable by a locally

integrable functions. Apart from the case treated in this note, we only know that these good

properties hold for the following pairs.

– The classical group case: (H ×H,H). This is the celebrated result of Harish-Chandra.

– The Galois case: (ResE/F H,H) where E/F is a quadratic field extension. This is due to

Hakim [Hak94].

– The linear case: (A×, B×) where E/F is a quadratic field extension and A is a central

simple algebra over F containing E and B the centralizer of E in A. This is due to [Guo98]

in if A = M2n,F and the general case follows from the same argument. It is unfortunate

that no published proof is available.

The question is: Can you characterize symmetric spaces with these good properties in terms of

their geometric properties or combinatorial invariants?

This note is organized as follows. We start with the semisimple descent of orbital integrals

in Section 2. In Sections 3–7 we are going to work on the Lie algebra s. We study θ-nilpotent

orbital integrals in Sections 3 and 4. We define all orbital integrals in Section 5. Then we establish

the Shalika germ expansion in Section 6 and prove that they are linearly independent in Section 7.

Theorem 1.2 and Proposition 1.4 are also proved simultaneously with linear independence of Shalika

germs. In Section 8, we deduce the results on the level of groups from the results on the Lie algebras.

In particular we prove Theorem 1.1. Finally in the last section we prove Theorem 1.5, the local

integrability of spherical characters.

Notation. We always take F to be a p-adic field of characteristic zero. Let oF be the ring of

integers and $F a uniformizer.
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Let X be a scheme over F . Usually we simply write X for X(F ) unless there are ambiguities.

One notable exception is with the categorical quotient in which case we always distinguish the

notation of the scheme from its set of F -points (see below). On the scheme X we always use the

Zariski topology while on the set of F -points X(F ) we always use the analytic topology.

Let G be an algebraic group over F and V be a G-variety over F , i.e. V admits an action of G.

This action is sometimes denoted by g · v or gv where g ∈ G and v ∈ V . If x ∈ V , we denote by

Gx the stabilizer of x in G. If C is a subset of V and g ∈ G, then we let Cg the subset consisting

of all elements of the form g · v where v ∈ C, and we let CG = ∪g∈GCg. Thus if x ∈ V , then xG

stands for the orbit of x. The adjoint action of G on its Lie algebra (or subgroup of G acting on

subspaces of the Lie algebra of G) is denoted by Ad.

We denote by q : V → V//G, or simply V//G, the categorical quotient. We should note that

(V//G)(F ) is usually not the same as V (F )//G(F ) and we always write V//G for the scheme

instead of its F -points. A subset of U of V (F ) is called saturated if U = q−1(q(U)).

We use capital letters to denote various groups and symmetric spaces. We use the corresponding

Gothic letters to denote their Lie algebras, e.g. if G is an algebraic group, then without saying

to the contrary, g stands for the Lie algebra of G. Elements in the groups or symmetric spaces

are usually denoted using lower case Latin letters, while elements in the Lie algebras are usually

denoted by lower case Greek letters.

Acknowledgement. I would like to sincerely thank the anonymous referee for a lot of suggestions

which greatly improve the clarity and completeness of the manuscript. This work is partially

supported by the NSF grant DMS #1901862.

2. Semisimple descent

First we consider some general setup. Let G be a reductive group over F , X be a G-variety over

F and x ∈ X be G-semisimple point, i.e. the orbit xG of x is closed. We let NX
x be the normal

space of xG at x. It admits a natural action of Gx and we call (Hx, N
X
x ) the sliced representation

at x. By [AG09], there exist the following data which we refer to as the analytic slice at x. We use

analytic topology throughout.

(1) An G-invariant open neighbourhood U of xG in X with an G-equivariant retraction map

p : U → xG.

(2) An Gx-equivariant embedding ψ : p−1(x) → NX
x with an open and saturated image such

that ψ(x) = 0.

If y ∈ p−1(x) and z = ψ(y), then we have

(1) (Gx)z ' Gy and NNx
z ' NX

y as representations of (Gx)z and Gy;

(2) y is G-semisimple in X if and only if z is Gx-semisimple in NX
x .

The analytic slice at x is denoted by (U, p, ψ).

Let us now specialize to the case X = s or S with the conjugation action of H.
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First consider the case X = s. The categorical quotient s//H is an n-dimensional affine space

over F . The canonical map s→ s//H is given by(
a

b

)
→ Tr∧iab, i = 1, · · · , n.

More precisely it maps

(
a

b

)
to the coefficients of the characteristic polynomial of ab. Each fiber

of s→ s//H is a collection of of finitely many orbits.

Let γ ∈ sθ−ss and Gγ = {g ∈ G | g−1γg = γ} be its stabilizer in G and then Hγ = H∩Gγ . Let gγ ,

hγ be the Lie algebras of them respectively. The involution θ preserves Gγ , and hence gγ . Let sγ be

the (−1)-eigenspace of θ in gγ . Then gγ = hγ⊕sγ and Hγ acts on sγ . By [AG09, Proposition 7.2.1],

the sliced representation at x is isomorphic to (Hγ , sγ). By [JR96], up to conjugation by H, the

θ-semisimple element γ takes the following form

γ =


X

0r

1n−r

0r

 ,

where X ∈ GLn−r(E). It is not hard to check that the symmetric pair (Gγ , Hγ) is of the form

(G1, H1)× (G2, H2),

where

G1 '

{
x =

(
a Xc

c a

)
∈ GL2n−2r(E)

∣∣∣ aX = Xa, Xc = cX

}
,

and

H1 '

{
h =

(
a

a

)∣∣∣ aX = Xa

}
.

The symmetric space (G2, H2) is isomorphic to (GL2r,GLr ×GLr). The sliced representation sγ is

isomorphic to s1× s2 on which H1×H2 acts componentwise. The action of H2 on s2 is of the same

shape as the action of H on s, but of a smaller size. The space s1 with the action by H1 is indeed

isomorphic to the usual conjugation action of H1 on its Lie algebra.

We now consider the case X = S. Let g ∈ G be θ-semisimple and x = g−1θ(g) ∈ S. The

centralizer Gx is stable under the involution θ and the fixed point of θ is precisely Hx. Then

(Gx, Hx) form a symmetric space. Let Sx = {g−1θ(g) | g ∈ Gx} and sx be its tangent space at 1.

Then we have gx = hx ⊕ sx. Again by [AG09, Proposition 7.2.1], the sliced representation at x is

isomorphic to (Hx, sx). According to [JR96, Proposition 4.1], x is H-conjugate to an element of
6



the form 

a a− 1r

1s

−1n−r−s

a+ 1r a

1s

−1n−r−r


,

where a ∈ GLr(F ) is semisimple in the usual sense and det(a2 − 1r) 6= 0. Then it follows that the

symmetric space (Gx, Hx) is a product

(G1, H1)× (G2, H2)× (G3, H3),

where (G2, H2) and (G3, H3) are of the same shape of (G,H) but of smaller sizes and

G '

{(
b (a+ 1r)c

(a− 1r)c b

)∣∣∣∣∣ ab = ba, ac = ca

}
, H '

{(
b

b

)∣∣∣ ab = ba

}
.

The sliced representation sx is isomorphic to s1× s2× s3 where H1×H2×H3 acts componentswise.

Here (H1, s1) is isomorphic to the adjoint action of H1 on its Lie algebra, and (H2, s2), (H3, s3) are

of the same shape as (H, s) but of smaller sizes.

The following proposition connects the orbital integrals on S or s near a θ-semisimple point x

to the orbital integrals on the sliced representation at x. This procedure will be referred to as

semisimple descent.

Proposition 2.1. Let X = s or S and x ∈ X be θ-semisimple. There exists an open neighbourhood

ωx ⊂ ψ(p−1(x)) of 0 ∈ NX
x with the following property: if f ∈ C∞c (X), then there is an fx ∈

C∞c (NX
x ) so that for all θ-regular semisimple z ∈ ωx, z = ψ(y) with y ∈ p−1(x), we have

(2.1)

∫
Hy\H

f(h−1yh)η(deth)dh =

∫
Hz\Hx

fx(h−1zh)η(deth)dh

Proof. This is stated in [Zha15, Proposition 5.20]. We give a short proof here as we will make use

of the explicit construction (not merely the existence) of fx later.

As usual the proof begins with the following compactness result.

Claim. Let ωx ⊂ ψ(p−1(x)) be a saturated subset whose image in (Xx//Hx)(F ) is relatively

compact. Let ω ⊂ X be a compact subset. Then the closure of

{h ∈ H | ψ−1(ωx)h ∩ ω 6= ∅}

is compact in Hx\H.
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The proof of this claim is clear. We consider the diagram

H ×Hx p−1(x)
i //

j

��

X × (NX
x //Hx)

Hx\H

The horizontal arrow is a closed embedding. The set in the claim is contained in the compact set

ji−1(ω × ωγ).

With this claim at hand, we proceed as follows. Let f ∈ C∞c (X) and ω = supp f . Let C be an

open compact subset of Hx\H which contains the closure of the set in the claim. Choose a function

α ∈ C∞c (H) such that ∫
Hx

α(hg)dh = 1C(g).

Put

fx(z) =

∫
H
f(h−1ψ−1(z)h)η(deth)α(h)dh, z ∈ ωγ .

Then fx ∈ C∞c (ωx) and we view fx as a function on NX
x . Let z ∈ ωx be θ-regular semisimple and

y = ψ−1(z) ∈ p−1(x). Then y ∈ X is θ-regular semisimple and (Hx)z = Hy. A little computation

gives ∫
(Hx)z\Hx

fx(h−1zh)η(deth)dh =

∫
Hy\H

f(h−1yh)η(deth)dh.

This proves the proposition. �

3. The nilpotent cone

Let N ⊂ s be the nilpotent cone, i.e. the closed subvariety of s consisting of all elements whose

orbit closure contains 0 ∈ s. Elements or orbits contained in N are called θ-nilpotent.

Lemma 3.1. The nilpotent cone consists of elements in s that are nilpotent in g in the usual sense.

Proof. An element ξ =

(
X

Y

)
∈ s is contained in the nilpotent cone if and only if its image in the

categorical quotient s//H is 0. The later condition means that the coefficients of the characteristic

polynomial of XY are all zero (except for the leading one), i.e. XY is nilpotent. This is again

equivalent to that ξ is nilpotent in g. �

To analyse the θ-nilpotent orbits, it would be better to use a more canonical formulation. Let

V = V +⊕V − be a Z/2Z-graded vector space with homogeneous components V ± and dimV ± = n.

Then we have

s ' Hom(V +, V −)⊕Hom(V −, V +), H ' GL(V +)×GL(V −).

The nilpotent cone in s consists of pairs of endomorphism ξ = (X,Y ) ∈ End(V ), X ∈ Hom(V +, V −)

and Y ∈ Hom(V −, V +) such that XY and hence Y X are both nilpotent. This condition is equiv-

alent to saying that ξ = (X,Y ) ∈ End(V ) is nilpotent.
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Let θ ∈ H be the element which acts on V ± by ±1. Then θ acts on gl(V ) by sending Z ∈ gl(V ) to

Ad(θ)Z = θZθ. It is clear that h and s are eigenspaces of Ad(θ) of eigenvalue 1 and −1 respectively.

Let ξ = (X,Y ) ∈ N . Then we have a filtration on V given by

(3.1) 0 = W0 ⊂W1 ⊂W2 ⊂ · · · ⊂Ws−1 ⊂Ws = V, Wi = Ker ξi.

We may view V as an F [ξ]-module and V is a direct sum of indecomposable F [ξ]-submodules.

By [KP79, Section 4], one can choose the generators of these submodules to be homogeneous. More

concretely, let U be such an indecomposable submodule of dimension a over F . Then we can choose

a homogeneous element u ∈ U so that

u, ξu, ξ2u, · · · ξa−1u

form a F -basis of U . It follows that for each i, we have

Wi = W+
i ⊕W

−
i , W±i = Wi ∩ V ±.

Therefore we have two filtrations

(3.2) 0 = W±0 ⊂W
±
1 ⊂W

±
2 ⊂ · · · ⊂W

±
s−1 ⊂W

±
s = V ±.

Note that while the filtration (3.1) is strictly increasing, these two filtration might not be strictly

increasing.

We put r?
i = dimW ?

i /W
?
i−1 where ? stands for +, −, or empty. Note that ξ induces an injective

map Wi+1/Wi →Wi/Wi−1 for i = 1, · · · , s− 1. It follows that ri ≥ ri+1 for all i. Moreover since ξ

induces injective maps W±i+1/W
±
i → W∓i /W

∓
i−1, we conclude that r±i ≥ r∓i+1 for all i. By suitably

choosing bases of these successive quotients and lifting them to V ±, we may assume that the maps

W±i+1/W
±
i → W∓i /W

∓
i−1 induced by ξ are all of the form

(
1r±i+1

0

)
, where 0 stands for the zero

matrix of size (r∓i − r
±
i+1)× r±i+1.

Let P = MN be the parabolic subgroup of GL(V ) stabilizing the filtration (3.1), and P+ =

M+N+ be the parabolic subgroup of H stabilizing both filtrations (3.2). We have

M+ '
s−1∏
i=0

GL(W+
i+1/W

+
i )×

s−1∏
i=0

GL(W−i+1/W
−
i ).

Lemma 3.2. We have

P ∩H = P+, M ∩H = M+, N ∩H = N+.

Proof. It follows from the definition that P ∩ H ⊃ P+. If h ∈ H ∩ P , then h(W±i ) ⊂ Wi. But

h(W±i ) ⊂ V ±. It follows that h(W±i ) ⊂ Wi ∩ V ± = W±i . This proves P ∩ H = P+. One can

similarly prove the other two equalities. �

Lemma 3.3. The following assertions hold.
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(1) We have

(3.3) Ad(N+)ξ = ξ + [n, n] ∩ s,

where [−,−] stands for the Lie algebra bracket of n.

(2) For any h ∈ H, if Ad(h)(n ∩ s) ⊂ n ∩ s, then h ∈ P+.

Proof. By [How74, Lemma 2(b)], Ad(N)ξ = ξ + [n, n]. Note that Ad(θ)ξ = −ξ. Then both sides

of (3.3) are (−1)-eigenspaces of Ad(θ). This proves the first assertion.

By [How74, Lemma 2(d)], if g ∈ G and Ad(g)ξ ⊂ n, then g ∈ P . Note that ξ ∈ n ∩ s. Then the

second assertion follows from Lemma 3.2. �

Lemma 3.4. The P+-orbit of ξ in s is an (Zariski) open subset of n ∩ s consisting of elements Z

with the properties that

Z|W±i+1/W
±
i

: W±i+1/W
±
i →W∓i /W

∓
i−1, i = 1, · · · , s− 1

is injective.

Proof. Since Ad(N+)ξ is the coset ξ + [n, n] ∩ s in n ∩ s, it is enough to consider the image of

Ad(M+)ξ in

n ∩ s/[n, n] ∩ s,

which is isomorphic to

s−1⊕
i=1

Hom(W+
i+1/W

+
i ,W

−
i /W

−
i−1)⊕

s−1⊕
i=1

Hom(W−i+1/W
−
i ,W

+
i /W

+
i−1).

As explained before, ξ induces an injective map W±i+1/W
±
i →W∓i /W

∓
i−1 for all i and with suitable

choice of basis, this map is represented by the matrix

(
1r±i+1

0

)
. Moreover by choosing suitable

bases, any injective map W±i+1/W
±
i → W∓i /W

∓
i−1 can be represented by a matrix of this form.

It follows that the image of Ad(P+)ξ in Hom(W±i+1/W
±
i ,W

∓
i /W

∓
i−1) is the subset of all injective

maps. This proves the lemma. �

We thus have the following classification of θ-nilpotent orbits.

Lemma 3.5. The set of θ-nilpotent orbits in N is in one-to-one correspondence with the set of two

sequences of integers r±i , i = 1, · · · , s, such that

(3.4) n = r±1 + · · ·+ r±s , r±1 ≥ r
∓
2 ≥ r

±
3 ≥ · · · , r+

1 + r−1 > r+
2 + r−2 > · · · > r+

s + r−s > 0.

Proof. To each ξ ∈ N , we have constructed as above two sequences of vector space W±i , i = 1, · · · , s.
We simply put r±i = dimW±i /W

±
i−1 and they satisfy (3.4).

Conversely, given any two sequences of integers r±i satisfying (3.4), one can find an element ξ ∈ N
so that dimW±i /W

±
i−1 = r±i . This can be achieved as follows. We are going to write s explicitly as

10



matrices of the form

(
X

Y

)
as before. First write X as a blocked matrix where rows correspond

to the partition n = r+
1 · · ·+r+

s and columns correspond to the partition n = r−1 +· · ·+r−s . Similarly

write Y as a blocked matrix where rows correspond to the partition n = r−1 + · · ·+ r−s and columns

correspond to the partition n = r+
1 · · ·+ r+

s . Then ξ is the matrix of following form. All the block

entries of X and Y are zero except for the (i, i + 1) entry. The (i, i + 1) entry of X and Y are of

size r+
i × r

−
i+1 and r−i × r

+
i+1 respectively and we have r±i ≥ r∓i+1. The (i, i + 1) entry of X and Y

are of the form

(
1r±i+1

0

)
where 1r±i+1

stands for the identity matrix of size r+
i+1 in X and size r−i+1

in Y , and 0 stands for the zero matrix. It is not hard to check that this ξ is the desired θ-nilpotent

matrix. �

We now study the stabilizer M+
ξ of ξ in M+. If the H-orbit represented by ξ were to support

an (H, η)-invariant distribution, then η ◦ det would have to be trivial on M+
ξ .

We have two chains of injective maps induced by the element ξ:

(3.5) W ε
s/W

ε
s−1 ↪→ · · · ↪→W∓3 /W

∓
2 ↪→W±2 /W

±
1 ↪→W∓1 ,

where ε = + or − according to the parity of s. For each i, the map W±i+1/W
±
i → W∓i /W

∓
i−1 is

either an isomorphism or (genuine) injective and it is an isomorphism if and only if dimW±i+1/W
±
i =

dimW∓i /W
∓
i−1. We call the integer i a jump if dimW±i+1/W

±
i < dimW∓i /W

∓
i−1 (either the + one

or the − one, the inequality does not have to hold for both filtrations). To unify treatment, we call

s a jump if dimW ε
s/W

ε
s−1 6= 0.

Lemma 3.6. Suppose that the orbit represented by ξ supports an (H, η)-invariant distribution.

Then all jumps are even integers, i.e. we have the strict inequality rεi > r−εi+1 (ε = + or −) in (3.4)

only when i is even.

Proof. Let i be the smallest jump in one of the chains of injective maps (3.5), say the one ends

with W+
1 . The last a few terms in the filtration looks like

W
(−1)i

i+1 /W
(−1)i−1

i ↪→W
(−1)i−1

i /W
(−1)i−2

i−1
∼−→ · · · ∼−→W+

1 ,

where the leftmost arrow is injective but not an isomorphism. We construct a basis of V as follows.

Choose linearly independent elements in W±s so that its image in W±s /W
±
s−1 is a basis. Then

the image under ξ of these elements in W∓s−1 are also linearly independent. We extend them to

a set of linearly independent elements in W∓s−1 so that the image in W∓s−1/W
∓
s−2 forms a basis.

We repeat this process for all W±j ’s. Then we get a basis of V . Among elements in this basis,

we can find wj ∈ W
(−1)j−1

j so that ξ(wj) = wj−1, j = 1, · · · , i, and wi is not in the image of

W−i+1 under ξ. Choose λ ∈ F× with η(λ) = −1 and let h ∈ GL(M+) be an element such that it

acts as multiplication by λ on w1, · · · , wi and trivially on all elements of the basis of V . Then by
11



construction h ∈ M+
ξ and η(deth) = (−1)i. Since η ◦ det is trivial on M+

ξ , i has to be even. We

may repeat this process for all other jumps. �

Example 3.7. To facilitate understanding, we suggest the following example. Let us consider the

case n = 4 and the nilpotent element ξ ∈ s given by the following matrix.

ξ =



0 1

0 1

0 0

0

0 0 1 0

0 0 0

0 1

0


, V + =



∗
∗
∗
∗
0

0

0

0


, V − =



0

0

0

0

∗
∗
∗
∗


.

Simple computation gives

W+
1 =



∗
∗
0

0

0

0

0

0


, W+

2 =



∗
∗
∗
0

0

0

0

0


, W+

3 =



∗
∗
∗
∗
0

0

0

0


; W−1 =



0

0

0

0

∗
0

0

0


, W−2 =



0

0

0

0

∗
∗
∗
0


, W−3 =



0

0

0

0

∗
∗
∗
∗


.

Moreover (r+
1 , r

−
2 , r

+
3 ) = (2, 2, 1) and (r−1 , r

+
2 , r

−
3 ) = (1, 1, 1). The elements w and h that we chose

in the proof of Lemma 3.6 is

w =



0

0

0

1

0

0

0

0


, h =



1

λ

1

λ

1

1

λ

1


, deth = λ3.

It is straightforward to check that h commutes with ξ. According to our terminology, in the

sequence r+
1 = r−2 > r+

3 , 2 and 3 are jumps, which are not all even. The orbit represented by ξ

does not support any (H, η)-invariant distribution.
12



4. Nilpotent orbital integrals

In this section, we are going to show that the necessary condition in Lemma 3.6 that a nilpotent

orbital integral supports an (H, η)-invariant distribution is also sufficient. Moreover these (H, η)-

invariant distributions extend to an (H, η)-invariant distribution on s.

Let us keep the notation from Section 3. Let O be a θ-nilpotent orbit in s represented by an

element ξ. Then attached to ξ is a parabolic subgroup P+ = M+N+ of H. We also have two

sequences of integers r±1 ≥ r∓2 ≥ r±3 ≥ · · · . We assume that all the jumps in these two sequences

are even integers. By Lemma 3.6, this is a necessary condition for O to support an (H, η)-invariant

distribution.

Let 2i1 < · · · < 2ia be the set of all jumps in the sequence r+
1 ≥ r−2 ≥ · · · . Let 2j1 < · · · < 2jb

be the set of all jumps in the sequence r−1 ≥ r+
2 ≥ · · · . Note that we either have 2ia = s and

W−s /W
−
s−1 6= 0, or 2ia < s and all W ε

i+1/W
ε
i = 0 if i ≥ 2ia where ε is an appropriate sign. We have

a similar assertion for the jump 2jb. Then the space n ∩ s/[n, n] ∩ s is isomorphic to

2ia⊕
i=1

Hom(W
(−1)i

i+1 /W
(−1)i

i ,W
(−1)i−1

i /W
(−1)i−1

i−1 )⊕
2jb⊕
i=1

Hom(W
(−1)i+1

i+1 /W
(−1)i+1

i ,W
(−1)i

i /W
(−1)i

i−1 ).

Let us define some determinant functions. Let us write an element in n ∩ s/[n, n] ∩ s as a sequence

m = (x1, · · · , x2ia ; y1, · · · , y2jb),

with

xi ∈ Hom(W
(−1)i

i+1 /W
(−1)i

i ,W
(−1)i−1

i /W
(−1)i−1

i−1 ), yi ∈ Hom(W
(−1)i+1

i+1 /W
(−1)i+1

i ,W
(−1)i

i /W
(−1)i

i−1 ).

Note that if i is odd, then both r±i+1 = r∓i by the assumption that all jumps are even integers.

Moreover

ξ|W±i+1/W
±
i

: W±i+1/W
±
i →W∓i /W

∓
i−1

is an isomorphism. To shorten notation, we put ξ∓i = ξ|W±i+1/W
±
i

. Define

det+
2i−1(x2i−1) = detx2i−1(ξ+

2i−1)−1, det−2i−1(y2i−1) = det y2i−1(ξ−2i−1)−1,

and

detn(m) = det+
1 (x1) det+

3 (x3) · · · det+
2ja−1(x2ja−1) det−1 (y1) det−3 (y3) · · · det−2jb−1(y2jb−1).

Lemma 4.1. For p ∈ P+ and u ∈ n ∩ s, we have

η(detn(pup
−1)) = η(det p)η(detn u).

Proof. This follows from the definition of detn. �

Let n′ be the subspace of n ∩ s generated by [n, n] ∩ s and⊕
i even

Hom(W+
i+1/W

+
i ,W

−
i /W

−
i−1)⊕

⊕
i even

Hom(W−i+1/W
−
i ,W

+
i /W

+
i−1).

13



Let f ∈ C∞c (s), we define a function f̃ ∈ C∞c (n ∩ s/n′) as

(4.1) f̃(m) =

∫
n′
f(m+ u)du.

Before we proceed, let us recall the following result due to Godement and Jacquet [GJ72, Theo-

rem 3.3] (taking the representation π to be η ◦ det). Note that the holomorphy is a consequence of

the fact that E/F is a quadratic extension of nonarchimedean local fields and η is nontrivial.

Lemma 4.2. Let ϕ ∈ C∞c (Mn(F )). Put

Z(s, η, ϕ) =

∫
GLn(F )

ϕ(h)|deth|sη(deth)dh,

where dh stands for the multiplicative measure on GLn(F ). Then this integral is convergent if

<s� 0 and has a meromorphic continutation to the whole complex plane. It is holomorphic at all

s ∈ R.

The function f̃ is a function in the variables

m = (x1, x3, · · · , x2ja−1; y1, y3, · · · , y2jb−1).

Let s = (s1, s3, · · · , s2ja−1) and t = (t1, t3, · · · , t2jb−1) be complex numbers. Put

detn,s,t(m) =|det+
1 (x1)|s1 |det+

3 (x3)|s3 · · · |det+
2ja−1(x2ja−1)|s2ja−1

|det−1 (y1)|t1 |det−3 (y3)|t3 · · · |det−2jb−1(y2jb−1)|t2jb−1 .

Consider the integral

Z(s, t, η, f̃) =

∫
f̃(m)η(detn(m)) detn,s,t(m)dm,

where the domain of integration is n ∩ s/n, which is identified with⊕
i odd

Hom(W−i+1/W
−
i ,W

+
i /W

+
i−1)⊕

⊕
i odd

Hom(W+
i+1/W

+
i ,W

−
i /W

−
i−1).

By Lemma 4.2, the integral Z(s, t, η, f̃) is convergent when the real part of si and ti’s are large

enough and Z(s, t, η, f̃) has meromorphic continuation to Cia+jb , which is holomorphic at the points

where all si and ti’s are integers. We define

µ̃O(f) = Z(s, t, η, f̃)

∣∣∣∣∣si=r−i , for all i

ti=r
+
i , for all i

.

The point is that for the variable coming from one of the decreasing sequences, we evaluate this

integral at the point given by the corresponding integer in the other sequence.

Lemma 4.3. For any f ∈ C∞c (s), and any p ∈ P+, we have

(4.2) µ̃O(Ad(p)f) = δP+(p)η(det p)µ̃O(f).
14



Proof. The invariance by elements in N+ is straightforward to check. One has to prove (4.2) for

elements in M+. We may even assume that m ∈ GL(W+
i+1/W

+
i ). The other cases can be derived

from this one or follow from the same argument.

Elementary computation shows that

δP+(m) = |detm|−(r+i ···+r
+
1 )+r+i+2+···+r+s .

If i is odd, then in computing the integration over n′, after changing variables, we obtain

|detm|−(r−i−1+···+r−1 )+r−i+2+···+r−s .

In computing the integration Z(s, t, η, f̃), by changing the variable, we obtain another term

|detm|−r
+
i η(detm).

Note that we have r±1 = r∓2 , r±3 = r∓4 , etc. Thus we conclude

−(r+
i · · ·+ r+

1 ) + r+
i+2 + · · ·+ r+

s = −(r−i−1 + · · ·+ r−1 ) + r−i+2 + · · ·+ r−s + (−r+
i ).

This proves (4.2) when i is odd. The case i being even is similar. �

Let us now choose an open compact subgroup K of H so that H = P+K. Let us put

(4.3) fK(γ) =

∫
K
f(γk)η(det k)dk, µO(f) = µ̃O(fK).

Proposition 4.4. The distribution on s given by f 7→ µO(f) is (H, η)-invariant. Moreover the

linear form µO extends the (H, η)-invariant distribution on O to an (H, η)-invariant distribution

on s supported on O.

Proof. The first assertion follows from Lemma 4.3 and [How74, Proposition 4]. Even though [How74,

Proposition 4] does not involve the extra character η, the same argument goes through without

change.

If f is a compactly supported function on O, so is fK . By Lemma 3.4, the support of f̃K defined

by (4.1) is a compact subset of ∏
i odd

GLr+i
(F )×

∏
i odd

GLr−i
(F ).

It follows that the integral Z(s, t, η, f̃K) is convergent for all s and t. When evaluated at si = r−i
and ti = r+

i , this convergent integral gives precisely the (convergent) integral of f along the orbit

O. This proves the second assertion. �

Corollary 4.5. A θ-nilpotent orbit O supports an (H, η)-invariant distribution if and only if the

necessary condition in Lemma 3.6 is satisfied. If O supports an (H, η)-invariant distribution, then

this distribution extends to an (H, η)-invariant distribution on s.

Proof. This is merely a combination of Lemma 3.6 and Proposition 4.4. �
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In the following, we call a θ-nilpotent orbit that supports an (H, η)-invariant distribution or any

element contained in it visible. We let N0 be the subset of N consisting of visible θ-nilpotent orbits.

From the discussion above, the set

{µO | O ⊂ N0}

is a natural basis of the space of (H, η)-invariant distributions on s supported on N .

Let us put dO = dimN+.

Lemma 4.6. Let f ∈ C∞c (s) and for any t ∈ F× we put ft(X) = f(t−1X). Let O ⊂ N0 then we

have

µO(ft) = |t|dOη(t)nµO(f), µO(f̂t) = |t|2n2−dOη(t)nµO(f̂)

Proof. We just need to prove the first equality. The second one on the Fourier transform follows

from the first one easily. Suppose that O is represented by ξ and gives rise to the sequences of

integers r±1 ≥ r
∓
2 ≥ · · · . It follows from the definition of µO that

µO(ft) = |t|dim n′+2(r+1 r
−
1 +r+3 r

−
3 +··· )η(t)nµO(f).

It is thus enough to prove that

(4.4) dimN+ = dim n′ + 2(r+
1 r
−
1 + r+

3 r
−
3 + · · · ).

We have

(4.5) dimN+ =

n∑
i=1

∑
j≥i+1

r+
i r

+
j + r−i r

−
j .

To organize the terms on the right hand side of (4.4) into a better form, let us write 2(r+
1 r
−
1 +

r+
3 r
−
3 + · · · ) as

r+
1 r

+
2 + r+

3 r
+
4 + · · ·+ r−1 r

−
2 + r−3 r

−
4 + · · ·

Then the right hand side becomes

(4.6)
∑
i odd

r+
i r
−
i+1 + r−i r

+
i+1 +

∑
j≥i+2

(r+
i r
−
j + r−i r

+
j )

+
∑
i even

∑
j≥i+1

(r+
i r
−
j + r−i r

+
j ).

Let i be an integer. In computing the dimension of N+, the terms involving r+
i are r+

i (r+
i+1 +

r+
i+2r

+
i+3 + · · · ). If i is odd, then on the right hand side of (4.4), the terms involving r+

i are

r+
i r

+
i+1 + r+

i (r−i+2 + r−i+3 + · · · ).

If i is even, then we have

r+
i (r+

i+1 + r+
i+2 + · · · ).

Note that we have r±1 = r∓2 , r±3 = r∓4 etc. So we conclude that for a fixed i, the terms in (4.5)

and in (4.6) involving r+
i coincide. Similarly we can conclude that the terms involving r−i coincide.

Thus we conclude that (4.5) and (4.6) are the same, i.e. the identity (4.4) holds. This proves the

lemma. �
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Again to facilitate understanding, we suggest the following example.

Example 4.7. Let O be the nilpotent orbit represented by

ξ =



0 1

0 1

0

1

0 1

0 1

0 1

0


We have r+

1 = r−2 = r+
3 = r−4 = 1 and r−1 = r+

2 = 2 > r−3 = r+
4 = 0. So this orbit is visible. The

spaces [n, n] ∩ s, n ∩ s/[n, n] ∩ s, and n′ look like the following respectively

0 ∗
0 ∗

0 ∗
0

0 ∗
0 ∗

0

0





0 ∗
0

0

∗
0 ∗ ∗
∗ ∗

0 ∗
0





0 ∗
0 ∗

0 ∗
0

0 ∗
0 ∗

0 ∗
0


In this case, direct computation shows that we have µO(ft) = |t|10µO(f). This is compatible with

Lemma 4.6.

5. Orbital integrals

In this section, we define all orbital integrals on s, not necessarily θ-semisimple or θ-nilpotent.

Let γ ∈ s and γ = γs + γn be the Jordan decomposition of γ in g, γs being semisimple and

γn being nilpotent (in the usual sense). Since θ(γs) and θ(γn) are still semisimple and nilpotent

respectively in g and θ(γ) = −γ, we conclude that γs, γn ∈ s. Note that γsγn = γnγs, we conclude

that γn ∈ sγs and is θ-nilpotent in sγs . Assume that γn is visible in sγs and its orbit is denoted by

Oγn . Let f ∈ C∞c (s) and h ∈ H. Let us define a function

f1(h) = µOγn (f(h−1(γs + ·)h).

Lemma 5.1. As a function in h ∈ H, f1 is compactly supported on Hγs\H.

Proof. If for some h ∈ H, f1(h) 6= 0, then there is some y ∈ Hγs such that h−1(γs + y−1γny)h ∈
supp f which is a compact set. Note that h−1γsh is θ-semisimple in s and h−1y−1γnyh is θ-nilpotent

in s. So hγsh
−1 is the semisimple part of h−1(γs+y−1γny)h and hence lies in some compact subset
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C of s. As the orbit of γs is closed, it follows that y lies in some compact subset of Hγs\H. This

proves the lemma. �

It follows from the definition that f1(yh) = η(det y)f1(h) if y ∈ Hγs . We then put

O(γ, η, f) =

∫
Hγs\H

f1(h)η(deth)dh.

This integral is absolutely convergent. It is not hard to check that if the restriction f to the orbit

of γ is compactly supported, then O(γ, η, f) agrees with the integral on the orbit of γ.

We now connect the orbital integral on s with the orbital integral on sγs . We keep the notation

from (the proof of) Proposition 2.1 in Section 2. We have the analytic slice (U, p, ψ) at γ. Let

f ∈ C∞c (s) and we have constructed an fγs ∈ C∞c (sγs). According to the definition, we have

fγs(ξ) =

∫
H
f(h−1ψ−1(ξ)h)η(deth)α(h)dh, ξ ∈ ωγ .

Lemma 5.2. We have µOγn (fγs) = O(γ, η, f).

Proof. When we restrict it to the nilpotent cone in sγs , the function fγs equals∫
H
f(h−1(γs + ·)h)η(deth)α(h)dh.

From this and the definition of O(γ, η, f) we conclude that

(5.1) µOγn (fγs) =

∫
H
f1(h)η(deth)α(h)dh =

∫
Hγs\H

f1(h)η(deth)1C(h)dh = O(γ, η, f).

�

We finish the definition of orbital integrals with the following lemma.

Lemma 5.3. If γn is not visible in sγs, then the orbit if γ in s does not support any (H, η)-invariant

distribution.

Proof. An obvious necessary condition that the orbit represented by γ supports an (H, η)-invariant

distribution is η(deth) = 1 if h ∈ Hγ . If h ∈ Hγ , i.e. h−1γh = γ, then h−1γsh+ h−1γnh = γs + γn.

As h−1γsh is θ-semisimple and h−1γnh is θ-nilpotent, we conclude h−1γsh = γs and h−1γnh = γn

by the uniqueness of the Jordan decomposition. Therefore Hγ is a subgroup of Hγs that stabilizes

γn. Then the condition η(deth) = 1 if h ∈ Hγ is precisely that γn represents a visible θ-nilpotent

orbit in sγs . �

6. The germ expansion

We study an analogue of the Shalika germ expansion in this section.

Proposition 6.1. There is a unique (H, η)-invariant real valued function ΓO on sθ−reg for each

nilpotent orbit O ⊂ N0 with the following properties.
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(1) For any f ∈ C∞c (s), there is an H-invariant neighbourhood Uf of 0 ∈ s such that

(6.1) O(γ, f) =
∑
O⊂N0

ΓO(γ)µO(f).

for all θ-regular semisimple γ ∈ Uf .

(2) For all t ∈ F× and all ξ ∈ sθ−reg, we have

ΓO(tγ) = |t|−dOη(t)nΓO(γ).

Proof. It follows from [RR96, Proposition 1.2] that there are functions Γ′O on sθ−reg for each O ⊂ N0

with property (1). Note that if Γ′′O is another set of functions satisfying (1), then Γ′O and Γ′′O have

the same germs at 0 ∈ s (i.e. they equal in a small neighbourhood of 0). We first explain that

Γ′O can be chosen to be real valued, at least when γ is close to 0 ∈ s. In fact, since µO’s form a

basis of (H, η)-invariant distributions on s that are supported on N , for each O ⊂ N0 we can find

a function fO so that µO(fO′) = δO,O′ (Kronecker delta). It is obvious that fO’s can be chosen

to be real valued. For this particular choice, we have O(γ, fO) = Γ′O(γ) when γ lies in a small

neighbourhood of 0. Indeed, this can be taken as the definition of Γ′O(γ). As fO is real, it follows

that Γ′O(γ) can be taken to be real. We need to prove that among these functions, we can choose

a unique ΓO for each O ⊂ N with property (2).

Let t ∈ F× be fixed. We claim that as a function of γ, ΓO(tγ) and |t|−dOη(t)nΓO(γ) have the

same germs at 0. Indeed, on the one hand, we have

O(γ, ft) =
∑
O⊂N0

Γ′O(γ)|t|dOη(t)nµO(f)

when γ lies in a small neighbourhood (depending on f and t) of 0 ∈ s. On the other hand,

O(γ, ft) = O(t−1γ, f) =
∑
O⊂N0

Γ′O(t−1γ)µO(f).

when γ lies in a small neighbourhood (depending on f and t) of 0 ∈ s. Comparing these two, we

conclude that Γ′O(tγ) and |t|−dOη(t)nΓ′O(γ) have the same germs at γ = 0.

Thus we put

ΓO(γ) = lim
t→0
|t|dOη(t)nΓ′O(tγ).

It is straightforward to check that ΓO(γ) does satisfy property (2). Of course, in order that ΓO

satisfies property (2), it has to be of this form. Thus this function is unique. �

The function ΓO in the lemma is called the Shalika germ indexed by O.

We now consider the Shalika germ expansion around an arbitrary θ-semisimple element γ ∈ s.

We keep the notation from Section 2. The space sγ with an action of Hγ is isomorphic to s1 × s2

with an action of H1 × H2, where the action of H1 on s1 is isomorphic to the conjugation of H1

on its Lie algebra and the action of H2 on s2 is of the same shape as the action of H on s but of

a smaller size. Note that according to the decomposition s = s1 × s2, γ = (γ(1), 0) where γ(1) ∈ s1

is a central element in s1. A θ-nilpotent orbit in sγ is of the form O(1) × O(2) where O(1) is a
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nilpotent orbit in s1 (in the usual sense) and O(2) is a θ-nilpotent oribt in s2. The orbit O is visible

in sγ if and only if O(2) is visible in s2. Let {O1, · · · ,Or} be the set of nilpotent orbits in sγ . We

thus have the Shalika germs on sγ , indexed by the θ-nilpotent orbits in sγ , which on s1 is given

by the one defined in [Kot05, Section 17] and on s2 is given by the one we have just defined. Let

{ξ1, · · · , ξr} be a complete set of representatives of θ-nilpotent elements in sγ and ξi ∈ Oi. We

denote the Shalika germ on sγ indexed by Oi by Γγi .

Corollary 6.2. Let f ∈ C∞c (s). Then there is a neighbourhood Uf of γ in sγ so that for any

ξ ∈ Uf ∩ sθ−reg, we have

O(ξ, η, f) =
r∑
i=r

Γγi (ξ)O(γ + ξi, η, f).

Proof. Let us keep the notation from Section 2 Proposition 2.1. We have constructed an fγs ∈
C∞c (sγs). Apply Proposition 6.1 (germ expansion on s2 near 0) and [Kot05, Theorem 17.5] (germ

expansion on s1 near a central element), we have

Osγ (ξ, η, fγ) =
r∑
i=1

Γγi (ξ)µ
sγ
Oi(fγ),

where the upper script sγ indicates that these are orbital integrals on the space sγ . Applying

Proposition 2.1 to the left hand side and the equality (5.1) to the right hand side, we obtain the

desired result in the corollary. �

7. Linear independence of Shalika germs

The goal of this section is to prove the linear independence of Shalika germs that we defined in

the last section and the density of θ-regular semisimple integrals on s simultaneously. We follow

the argument of [Kot05, Section 27] closely.

Lemma 7.1. The set of all orbital integrals is weakly dense in D(s)H,η.

Proof. Recall that weak density means that if all orbital integrals of f ∈ C∞c (s) vanish, then

D(f) = 0 for all (H, η)-invariant distributions D on s. For any space V on which H acts, we let

VH,η = V/{h.v − η(h)v | h ∈ H, v ∈ V }

be the (H, η)-coinvariance. Then D(f) = 0 for all (H, η)-invariant distributions D on s means that

the image of f in C∞c (s)H,η is zero.

Let us consider the categorical quotient

q : s→ s//H.

Let x be an element in (s//H)(F ). Restriction a function f ∈ C∞c (s) to the fiber q−1(x) gives a

surjective H-equivariant map

C∞c (s)→ C∞c (q−1(x)).
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Passing to the (H, η)-coinvariance, we obtain a surjective map

C∞c (s)H,η → C∞c (q−1(x))H,η.

As x ranges over all points in (s//H)(F ), we obtain a map

(7.1) C∞c (s)H,η →
∏

x∈(s//H)(F )

C∞c (q−1(x))H,η.

By [Kot05, Lemma 27.1] this map is injective.

Recall that s//H is identified with an n-dimensional affine space over F . When x is the origin of

(s//H)(F ), the fiber q−1(x) is the nilpotent cone N . Thus the dual space of C∞c (q−1(0))H,η is finite

dimensional and a basis is provided by all visible θ-nilpotent orbital integrals. The case of general

x ∈ (s//H)(F ) is quite similar. The dual space of C∞c (q−1(x))H,η is finite dimensional and a basis

is provided by orbital integrals where the orbits are contained q−1(x) and support (H, η)-invariant

distributions.

It follows that if f ∈ C∞c (s) so that all orbital integrals vanish, then its image in C∞c (q−1(x))H,η

vanishes for all x ∈ (s//H)(F ). Thus the image of f in C∞c (s)H,η also vanishes by the injectivity

of (7.1). This is equivalent to saying that D(f) = 0 for all (H, η)-invariant distribution D on s. �

Lemma 7.2. The functions ΓO’s for O ⊂ N0 are linearly independent if and only if their restric-

tions to an arbitrary small neighbourhood of 0 ∈ s are still linearly independent.

Proof. Let U be a small neighbourhood of 0 ∈ s. We may assume that U is a lattice in s, or in

other words, U is an oF -module.

Now we use homogeneity of Shalika germs. The additive semigroup of non-negative integers

acts on U ∩ sθ−reg, with j acting by multiplication by the scalar $2j
F , and therefore acts on the

space of functions on U ∩ sθ−reg (the action of j transforming a function f(X) into f($2j
F X)). By

homogeneity of Shalika germs, c.f. Proposition 6.1, the restriction of ΓO to U ∩ sθ−reg transforms

under the character j 7→ |$F |−jdOη($F )j on our semigroup. But in any representation of our

semigroup, vectors transforming under distinct characters are linearly independent. Thus, in order

to prove linear independence of the restrictions of Shalika germs to U ∩ sθ−reg, it is enough to fix a

nonnegative integer d and prove linear independence of the restrictions of the Shalika germs for all

θ-nilpotent orbits with dO = d. But all these germs are homogeneous of the same degree, namely

d, so it is clear that any dependence relation that holds on the subset U ∩ sθ−reg will also hold on

the whole set sθ−reg. �

The following lemma relates the linear independence of the Shalika germs to the density of

θ-regular semisimple orbital integrals.

Lemma 7.3. The following assertions are equivalent.

(1) The Shalika germs ΓO, O ⊂ N0 are linearly independent.
21



(2) The θ-nilpotent orbital integrals µO’s lie in the weak closure of the set of θ-regular semisimple

orbital integrals in D(s)H,η.

Proof. (1) ⇒ (2). Let f ∈ C∞c (s) and assume that the θ-regular semisimple orbital integrals

O(γ, η, f) are all zero. Then it follows from the Shalika germ expansion that∑
O⊂N

µO(f)ΓO(γ) = 0

for any θ-regular semisimple γ ∈ Uf where Uf is a small neighbourhood of 0 ∈ s. Since ΓO’s are

linear independent, by the previous lemma, they are linearly independent even when restricted to

Uf . Thus we conclude that µO(f) = 0 for all O.

(2)⇒ (1). Suppose that we have a linear relation∑
O⊂N0

aOΓO(γ) = 0, for all γ ∈ sθ−reg.

As µO’s form a basis of the space of (H, η)-invariant distributions on s supported on N , we may

choose a test function f ∈ C∞c (s) so that µO(f) = aO for all O ⊂ N . Thus using the Shalika germ

expansion, we conclude that there is a small neighbourhood Uf of 0 ∈ s so that

O(γ, η, f) =
∑
O⊂N0

µO(f)ΓO(γ) =
∑
O⊂N0

aOΓO(γ) = 0

for all θ-regular semisimple γ ∈ Uf . The set (Uf )H contains an open and closed neighbourhood V

of N . Let f ′ = f 1V . Then we have that O(γ, η, f ′) = 0 for all θ-regular semisimple γ. Moreover,

since V is an open and closed neighbourhood of N , we have that µO(f) = µO(f ′) for all O ⊂ N .

Now by assertion (2), the θ-nilpotent orbital integrals µO’s all lie in the weak closure of the θ-

regular semisimple orbital integrals. Since O(γ, η, f ′) = 0 for θ-regular semisimple γ, we conclude

that aO = µO(f) = µO(f ′) = 0. This proves (1). �

The next lemma allows us to use induction.

Lemma 7.4. Let γ ∈ sθ−ss. Suppose that ΓγO’s are linearly independent. Then for all ξ whose θ-

semisimple part is γ the orbital integral O(ξ, η, f) lies in the weak closure of the set of all θ-regular

semisimple orbital integrals.

Proof. Let Nγ be the nilpotent cone of sγ and for each nilpotent orbit O ⊂ Nγ , we fix an element

ξO ∈ O. Then by the Shalika germ expansion at γ, there is a small neighbourhood Uf of γ in sγ ,

so that for all θ-regular semisimple ξ ∈ Uf ,

O(ξ, η, f) =
∑
O⊂Nγ,0

ΓγO(ξ)O(γ + ξO, η, f).

As ΓγO’s are linearly independent and they remain linearly independent when restricted to Uf , we

conclude that if O(ξ, η, f) = 0 for all θ-regular semisimple ξ ∈ Uf , we have O(γ + ξO, η, f) = 0 for

all O ⊂ Nγ,0. This proves the lemma. �
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We now prove the linear independence of Shalika germs and the density of θ-regular semisimple

orbital integrals simultaneously.

Theorem 7.5. The followsing assertions hold.

(1) The Shalika germs ΓO’s, O ⊂ N0, are linearly independent.

(2) The set of θ-regular semisimple orbital integrals are weakly dense in D(s)H,η.

Proof. We argue by induction on n, i.e. the size of s.

First we show that, under the inductive hypothesis, the two assertions in the proposition are

equivalent. In fact, if the second assertion holds, then the first holds by Lemma 7.3. If the first

assertion holds, then θ-nilpotent orbital integrals lie in the weak closure of θ-regular semisimple

orbital integrals. When combined with the induction hypothesis and Lemma 7.4, this implies that

all orbital integrals lie in the weak closure of the θ-regular semisimple orbital integrals. This proves

that two assertions in the proposition are equivalent. We will prove the second assertion under the

induction hypothesis.

Put
C1 = {f ∈ C∞c (s) | all orbital integrals of f vanish};

C2 = {f ∈ C∞c (s) | all θ-regular semisimple orbital integrals of f vanish}.

By Lemma 7.4 and the induction hypothesis, the set C2 consists of all functions f ∈ C∞c (s) such

that all orbital integrals, except the θ-nilpotent orbital integrals, vanish. Thus the dual space of

C2/C1 is spanned by all µO’s, O ⊂ N0.

By Lemma 7.1, C1 consists of all f ∈ C∞c (s) such that I(f) = 0 for all (H, η)-invariant dis-

tribution I. Thus it is clear that C1 is closed under the Fourier transform. Since the Fourier

transform of θ-regular semisimple orbital integrals are represented by (H, η)-invariant locally in-

tegrable functions on sθ−reg by Proposition 1.3, we conclude that C2 is also preserved under the

Fourier transform. Thus Fourier transform induces an isomorphism of C2/C1 onto itself. Therefore

the dual space of C2/C1 is also spanned by µ̂O’s.

By Lemma 4.6, µO and µ̂O have the homogeneity properties

µO(ft) = |t|dOµO(f), µ̂O(ft) = |t|2n2−dO µ̂O(f).

The proof of Lemma 4.6, or more precisely (4.5) shows that dO < n2 for all O ⊂ N0. Therefore

dO < 2n2 − dO′ for any O,O′ ⊂ N0. We thus have two spanning sets of the dual space of C2/C1,

all being homogeneous, but with different scaling factors from each set. Therefore C2/C1 = 0 and

this proves the proposition. �

Corollary 7.6. The Fourier transform of µO is represented by a locally integrable function in s

for all O ⊂ N0.

Proof. We need to make use of Howe’s finitenss theorem for s, established by Rader and Rallis

in [RR96, Theorem 6.7]. We do not need the statement this theorem here, but rather a standard
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consequence of it, i.e. the uniformity of the germ expansion. Let L ⊂ s be a lattice, i.e. an open

compact subgroup of s. Then Howe’s finitenss theorem implies that there is a neighbourhood UL

such that the germ expansion

O(γ, η, f) =
∑
O⊂N0

ΓO(γ)µO(f)

holds for all f ∈ C∞c (s/L) and all θ-regular semisimple γ ∈ UL.

Now let L ⊂ s be a lattice. There is a lattice L′ in s (in fact the dual lattice of L) so that

f̂ ∈ C∞c (s/L′) for all f ∈ C∞c (L). Therefore there is a neighbourhood UL of 0 ∈ s so that

O(γ, η, f̂) =
∑
O⊂N0

ΓO(γ)µO(f̂)

holds for all θ-regular semisimple γ ∈ UL and all f ∈ C∞c (L). By Theorem 7.5 and Lemma 7.2,

ΓO’s, O ⊂ N0, when restricted to UL′ , are linearly independent. Therefore we can choose a θ-regular

semisimple γO for each O ⊂ N0 so that matrix

(ΓO(γO′))O,O′⊂N0

is invertible. We then conclude that there are constants cO, so that

µO(f̂) =
∑
O′⊂N0

cO′O(γO′ , η, f̂)

holds for all f ∈ C∞c (L).

By Proposition 1.3 there is a locally constant function KγO′ on sθ−reg which is locally integrable

on s so that the distribution on s given by f 7→ O(γO′ , η, f̂) is represented by KγO′ . It follows that

for all f ∈ C∞c (L) we have

µO(f̂) =

∫
s
f(γ)

 ∑
O′⊂N0

cO′KγO′ (γ)

 dγ.

We put KO,L(γ) =
∑
O′⊂N0

cO′KγO′ (γ) for γ ∈ sθ−reg. This function is locally constant on sθ−reg

and is locally integrable on s.

We now choose another lattice L1 so that L ⊂ L1. Then we get another function KO,L′ . We

claim that KO,L1(γ) = KO,L(γ) if γ ∈ L and is θ-regular semisimple. In fact both functions, when

restricted to L, represent the distribution f 7→ µO(f̂). Then we conclude by the local constancy of

them.

It follows that there is a well-defined function KO on s, which is locally constant on sθ−reg and

locally integrable on s, so that KO(γ) = KO,L(γ) if L is a lattice in s and γ ∈ L. It is then clear

that KO represents the distribution f 7→ µO(f̂) on s. �
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8. Density of regular semisimple orbital integrals

We explain how to establish the results on the level of G in this section.

We fix an H-invariant neighbourhood ω of 0 ∈ s and a neighbourhood Ω of 1 ∈ S so that the

the exponential (rational) map exp : s → Ω is defined and is a homeomorphism. Let f ∈ C∞c (G).

We put f̃(g−1θ(g)) =
∫
H f(hg)dh and f\ ∈ C∞c (ω) given by f\(γ) = f̃(exp(γ)). We extend f\ to a

function on s via extension by zero.

We consider the H ×H action on G by left and right multiplication and the conjugation action

of H on S. We say that an element x ∈ S or rather the H-orbit of x is θ-unipotent if it is unipotent

in G. We say that g ∈ G is θ-unipotent if x = g−1θ(g) is so in S. Let Y ⊂ S be the variety of

θ-unipotent elements in S. By [JR96, Lemma 4.1], the exponential map induces an H-equivariant

isomorphism Y → N and thus induces a bijection on the set of H-orbits in Y and that in N . Let

u1, · · · , ur, ur+1, · · · , us be a complete set of representatives of θ-unipotent orbits in G. Let Oi be

the θ-nilpotent orbits in s represented by exp−1(u−1
i θ(ui)) and we may label these ui’s so that Oi is

visible precisely when 1 ≤ i ≤ r. Therefore ui represents a θ-unipotent orbit in G which supports

a left H-invariant and right (H, η)-invariant distribution precisely when 1 ≤ i ≤ r. We denote this

distribution by O(ui, η, ·) and call it a θ-unipotent orbital integral on G. If f ∈ C∞c (G), we have

O(ui, η, f) = µOi(f\).

We call the θ-unipotent elements u1, · · · , ur or their orbits visible.

The following proposition is the Shalika germ expansion of orbital integrals on G.

Proposition 8.1. Let f ∈ C∞c (G). There is a neighbourhood Uf ⊂ Ω of 1 ∈ S so that if g ∈ G is

a θ-regular element in G with g−1θ(g) ∈ Uf , g−1θ(g) = exp(X) where X ∈ ω, then

(8.1) O(g, η, f) =
r∑
i=1

ΓOi(X)O(ui, η, f).

Proof. This follows from the definition of O(ui, η, f) and the Shalika germ expansion on s, i.e.

Proposition 6.1. �

Remark 8.2. Due to the lack of a symmetric space version of the Howe’s finiteness theorem, we

are not able to obtain the “uniformity” of the Shalika germ expansion on G. This is however well

expected. More precisely let K be an open compact subgroup of K, we expect that there is an

open neighbourhood UK of 1 ∈ G so that the germ expansion (8.1) holds for all f ∈ C∞c (K\G/K).

Let x ∈ S be θ-semisimple. Let Nx ⊂ sx be the nilpotent cone and the map Nx → Sx,

ξ 7→ x exp(ξ) is Hx-equivariant and induces a bijection between the θ-nilpotent orbits in sx and the

orbits in Sx represented an element y such that the semisimple part of y is x. Let us recall the explicit

construction of an analytic slice of x ∈ S given in [Zha15, Section 5.3]. Recall first from Section 2

that an analytic slice at x ∈ S is a triple (U, p, ψ), where U is an H-invariant neighbourhood of

the orbit xH in S, the map p : U → xH is an H-equivariant retraction and ψ is an Hx-equivariant
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embedding of p−1(x) into the normal space NS
x of xH in S at x. By [Zha15, Section 5.3] we can take

p−1(x) to be a small neighbourhood of x in Sx and identify NS
x with sx. The map ξ 7→ x exp(ξ)

define an Hx-equivariant homeomorphism from a neighbourhood of 0 ∈ NS
x to p−1(x) and we can

and will take ψ to be the inverse of this map.

Let g ∈ G and x = g−1θ(g). Let x = xsxu = xuxs be the Jordan decomposition of x in G

(with obvious notation). Then one checks readily that xs, xu ∈ S. Let O ⊂ Nxs be a visible

θ-nilpotent orbit and assume that xu is contained in the image of O under the exponential map.

Let f ∈ C∞c (G) and f̃ ∈ C∞c (S). We define f1 ∈ C∞(H) by

f1(h) = µ
sxs
O (f̃(h−1(xs exp(·))h)).

The right hand side is interpreted as follows. Fix an h ∈ H and an H-invariant neighbourhood

U of 0 ∈ sx. We assume that U is compact modulo H and the exponential map is defined on U .

Define a compactly supported function on U by ξ 7→ f̃(h−1(xs exp(ξ))h) when ξ ∈ U and extend

it to sx by zero. It is clear that the orbital integral is independent of the choice of U as it depends

only on the value of the integrand when ξ ∈ Nx. Then the right hand side stands for the orbital

integral of this function along O on sxs . The same proof of Lemma 5.1 shows that the image of

supp f1 in Hxs\H is compact. We put

O(g, η, f) =

∫
Hx\H

f1(h)η(deth)dh.

The same argument the proof of Lemma 5.2 gives that

(8.2) O(g, η, f) = µ
sxs
O (f̃xs),

where f̃xs is the function constructed in Proposition 2.1 from f̃ . Again the same proof of Lemma 5.3

gives that if xn is not contained in the image of a visible θ-unipotent orbit, then the orbit of g does

not support any distribution that is left H-invariant and right (H, η)-invariant.

Theorem 8.3. The set of θ-regular semisimple orbital integrals is weakly dense in the set of left

H-invariant and right (H, η)-invariant distributions on G.

Proof. As in the case of invariant distributions on s, the set of all orbital integrals is weakly dense

in D(G)H×H,η. This is the symmetric space version of Lemma 7.1 and can be proved by the

same argument. Thus we need to prove that if f ∈ C∞c (G), and O(g, η, f) = 0 for all θ-regular

semisimple g ∈ G, then all orbital integrals of f vanish. Let x ∈ S be θ-semisimple. We have a

function f̃ ∈ C∞c (S) and we let f̃x ∈ C∞c (sx) be the function constructed in Proposition 2.1. Then

by Proposition 2.1, all θ-regular semisimple orbital integrals of f̃x near 0 ∈ sx vanish. Thus by

Theorem 7.5 (apply for sx), we conclude that all θ-nilpotent orbital integrals of f̃x vanish. By the

equality (8.2), we conclude that O(g, η, f) = 0 if the θ-semisimple part of g−1θ(g) is x. This shows

that all orbital integrals of f vanish and proves the theorem. �
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Remark 8.4. It is expected that the orbital integrals O(g, η, ·) on G are all tempered distributions,

i.e. they extend continuously to the Harish-Chandra Schwartz space on G, c.f. [Clo91]. The proof

of this would rely on the “uniformity” of Shalika germ expansions, which in term rely on the Howe’s

finiteness theorem on the symmetric spaces, c.f. Remark 8.2.

9. Spherical characters

We prove the local integrability of spherical characters in this section. This is a standard con-

sequence of the germ expansion and the local integrability of the Fourier transform of θ-nilpotent

orbital integrals.

Let π be an irreducible admissible representation of G. Assume that HomH(π,C) 6= 0 and

HomH(π̃, η) 6= 0 where π̃ is the contragredient of π. Fix nonzero elements l ∈ HomH(π,C) and

l̃η ∈ HomH(π̃, η). Define a distribution on G by

Jπ(f) =
∑
ϕ

l(π(f)ϕ)l̃η(ϕ̃), f ∈ C∞c (G).

Here ϕ runs through a basis of π while ϕ̃ runs through the dual basis. Then Jπ ∈ D(G)H×H,η.

To state the germ expansion for Jπ, let us recall the following setup. Let x = g−1θ(g) ∈ S be a

θ-semisimple element. Consider the map

H ×Gx ×H → G, (h1, g, h2) 7→ h1xgh2.

Let Ux be the open subset in Gx consisting of elements g ∈ Gx such that the above map is

submersive at (1, g, 1). Let Ωx be the image of H × Ux × H in G. Then Ux is a bi-Hx-invariant

neighbourhood of 1 in Gx and Ωx is a bi-H-invariant neighbourhood of x in G. By standard theory

of Harish-Chandra, there is a surjective map

(9.1) C∞c (H × Ux ×H)→ C∞c (Ωx), α 7→ fα,

with the property that∫
H×Ux×H

α(h1, g, h2)β(h1xgh2)dh1dgdh2 =

∫
Ωx

fα(g)β(g)dg,

for all β ∈ C∞c (Ωx). According to [JR96, Section 5.1, p. 103], there is a unique left Hx-invariant

and right (Hx, η)-invariant distribution Jx on Gx such that

Jπ(fα) = Jx(βα),

for all α ∈ C∞c (H × Ux ×H), where

βα(g) =

∫
H

∫
H
α(h1, g, h2)η(deth2)dh1dh2, g ∈ Gx.

Recall that we have defined a test function βα,\ ∈ C∞c (sx) at the beginning of Section 8. The germ

expansion of Jπ refers to the following theorem.
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Theorem 9.1. Let the notation be as above. There are constants cO for each visible Hx-orbit O
in the nilpotent cone Nx, such that

Jπ(fα) =
∑
O⊂Nx

cOµ̂O(βα,\)

for all α ∈ C∞c (H × Ux ×H). The sum ranges over all visible θ-nilpotent orbits O in Nx.

The distributions µ̂O are locally integrable functions on sx by Corollary 7.6. Therefore Theo-

rem 9.1 implies the following result.

Theorem 9.2. The distribution Jπ is represented by a left H-invariant and right (H, η)-invariant

locally integrable function on G.

Theorem 9.1 is almost proved in the literature. It is established in [RR96, Theorem 7.11] near the

identity element and in [Hak94, Theorem 2] near all semisimple elements for the Galois symmetric

pairs. The general case can be established essentially by the same argument and is given in [Guo98].

It is unfortunate that [Guo98] is never published. For completeness we briefly outline the argument

in the rest of this section and refer the readers to [Hak94, RR96] for details. The readers may

want to have these papers at hand. The germ expansion holds for spherical characters on all

symmetric spaces. The argument outlined below also works in the general setting. We remark that

the references usually consider only bi-H-invariant distributions, but the argument works without

change in our setup. We also remark that even though [Hak94] aims at proving results for the

Galois symmetric pairs in odd residue characteristic, Sections 2 to 7 of it are actually devoted to

results of general symmetric spaces in arbitrary residue characteristic. There are misprints in the

second paragraph on page 3 of [Hak94], where Section 7 should be Section 8, and Section 5 later

in the paragraph should be Section 6.

We introduce more notation. Let L ⊂ gx be a θ-stable lattice with a decomposition L = L+⊕L−
where L+ ⊂ hx and L− ⊂ sx. Suppose that L is ee in the sense of [RR96, page 158] (we do not

need the precise definition). The exponential map maps L onto an open compact subgroup K of

Gx. Write K+ = expL+ ⊂ Hx. We may also assume that L is small enough so that η is trivial on

K+. By [RR96, Corollary 7.3], (K,K+) is a Gelfand pair.

Let us now recall Howe’s parametrization of K̂, the set of irreducible smooth representation of K.

We put K1/2 = exp(1
2L) and K

1/2
+ = exp(1

2L+). The various 1/2 appearing here and below are all

to take care of the complications arise in the case of residue characteristic two. They do not play any

roles in the case of odd residue characteristic. Let E(K/K+) be the set of irreducible representations

of K with a nonzero K+-fixed vector. If the residue characteristic is two, the group K
1/2
+ acts on

E(K/K+) by conjugation and we let E1/2(K/K+) be the set of K
1/2
+ -orbits in E(K/K+). If the

residue characteristic is odd, then K = K1/2, K+ = K
1/2
+ and E(K/K+) = E1/2(K/K+). If

µ ∈ E(K/K+) we define

φµ(k) = 〈µ(k)e, e〉
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where e ∈ µ is the unique unit K+-fixed vector. Let d = {µ1, · · · , µm} is an orbit in E1/2(K/K+).

We then put

φd =

m∑
i=1

φµi .

Let d(d) = dimµ for any µ ∈ d. We view φd either as a bi-K+-invariant function on K or a function

on Sx supported in the image of K.

Let L⊥− be the dual lattice of L− in sx, i.e. the annihilator of L− with respect to 〈−,−〉. As L−

is stable under the action of K
1/2
+ , so are L⊥− and sx/L

⊥
−. Thus we can consider the K

1/2
+ -orbits in

sx/L
⊥
−. If O is such an orbit, we let κO ∈ C∞c (sx) be the characteristic function of it.

Proposition 9.3. There is a bijection between E1/2(K/K+) and the set of K
1/2
+ -orbits in sx/L

⊥
−

which sends d ∈ E1/2(K/K+) to Od ⊂ sx/L
⊥
−. Under this bijection, we have

d(d)φd(expX) = (volL⊥−)−1κ̂Od(X)

for all X ∈ L−.

This is the combination of Proposition 7.8 and Proposition 7.10(2) of [RR96].

Let Ngx be the cone of nilpotent matrices in gx. We fix any norm ‖·‖ on gx. Let S1 be the unit

ball in gx, and

V (ε) = {X ∈ S1 | ‖X − n‖ ≤ ε for some n ∈ Ngx ∩ S1}.

We also put

FV (ε) = {λX | λ ∈ F, X ∈ V (ε)}.

Lemma 9.4. Let ε > 0 be sufficiently small and R > 0 be sufficiently large. Let d ∈ E1/2(K/K+).

Assume that Jx(φd) 6= 0 and that that there is a Z ∈ Od with ‖Z‖ ≥ R. Then Od ⊂ FV (ε).

This is [Hak94, Theorem 4].

Let U0 ⊂ sx be an open and closed neighbourhood of zero such that expU0 is contained in the

image of Ux. The spherical character Jx is left Hx-invariant and therefore can be viewed as a

distribution on Sx. Restrict Jx to expU0 and pull it back via the exponential map we obtain a

distribution on U0. Extending it by zero to all sx. We denote this distribution by J0. Note that

we have Jx(f) = J0(f\) for all f ∈ C∞c (Gx).

Lemma 9.5. Let ε > 0 be sufficiently small and R > 0 be sufficiently large. Let Z ∈ sx with

‖Z‖ > R, and let fZ ∈ C∞c (sx) be the characteristic function of Z + L⊥−. If Ĵ0(fZ) 6= 0, then there

is an n ∈ Nx so that ‖Z − n‖ ≤ ε‖n‖.

Proof. Let O be the K
1/2
+ -orbit of −Z in sx/L

⊥
− and d ∈ E1/2(K/K+) be the K

1/2
+ -orbit of repre-

sentations corresponding to O as in Proposition 9.3. We have

κO =
∑

Z′∈O/L⊥−

fZ′ .
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Note that Z ′’s are all the K+-orbit of −Z, J0 is (Hx, η)-invariant and η is trivial when restricted

to K+. It follows that

d(d)Jx(φd) = (volL⊥−)−1 ·#O/L⊥− · Ĵ0(fZ).

Therefore if Ĵ0(fZ) 6= 0, then Jx(φd) 6= 0. As ‖Z‖ > R, by Lemma 9.4 we have Z ∈ FV (ε). In

other words, there is a λ ∈ F× and n1 ∈ Ngx so that ‖λ−1Z − n1‖ ≤ ε. Put n = λn1 ∈ Ngx we

conclude that ‖Z − n‖ ≤ ε‖n‖. Following the same argument as in the second paragraph of the

proof of [RR96, Theorem 7.11] we can even choose n ∈ Nx. This proves the lemma. �

We now finish the proof of Theorem 9.1. Lemma 9.5 tells us that Ĵ0 ∗ κL⊥− is contained in

(9.2) C(ε, R) = B(0, R) ∪ {Z ∈ sx | ‖Z − n‖ ≤ ε‖n‖ for some n ∈ Nx}.

Here ∗ stands for the usual convolution of functions and distributions. Let

J(ε, R, L⊥−) =
{

(H, η)-invariant distributions D with supp
(
D|C∞c (sx/L⊥−)

)
⊂ C(ε, R)

}
.

With this notation we have Ĵ0 ∗ κL⊥− ∈ J(ε, R, L) ∗ κL⊥− . Let ω be an Hx-invariant open and closed

subset of sx, compact modulo Hx, and D(ω)H,η be the space of (Hx, η)-invariant distributions

supported on ω. By Howe’s finiteness theorem [RR96, Theorem 6.8], if ε is small enough and R is

large enough, then

J(ε, R, L⊥−) ∗ κL⊥− = D(ω)H,η ∗ κL⊥− .

By [RR96, Proposition 6.9], if L is sufficiently small and hence L⊥− is sufficiently large, then D(ω)H,η∗
κL⊥−

is spanned by the θ-nilpotent orbital integrals. Therefore we can find constants cO so that

Ĵ0 ∗ κL⊥− =
∑
O⊂Nx

cO

(
µO ∗ κL⊥−

)
.

Theorem 9.1 follows by taking inverse Fourier transform. For details, see the last paragraph of the

proof of [RR96, Theorem 7.11].
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