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1. INTRODUCTION

In the relative Langlands program, one often seeks to establish a comparison of two relative trace
formulae in order to establish a connections between period integrals on the one hand, and special
values of L-functions on the other. In [ | such a result, as a generalization of Waldspurger’s
formula for toric periods, was conjectured for automorphic representations of GLg,(AF), with the
period integrals corresponding to the subgroups GL,(Ar) x GL,(Ar) or GL,(Ag), where E/F is
a quadratic extension of number fields. The case of GL,,(Ar) x GL,(Ar) is referred to as “linear
periods” and was first introduced and studied by Jacquet and his collaborators [ , ]. This
note seeks to establish the necessary analytic properties of relative orbital integrals arising from
the geometric side of the corresponding relative trace formula to pursue this conjecture.

Let F be a p-adic field of characteristic zero and n : F* — {41} be a nontrivial quadratic
character. Let G = GLa, r and H = GL,, r x GL,, r with an embedding

h
(hlahQ)'_)<1 h>’ hi,he € GL, F.
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Put

Then H = {g € G| 6(g) = g}. Let
S={g'(9)|geG}cG

This is a closed subvariety of G over F' and H acts on S by conjugation. We prove some standard
harmonic analysis results on S, e.g. density of regular semisimple orbital integrals, representability
of Fourier transform of orbital integrals, representability of spherical characters, etc. Note that these
results are not expected for general symmetric spaces, as indicated by various counterexamples of
Rader and Rallis | |. This means that the symmetric space S is of a particular good shape in
this regard. Our argument follows closely the traditional route. The new ingredient is a detailed
study of the nilpotent orbital integrals, which is needed in verifying the homogeneity properties of
the nilpotent orbital integrals. This study leads to some very interesting linear algebra problems.
One of them is the following: classify pairs of n x n matrices (A, B) with AB being nilpotent, up

to the equivalence relation
(A,B) ~ (A, B') & 3 hy, hy € GL,(F), s.t. A = hy'Ahy, B' = hy ' Bhy.

This innocent looking problem is in fact equivalent to the classification of nilpotent orbits and is
(surprisingly) not easy, c.f. Section 3 for a solution.

Due to the very nature of the subject, this paper is leaning towards the technical side. We
describe our results more precisely in the rest of the introduction for the convenience of future
reference. The most applicable result perhaps is Theorem 1.5 which asserts that the spherical
characters arising in this context are represented by locally integrable functions.

Elements of S are all of the form

a b 9 9
, a°=d°=1,+bc, ab=bd, dc=ca.
c d

We say that an element z € S is f-semisimple (resp. f-regular semisimple) if it is semisimple (resp.
regular semisimple) in GL,,  (in the usual sense) and det(a® — 1,,) # 0. We say that an element
x € G is f-semisimple (resp. f-regular semisimple) if its image in S is so.

Let f € C°(G) and g € G be a f-semisimple element. We define the #-semisimple orbital

integral

Og.n. ) = / F(highs)n(det he)dhydhs,
(HxH)g\HxH

where (H x H)y = {(h,h') € H x H | hgh' = g}. This integral is absolutely convergent. Let
D(G)H*Hn be the space of left H-invariant and right (H,n)-invariant distributions on G. Then

O(g,n,-) € D(GYH>*Hn for all f-regular semisimple g € G.
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Theorem 1.1. The set {O(g,n,-) | g € G is O-regular semisimple} is weakly dense in D(G)T*Hn,

This means that if f € C°(G) and O(g,n, ) = 0 for all 6-regular semisimple g € G, then A(f) =0
for all A € D(G)H>Hn,

We also consider the tangent space of S at the point represented by the identity element in G.
This is a vector space s together with an action of the group H. By way of analogy with the group
case, we will refer to it as the “Lie algebra” of S. Explicitly it can be described as follows. We

have s = M,, p x M, , considered as a subspace of Ma,  consisting of matrices of the form

0 X X,Y € M,
Y 0 ) ) n,F-

The group H acts on § by conjugation. An element in s is f-semisimple or #-regular semisimple if
it is so in Ma, . The locus of #-semisimple and 6-regular semisimple elements in s are denoted by
S9g—ss and sg_ree respectively.

Let v € s9p_gs and f € C2°(s), we define an orbital integral
Otnn )= [ f(hyhyn(deth)dn,
H\H

where H, = {h € H | h™'yh = v}. The integral is absolutely convergent.
Let D(s)" be the (H,n)-invariant distributions on s. Then O(v,7,-) € D(s)" for all #-regular

semisimple v in s.
Theorem 1.2. The set {O(v,1,-) | ¥ € S9—reg} is weakly dense in D(s)1.

Let us fix an H-invariant inner product on s by (v, ) = Tr~d, where on the right hand side the
product and the trace are taken in Ma, . Thus we can speak of the Fourier transform of elements
in C2°(s) and hence the Fourier transform of distributions on s. The following result is proved
in [ , Theorem 6.1].

Proposition 1.3. Let v € s be 0-reqular semisimple. Then the Fourier transform of the distribution
O(~,n, ) is represented by a locally integrable (H,n)-invariant function on s. This function is locally

constant omn $g_reg-
We will define “fO-nilpotent orbital integrals” in this note and prove the following result.

Proposition 1.4. The Fourier transform of 8-nilpotent orbital integrals are represented by locally

integrable functions on s. This function is locally constant on $g_reg.

This proposition is the technical heart of the note. The hard part is that, as opposed to the
case of the classical orbital integrals or the nonsplit analogue of this paper treating orbital integrals
on GL,(E)\ GLan(F) [ |, the naive integration on the #-nilpotent orbits is not absolutely
convergent in our case and some subtle regularization process is needed to define “f-nilpotent

orbital integrals”.



A standard consequence of this proposition is the representability of the relative spherical
characters. Let m be an irreducible representation of G. Assume that Hompy(7w,C) # 0 and
Hompg (m,n) # 0 where 7 is the contragredient of 7. Fix nonzero elements | € Hompg (7, C) and

l~77 € Homp (7, n). Define a distribution on G by

J(f) =D U (He)y(@), feCE(G).
%2}

Here ¢ runs through a basis of 7 while @ runs through the dual basis. Then .J, € D(G)#*Hn,

Theorem 1.5. The distribution J is represented by a left H-invariant and right (H,n)-invariant

locally integrable function on G.

We end this introduction with a question. Let (G, H) be a general symmetric space in the sense
that G is a reductive group over F' and H is the fixed point in G of an involution. Rader and
Rallis | | showed using many counterexamples that the results in this note in general do not
hold for (G, H). That is, regular semisimple orbital integrals might not be weakly dense in the
space of all invariant distributions; the spherical characters might not be representable by a locally
integrable functions. Apart from the case treated in this note, we only know that these good

properties hold for the following pairs.

— The classical group case: (H x H, H). This is the celebrated result of Harish-Chandra.

— The Galois case: (Resg/p H, H) where E/F is a quadratic field extension. This is due to
Hakim | ]

— The linear case: (A*,B*) where E/F is a quadratic field extension and A is a central
simple algebra over F' containing E and B the centralizer of E in A. This is due to | ]
in if A = My, r and the general case follows from the same argument. It is unfortunate

that no published proof is available.

The question is: Can you characterize symmetric spaces with these good properties in terms of
their geometric properties or combinatorial invariants?

This note is organized as follows. We start with the semisimple descent of orbital integrals
in Section 2. In Sections 3-7 we are going to work on the Lie algebra s. We study 6-nilpotent
orbital integrals in Sections 3 and 4. We define all orbital integrals in Section 5. Then we establish
the Shalika germ expansion in Section 6 and prove that they are linearly independent in Section 7.
Theorem 1.2 and Proposition 1.4 are also proved simultaneously with linear independence of Shalika
germs. In Section 8, we deduce the results on the level of groups from the results on the Lie algebras.
In particular we prove Theorem 1.1. Finally in the last section we prove Theorem 1.5, the local

integrability of spherical characters.

Notation. We always take F' to be a p-adic field of characteristic zero. Let op be the ring of

integers and wr a uniformizer.



Let X be a scheme over F'. Usually we simply write X for X (F') unless there are ambiguities.
One notable exception is with the categorical quotient in which case we always distinguish the
notation of the scheme from its set of F-points (see below). On the scheme X we always use the
Zariski topology while on the set of F-points X (F') we always use the analytic topology.

Let G be an algebraic group over F' and V be a G-variety over F', i.e. V admits an action of G.
This action is sometimes denoted by ¢ - v or gv where g € G and v € V. If x € V, we denote by
G the stabilizer of x in G. If C is a subset of V and g € G, then we let CY the subset consisting
of all elements of the form g - v where v € C, and we let C¢ = UgecC¥. Thus if x € V, then z¢
stands for the orbit of . The adjoint action of G on its Lie algebra (or subgroup of G acting on
subspaces of the Lie algebra of G) is denoted by Ad.

We denote by q : V. — V//G, or simply V//G, the categorical quotient. We should note that
(V//G)(F) is usually not the same as V(F)//G(F) and we always write V//G for the scheme
instead of its F-points. A subset of U of V(F) is called saturated if U = ¢~ *(q(U)).

We use capital letters to denote various groups and symmetric spaces. We use the corresponding
Gothic letters to denote their Lie algebras, e.g. if G is an algebraic group, then without saying
to the contrary, g stands for the Lie algebra of G. Elements in the groups or symmetric spaces
are usually denoted using lower case Latin letters, while elements in the Lie algebras are usually

denoted by lower case Greek letters.

Acknowledgement. 1 would like to sincerely thank the anonymous referee for a lot of suggestions
which greatly improve the clarity and completeness of the manuscript. This work is partially
supported by the NSF grant DMS #1901862.

2. SEMISIMPLE DESCENT

First we consider some general setup. Let G be a reductive group over F', X be a G-variety over
F and z € X be G-semisimple point, i.e. the orbit z& of z is closed. We let Ngf{ be the normal
space of & at x. It admits a natural action of G, and we call (H,, NX) the sliced representation
at x. By | ], there exist the following data which we refer to as the analytic slice at . We use

analytic topology throughout.

(1) An G-invariant open neighbourhood U of #% in X with an G-equivariant retraction map
p:U — 2C.
(2) An G -equivariant embedding v : p~!(x) — NX with an open and saturated image such
that ¢ (z) = 0.
If y € p~!(x) and z = 1 (y), then we have
(1) (Gy): ~ Gy and NN+ ~ NyX as representations of (G;), and Gy;
(2) y is G-semisimple in X if and only if z is G-semisimple in N;X.
The analytic slice at x is denoted by (U, p, ).

Let us now specialize to the case X = s or S with the conjugation action of H.
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First consider the case X = s. The categorical quotient s//H is an n-dimensional affine space

over F'. The canonical map s — s//H is given by

a , ,
(b > — TrA'ab, i=1,---,n.

a
More precisely it maps b to the coefficients of the characteristic polynomial of ab. Each fiber

of s - s//H is a collection of of finitely many orbits.

Let 7y € sg_ss and G, = {g € G | g~ 'vg = 7} be its stabilizer in G and then H, = HNG,. Let g,
b, be the Lie algebras of them respectively. The involution 6 preserves G, and hence g,. Let s, be
the (—1)-eigenspace of # in g,. Then g, = b, @ s, and H, acts on s,. By | , Proposition 7.2.1],
the sliced representation at x is isomorphic to (H,s,). By | ], up to conjugation by H, the

f-semisimple element v takes the following form

where X € GL,_,(E). It is not hard to check that the symmetric pair (G, Hy) is of the form
(G1, H1) x (Go, Ha),

where

C a

ne o (* ) o).

The symmetric space (G2, Hz) is isomorphic to (GLa,, GL, x GL;). The sliced representation s is

X
Gy~ {x _ (a c) € GLap_or(E) ‘ aX = Xa, Xc = CX} ,

and

isomorphic to 1 X so on which H; x Hy acts componentwise. The action of Hs on $9 is of the same
shape as the action of H on s, but of a smaller size. The space s; with the action by H; is indeed
isomorphic to the usual conjugation action of Hy on its Lie algebra.

We now consider the case X = S. Let g € G be f-semisimple and = g~ '0(g) € S. The
centralizer G, is stable under the involution 6 and the fixed point of 6 is precisely H,. Then
(Gy, H,) form a symmetric space. Let S, = {g7'0(g) | g € G} and s, be its tangent space at 1.
Then we have g, = h, @ s,. Again by [ , Proposition 7.2.1], the sliced representation at x is

isomorphic to (H,,s;). According to [ , Proposition 4.1, x is H-conjugate to an element of
6



the form

a+1, a

_1n—r—r

where a € GL,(F) is semisimple in the usual sense and det(a? — 1,) # 0. Then it follows that the

symmetric space (G, H,) is a product
(G1,H1) X (GQ,HQ) X (G37H3),

where (G2, Ha) and (Gs, H3) are of the same shape of (G, H) but of smaller sizes and

G:{( b (a+1r)c> ab = ba, ac:ca},H:{<b )‘ab:ba}.
(a—1,)c b b

The sliced representation s, is isomorphic to §1 X §o X s3 where Hy x Hy X Hg acts componentswise.

Here (Hj,s1) is isomorphic to the adjoint action of H; on its Lie algebra, and (Hs, s2), (Hs, s53) are
of the same shape as (H,s) but of smaller sizes.

The following proposition connects the orbital integrals on S or s near a #-semisimple point x
to the orbital integrals on the sliced representation at x. This procedure will be referred to as

semisimple descent.

Proposition 2.1. Let X =5 or S and x € X be 0-semisimple. There exists an open neighbourhood
we C Y(p~Hx)) of 0 € NX with the following property: if f € CX(X), then there is an f, €
CX(NX) so that for all O-reqular semisimple z € wy, z = ¥(y) with y € p~L(x), we have

(2.1) / f(h~tyh)n(det h)dh = / fe(h™tzR)n(det h)dh
H,\H H\Hz
Proof. This is stated in | , Proposition 5.20]. We give a short proof here as we will make use

of the explicit construction (not merely the existence) of f, later.
As usual the proof begins with the following compactness result.
Claim. Let w, C (p~!(x)) be a saturated subset whose image in (X,//H;)(F) is relatively

compact. Let w C X be a compact subset. Then the closure of
{heH |y (w)" nw# 0}

is compact in H;\H.



The proof of this claim is clear. We consider the diagram

Hxy p~ ') ——> X x (NX//H,)

E

H\H

The horizontal arrow is a closed embedding. The set in the claim is contained in the compact set
Jim (w x wy).

With this claim at hand, we proceed as follows. Let f € C2°(X) and w = supp f. Let C' be an
open compact subset of H,\ H which contains the closure of the set in the claim. Choose a function
a € CX(H) such that

[ athgian = 1c(g).

x

Put
fz(z):/Hf(h_lw_l(z)h)n(deth)a(h)dh, 2z € w,.

Then f, € C(w,) and we view f, as a function on N;X. Let z € w, be #-regular semisimple and
y=1"1(z) € p!(x). Then y € X is f-regular semisimple and (H,), = H,. A little computation
gives

/ fe(h™tzh)n(det h)dh = / f(h~tyh)n(det h)dh.
(Ho):\Haz Hy\H

This proves the proposition. ]

3. THE NILPOTENT CONE

Let A/ C s be the nilpotent cone, i.e. the closed subvariety of s consisting of all elements whose

orbit closure contains 0 € 5. Elements or orbits contained in N are called #-nilpotent.

Lemma 3.1. The nilpotent cone consists of elements in s that are nilpotent in g in the usual sense.

Proof. An element & = € s is contained in the nilpotent cone if and only if its image in the

categorical quotient s//H is 0. The later condition means that the coefficients of the characteristic
polynomial of XY are all zero (except for the leading one), i.e. XY is nilpotent. This is again
equivalent to that £ is nilpotent in g. ]

To analyse the f-nilpotent orbits, it would be better to use a more canonical formulation. Let
V = V@V~ be a Z/2Z-graded vector space with homogeneous components V* and dim V* = n.

Then we have
s~ Hom(V", V)@ Hom(V~,V"), H~GL(V"') xGL(V").
The nilpotent cone in s consists of pairs of endomorphism ¢ = (X,Y) € End(V), X € Hom(V ™,V ™)

and Y € Hom(V~, V™) such that XY and hence Y X are both nilpotent. This condition is equiv-

alent to saying that £ = (X,Y) € End(V) is nilpotent.
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Let 6 € H be the element which acts on V* by 1. Then 6 acts on gl(V') by sending Z € gl(V) to
Ad(0)Z = 0Z0. 1t is clear that h and s are eigenspaces of Ad(f) of eigenvalue 1 and —1 respectively.
Let £ = (X,Y) € N. Then we have a filtration on V given by

(3.1) O=WoycWiCcWeC---CWs_ 1 CWs=1V, Wi:Kerﬁi.

We may view V' as an F[{]-module and V is a direct sum of indecomposable F'[{]-submodules.
By | , Section 4], one can choose the generators of these submodules to be homogeneous. More
concretely, let U be such an indecomposable submodule of dimension a over F'. Then we can choose

a homogeneous element u € U so that
w, u, E2u, - €7y
form a F-basis of U. It follows that for each ¢, we have
Wi=Wtrew,, Wr=w,nVv=
Therefore we have two filtrations
(3.2) 0=WFcwifcwic..cwt, cwt=v%

Note that while the filtration (3.1) is strictly increasing, these two filtration might not be strictly
increasing.

We put ri? = dim Wi? / I/Vf_1 where ? stands for 4+, —, or empty. Note that £ induces an injective
map Wi /W; — W;/W,_y fori=1,--- ,s— 1. It follows that r; > r;41 for all i. Moreover since §
induces injective maps WZJ_EH/ W= — W /W7, we conclude that 7 > 7, for all i. By suitably
choosing bases of these successive quotients and lifting them to V*, we may assume that the maps
Wi, /Wi — W /W7, induced by ¢ are all of the form <1T§rl>, where 0 stands for the zero
matrix of size (r] — ril) X ril.
Let P = MN be the parabolic subgroup of GL(V) stabilizing the filtration (3.1), and PT =

MTNT be the parabolic subgroup of H stabilizing both filtrations (3.2). We have

s—1 s—1
M7~ H GL(W;1/W;") % H GL(Wi, /W)
i=0 i=0

Lemma 3.2. We have
PNnH=P", MNnH=M" NNH=NT.

Proof. Tt follows from the definition that P N H > P*. If h € H N P, then (W) C W;. But
R(WF) € VE. Tt follows that h(W;") € W; N V* = W=, This proves PN H = PT. One can

similarly prove the other two equalities. O

Lemma 3.3. The following assertions hold.



(1) We have
(3.3) Ad(NT)E =&+ [n,n]Ns,

where [—, —| stands for the Lie algebra bracket of n.
(2) For any h € H, if Ad(h)(nNs) CnNs, then h € PT.

Proof. By | , Lemma 2(b)], Ad(N){ = £ + [n,n]. Note that Ad(#)¢ = —¢. Then both sides
of (3.3) are (—1)-eigenspaces of Ad(f). This proves the first assertion.

By [ , Lemma 2(d)], if g € G and Ad(g){ C n, then g € P. Note that £ € nNs. Then the
second assertion follows from Lemma 3.2. O

Lemma 3.4. The PT-orbit of £ in s is an (Zariski) open subset of nNs consisting of elements Z

with the properties that
+ + :
Z|Wifi1/wii Wi /Wi — Wr/Wr,, i=1,--,s-1
18 injective.
Proof. Since Ad(N1)¢ is the coset € + [n,n] N's in nN s, it is enough to consider the image of
Ad(M™)E in
nNs/[n,nNs,
which is isomorphic to
s—1

s—1
EB H0m<Wz’i1/W¢+v W /WiZy) @ @ Hom(W; /W, W1+/Wzt1)
i=1 i=1
As explained before, £ induces an injective map Wil JWE — WF /W7, for all i and with suitable
1+

choice of basis, this map is represented by the matrix ( Ti“). Moreover by choosing suitable
0

bases, any injective map Wil / T/Vii — W7 /W, can be represented by a matrix of this form.
It follows that the image of Ad(P*)¢ in Hom (W, /Wi, W;T /W;T ) is the subset of all injective

maps. This proves the lemma. ]

We thus have the following classification of #-nilpotent orbits.

Lemma 3.5. The set of O-nilpotent orbits in N is in one-to-one correspondence with the set of two

sequences of integers rii, 1=1,---,s, such that
(3.4) n:rf+-~‘+7§t, r{czﬁc ngt >y rf—i—rl_ >r§r+r2_ >--->rj+r; > 0.
Proof. To each ¢ € N, we have constructed as above two sequences of vector space Wii, i=1,---,s.

We simply put r = dim W= /W=, and they satisfy (3.4).
Conversely, given any two sequences of integers rfc satisfying (3.4), one can find an element £ € N/

so that dim Wii / Wf_l = rzi. This can be achieved as follows. We are going to write s explicitly as
10



X
matrices of the form <Y > as before. First write X as a blocked matrix where rows correspond

to the partition n = Tf -«-+7r} and columns correspond to the partition n = r; +---+r; . Similarly

write Y as a blocked matrix where rows correspond to the partition n = +---+r; and columns
correspond to the partition n = rf -+++rF. Then £ is the matrix of following form. All the block
entries of X and Y are zero except for the (i,7 + 1) entry. The (4,7 + 1) entry of X and Y are of

size 7 x T and ;7 X 7"17:1 respectively and we have 'rz?t > rf 1. The (i,i 4 1) entry of X and Y

1+
are of the form ( riﬂ) where 1 + stands for the identity matrix of size TIH in X and size r; 4
0 i+l

in Y, and 0 stands for the zero matrix. It is not hard to check that this £ is the desired #-nilpotent

matrix. OJ

We now study the stabilizer Mg of £ in M. If the H-orbit represented by & were to support
an (H,n)-invariant distribution, then 7 o det would have to be trivial on Mg‘ .

We have two chains of injective maps induced by the element &:
(3.5) We /Wiy - o W /W5 = Wyt /Wi = W,

where ¢ = 4+ or — according to the parity of s. For each 4, the map Wil / Wii — W /W7, is
either an isomorphism or (genuine) injective and it is an isomorphism if and only if dim Wil / I/VijE =
dim W;T/W;F,. We call the integer i a jump if dim W, /W= < dim W;T /W, (either the + one
or the — one, the inequality does not have to hold for both filtrations). To unify treatment, we call

s a jump if dim W¢/W$_; # 0.

Lemma 3.6. Suppose that the orbit represented by & supports an (H,n)-invariant distribution.
Then all jumps are even integers, i.e. we have the strict inequality v§ > 1.5 (e = + or —) in (3.4)

only when 1 is even.

Proof. Let i be the smallest jump in one of the chains of injective maps (3.5), say the one ends
with Wl+ . The last a few terms in the filtration looks like

1 i -1 i—1 -1 1—1 —1 =2 ~
Wi(+1) /Wi( : ‘_>Wz'( : /Wi(—l) =S W
where the leftmost arrow is injective but not an isomorphism. We construct a basis of V' as follows.
Choose linearly independent elements in W7 so that its image in W /Wsi_ , is a basis. Then
the image under £ of these elements in W | are also linearly independent. We extend them to
a set of linearly independent elements in W, so that the image in W ,/WT, forms a basis.

We repeat this process for all Wji’s. Then we get a basis of V. Among elements in this basis,

we can find w; € V[/j(fl)j_1 so that {(wj) = wj—1, j = 1,--+ i, and w; is not in the image of
W, under . Choose A € F* with n(\) = —1 and let h € GL(M™) be an element such that it
acts as multiplication by A on wy,--- ,w; and trivially on all elements of the basis of V. Then by

11



construction h € Mg and n(det h) = (—1)%. Since n o det is trivial on M, i has to be even. We

may repeat this process for all other jumps. O

Example 3.7. To facilitate understanding, we suggest the following example. Let us consider the

case n = 4 and the nilpotent element £ € s given by the following matrix.

01 * 0

0 1 * 0

0 * 0

* 0

€= , Vt= ., V=

00 10 0 *

0 00 0 *

0 1 0 *

0 0 *

Simple computation gives
* * * 0 0 0
* * * 0 0 0
0 * * 0 0 0
0 0 * 0 0 0
W1+ - 9 WQJ’_ - 9 W; - ) Wl_ - ) WQ_ — ) W3_ =

0 0 0 * * *
0 0 0 0 * *
0 0 0 0 *
0 0 0 0 0 *

Moreover (r{,ry,73) = (2,2,1) and (r;,r5,73) = (1,1,1). The elements w and h that we chose

in the proof of Lemma 3.6 is

. deth = )3

o O O O = O O O
—_

1

It is straightforward to check that h commutes with £. According to our terminology, in the
sequence rf =r, > 7“; , 2 and 3 are jumps, which are not all even. The orbit represented by &

does not support any (H,n)-invariant distribution.
12



4. NILPOTENT ORBITAL INTEGRALS

In this section, we are going to show that the necessary condition in Lemma 3.6 that a nilpotent
orbital integral supports an (H,n)-invariant distribution is also sufficient. Moreover these (H,n)-
invariant distributions extend to an (H,n)-invariant distribution on s.

Let us keep the notation from Section 3. Let O be a f-nilpotent orbit in s represented by an
element £. Then attached to & is a parabolic subgroup Pt = MTN* of H. We also have two
sequences of integers rf >ry > rgi > ---. We assume that all the jumps in these two sequences

are even integers. By Lemma 3.6, this is a necessary condition for O to support an (H,n)-invariant

distribution.
Let 241 < --- < 244 be the set of all jumps in the sequence rf >ry >---. Let 251 < -+ < 2
be the set of all jumps in the sequence r; > r; > ---. Note that we either have 2i, = s and

Wy /W, #0,or 2i, <sandall W, /Wf =0ifi> 2i, where € is an appropriate sign. We have
a snrmlar assertion for the jump 2j,. Then the space nNs/[n,n] Ns is isomorphic to
7 L N I (-1 DL D 1)
@Hom W1+1 /Wz W, /Wiy’ )@ @Hom W1+1 /W W, /Wi’
i=1
Let us define some determinant functions. Let us write an element in nNs/[n,n]Ns as a sequence
m = (xla 3 X20,5Y1, >y2jb)7
with

1) 1+1 1 i+1

2 € Hom(W ' ywi= w0 wEl™ g e Hom(wi) T w0 wi T wieD,

7

Note that if ¢ is odd, then both rﬁrl = 1§ by the assumption that all jumps are even integers.

Moreover
5|W+1/Wi Wif—l/Wii — W /WE,

is an isomorphism. To shorten notation, we put £ = ¢ ‘Wi W Define

dety; (22i—1) = detaai1(&5_1) 7", dety;_(y2i—1) = det yai—1(§55-1)
and
dety(m) = det] (z1) det] (x3) - - - det;ja_l(xzja_l) det (y1) dets (y3) - - - det;jb_l(ygjb_l).

Lemma 4.1. For p € P and u € nNs, we have
n(deta(pup™)) = n(det p)y(detn w).

Proof. This follows from the definition of det,,. O

Let n’ be the subspace of n N s generated by [n,n] Ns and
@ Hom(Wi, /W;", W™ /W) & @ Hom(W; /W, W, /W;Ty).

i even 1 even

13



Let f € C(s), we define a function f € C®°(nNs/n) as

(4.1) /fm+u

Before we proceed, let us recall the following result due to Godement and Jacquet | , Theo-
rem 3.3] (taking the representation 7 to be nodet). Note that the holomorphy is a consequence of

the fact that E//F is a quadratic extension of nonarchimedean local fields and 7 is nontrivial.

Lemma 4.2. Let ¢ € C°(M,(F)). Put
Z(s.me)= [ pb)ldet hlnicet h)an,
GLn(F)

where dh stands for the multiplicative measure on GL,(F). Then this integral is convergent if
Rs > 0 and has a meromorphic continutation to the whole complex plane. It is holomorphic at all
s eR.

The function fis a function in the variables

m = ($1,$3, 5 T25,—15Y1, Y3, ,yzjb71)~
Let s = (s1,83, - ,52j,—1) and t = (1,3, - - ,t25,—1) be complex numbers. Put
detns.(m) =ldet (z1)[**det (23)[* - [detd,_, (v2,—1)[*¥e~"
|dety (y1)| | dets (ya)| - - - |detq;, 1 (yaj,—1) |20t

Consider the integral

(s,t,m, f /f n(detn(m)) dety s ¢(m)dm,

where the domain of integration is n N s/n, which is identified with

@ Hom(Wi /W™, Wi+/Wit1) & @ Hom(Wiil/Wf, W /WiZq).
7 odd 3 odd
By Lemma 4.2, the integral Z(s,t,n, f) is convergent when the real part of s; and t;’s are large
enough and Z(s,t,n, f) has meromorphic continuation to C’a*%  which is holomorphic at the points

where all s; and ¢;’s are integers. We define

po(f) = Z(s,t,n, f)

sifr , for all ¢
t; —r , for all ¢

The point is that for the variable coming from one of the decreasing sequences, we evaluate this

integral at the point given by the corresponding integer in the other sequence.
Lemma 4.3. For any f € C>°(s), and any p € PT, we have

(4.2) fo(Ad(p)f) = dp+(p)n(det p)ro(f).
14



Proof. The invariance by elements in NV is straightforward to check. One has to prove (4.2) for
elements in M*. We may even assume that m € GL(W, +1/ W;"). The other cases can be derived
from this one or follow from the same argument.

Elementary computation shows that
5p+(m) = |det m|~¢ Dt
If 7 is odd, then in computing the integration over n’, after changing variables, we obtain
|detm|—(r;1+~~~+rf)+r;2+~~~+r;‘
In computing the integration Z(s,t,n, f), by changing the variable, we obtain another term

|det m|_ri+77(det m).

Note that we have ri = rJ, r{ = ], etc. Thus we conclude
SO D) Al b = (L ) g s ().
This proves (4.2) when i is odd. The case i being even is similar. u

Let us now choose an open compact subgroup K of H so that H = PTK. Let us put
(43 = [ 1 et kak. uo(f) = folfi)

Proposition 4.4. The distribution on s given by f — uop(f) is (H,n)-invariant. Moreover the
linear form po extends the (H,n)-invariant distribution on O to an (H,n)-invariant distribution

on s supported on O.

Proof. The first assertion follows from Lemma 4.3 and | , Proposition 4]. Even though | ,
Proposition 4] does not involve the extra character 7, the same argument goes through without
change.

If f is a compactly supported function on O, so is fx. By Lemma 3.4, the support of ]/";( defined
by (4.1) is a compact subset of

11 GL,+ (F) x 11 GL, - (F)

i odd i odd

It follows that the integral Z(s,t,n, };() is convergent for all s and t. When evaluated at s; = r;
and t; = T , this convergent integral gives precisely the (convergent) integral of f along the orbit

Q. This proves the second assertion. O

Corollary 4.5. A 0-nilpotent orbit O supports an (H,n)-invariant distribution if and only if the
necessary condition in Lemma 3.6 is satisfied. If O supports an (H,n)-invariant distribution, then

this distribution extends to an (H,n)-invariant distribution on s.

Proof. This is merely a combination of Lemma 3.6 and Proposition 4.4. ([l
15



In the following, we call a #-nilpotent orbit that supports an (H,n)-invariant distribution or any
element contained in it visible. We let Ny be the subset of A/ consisting of visible #-nilpotent orbits.
From the discussion above, the set

{ro | O C Mo}

is a natural basis of the space of (H,n)-invariant distributions on s supported on N.
Let us put dp = dim N .

Lemma 4.6. Let f € C°(s) and for any t € F* we put fi(X) = f(t71X). Let O C Ny then we

have
po(f) = ltent) uo(f), po(f) =t*" = nt) no(f)

Proof. We just need to prove the first equality. The second one on the Fourier transform follows
from the first one easily. Suppose that O is represented by ¢ and gives rise to the sequences of

integers rf > r§ > ... It follows from the definition of up that

imn/ rirTrdry 4o n
po(fr) = [T T T )y ()R e ().

It is thus enough to prove that

(4.4) dim N = dimn’ + 2(r{r] +7r5rg +---).
We have
n
45) dimN* =37 3 ey o
i=1 j>i+1

To organize the terms on the right hand side of (4.4) into a better form, let us write 2(r{r; +
riry +---) as
iy iy ey Ay, e

Then the right hand side becomes

(4.6) Z Tjrij_l +r;r;§_1+ Z (T‘;FT; +r;7’]~+) + Z Z (T;FT; ‘|‘7“;7"j+)-

i odd j>i+2 i even j>i+1
Let i be an integer. In computing the dimension of N, the terms involving r;r are r;r (ritrl +

Tz‘—:ﬂz‘tia ++++). If i is odd, then on the right hand side of (4.4), the terms involving r;~ are

r;rr;ﬁr1+rj(r;r2+r;r3+~-').
If 7 is even, then we have
TZF(T;ZF1+7“;F2+---).
Note that we have ri = 7§, ri = rF etc. So we conclude that for a fixed i, the terms in (4.5)
and in (4.6) involving 7} coincide. Similarly we can conclude that the terms involving r; coincide.
Thus we conclude that (4.5) and (4.6) are the same, i.e. the identity (4.4) holds. This proves the

lemma. O
16



Again to facilitate understanding, we suggest the following example.

Example 4.7. Let O be the nilpotent orbit represented by
0 1

We have rf =r, = r; =ry =landr = r; =2>ry = ri = (. So this orbit is visible. The

spaces [n,n]Ns, nNs/[n,n]Ns, and n’ look like the following respectively

0 * 0 * 0 *
0 * 0 0 *
0 = 0 0

0 * 0
0 * 0 x = 0 *
0 * * 0 *

0 0 = 0

0 0 0

In this case, direct computation shows that we have po(fi) = [t|'%uo(f). This is compatible with

Lemma 4.6.

5. ORBITAL INTEGRALS

In this section, we define all orbital integrals on s, not necessarily #-semisimple or f-nilpotent.

Let v € s and v = 5 + v, be the Jordan decomposition of + in g, s being semisimple and
+n being nilpotent (in the usual sense). Since 0(7s) and 6(7y;,) are still semisimple and nilpotent
respectively in g and 6(y) = —v, we conclude that ~s, v, € 5. Note that vysv, = yn7s, we conclude
that v, € s,, and is f-nilpotent in s, . Assume that -, is visible in s, and its orbit is denoted by
O,,. Let f € C°(s) and h € H. Let us define a function

fi(h) = po,, (fF(h™ (s + )h).
Lemma 5.1. As a function in h € H, fi is compactly supported on H, \H.

Proof. If for some h € H, fi(h) # 0, then there is some y € H., such that h=! (v, + y~'y.y)h €
supp f which is a compact set. Note that h~1v,h is f-semisimple in s and h~ 'y~ 1y, yh is #-nilpotent

in 5. So hysh~! is the semisimple part of A~ (vs +%~!v,y)h and hence lies in some compact subset
17



C of s. As the orbit of 7, is closed, it follows that y lies in some compact subset of H, \H. This

proves the lemma. O

It follows from the definition that fi(yh) = n(dety)fi(h) if y € H,,. We then put

O(v,n, f)Z/H \Hfl(h)n(deth)dh.

This integral is absolutely convergent. It is not hard to check that if the restriction f to the orbit
of v is compactly supported, then O(v,n, f) agrees with the integral on the orbit of ~.

We now connect the orbital integral on s with the orbital integral on s, . We keep the notation
from (the proof of) Proposition 2.1 in Section 2. We have the analytic slice (U,p,v) at . Let

f € C(s) and we have constructed an f,, € C°(s,,). According to the definition, we have
£O = [ 1070 (et Ra()ah, ¢ €
Lemma 5.2. We have po., (fy,) = O(v,n, f).

Proof. When we restrict it to the nilpotent cone in s,,, the function f,, equals

/H f(R™ Y (vs + )h)n(det h)a(h)dh.

From this and the definition of O(~v, 7, f) we conclude that

61) o, () = /H £1(hyn(det hya(h)dh = /H |, Fnta@er ) 1c(an = 06, )

We finish the definition of orbital integrals with the following lemma.

Lemma 5.3. If vy, is not visible in s.,, then the orbit if v in s does not support any (H,n)-invariant

distribution.

Proof. An obvious necessary condition that the orbit represented by ~ supports an (H, n)-invariant
distribution is n(det h) = 1 if h € H,. If h € H,, i.e. h™'yh = ~, then h™ yvsh + h™ v, h = v5 + Yy,.
As h™ 154k is f-semisimple and h =14, h is 6-nilpotent, we conclude h™'ysh = v, and h= 1y, h = v,
by the uniqueness of the Jordan decomposition. Therefore H, is a subgroup of H,_ that stabilizes
Yn- Then the condition n(det h) = 1 if h € H,, is precisely that ~, represents a visible #-nilpotent

orbit in s.,. O

6. THE GERM EXPANSION

We study an analogue of the Shalika germ expansion in this section.

Proposition 6.1. There is a unique (H,n)-invariant real valued function T'o on sg_reg for each

nilpotent orbit O C Ny with the following properties.
18



(1) For any f € CX(s), there is an H-invariant neighbourhood Uy of 0 € s such that
(6.1) O(v,f) = Y_ ToMuol(f).

OCNO
for all 0-regular semisimple v € Uy.
(2) For allt € F* and all § € 59_1eq, we have

To(ty) = [t~ n(t)"To(v).

Proof. Tt follows from | , Proposition 1.2] that there are functions I'y, on §g_ee for each O C Ny
with property (1). Note that if ', is another set of functions satisfying (1), then I';, and I'{; have
the same germs at 0 € s (i.e. they equal in a small neighbourhood of 0). We first explain that
'\, can be chosen to be real valued, at least when ~ is close to 0 € s. In fact, since pe’s form a
basis of (H,n)-invariant distributions on s that are supported on N, for each O C Ny we can find
a function fo so that po(for) = do,0r (Kronecker delta). It is obvious that fp’s can be chosen
to be real valued. For this particular choice, we have O(v, fo) = I'\5(7) when ~ lies in a small
neighbourhood of 0. Indeed, this can be taken as the definition of I', (7). As fo is real, it follows
that I\, () can be taken to be real. We need to prove that among these functions, we can choose
a unique I'p for each O C N with property (2).

Let t € F* be fixed. We claim that as a function of v, I'o(ty) and |t|~%n(t)"T'o(y) have the

same germs at 0. Indeed, on the one hand, we have

O fo) = > ToMlt*n(t)" no(f)

OCNy
when ~ lies in a small neighbourhood (depending on f and ¢) of 0 € s. On the other hand,
O, f) =0y, /)= Y Tot " ypo(f)-
OCMNo
when ~ lies in a small neighbourhood (depending on f and t) of 0 € s. Comparing these two, we
conclude that I, (ty) and [t|~20n(t)"T’,(y) have the same germs at v = 0.
Thus we put

Lo(y) = lim|t|%n(t)" T (ty).
t—0
It is straightforward to check that I'p() does satisfy property (2). Of course, in order that I'p
satisfies property (2), it has to be of this form. Thus this function is unique. O

The function I'p in the lemma is called the Shalika germ indexed by O.

We now consider the Shalika germ expansion around an arbitrary f-semisimple element v € s.
We keep the notation from Section 2. The space s, with an action of H, is isomorphic to s1 X s
with an action of H; x Hsy, where the action of H; on s; is isomorphic to the conjugation of H;
on its Lie algebra and the action of Hs on s9 is of the same shape as the action of H on s but of
a smaller size. Note that according to the decomposition s = s; X 89, v = (y(1),0) where 4(!) € 5,

is a central element in s1. A f-nilpotent orbit in s, is of the form OW x ©O@ where OV is a
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nilpotent orbit in s1 (in the usual sense) and O®) is a f-nilpotent oribt in so. The orbit O is visible
in s, if and only if 02 ig visible in s9. Let {O1,---,0,} be the set of nilpotent orbits in s,. We
thus have the Shalika germs on s,, indexed by the #-nilpotent orbits in s,, which on s; is given
by the one defined in | , Section 17] and on s9 is given by the one we have just defined. Let
{&,--+,&} be a complete set of representatives of #-nilpotent elements in s, and & € O;. We

denote the Shalika germ on s, indexed by O; by I'}.

Corollary 6.2. Let f € C°(s). Then there is a neighbourhood Uy of v in s so that for any
§ €U NSy _reg, we have

O, f) = ZFV O(y+¢&m, ).

Proof. Let us keep the notation from Section 2 Proposition 2.1. We have constructed an f,, €
C(sy,). Apply Proposition 6.1 (germ expansion on s near 0) and | , Theorem 17.5] (germ

expansion on §; near a central element), we have

1(&m, fy) = er

where the upper script s, indicates that these are orbital integrals on the space s,. Applying
Proposition 2.1 to the left hand side and the equality (5.1) to the right hand side, we obtain the

desired result in the corollary. O

7. LINEAR INDEPENDENCE OF SHALIKA GERMS

The goal of this section is to prove the linear independence of Shalika germs that we defined in
the last section and the density of f-regular semisimple integrals on s simultaneously. We follow

the argument of | , Section 27] closely.
Lemma 7.1. The set of all orbital integrals is weakly dense in D(s)H".

Proof. Recall that weak density means that if all orbital integrals of f € C2°(s) vanish, then
D(f) =0 for all (H,n)-invariant distributions D on s. For any space V' on which H acts, we let

Vg =V/{hv—n(h)v|he H, veV}
be the (H,n)-coinvariance. Then D(f) = 0 for all (H,n)-invariant distributions D on s means that

the image of f in C2°(s)y,, is zero.

Let us consider the categorical quotient
q:5—s//H.

Let « be an element in (s//H)(F). Restriction a function f € C2°(s) to the fiber ¢~ () gives a
surjective H-equivariant map

Ce(s) = CZ(a ! (2)).
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Passing to the (H,n)-coinvariance, we obtain a surjective map

Ce () — C(a™ (@) o

As x ranges over all points in (s//H)(F'), we obtain a map

(7.1) CE@mn— ]I CF@ @)ua,
z€(s//H)(F)
By [ , Lemma 27.1] this map is injective.

Recall that s//H is identified with an n-dimensional affine space over F. When z is the origin of
(s//H)(F), the fiber ¢~!(z) is the nilpotent cone N. Thus the dual space of C2°(¢~1(0)) g, is finite
dimensional and a basis is provided by all visible #-nilpotent orbital integrals. The case of general
z € (s//H)(F) is quite similar. The dual space of C2°(¢~!(x)),, is finite dimensional and a basis
is provided by orbital integrals where the orbits are contained ¢~!(z) and support (H,n)-invariant
distributions.

It follows that if f € C2°(s) so that all orbital integrals vanish, then its image in C°(¢~!(2)) m,
vanishes for all © € (s//H)(F'). Thus the image of f in C2°(s)n, also vanishes by the injectivity
of (7.1). This is equivalent to saying that D(f) = 0 for all (H,n)-invariant distribution D ons. [

Lemma 7.2. The functions To’s for O C Ny are linearly independent if and only if their restric-

tions to an arbitrary small neighbourhood of 0 € s are still linearly independent.

Proof. Let U be a small neighbourhood of 0 € s. We may assume that U is a lattice in s, or in
other words, U is an op-module.

Now we use homogeneity of Shalika germs. The additive semigroup of non-negative integers
acts on U M §g_reg, With j acting by multiplication by the scalar w;j, and therefore acts on the
space of functions on U N §g_ree (the action of j transforming a function f(X) into f (wf;jX )). By
homogeneity of Shalika germs, c.f. Proposition 6.1, the restriction of I'p to U M §p_;es transforms
under the character j — |wp|7%n(wp)? on our semigroup. But in any representation of our
semigroup, vectors transforming under distinct characters are linearly independent. Thus, in order
to prove linear independence of the restrictions of Shalika germs to U N sg_,eg, it is enough to fix a
nonnegative integer d and prove linear independence of the restrictions of the Shalika germs for all
f-nilpotent orbits with dp = d. But all these germs are homogeneous of the same degree, namely
d, so it is clear that any dependence relation that holds on the subset U N $y_,ce will also hold on

the whole set 59_ . (]

The following lemma relates the linear independence of the Shalika germs to the density of

f-regular semisimple orbital integrals.

Lemma 7.3. The following assertions are equivalent.

(1) The Shalika germs T'o, O C Ny are linearly independent.
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(2) The 0-nilpotent orbital integrals e ’s lie in the weak closure of the set of 6-regular semisimple

orbital integrals in D(s)™".

Proof. (1) = (2). Let f € C>(s) and assume that the @-regular semisimple orbital integrals
O(~,n, f) are all zero. Then it follows from the Shalika germ expansion that

> no(f)To(y) =0

ocN
for any f-regular semisimple v € Uy where Uy is a small neighbourhood of 0 € 5. Since I'p’s are
linear independent, by the previous lemma, they are linearly independent even when restricted to
U;. Thus we conclude that po(f) =0 for all O.
(2) = (1). Suppose that we have a linear relation

Z aol'o(y) =0, forall v € sg_rcg.

As pe’s form a basis of the space of (H,n)-invariant distributions on s supported on N, we may
choose a test function f € C2°(s) so that po(f) = aep for all O C N. Thus using the Shalika germ

expansion, we conclude that there is a small neighbourhood Uy of 0 € s so that

Oty f)= Y polTo(r) = Y aolo(y)=0

OCNy OCNy
for all #-regular semisimple v € Uy. The set (U f)H contains an open and closed neighbourhood V'
of N. Let f/ = f1y. Then we have that O(~,n, f') = 0 for all f-regular semisimple . Moreover,
since V is an open and closed neighbourhood of N, we have that po(f) = po(f’) for all O C N.
Now by assertion (2), the #-nilpotent orbital integrals pe’s all lie in the weak closure of the 6-

regular semisimple orbital integrals. Since O(~v,7, f) = 0 for f-regular semisimple 7, we conclude
that ao = po(f) = po(f") = 0. This proves (1). O

The next lemma allows us to use induction.

Lemma 7.4. Let v € sg_gs. Suppose that I'))’s are linearly independent. Then for all & whose 0-
semisimple part is vy the orbital integral O(&,m, f) lies in the weak closure of the set of all O-regular

semisimple orbital integrals.

Proof. Let N be the nilpotent cone of s, and for each nilpotent orbit O C N, we fix an element
£o € O. Then by the Shalika germ expansion at v, there is a small neighbourhood Uy of 7 in s,
so that for all f-regular semisimple § € Uy,

O )= >, TLEO0( +¢o.n, 1)

OCN50

As Fz)’s are linearly independent and they remain linearly independent when restricted to Uy, we
conclude that if O(&, 7, f) = 0 for all #-regular semisimple £ € Uy, we have O(y + o, 7, f) = 0 for

all O C N, o. This proves the lemma. O
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We now prove the linear independence of Shalika germs and the density of §-regular semisimple

orbital integrals simultaneously.

Theorem 7.5. The followsing assertions hold.

(1) The Shalika germs To’s, O C Ny, are linearly independent.

(2) The set of 0-regular semisimple orbital integrals are weakly dense in D(s)",

Proof. We argue by induction on n, i.e. the size of s.

First we show that, under the inductive hypothesis, the two assertions in the proposition are
equivalent. In fact, if the second assertion holds, then the first holds by Lemma 7.3. If the first
assertion holds, then f-nilpotent orbital integrals lie in the weak closure of f-regular semisimple
orbital integrals. When combined with the induction hypothesis and Lemma 7.4, this implies that
all orbital integrals lie in the weak closure of the #-regular semisimple orbital integrals. This proves
that two assertions in the proposition are equivalent. We will prove the second assertion under the
induction hypothesis.

Put

C1 = {f € C°(s) | all orbital integrals of f vanish};

Cy = {f € C°(s) | all f-regular semisimple orbital integrals of f vanish}.
By Lemma 7.4 and the induction hypothesis, the set Cy consists of all functions f € C2°(s) such
that all orbital integrals, except the f-nilpotent orbital integrals, vanish. Thus the dual space of
C5/C1 is spanned by all up’s, O C Np.

By Lemma 7.1, Cy consists of all f € C2°(s) such that I(f) = 0 for all (H,n)-invariant dis-
tribution I. Thus it is clear that Cp is closed under the Fourier transform. Since the Fourier
transform of f-regular semisimple orbital integrals are represented by (H,n)-invariant locally in-
tegrable functions on sy_.e; by Proposition 1.3, we conclude that C5 is also preserved under the
Fourier transform. Thus Fourier transform induces an isomorphism of Cy/C onto itself. Therefore
the dual space of Cy/C is also spanned by fo’s.

By Lemma 4.6, po and 1o have the homogeneity properties

no(fe) = [t%uo(f), Fo(f) =t~ ma(f).

The proof of Lemma 4.6, or more precisely (4.5) shows that dp < n? for all O C Nj. Therefore
do < 2n? — dpr for any O, 0" C Ny. We thus have two spanning sets of the dual space of Cy/C1,
all being homogeneous, but with different scaling factors from each set. Therefore Cy/C; = 0 and

this proves the proposition. O

Corollary 7.6. The Fourier transform of uo is represented by a locally integrable function in s

for all O C Njy.

Proof. We need to make use of Howe’s finitenss theorem for s, established by Rader and Rallis

in [ , Theorem 6.7]. We do not need the statement this theorem here, but rather a standard
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consequence of it, i.e. the uniformity of the germ expansion. Let L C s be a lattice, i.e. an open
compact subgroup of s. Then Howe’s finitenss theorem implies that there is a neighbourhood Uy,

such that the germ expansion

O(v,m, /)= > Toly

OCMNo

holds for all f € C2°(s/L) and all #-regular semisimple v € Ur..
Now let L C s be a lattice. There is a lattice L' in s (in fact the dual lattice of L) so that
feC=(s/L') for all f € C>®(L). Therefore there is a neighbourhood Uy, of 0 € s so that

O(v,n, f)= > Toly

OCMNo

holds for all #-regular semisimple v € Uy, and all f € C2°(L). By Theorem 7.5 and Lemma 7.2,
T'o’s, O C Ny, when restricted to Uy, are linearly independent. Therefore we can choose a #-regular

semisimple v for each O C N so that matrix

To(vo))o.orcn

is invertible. We then conclude that there are constants co, so that

no(f) =Y coOkvor.n. f)
O'CNo
holds for all f € C°(L).

By Proposition 1.3 there is a locally constant function K

vor ON §9_reg Which is locally integrable

on s so that the distribution on s given by f +— O(yor,n, f ) is represented by K, ,. It follows that
for all f € CZ°(L) we have

pof) = [10) | 3 cokol) | v

O'CNo

We put Ko 1,(7) = ZO’CN@ cor Ky, (7) for v € 59_reg. This function is locally constant on sg_eq
and is locally integrable on s.

We now choose another lattice L1 so that L C L;. Then we get another function Ko /. We
claim that Ko 1, (v) = Ko,1(v) if 7 € L and is #-regular semisimple. In fact both functions, when
restricted to L, represent the distribution f +— ,u@(]?). Then we conclude by the local constancy of
them.

It follows that there is a well-defined function K¢ on s, which is locally constant on sg_.e; and
locally integrable on s, so that Ko(v) = Ko 1(7) if L is a lattice in s and v € L. It is then clear

that Ko represents the distribution f +— M(’)(J?) on . O
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8. DENSITY OF REGULAR SEMISIMPLE ORBITAL INTEGRALS

We explain how to establish the results on the level of G in this section.

We fix an H-invariant neighbourhood w of 0 € s and a neighbourhood 2 of 1 € S so that the
the exponential (rational) map exp : § — € is defined and is a homeomorphism. Let f € C°(G).
We put f (g7'0(g = [ f(hg)dh and f; € C°(w) given by fy(y) = f(exp(’y)). We extend f, to a
function on s via extension by zero.

We consider the H x H action on G by left and right multiplication and the conjugation action
of H on S. We say that an element x € S or rather the H-orbit of x is 8-unipotent if it is unipotent
in G. We say that g € G is f-unipotent if 2 = g7'0(g) is so in S. Let Y C S be the variety of
f-unipotent elements in S. By | , Lemma 4.1], the exponential map induces an H-equivariant
isomorphism Y — N and thus induces a bijection on the set of H-orbits in Y and that in . Let
UL, -, Up, Upy1, -+ ,Us De & complete set of representatives of #-unipotent orbits in G. Let O; be
the f-nilpotent orbits in s represented by expfl(ui_IQ(ui)) and we may label these u;’s so that O; is
visible precisely when 1 < ¢ < r. Therefore u; represents a f-unipotent orbit in G which supports
a left H-invariant and right (H,n)-invariant distribution precisely when 1 < i < r. We denote this
distribution by O(u;,n,-) and call it a f-unipotent orbital integral on G. If f € C2>°(G), we have

O(ui,n, f) = po; (fy)-

We call the f-unipotent elements uy,--- ,u, or their orbits visible.

The following proposition is the Shalika germ expansion of orbital integrals on G.

Proposition 8.1. Let f € C°(G). There is a neighbourhood Us C 2 of 1 € S so that if g € G is
a O-regular element in G with g=*0(g) € Ug, g710(g) = exp(X) where X € w, then

(81) g na ZFO u17777f)‘

Proof. This follows from the definition of O(u;,n, f) and the Shalika germ expansion on s, i.e.
Proposition 6.1.

Remark 8.2. Due to the lack of a symmetric space version of the Howe’s finiteness theorem, we
are not able to obtain the “uniformity” of the Shalika germ expansion on G. This is however well
expected. More precisely let K be an open compact subgroup of K, we expect that there is an
open neighbourhood Uk of 1 € G so that the germ expansion (8.1) holds for all f € C°(K\G/K).

Let z € S be f-semisimple. Let N, C s, be the nilpotent cone and the map N, — S,
& — xexp(§) is Hy-equivariant and induces a bijection between the @-nilpotent orbits in s, and the
orbits in S, represented an element y such that the semisimple part of y is x. Let us recall the explicit
construction of an analytic slice of z € S given in [ , Section 5.3]. Recall first from Section 2
that an analytic slice at x € S is a triple (U, p, ), where U is an H-invariant neighbourhood of

the orbit 2 in S, the map p: U — zf is an H-equivariant retraction and 1 is an H,-equivariant
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embedding of p~!(z) into the normal space N3 of 2 in S at z. By | , Section 5.3] we can take
p~!(x) to be a small neighbourhood of z in S, and identify N with s,. The map & — xexp(€)
define an H,-equivariant homeomorphism from a neighbourhood of 0 € N to p~!(z) and we can
and will take ¢ to be the inverse of this map.

Let g € G and x = g '0(g). Let x = z4v, = 7,25 be the Jordan decomposition of x in G
(with obvious notation). Then one checks readily that xs,x, € S. Let O C N, be a visible
f-nilpotent orbit and assume that x, is contained in the image of O under the exponential map.
Let f € C°(G) and f € C°(S). We define f; € C®(H) by

fi(h) = uge (f(h™" (s exp()h)).

The right hand side is interpreted as follows. Fix an A € H and an H-invariant neighbourhood
U of 0 € s,. We assume that U is compact modulo H and the exponential map is defined on U.
Define a compactly supported function on U by & — f(h™ (25 exp(£))h) when & € U and extend
it to s, by zero. It is clear that the orbital integral is independent of the choice of U as it depends
only on the value of the integrand when ¢ € N,. Then the right hand side stands for the orbital
integral of this function along O on s,,. The same proof of Lemma 5.1 shows that the image of

supp f1 in H; \H is compact. We put

H\H
The same argument the proof of Lemma 5.2 gives that

(82) 0(9777» f) = :u?;s (.ﬂs)?

where fms is the function constructed in Proposition 2.1 from f Again the same proof of Lemma 5.3
gives that if z,, is not contained in the image of a visible #-unipotent orbit, then the orbit of g does

not support any distribution that is left H-invariant and right (H,n)-invariant.

Theorem 8.3. The set of O-reqular semisimple orbital integrals is weakly dense in the set of left

H -invariant and right (H,n)-invariant distributions on G.

Proof. As in the case of invariant distributions on s, the set of all orbital integrals is weakly dense
in D(G)T*H:n_ This is the symmetric space version of Lemma 7.1 and can be proved by the
same argument. Thus we need to prove that if f € C°(G), and O(g,n, f) = 0 for all #-regular
semisimple g € G, then all orbital integrals of f vanish. Let z € S be #-semisimple. We have a
function f € C2°(S) and we let f, € C2°(s,) be the function constructed in Proposition 2.1. Then
by Proposition 2.1, all #-regular semisimple orbital integrals of }; near 0 € s, vanish. Thus by
Theorem 7.5 (apply for s,), we conclude that all #-nilpotent orbital integrals of fx vanish. By the
equality (8.2), we conclude that O(g,n, f) = 0 if the #-semisimple part of g~'6(g) is . This shows

that all orbital integrals of f vanish and proves the theorem. O
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Remark 8.4. 1t is expected that the orbital integrals O(g,n,-) on G are all tempered distributions,
i.e. they extend continuously to the Harish-Chandra Schwartz space on G, c.f. | |. The proof
of this would rely on the “uniformity” of Shalika germ expansions, which in term rely on the Howe’s

finiteness theorem on the symmetric spaces, c.f. Remark 8.2.

9. SPHERICAL CHARACTERS

We prove the local integrability of spherical characters in this section. This is a standard con-
sequence of the germ expansion and the local integrability of the Fourier transform of #-nilpotent
orbital integrals.

Let m be an irreducible admissible representation of G. Assume that Hompg(m,C) # 0 and
Hompg (m,n) # 0 where 7 is the contragredient of 7. Fix nonzero elements | € Hompg (7, C) and

l~77 € Hompg (7, n). Define a distribution on G by
() = DU (@), f € CE(G).
%)

Here ¢ runs through a basis of 7 while @ runs through the dual basis. Then J, € D(G)H>*Hn,

To state the germ expansion for J;, let us recall the following setup. Let z = g~ 10(g) € S be a

f-semisimple element. Consider the map
H x Gm x H — G, (hl,g, hg) — hlxghg.

Let U, be the open subset in G, consisting of elements g € G, such that the above map is
submersive at (1,g,1). Let 2, be the image of H x U, x H in G. Then U, is a bi-H,-invariant
neighbourhood of 1 in G, and €2, is a bi- H-invariant neighbourhood of x in G. By standard theory

of Harish-Chandra, there is a surjective map
(9.1) CX(HxUyx H) = CX(Qz), ar fa,
with the property that

/ alh1, g. ha)B(hzgha)dhidgdhs = | fa(g)B(g)dg,
HxUzxH Qp

for all € C2°(Q;). According to [ , Section 5.1, p. 103], there is a unique left H,-invariant
and right (H,,n)-invariant distribution J, on G5 such that

Jﬂ(fa) = Jw(ﬁa)a

for all « € C°(H x U, x H), where

ﬁa(g)://a(hl,g,h2)n(deth2)dh1dh2, g€ Gy.
oJu

Recall that we have defined a test function f, € C2°(s;) at the beginning of Section 8. The germ

expansion of J refers to the following theorem.
27



Theorem 9.1. Let the notation be as above. There are constants co for each visible H-orbit O

in the nilpotent cone N, such that

Ja(fa) = Z coito(Bay)

OCN,

for all o € C°(H x U, x H). The sum ranges over all visible 0-nilpotent orbits O in N.

The distributions o are locally integrable functions on s, by Corollary 7.6. Therefore Theo-

rem 9.1 implies the following result.

Theorem 9.2. The distribution Jr is represented by a left H-invariant and right (H,n)-invariant

locally integrable function on G.

Theorem 9.1 is almost proved in the literature. It is established in | , Theorem 7.11] near the
identity element and in | , Theorem 2] near all semisimple elements for the Galois symmetric
pairs. The general case can be established essentially by the same argument and is given in [ ].
It is unfortunate that [ | is never published. For completeness we briefly outline the argument
in the rest of this section and refer the readers to | ) | for details. The readers may
want to have these papers at hand. The germ expansion holds for spherical characters on all
symmetric spaces. The argument outlined below also works in the general setting. We remark that
the references usually consider only bi- H-invariant distributions, but the argument works without
change in our setup. We also remark that even though | | aims at proving results for the
Galois symmetric pairs in odd residue characteristic, Sections 2 to 7 of it are actually devoted to
results of general symmetric spaces in arbitrary residue characteristic. There are misprints in the
second paragraph on page 3 of | |, where Section 7 should be Section 8, and Section 5 later
in the paragraph should be Section 6.

We introduce more notation. Let L C g, be a 0-stable lattice with a decomposition L = L, @ L_
where Ly C b, and L_ C s,. Suppose that L is ee in the sense of | , page 158] (we do not
need the precise definition). The exponential map maps L onto an open compact subgroup K of
Gy. Write K =exp Ly C H,. We may also assume that L is small enough so that n is trivial on
K. By | , Corollary 7.3|, (K, K,) is a Gelfand pair.

Let us now recall Howe’s parametrization of K , the set of irreducible smooth representation of K.
We put K/2 = eXp(%L) and Ki/ 2 = eXp(%LJr). The various 1/2 appearing here and below are all
to take care of the complications arise in the case of residue characteristic two. They do not play any
roles in the case of odd residue characteristic. Let £(K/K) be the set of irreducible representations
of K with a nonzero K -fixed vector. If the residue characteristic is two, the group Ki/ % acts on
E(K/K) by conjugation and we let £1/2(K/K) be the set of Ki/Q—orbits in E(K/K,). If the
residue characteristic is odd, then K = K2 K, = K}r/Z and £(K/K.) = EV2(K/K,). If
we E(K/K,) we define



where e € i is the unique unit K, -fixed vector. Let 0 = {1, , ftm } is an orbit in EV2(K/K ).
We then put

b= bu,.
=1

Let d(d) = dim pu for any u € 9. We view ¢, either as a bi- K -invariant function on K or a function
on S, supported in the image of K.

Let Lt be the dual lattice of L_ in s, i.e. the annihilator of L_ with respect to (—, —). As L_
is stable under the action of Ki/ 2, so are Lt and s,/L*. Thus we can consider the K}r/ 2_orbits in

s, /L. If O is such an orbit, we let ko € C2°(s,) be the characteristic function of it.

Proposition 9.3. There is a bijection between EY?(K/K ) and the set of Ki/z—orbits in 5,/ L+
which sends 0 € EV2(K/Ky) to Oy C s,/ L. Under this bijection, we have

d@)do(exp X) = (vol L) gy (X)
forall X € L_.

This is the combination of Proposition 7.8 and Proposition 7.10(2) of | ].
Let Ny, be the cone of nilpotent matrices in g,. We fix any norm ||-|| on g,. Let S; be the unit
ball in g, and
V(e) ={X € 51| ||X —nl| <efor somen e Ny, NS}

We also put
FV(e)={\X | A€ F, X €V(e)}.

Lemma 9.4. Let € > 0 be sufficiently small and R > 0 be sufficiently large. Let d € EV/?2(K/K.).
Assume that J,(¢y) # 0 and that that there is a Z € Oy with | Z|| > R. Then Oy C FV ().

This is | , Theorem 4].

Let Uy C s, be an open and closed neighbourhood of zero such that exp Uy is contained in the
image of U,. The spherical character J, is left H,-invariant and therefore can be viewed as a
distribution on S,. Restrict J, to exp Uy and pull it back via the exponential map we obtain a
distribution on Uy. Extending it by zero to all s,. We denote this distribution by Jy. Note that
we have J,(f) = Jo(fy) for all f € CZ(Gy).

Lemma 9.5. Let € > 0 be sufficiently small and R > 0 be sufficiently large. Let Z € s, with
|Z|| > R, and let f5 € C(sy) be the characteristic function of Z + L. If Jo(fz) # 0, then there
is an n € Ny so that ||Z — n| < €||n]|.

Proof. Let O be the K}/*-orbit of —Z in s,/L+ and 0 € EY2(K/K ) be the K/ *-orbit of repre-
sentations corresponding to O as in Proposition 9.3. We have
KO = Z [z

Z'e0/ Lt
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Note that Z”’s are all the K -orbit of —Z, Jy is (H,, n)-invariant and 7 is trivial when restricted
to K. It follows that

d(0)Jx(é) = (vol LX)~ - #O/ L - Jo(f2).
Therefore if Jo(fz) # 0, then Jo(d) # 0. As || Z|| > R, by Lemma 9.4 we have Z € FV(¢). In
other words, there is a A € F* and ny € N, so that [|[A7'Z —ny|| < e Put n = Any € N, we

conclude that ||Z — n|| < ¢||n||. Following the same argument as in the second paragraph of the

proof of | , Theorem 7.11] we can even choose n € N,. This proves the lemma. ]
We now finish the proof of Theorem 9.1. Lemma 9.5 tells us that jo * K1 is contained in
(9.2) C(e,R) = B(0,R)U{Z € 5, | ||Z — n|| < €||n]| for some n € N, }.
Here * stands for the usual convolution of functions and distributions. Let
J(e,R,LY) = {(H,n)—invariant distributions D with supp (D’Cgo(sx/Lf)) C Cle, R)} .

With this notation we have jo kKL € J(e,R, L) % k1. Let w be an Hy-invariant open and closed
subset of s,, compact modulo H,, and D(w)H”’ be the space of (H,,n)-invariant distributions
supported on w. By Howe’s finiteness theorem [ , Theorem 6.8], if € is small enough and R is

large enough, then
J(e, R, LE) v i1 = D(w) sk 1.

By | , Proposition 6.9], if L is sufficiently small and hence L+ is sufficiently large, then D (w)x

tp1 is spanned by the f-nilpotent orbital integrals. Therefore we can find constants co so that

j\O*IQLJ__ = Z CO (ILL@*KJLJ__).
OCN;

Theorem 9.1 follows by taking inverse Fourier transform. For details, see the last paragraph of the
proof of | , Theorem 7.11].
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