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ABSTRACT

Panoramic radiographs are an integral part of effective dental treatment planning, supporting dentists in iden-
tifying impacted teeth, infections, malignancies, and other dental issues. However, screening for anomalies solely
based on a dentist’s assessment may result in diagnostic inconsistency, posing difficulties in developing a suc-
cessful treatment plan. Recent advancements in deep learning-based segmentation and object detection algo-
rithms have enabled the provision of predictable and practical identification to assist in the evaluation of a
patient’s mineralized oral health, enabling dentists to construct a more successful treatment plan. However, there
has been a lack of efforts to develop collaborative models that enhance learning performance by leveraging
individual models. The article describes a novel technique for enabling collaborative learning by incorporating
tooth segmentation and identification models created independently from panoramic radiographs. This collab-
orative technique permits the aggregation of tooth segmentation and identification to produce enhanced results
by recognizing and numbering existing teeth (up to 32 teeth). The experimental findings indicate that the
proposed collaborative model is significantly more effective than individual learning models (e.g., 98.77% vs.
96% and 98.44% vs.91% for tooth segmentation and recognition, respectively). Additionally, our models
outperform the state-of-the-art segmentation and identification research. We demonstrated the effectiveness of
collaborative learning in detecting and segmenting teeth in a variety of complex situations, including healthy
dentition, missing teeth, orthodontic treatment in progress, and dentition with dental implants.

1. Introduction

[1]. Furthermore, precise tooth segmentation techniques would be ad-
vantageous for determining dental age, forensic identification, and the

Recent years have seen significant advancements in deep learning,
which has heightened its profile in healthcare, notably dentistry. Deep
learning-based image processing algorithms have made substantial
progress in healthcare imaging applications such as radiographs, cone-
beam computed tomography (CBCT), and magnetic resonance imaging
(MRI). Deep learning-based image processing techniques have the po-
tential to aid in accurate diagnosis, allowing dentists to identify
appropriate dental treatments. For instance, orthodontists could use
deep learning-based processing techniques to investigate root absorp-
tion from panoramic radiographs to inform a patient’s treatment plan

location of impacted teeth [2].

Deep learning enables the identification and classification of features
from complex and diverse medical images, resulting in a quantifiable
forecasting model that aids clinicians in developing the most effective
treatment plans [3]. Panoramic radiographs are used to visualize the
patient’s mineralized oral health in two dimensions [4]. Thus, a
comprehensive dental radiograph examination is a critical component of
the diagnostic technique in daily clinical practice. Tooth segmentation is
a technique that allows for the separation and isolation of teeth from
specific areas of the mouth based on their morphologies, numbers, and
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positions [5,6]. One example of a difficulty encountered when success-
fully reading a panoramic radiograph is determining the precise location
of teeth while monitoring these images. As a result, a comprehensive,
accurate dental radiograph examination is a critical component of the
diagnostic technique used in daily clinical practice. Deep learning
techniques can assist with this by enabling fully automated approaches
while still allowing for human interpretation. Many dentists work in
single-practice  settings and regularly evaluate radiographs
independently.

One analysis of panoramic radiographs by dentists includes tooth
numbering and detection. Occasionally, these diagnoses are inaccurate,
impeding the best possible treatment planning approach. Diverse deep
learning algorithms may be beneficial for resolving issues encountered
during numbering and detection, such as radiographic artifacts, manual
labeling, asymmetric development, and anatomical complexity [7]. As
the value of dental imaging applications has increased, new paradigms
for deep learning have emerged. For instance, deep learning ensembles
are a novel collaboration across deep learning models that aims to
improve overall accuracy by combining the results of individual models
[8]. Collaboration can take place for a single task or numerous tasks
among multiple models [9-13], for example, via voting or average
weight. Moreover, ensemble deep learning approaches have been
developed to investigate the relationship between group accuracy and
variation measurement [14].

Meta learning is a method that allows for the combination of pre-
dictions from multiple independent models. Deep ensembles have
several advantages, including collective intelligence based on various
models and inherent scalability [15]. However, determining the optimal
methods for combining the predictions of multiple models is not
straightforward. Developing deep ensemble models with distinct ma-
chine learning tasks or learning performances, on the other hand, pre-
sents significant challenges. It raises the question of whether
multi-tasking should be incorporated into the learning process or
should be learned separately [16]. By comparing the performance of
various models, the Akaike information criterion for differential weights
was used to identify the collaborative model [17]. Attempts to aggregate
multiple-objective losses by performing a weighted linear sum of the
losses for each task typically result in Ref. [18].

In this paper, we propose an ensemble model capable of performing
various tasks using a variety of models and then enhancing overall
performance through model collaboration. The rationale for and in-
novations in the proposed method are as follows: We hypothesized that
collaborative inference using multiple models would be more effective
than inference using a single model. This deep ensemble model was
created for multiple machine learning tasks, including segmentation and
recognition of teeth in panoramic radiographs. We believe that two
stages can be beneficial when learning deep ensemble models for
feasibility and robustness: The first stage of local learning aims to
construct a model independent of other models by utilizing its data. The
second stage involves obtaining inference results from the models and
then collaboratively tuning them, a process known as ensemble
inferencing.
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The proposed collaborative learning model is a novel approach for
summarizing and refining the inferencing results of the two models. The
collaborative model has the following advantages: (i) It reduces reliance
on individual model building because models are built independently
using their own data. (ii) Collective inferencing results are summarized
as outcomes. (iii) Refinement can improve both individual model and
overall inferencing results.

This article’s major contribution may be summarized as follows:

® Two high-performance classifiers (tooth segmentation and tooth
identification) have been created and optimized using publicly
available dental panoramic radiograph image datasets (see Fig. 1).

@ We created a collaborative learning model for tooth segmentation
and identification using these two high-performance classifiers.

@ We have developed a unique strategy for collaborative learning that
enhances performance by utilizing the learning refinement process.

@ Our newly developed two classifiers and collaborative methods were
superior to previously reported techniques.

2. Related work

This study focuses on dental anatomy recognition by the use of two-
dimensional (2D) radiographs with distinct color codes and identifying
each tooth, which aided in tooth detection. We intend to someday assist
dentists in validating and explaining such interpretations to their pa-
tients. We follow the International Standards Organization’s (ISO) norm
for tooth numbering, which divides the teeth into four quadrants: upper
right, upper left, bottom right, and lower left. Each quadrant has eight
teeth, for a total of 32 in the permanent dentition, which can be clas-
sified as molar, premolar, canine, or incisor (see Fig. 1(a)).

The following research study identifies and describes the previously
most effective deep learning methods for tooth detection and segmen-
tation. Recently, clinical image segmentation tasks, such as segmenta-
tion of teeth on radiographs, have focused on tackling various
perplexing issues, such as automated diagnosis and overlapping teeth.
These strategies can be categorized into two categories: classical tech-
niques that rely on prior knowledge and image highlights, and deep
learning-based solutions that are powered by data.

2.1. Ensemble and collaborative model

It is critical to consider how to design ensemble models in order to
maximize performance by combining multiple models [14]. Sagi et al.
[13] demonstrated how ensemble models could be used to enhance the
predictive performance of a single model by training and integrating
multiple models. Kendall et al. demonstrated that collaborative net-
works outperform task-trained networks [28].

Suhail et al. [29], using a collaborative model that included the R
technique for feature analysis, an n-net-based neural network, and
random forests to classify teeth using decision trees. Clinicians may
benefit from this system that helps confirm expert findings because it
will assist the dentist in selecting the best treatment plans, reduce
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Fig. 1. ISO numbering and dental panoramic radiographs with masks and annotations.
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human error, and improve uniformity. Furthermore, experts verified the
decision tree’s practicality by cross-validation of the data.

Hasan et al. [30] proposed using a multi-feature fusion model in
conjunction with an ensemble classifier to determine the optimal dental
impression tray from maxillary arch images. In the face of a restricted
dataset, a unique multi-feature fusion model combined with an
ensemble classifier would improve image labeling. Finally, the goal was
to automate the dental process to assist the dentist’s clinical judgment
and provide a second level of analysis confirmation.

Lee et al. [31] used a variety of transfer learning approaches in
conjunction with deep convolutional neural networks (CNNs) to
monitor osteoporosis in dental panoramic radiographs (DPRs). Several
transfer learning strategies affect deep CNN models, including the basic
CNN3 and the Visual Geometry Group 16 (VGG-16). VGG-16 was more
optimal since transfer learning and fine-tuning improved the overall
effectiveness of the deep CNN in screening osteoporosis in DPRs.

Yaduvanshi et al. [32] explored the use of automated segmentation
techniques, more specifically ensemble-based segmentation methodol-
ogies, to diagnose oral cancer in its early stages and thereby boost the
survival rate via computer-aided diagnosis (CAD). While numerous
ensemble models for segmentation problems exist, no combination is
sufficiently dynamic to handle every dataset. For example, the model in
Ref. [29] is valid only for non-surgical procedures and does not support
the extraction of unusual features.

Similarly, the requirement for a larger dataset and the usage of
EfficientNet-based designs is designed to facilitate future work to
address the limitations of PaXNet [33]. Additionally, incorrect catego-
rization occurs due to the absence of original data, which requires
additional training images for deep learning algorithms to function
correctly. Therefore, the importance of having more qualified, labeled,
and validated datasets, as well as an adequate amount of datasets, to
achieve outcomes by combining deep learning methodologies has been
emphasized [31].

2.2. Tooth segmentation and identification for panoramic radiographs

Due to deep learning’s efficacy, numerous tooth segmentation
techniques have demonstrated promising results. Some of works on
tooth segmentation or tooth identification tasks are based on U-Net [34].
Krois et al. [35] investigated the generalizability of expert systems for
segmenting and identifying apical lesions on panoramic radiographs.
The training and testing of U-Net-based CNNs with a root-canal fillings
dataset reveals that dental practice experience in the training dataset is
more essential than image features for improved results. Additionally,
when segmenting panoramic radiographs, the unclear behavior of deep
learning architectures in terms of generalizability is observed. It is
critical to evaluate models using neutral datasets to avoid unduly opti-
mistic outcomes due to data memory. According to Refs. [23,26], small
training datasets worsen the model’s impracticality due to lower data
variances. Their work is based on U-Net, whereas our collaborative
model is robust enough to use a variety of individual models for tooth
segmentation and tooth identification. The collaboration may be
broadened to encompass a range of distinct individual models and
datasets.

Mask R-CNN based works [2,4,19-21] are the most pertinent for
segmenting teeth and accurately identifying and numbering teeth. Zhao
et al. [2] created a two-staged attention segmentation network (TSAS-
Net) to localize and classify teeth in radiographs. The first stage uses the
attention model to determine the tooth’s approximate location.
Following that, the precise tooth borders are recognized using a fully
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convolutional network with an accuracy of 96.94%. It demonstrates the
superiority of the fully convolutional network over previous models.
Koch et al. [19] proposed an accurate tooth segmentation model for
panoramic radiographs that combines fully convolutional networks
(FCNs) [36]. Several strategies, such as network grouping, symmetrical
data management, test-time extension, and bootstrapping of low-quality
annotations, were used to improve segmentation performance. Jader
et al. [4] investigated the use of Mask R-CNN (regional convolutional
neural network) for segmenting individual teeth in the most difficult
panoramic radiographs. Oktay et al. [20] proposed concurrently
detecting, segmenting, and counting teeth in panoramic X-ray images
employing Mask regions with convolutional neural network features
(RCNN) and multi-class labeling each tooth type with a unique class
name. Pinheiro et al. [21] built an end-to-end deep learning architecture
for deciduous teeth segmentation and numbering using Mask R-CNN
and PointRend.

Lee et al. [22] proposed developing a deep learning solution for
automated teeth segmentation on dental panoramic images using a mask
R-CNN algorithm with a custom annotated datasets. This approach
applies to both interpretable diagnostic systems and forensic classifica-
tion, which need comparable segmentation tasks. Wirtz et al. [23]
provided a coupled shaped model for robust and accurate tooth seg-
mentation in low-quality panoramic radiographs, so assisting dentists in
their diagnostic work. The model employs a deep neural network to
obtain the binary mask of the teeth to statistically identify form and
space changes and therefore improve segmentation quality. Silva et al.
[5] tested four neural networks on testing datasets, including Mask
R-CNN, HTC (hybrid task cascade), PANet (path aggregation network),
and ResNet (residual neural network), to perform tooth numbering and
segmentation on difficult dental radiographs. The results indicate that
while all frameworks are possible in certain situations for estimating the
size, number, and placement of teeth, the accuracy of the PANet in the
particular case was superior to that of the other frameworks in the
competition. Furthermore, the models above performed well when teeth
were in good condition but failed when teeth were damaged or incor-
rectly labeled.

However, these studies have not explored collaborative models or
learning via multi-task refinement. Our approach to these problems, on
the other hand, is fundamentally different, as our work is focused on
collaborative modeling aided by autonomous models for multi-task
scenarios. For instance, rather than combining both tasks into a single
model, we demonstrate the collaboration of two distinct models for
tooth segmentation and tooth identification. Due to the adaptability of
the proposed work, other tasks such as recognizing dental restorations or
clinical situations can easily be added and their outcomes can be sum-
marized. We discuss the benefits and shortcomings of these studies in
Table 1 and explain in Section 5.3 how we surpassed them on both tasks
using individual and collaborative models trained on the UFBA’s
panoramic radiography dataset [37]. However, we omitted some of
recent tooth segmentation works, such as Wu et al. [38], Lian et al. [39],
Wu et al. [40], Tian et al. [41], Tian et al. [42], from our comparative
evaluation. This is because their proposed work did not report their
performance measures such as accuracy, F-1, and mAP. Lei et al. [43]
was not included since it was proposed for retinal fundus images.

2.3. Tooth identification

Lai et al. [44] proposed a Learnable Connected Attention Network to
accurately match panoramic radiographs, recognizing the practical
value of human recognition based on tooth identification in forensic
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Table 1

Cutting Edge Research: Deep Learning based Tooth

Identification.

Segmentation and

Computers in Biology and Medicine 148 (2022) 105829

Table 1 (continued)

Deep Learning Modeling for Dental Panoramic Radiographs

Deep Learning Modeling for Dental Panoramic Radiographs

Work Approach Objective Limitation
Our Work Collaborative Autonomous tooth Incapable of
Learning (Mask segmentation and correctly
R-CNN and Faster tooth identification segmenting
R-CNN) overlapping teeth
and dental
implants. Applied
only to panoramic
dental radiographs;
not fully applicable
to CBCT images.
Zhao et al. Two-staged Autonomous tooth Incapable of
[2] attention segmentation and precisely
segmentation identification using segmenting the
network (TSASNet)  attention network foreground pixels
into tooth regions.
Koch et al. FCN based on U- Bootstrapping of Deficiency in the
[19] Net with Network low quality design and
ensembling, data annotations for evaluation of multi-
augmentation and teeth segmentation task predictive
symmetry models.
exploitation
Jader et al. Mask R-CNN with Detection of teeth Lack of capability
[4] ResNet-101 or missing teeth, for segmenting
constituent parts, mouth and teeth
and prosthesis components,
detecting missing
teeth, or generating
medical reports
Oktay et al. Mask regions using ~ Recognition, Inability to
[20] convolutional segmentation, and recognize missing
neural network numbering of teeth and implanted
(RCNN) in panoramic X-ray teeth; Lack of
images flexibility and
extensive modeling
required to manage
multiple tasks.
Pinheiro Mask R-CNN for Tooth numbering Incapable of
etal. [21] dental panoramic and segmentation numbering

Leeetal. [22]

Wirtz et al.
[23]

Silva et al.

[5]

X-ray

Mask R—CNN for
dental panoramic
images

Couple Shaped
Model

Analyzed four
neural networks
(Mask R-CNN,
HTC, PANet, and
ResNeSt)

Automated teeth
segmentation and
identification

Segmentation and
labeling of 28
individual teeth

Segmentation and
numbering of the
tooth on complex
dental radiographs

Deep Learning Modeling for 3D Dental Images

Cui et al. [3]

Cui etal. [24]

Two-staged
network
architecture
(ToothNet)
Learning-based
segmentation

Autonomous tooth
segmentation and
identification

Tooth segregation
and address
uncertainties

overlapping and
deciduous teeth or
ones with implants;
and absence of
experts’ evaluation.
severe shortage of
evaluation for
abnormal teeth,
such as missing or
overlapped teeth,
and a dearth of
multi-task network
modeling.
Insufficient data,
particularly for
third molars, results
in low segmentation
accuracy and
robustness.
Insufficient data
sets and model
support for
numbering and
classifying teeth in
noisy
environments.

Less generalizable
due to the scarcity
of 3D datasets.

Limited tooth
segmentation
results in inaccurate

Approach Objective Limitation
approach generated by performance,
(TSegNet) missing, crowding particularly for

Point-based tooth
localization
network for CBCT

Marker-controlled
watershed (MCW)
algorithm and local
threshold
approaches

Deep learning-
based tooth
segmentation
model in harmonic
parameter space

and misaligned
teeth

Effective heatmap
regression by
separating
Gaussian
distributions from
the network.
Segmentation of
tooth, pulp tissue
and tooth enamel

Autonomous and
accurate
segmentation.

third molars and
primary (baby)
teeth.

Absence of
systematic and
realistic
multitasking
modeling.

Limited training
data and models for
enamel and pulp
segmentation, as
well as the
performance delay
associated with
segmentation.

The model’s overall
segmentation
accuracy was
compromised due
to a lack of training

data and lengthy
image processing.

odontology. The design collects the interdependent information from
the coordinating features retrieved from the channel attention module
and the learnable connected module to forecast the precise results.
Sathya and Neelaveni [45] recommended a novel three-step transfer
learning method for automatically detecting human-based features in
panoramic radiographs. The first stage involves determining the tooth’s
position and classifying it into one of the four previously outlined cat-
egories. Finally, the teeth are compared to the source images to posi-
tively identify persons in forensics once they have been allocated
numbers. The suggested framework beats CNN, D-CNN, Seven-layer
CNN, and ResNet-50 under the specified circumstances, with a 95%
accuracy rate. Thanathornwong and Suebnukarn [46] introduced the
Faster R-CNN model [47] to detect compromised teeth on the pano-
ramic radiograph to reduce dentists’ diagnostic work. The Faster R-CNN
was successfully trained on a minimal amount of labeled imaging data to
detect unhealthy teeth.

Chung et al. [48] developed a spatial distance regularization
loss-based method for teeth localization based on point regression. The
proposed network recognized each tooth autonomously using center
point regression for all anatomical teeth (i.e., 32 points in the permanent
dentition). The L2 regularization loss for Laplacian spatial distances
improved center point detection accuracy. The final detection was
accomplished using a multitasking, class-agnostic identification neural
network with parallel training of center offsets. The proposed approach
accurately identifies both missing and existing teeth. In terms of re-
strictions, the scarcity of training data is the primary problem [49].
Moriyama et al. [50] increased accuracy by examining pocket locations
using radiographs and blood test data in conjunction with concurrent
training. Sathya et al. [45] examined dataset expansion, the use of
contemporary CNNs, and advanced augmentation approaches.

Krois et al. [35] proposed using a seven-layer deep CNN with global
average and max pooling to categorize teeth into four categories: molar,
premolar, canine, and incisor. Experiments demonstrated that this
method outperforms three contemporary teeth classification methods,
with an average accuracy of 87%. Moriyama et al. [50] developed a
MapReduce-like approach for estimating the depth of periodontal
pockets that includes mapping, CNN, and reduced phases. The mapping
process identifies tooth numbers and photographs of pocket regions.
CNN estimates pocket depth based on pocket premises, and the lowering
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Table 2

Deep learning-based tooth identification cutting edge research.
Work Approach Objective Limitation
Our Work Collaborative To obtain Required to

Lai et al. [44]

Sathya et al. [45]

Thanathornwong
et al. [46]

Chung et al. [48]

Li et al. [49]

Moriyama et al.
[50]

Learning using
Faster R-CNN
model [47] and
Mask R-CNN
model [51]

Channel attention
mechanism and
cosine loss

Three-step
transfer learning
method using
AlexNet

Faster R-CNN
model [47]

Point regression
for spatial
distance
regularization
loss

Seven-layer deep
CNN with global
average and
maximum
pooling

MapReduce-
inspired model
for estimating the
periodontal
pocket depth

identification of
32 distinct teeth
on 2D panoramic
radiographs

Classification
with 2D
panoramic
radiographs

Automatic
feature
extraction, tooth
classification and
numbering in
panoramic
radiographs

Panoramic
radiography for
the detection of
compromised
teeth

Promising high
performance in
identification

CBCT Image
Teeth
categorization for
molar, canine,
premolar, and
incisor

Estimation of
pocket depth and
aggregation of
the pocket depth

evaluate the
effectiveness of 32
individual tooth
detection model,
particularly for
aberrant detection,
and increased
performance
through
collaborative
learning.
Restricted owing
to the extra data
from varied angles
and the
comprehensive
model
development for
accurate detection.
Due to the domain-
specific approach
and metrics based
on four classes
(Molar, Premolar,
Canine, or Incisor),
it is limited in its
ability to number
teeth in cases of
overlapped or
missing teeth.
Lack of experts’
evaluation in
diagnosing teeth;
Unable to utilize
new augmentation
approaches for
improving dataset
and more recent
CNN architectures.
Advanced data
augmentation
techniques are
required to
increase the
variety of tooth
forms used to
validate the
model.

Limited
classification for
four teeth types
and low
performance
owing to the use of
only a few images
from the original
source.

Low performance
due to two
unrelated models
for tooth
recognition and
depth estimation;
Inability to
compose the
models end-to-end

component totals the projected depths for all identical pockets. Experi-
mental results indicate that the suggested approach can detect acute
periodontal disease autonomously.

In comparison to some previous research, which identified just four
unique tooth types (molars, canines, premolars, and incisors), our
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collaborative model enables the accurate recognition and identification
of 32 individual teeth through model improvement. The tooth identifi-
cation models

have been improved by the aggregation of tooth identification and
tooth segmentation, followed by the improvement of collaborative
learning with better accuracy. The qualitative and quantitative
comparative evaluations for tooth identification have been presented in
Table 2 and Section 5.3.

2.4. 3D tooth image segmentation and identification

Cui et al. [3] introduced a two-staged network architecture, Tooth-
Net, in which a supervised deep learning approach is used to capture the
edge map from CBCT images. After concatenating the learned map
features, these learned map features are directed to the Region Proposal
Network (RPN) to achieve autonomous tooth segmentation and identi-
fication. Cui et al. [24] proposed the TSegNet approach for proficient
tooth segregation. They demonstrated incomplete segmentation while
classifying wisdom teeth. Restricted datasets, manual labeling, insuffi-
cient masking, and segmentation dependence on the algorithm utilized
are only some of the significant shortcomings of 3D segmentation
models [27].

Lee et al. [25] established a framework for individual tooth seg-
mentation based on points that do not require additional classification.
However, despite the enhanced performance of point-based recognition
networks on dental images, it is challenging to discriminate adjacent
teeth due to their similar topologies and proximity. Kakehbaraei et al.
[26] combined a marker-controlled watershed (MCW) algorithm with
local threshold techniques for segmenting teeth. Primarily, the
noise-free image is preprocessed by filling holes, maintaining intensity.
Then the MCW algorithm is performed on the gradient image updated
with markers to complete the segmentation process.

Zhang et al. [27] proposed a model that isomorphically transfers the
3D tooth prototype into a 2D harmonic parameter space to produce the
image. The image is passed to a deep (CNN) for accurate and autono-
mous segmentation, and the resulting boundary mask is projected back
to 3D models. The fuzzy clustering and cuts algorithm is then used to
refine the results further. Wu et al. [38] created an innovative method
for automatically dividing tooth forms to preserve energy and analyze
orthodontic qualities. Similarly, MeshSegNet [39] was proposed for an
end-to-end deep learning approach for automatic tooth identification
that takes a range of raw surface features as inputs and extracts
multi-scale local contextual data. Wu et al. [40] extended MeshSegNet
techniques for classifying teeth and identifying landmarks in raw
intraoral images and selecting a ROI on the original mesh to build a
lightweight PointNet variant for regressing the corresponding landmark
heatmaps.

For large numbers of missing teeth in a random arrangement, deep
adversarial-driven dental inlay restoration (DAIS) may provide efficient
occlusal surface ends [41]. The technique of generative adversarial
network (GAN) centered image synthesis (IS) was proposed for the
objective of creating images of the latent transitional space between the
source and target domains [42,43]. Tian et al. [42] showed a novel
two-stage conditional GAN for replicating the surface of a dental crown.

Deep learning approaches for 3D CBCT data are attracting increasing
interest. Some are based on deep learning modeling in two dimensions,
while others are based on three-dimensional modeling. Due to the
computational requirements of 3D modeling, it would be more practical
and efficient to use 2D modeling for CBCT. We did not discuss our
collaborative models for CBCT in this paper. However, because of the
flexibility of adding additional models, distinct views or structures can
be developed independently and dynamically integrated into ensemble
inferencing and summarization via collaborative learning. This is the
direction in which our future work will take.
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3. Background and motivation

We now discuss the fundamental methods that support the collabo-
rative paradigm in consideration. We considered the underlying estab-
lished framework (M.) when developing a collaborative model. First,
we used the Non-Max Suppression (NMS) technique in the refinement
process of the collaborative model. Second, for object detection, our
teeth identification model (M;) was created using the Region Proposal
Network from Faster R-CNN [47], and YOLO-v5 (You Only Look Once
version 5) [52]. Third, we constructed a model for teeth segmentation
(M;) by combining the instance segmentation approach Mask R—-CNN
[51] with the semantic segmentation technique U-Net [34].

3.1. Bounding box regression

The bounding box regression [53] was performed using four co-
ordinates: x, y, w, and h, which identify the box’s center coordinates, as
well as its width and height. Scale-invariant transformations between
two centers and log-scale transformations between widths and heights
were computed using Eq. (1) given a predicted bounding box coordinate
P = (tx ty, tw, tn) (center coordinate, width, height) and its corresponding
ground truth box coordinates g = (¢}, &, s tr).

_ X — Xq Y= Va
T T,
= log (K) t, = log <£>
Wa hq
. (@]
f_x —x,,.*:y — Ya
* Wa oY ha

=lo, W—* t;, =1lo h—*
= log wa )T g n,

All the bounding box correction functions are d;(p) wherei € {x, y, w,
h}. The bounding box regression can be expressed as a function of an
anchor box and a nearby ground-truth box by minimizing the SSE loss
using Eq. (2).

L= 3 (md(p)f 4] W @

ie{xyw,h}

The regularization term is essential in this case, and the cross-
validation is to choose the optimal A. Additionally, not all anticipated
bounding boxes match to corresponding ground truth boxes. Box
regression is irrelevant when there is no overlap. Thus, while training
the box regression model, only predicted boxes that are within the IoU
threshold (8) of a neighboring ground truth box are preserved using Eq.
(3).

X, Nx*
x, Ux*

IoU = 3)

When the precision is § = 0.7, the overlapping is solved using an
optimal non-maximum suppression (Algorithm 1), in which any
bounding boxes with a value less than § are eliminated. The algorithm
illustrates the usage of non-maximum suppression in our suggested
model: First, select the box with the highest score as the first step. Then,
calculate its overlap with all other boxes and delete any that exceed the
IoU threshold (6 = 0.7). Finally, repeat step 1 until no more boxes have a
lower score than the currently selected box. The remainder is main-
tained and utilized to generate the final forecasts.
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Algorithm 1: Non-Max Suppression (NMS)

Input: Model O, Threshold 6
Output: Filteredd Bounding Boxes B

function NMS(O,, 6)
B < BoundingBox(O,.) > Bounding box set
C < Confidence(©,) © Confidence score set
B, < ] > Filtered Bounding box set
> Delete overlapping boxes with lower scores
for b, e Band c; € Cdo
discard « False
for b; € Bdo

if loU(b;,b;) > 6 then

‘ if score(c b;) > score(c;, b;) then

dlSC&l‘C{ « True
end

if —discard then

end
return B ’

end

3.2. Object detection modeling

We carried out object identification modeling with YOLO-v5 [52],
and Faster R-CNN [54], which are composed of convolutional layers for
training the extract filters and classification layers for predicting classes
and bounding boxes. YOLO-v5 predicts the relative offset of the pre-
dicted bounding box’s center point from the linked cell’s top left corner,
whereas Faster R-CNN is based on RPN indicating the offset of the
prediction box and anchor. The following sections detail the steps
involved in detecting objects using YOLO-v5. It will begin by taking an
image as input, reshaping it, and then extracting its features via a CNN
architecture. The data is then transferred to two entirely connected
layers that reshape and transform it into a predetermined grid. Once the
entire image has been transformed into a grid, the data for object
detection is provided. Next, it will attempt to determine whether an
object is present or not in each grid. After establishing these values, the
bounding box is determined using NMS (non-maximal separation) (Al-
gorithm 1).

RPN is a fully convolutional network that anticipates object borders
using object scores at each detection. Based on the RPN model based on
non-maximum suppression (Algorithm 1) was designed. The positive
label will be assigned to one of two types of anchors (Eq. (3)): (i) the
anchor/anchors with the greatest Intersection-over-Union (IoU) overlap
with a ground-truth box, or (ii) any anchor with an IoU overlap more
significant than 6 = 0.7 with any ground-truth box.

The object detection loss is calculated as the product of the log and
bounding-box losses. The projected probability p; corresponds to an
anchor (an object’s index i) in a nxn mini-batch. p; =\{1,0\} indicates
whether the anchor is positive or negative. The vector representing the
anticipated bounding box t; is compared to the related ground-truth box
to establish whether the anchor is positive. The word p; * £, indicates
that the regression loss is active only when the anchors are positive
(p; = 1) and is deactivated otherwise (p; = 0).



G. Chandrashekar et al.
L, = L({p:iH1})
1 . 1 > X @
= JVLZ Le(pi,p}) + /117;; ZII’ Ly(ti1])

For the regression loss, the loss function S;, defined in Ref. [54] is
used, i.e., Ly(t;, t;) = S, (t; —t7) as defined in Eq. (5).

0.5x%,
8e, (%) = { x| — 0.5

if x| <1,
otherwise

)

Thus, the object detection model {p;} and {t;} make predictions based
on the classification ¢ and region detection b layers’ compositions,
respectively.

3.3. Image segmentation modeling

We employed image semantic segmentation and instance segmen-
tation approaches to segment teeth. U-Net [34] is a well-known model
for segmenting biological images semantically. It has shown exceptional
performance on several natural and medical image segmentation tasks.
The U-Net generates a lower-dimensional representation of the images
using a CNN network, which is then upsampled to create the final seg-
mentation map. The weight map is a segmentation of the ground truth
that has been predefined. The ground truth segmentation is subjected to
morphological image processing to establish the fine borders that
separate cells. A weight map is generated, with a significant weight
assigned to these brief cell division borders. By incorporating this weight
map into the calculation of cross-entropy loss, the U-Net is severely
penalized for failing to establish these specific cell borders or for doing
so in an inefficient manner. The loss function of the U-Net is defined to
compare the predicted mask to the ground truth mask, hence optimizing
the model’s parameters for the upcoming training sample.

For the instance segmentation, Mask R—-CNN [51] was created to
forecast the class label used to pick the output mask. For each Rol, the
mask branch produces a Km?-dimensional output encoding K binary
masks of resolution m*m, one for each of the K classes. Assume that £, is
the classification loss, £ is the bounding-box loss, and Ly, is the Rol
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softmax on a per-pixel basis. £; is calculated using IoU (Eq. (3)), whereas
smooth,, is the smooth £; loss (Eq. (5)). £, is defined as the average
binary cross-entropy loss calculated using a sigmoid on a per-pixel basis.
Thus, the network can construct masks for each class without regard for
a class competition.

4. Design of collaborative learning model

We proposed a collaborative learning approach to supplement
existing object recognition and instance segmentation algorithms (see
Fig. 2). Collaborative learning can be defined as integrating two deep
learning models to obtain better results. First, the segmentation and
identification models are trained and developed individually. The
optimizer is Stochastic Gradient Descent (SGD) with momentum that
attempts to accelerate gradient vectors in the right direction, resulting in
a more rapid convergence. The configuration of the deep neural network
models used for tooth segmentation and identification training is shown
in Table 3. Then, the outputs of the two models are combined to create a
panoramic radiograph image that incorporates detection from both
models. When findings are related, refinement is utilized to further
refine them.

4.1. Step 1. modeling and inferencing

We developed two distinct models for tooth segmentation and tooth
identification. Also, we performed inference utilizing these models,
which are forwarded to the consequence phase for aggregation of the
inferencing results.

Model 1: Tooth Segmentation Modeling. To segment teeth, we
used two segmentation models, M;;: Mask R—-CNN [51] and M;,: U-Net
[34] with the panoramic radiograph dataset. While both M;; and Mg

Table 3
Configuration for individual models.

N ) Segmentation Identification
associated with the kth mask’s ground-truth class. On each sampled Rol,
the multi-task loss was estimated as defined in Eq. (6). Parameter/Task Ma Ma
Network Mask R-CNN Faster R-CNN
L; — Cc(p,u) + L, (tum) + L, Pretrained Model ResNet-101
Stepsize 50000
= —logp, + Z smooth; (1! — v;) Learning Rate 0.001
i€ (oywih) 6) Batch Size 2
Max Iterations 300
1 ~k ~k Threshold IoU 0.7
__2]; LVilegyij + <1 - yijh)g(l - y'f)] ROI Heads/image 64
m
s Optimizer SGD with Momentum
L. is a multinomial cross-entropy loss that can be calculated using

Tooth Identification Model

1. Modeling & Inferencing | | 2. Inference Aggregation ‘ | 3. Inference Refinement

oe \ os U 01’ oc B R(Oe)

0O : Teeth Segmentation Output

| R(0,): Refinement of 0, and 0; |
0;: Teeth Identification Output

Fig. 2. Collaborative deep learning architecture.
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are CNN-based techniques for recognizing and segmenting teeth, Mask
R-CNN (My) is instance segmentation that recognizes 32 individual
teeth using dental masks, and U-Net (M,,) is semantic segmentation
that does not distinguish between distinct individual teeth. As demon-
strated in a panoramic radiograph in Fig. 1(b), the normal number of
teeth is 32 in the permanent dentition, and the teeth mask displayed in
Fig. 1(c) is annotated for the 32 teeth segmentation. Mask R-CNN uses
ResNet-101 as the backbone for feature extraction. After extracting
features using ResNet-101, FPN (Feature pyramid Network) with an-
chors are created with identified ROIs (Region of interests). After the
ROIs are aligned, classification and localization are applied by regress-
ing the bounding boxes. Finally, each object is detected and segmented
by the complete convolution network indicated using bounding boxes.
The U-Net model creates a binary mask comprised of 1s and Os from an
input image, a grayscale radiographic image of teeth (including borders
between teeth). Until the instance segmentation (Mask R—-CNN), all teeth
are labeled as “tooth” without distinction of individual teeth. The tooth
segmentation model was created using the panoramic radiograph
dataset [49] and Facebook Research’s Detectron2 Library [55] for py-
thon 3.7.

Model 2: Tooth Identification Modeling. Our modeling of tooth
identification is based on two models, M; and M, using the most
recent object detection algorithms, the Faster R-CNN framework [47]
and YOLO-v5 [52]. These models aim to construct a tooth identification
model capable of sorting teeth into four categories (molar, premolar,
canine, incisor). The M; model based on the Faster R-CNN framework
[47] is also one of the most acceptable frameworks for object detection
due to its region classification and RPN architecture based on anchor
boxes and non-maximum suppression (Algorithm 1). The M;; model
based on YOLO-v5 [52] recognizes objects in real-time with high pre-
cision by incorporating anchors into the detection process and
employing a pre-trained version generated from the COCO dataset. First,
the image is divided into cell boxes since Anchor boxes are essential for a
high detection rate. Second, if the bounding box’s center is in a cell, the
bounding box is predicted by each cell box.

For the M;; modeling, the bulk of human tooth structures resemble
one another; the model detected multiple overlapping bounding boxes
for each object during initialization. When the precision is 0.7, an
optimal non-maximum suppression algorithm is used to resolve the
overlapping, eliminating any bounding boxes with a value less than 0.7.
The balance of the data is retained and used to make final forecasts. The
technique for achieving optimal non-maximum suppression in the Mj
model is illustrated in Algorithm 1. The M, model (YOLO-v5 network
[52]) is composed of a single-stage, whereas the M;; model (Faster
R-CNN network) is composed of two stages. M; is an FPN-based
network, whereas M, is based on SPP (Spatial pyramid pooling) and
PANet for multi-channel feature fusion with mosaic training and self
adversary training.

Due to a scarcity of available radiographs for training, the architec-
ture is utilized to practice multi-class detection (molar, premolar,
canine, incisor). First, 100 radiographs were annotated, and the
augmentation technique was used to produce additional images during
the pre-processing portion of the identification model. Next, the tooth
identification model was used in conjunction with the collaborative
approach is depicted in Fig. 2. When compared to the M; (Faster
R-CNN) model, the M;; (YOLO-v5) model performed well for the four
different tooth kinds (molar, premolar, canine, incisor). The detailed
results are reported in Section 5.3.
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4.2. Step 2: inferencing aggregation

The collaborative model’s second phase involves aggregating the
predictions of various models to summarize the detection results (see
Fig. 2). This stage of the collaborative model is referred to as the
ensemble model since it does not require any refinement and is solely
focused on synthesizing observations from two independent models:
tooth segmentation and tooth identification. At this stage, the accuracy
is calculated as the weighted average of the accuracy of two distinct
models. The initial weights are equal, and the final weights can be
calculated by evaluating the contributions of each model after the
refinement. The summary of integrated inferences will be saved in a
standard format (MS coco) for usage in the collaborative inference
process.

4.3. Step 3: inferencing refinement

Collaborative Inference (CI) is the final stage of the collaborative
learning model; it utilizes an ensemble of teeth segmentation and
identification algorithms to refine the integrated inference from the
previous phase. Cl is a highly effective method for creating collaboration
between two classifiers since it enables the refinement of independent
models produced using a mapping schema.

Two separate classifiers, tooth segmentation and tooth identification
are refined in conjunction via mapping. The mapping strategy for the CI
is designed to boost detection during inference by employing the com-
bined inferencing summary created by these two models. For instance,
the identification technique is inefficient when teeth are missing or
overlapping. The feedback from the tooth segmentation model improves
the accuracy of teeth identification due to the model’s refinement.
Similarly, collaboration with the identification model boosted the seg-
mentation outcomes. For example, because the identification model can
determine the center of each tooth, any false positives that extend
beyond the confines of the tooth segmentation model are easily repaired.
This process may occur continuously or sequentially, depending on the
inference platform’s design.

4.4. Collaborative learning algorithm

The collaborative learning model that is necessary for the end-to-end
process is described in the following steps by Algorithm 2. First, before
developing individual classifiers, we perform the preprocessing. Second,
we independently train the tooth segmentation model (M;) and the
tooth identification model (M;) using Mask R-CNN and Faster R—-CNN,
respectively. Third, we perform inference to determine the segmentation
of 32 classes using the segmentation model (M;). Fourth, we determine
the four tooth types with the testing data (D;) using the identification
model (M;). Fifth, we obtain the ensemble model output (O.) by
combining these two outputs. Sixth, we fine-tune the collaborative
model’s composite output (O, ) through the refinement operation R(O,)
(Algorithm 3): (i) Filter overlapping boxes by applying non-maximum
suppression to the identifying bounding boxes. (ii) Converge and map
the segmentation and identification outputs to detect bounding boxes
that do not contain a target object. (iii) Identifying 32 distinct individual
teeth by locating the midpoint of each enclosing box and applying the
ISO standard for tooth numbering. (iv) Eliminate segmentation findings
that are beyond boundaries. Finally, produce a summary of the refining
results, including the collaborative model output and an accuracy
report.
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Algorithm 2: Collaborative Learning Model

Data: Training D,, Validation D, Testing D,
Result: Summary O,
preprocessing(S, D,, D,)
preprocessing(Z, D,, D,)
M, « training(S, D,, D,) > Training segmentation
model.
M, « training(Z, D,, D,) > Training identification
model.
repeat
O, « Prediction(S, M, D) > Inference
segmentation model.
O; < Prediction(Z, M;, D,) > Inference
identification model.
0O, « O, U O, > Ensemble of segmentation and
identification models.
L,=LM)+L,(M,)
0. < R(O,) > Refinement of O, through the
collaboration of O, and O;.
L. =L, +L M GM,;)
until no more refinement is possible
O, < 0, U L, > Summary of collaboration
return O,

Algorithm 3: Refinement

function Refinement(O,, ©;)
> Perform non maximum suppression in O;.

O, < NMS(9;)
> Filter bounding boxes in O, with no targeted
object.
O, « Filter(O, U O))
> Locate the midpoint of each enclosing box B
Sfor ISO standard numbering.
for V B€0O,) do
Mb - (max(x)2 min(x) i max(y)2 mm(y))
| OC « ISO(Mb)
> Remove out-of-bounds segmentation.
for Vb€ O,)do
B, < (max(b,), min(b,), max(b,).min(b,))
| O, < BoundFilter(3,)
return O,

The loss function for the collaborative learning model L. was
computed using Eq. (7) to reduce model selection bias and uncertainty
by refining integrated predictions. First, £, was calculated using Eq. (7)
by combining the loss functions of the two models, such as segmentation
loss L; for tooth segmentation model M; and identification loss £; for
tooth identification model M;.

Second, following the computation of L., the collaborative learning
model’s loss function £, is computed to obtain the average prediction by
combining £, and the refinement function R across the two models,
resulting in an increase in predicted accuracy.

L, =L (M) +L;(M,;)

L, = R(M;, M) )
L. =L+ L,
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5. Experimental results
5.1. Dataset and evaluation measures

Our key dataset for tooth segmentation and tooth identification is the
UFBA-UESC dental dataset [37], 1500 panoramic radiographs were used
to train the tooth segmentation model, which was then extended for
identification and labeling. The dataset is described in detail in Table 4.
The technique of deep neural network training is characterized as
achieving the convergence criterion and continuing until the optimal
learning results are obtained. The criterion for model selection is based
on a loss function that minimizes the error associated with preset labels
as determined by empirical and cross-validated residual sums of squares.

Individual models (tooth segmentation and tooth identification) as
well as collaborative models are evaluated. We employed a variety of
metrics in this review, including accuracy, precision, recall, F1 score,
and mAP (mean average precision). TP denotes the true position, TN
denotes the true negative, FP denotes the false positive, and FN denotes
the false negative. Precision assesses the proportion of positive class
predictions (TP + FP) that are genuinely positive class predictions (TP).
Recall quantifies the number of positive class predictions (TP) made
from the dataset’s positive examples (TP + FN). F-Measure generates a
single score that accounts for both precision and recall concerns in a
single number. The mean average precision (mAP) is calculated as the
average of the precision score for each query, where Q is the total
number of inquiries.

TP
Precision —
recision TP+ FP 8)
TP
Recall = ——
ecall TP+ FN (C)]
Fl— 2 X Recall x Pr?c.ision 10)
Recall + Precision
TP + TN
Accuracy = _ PAIV an
TP + FN + FP + TN
> Pk) x rel(k)
Avep === ——
ve D
. 12)
_ AveP(q)
mAP =—7"—___
0

where D denotes the total number of relevant dental images and rel(k)
denotes an indicator function equal to one if the item at rank k is a
relevant dental image and zero otherwise.

5.2. Results

Individual models for tooth segmentation models (M;; and Ms,) and
tooth identification models (M;; and M;;) were developed separately.
The dataset and performance for tooth segmentation, tooth identifica-
tion, and collaborative model construction using panoramic radiographs
are shown in Table 4. First, the two tooth segmentation models (M;; and
M,2) were constructed using about 193 annotated training images, 83
validation images with approximately 300 epochs, and were evaluated
using approximately 1224 testing images. Second, the tooth identifica-
tion models (M;; and M;,) were developed using 750 training images,
150 validation images, and 100 testing images. The identification
models were trained on 100 annotated panoramic radiographs from the
UFBA and 650 images created with data augmentation techniques (flip,
saturation, and contrast) of Detectron2 [55]. Roboflow [56] was utilized
to generate the annotated images. Multiple images were generated for
training, validation, and testing utilizing augmentation.

The learning and loss curves for four independently trained models
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Table 4

Computers in Biology and Medicine 148 (2022) 105829

Dataset and Performance for Model Building with Panoramic Radiographs D;: Training Data, D,: Augmented Data, D,: Validation Data, D;: Testing Data (Collaborative
Learning’s testing data are randomly selected from the Tooth Segmentation’s testing data. For the identification model, augmented data (D,) generated by Detectron2

[55] were used.).

Model Dataset Dr (Dq) Dy (Dq) Ds Epoch# Training Time Testing Time
Tooth Segmentation (M) 193 83 1224 300 30 min 120 min
Tooth Identification (M;) UFBA [37] 100 (650) 45 (105) 100 300 30 min 10 min
Collaborative Learning (M) - - 150 - - 30 min

are shown in Fig. 3 (Faster R-CNN and YOLO-vS5 for tooth identification;
Mask R-CNN and U-Net for tooth segmentation). Examining models’
learning and loss curves during training enables us to demonstrate our
work’s convergence criterion and optimization strategy, which are
based on a loss function that minimizes the error associated with pre-
defined labels.

Third, the collaborative model was inferred by merging the outputs
of two of the best individual models: tooth segmentation Mj; and tooth
identification M;;. Through collaborative learning, multiple bounding
boxes were recognized around the final detected images as part of the
identification model. The bounding boxes with poor accuracy were
removed using non-maximum suppression. We create an ensemble
model to segment, recognize, and number 32 individual teeth using
those two models M;; and M;;. 150 images were utilized to evaluate the
collaborative model from the UFBA [37] dataset by combining the
output from two distinct models and performing refining on the
outcome.

Table 5 shows the testing datasets that were used for evaluation of
segmentation, identification, collaborative models. This table presents
the UFBA’s ten detailed categories of the dataset based on the number of
images used to test teeth segmentation, tooth identification, and
collaborative models. It is worth noting that the testing images used to
evaluate three distinct models can overlap. Fig. 4 and Fig. 5 illustrate an
example of the testing results for the tooth identification models (M;
and M;,), the tooth segmentation models (My; and Ms;), and collab-
orative model M, for each of the ten distinct categories of UFBA
panoramic radiographs [37].

We validated our findings using images that were not included in our
collection. As illustrated in Figs. 6-9, we obtained the findings from the
two models. After applying U-Net to the training data, we obtain a 90%
accuracy on the testing data. We also tested the model on actual images,
and it performed admirably. After detecting and labeling teeth, an ac-
curacy of approximately 98% was obtained. The accuracy of the multi-
class label detection using Detectron2 [55] was approximately 85%.

Faster R-CNN YOLO-v5

5.3. Comparison with state-of-the art research

In Table 6 and 7, we compared the accuracy of teeth segmentation,
recognition, and collaborative learning models to the state-of-the-art
research in terms of accuracy, F-Score, and mean average precision
(mAP). These results demonstrated the enhancement of our proposed
works compared to existing works via a comparative evaluation.
Because most state-of-the-art studies in tooth segmentation and identi-
fication do not provide their model, source code, or data, we were un-
able to replicate their results and compare them to our own in the same
context. Additionally, as previously stated, our work is not directly
comparable to several prior studies on tooth segmentation and identi-
fication [3,24,26,27]. This is because they concentrated their efforts on
deep learning on CBCT or 3D dental images.

Specifically, Table 6 compares our approach to the cutting edge
research in deep learning-based tooth segmentation. For the tooth seg-
mentation task, we selected Mj;: Mask R-CNN over M;,: U-Net because
to its superior instance segmentation (32 distinct classes) compared to
U-Net’s semantic segmentation (a single class). Through collaborative
learning with the tooth segmentation and tooth identification models,
the performance (accuracy, F-1, and mAP) was improved from 96%,
98%, 95% (Mg) to 98.77%, 98.83%, 97.30% (M,). As previously
stated, we excluded several recent teeth segmentation studies [38-42]
from our comparative evaluation in Table 6, due to their absence of
performance metrics such as accuracy, F-1, and mAP. Additionally, we
omitted Lei et al. [43] since their study was presented for retinal fundus
images.

The comparative evaluation with the state-of-the-art research in
deep learning-based tooth identification is shown in Table 7. Collabo-
rative learning improves teeth identification models by expanding the
task: Individual models (M;; and M;;) classify teeth into four unique
categories (molar, canine, premolar, and incisor), whereas the collabo-
rative model classifies teeth into 32 distinct categories. M, is a more
precise model than M;; in terms of accuracy, F-1, and mAP (99.5%,
99.85%, 99.5% vs. 91%, 90%, 91%). The collaborative model M,

Mask R-CNN U-Net
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Fig. 3. Training performance for tooth identification models (faster R—-CNN and YOLO-v5) and tooth segmentation models (mask R-CNN and U-net) (top Row:

Learning curve and bottom Row: Loss curve).
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Table 5
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Dataset for segmentation, identification, collaborative models M;: Tooth segmentation model, M;: Tooth identification model, M.: Collaborative model; D,: Training

data, D,: Augmented data, D,: Validation data, Ds: Testing data.

D Category Total Segmentation (M;) Identification (M;) M,
Dr Dy D;s Dr(Dq) Dy(Da) D; Ds
C1 32 teeth + Dental Appliance + Restoration 73 0 0 73 6 (54) 2(10) 6 25
Cc2 32 teeth-Dental Appliance + Restoration 220 116 44 60 5 (49) 3(13) 10 15
c3 32 teeth + Dental Appliance 45 31 12 2 22 (163) 12 (29) 5 10
Cc4 32 teeth-Dental Appliance 140 46 27 67 8 (66) 5(11) 40 50
C5 < 32 teeth + Dental Implant 120 0 0 120 14 (62) 6 (4) 4 10
C6 > 32 teeth 170 0 0 170 6 (60) 4 (10) 5 5
Cc7 < 32 teeth + Missing + Dental Appliance 115 0 0 115 11 (72) 2(9) 5 10
Cc8 < 32 teeth + Missing-Dental Appliance 457 0 0 457 12 (33) 4 (5) 10 5
Cc9 < 32 teeth + Missing + Dental Appliance 45 0 0 45 10 (47) 38 10 5
C10 < 32 teeth + Missing-Dental Appliance 115 0 0 115 6 (44) 4 (6) 5 15
Total 1500 193 83 1224 100(650) 45(105) 100 150

attained an accuracy of 98.44%, 98.75% for F-1, and 97.78% for mAP,
all of which are comparable to state-of-the-art accuracy. Additionally,
because to the expanded task (32 classes vs. 4 classes), the collaborative
model M, outperforms M. In general, the proposed model, collabo-
ration model M., outperforms existing deep learning models for a va-
riety of dental tasks, including tooth segmentation M; and tooth
recognition M;.

5.4. Case study

Five case examples are presented to illustrate the performance of the
tooth segmentation model (M) and the tooth identification model
(Mi1) and collaborative model (M,). These five cases include those
involving restored teeth, missing teeth, and dental implants.

Example 1. Asillustrated in Fig. 6, each of the two individual models,
as well as the ensemble (pre-refinement) and collaborative (post-
refinement) model, were effectively implemented. The output of the
segmentation and identification models is integrated, and the ensemble
model and summary of the results are displayed. In addition, individual
model detection findings were incorporated into the ensemble model.
The ensemble model was subjected to a post-refinement process to
improve the accuracy of the collaboration model. First, segmentation
accuracy was 98.75%, as all 32 permanent teeth were accurately
segmented and recognized. Second, the identification model allocated
each tooth a unique number; however, one tooth was mistakenly labeled
with two separate numbers. It correctly identified the number and type
of all teeth, including molars, premolars, canines, and incisors, and then
achieved an accuracy of 98.50%. Third, when the conclusions from these
two models were combined, the ensemble model had an accuracy of
98.65%. Finally, after post-processing, the image and using ISO
numbering standards, the collaborative model’s accuracy was 99.12%.

Example 2. Asillustrated in Fig. 7, the segmentation model accurately
identified all 32 permanent teeth, with a 99.20% mAP score. In addition,
the identification model accurately recognized the tooth numbers and
types, including molars, premolars, canines, and incisors; however, a
few teeth were duplicated for the same type. For example, a premolar in
the mandible, also known as the lower jaw, was recognized as a molar
using the Identification model. One of the incisors in the maxilla, also
known as the upper jaw, was likewise misidentified as canine but
retained a 90.7% mAP score. The ensemble model included the results of
the segmentation and identification models, whereas the collaborative
model improved accuracy through a collaborative refining process. As a
result, the combined accuracy of these two models on the ensemble
model was 94.97%. However, after post-processing the ensemble model
findings to compensate for incorrectly identified tooth numbers using
ISO numbering standards, the collaboration model’s accuracy was
97.77%. Fig. 7 illustrates the respective output images, as well as a
summary of the number of teeth and missing teeth.
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Example 3. As illustrated in Fig. 8, we analyzed a panoramic radio-
graphs image with orthodontic braces. Although the braces appear
radiopaque on the panoramic radiograph, the segmentation model with
an mAP score of 98.63% accurately segmented and recognized 32 teeth.
While most teeth were accurately recognized with their given tooth
numbers, a handful was mistakenly identified. The identification model
correctly classified an incisor as both an incisor and a canine. In the
maxilla, a canine was categorized as both a premolar and a canine, and a
premolar as both a premolar and a canine in the mandible, with an
accuracy (mAP) of 88.83%. These two model detection findings were
incorporated into the ensemble model with an accuracy (mAP) of
93.73%, which was then refined further. The accuracy of the collabo-
rative model was increased through a refining process. By comparison,
post-refinement of the ensemble model findings improved the collabo-
rative model’s accuracy (mAP) to 98.83% by appropriately numbering
the incisor, canine in the maxilla, and premolar on the mandible that the
identification model had incorrectly recognized.

Example 4. We examined a panoramic radiological image of a tooth
set with dental implants and multiple missing teeth, as shown in Fig. 9.
The segmentation model correctly recognized the 27 mandible teeth
(mAP 95.20%). Although the identification model correctly identified
all teeth with their associated numbers and types (premolars, canines,
and incisors), dental implants were incorrectly identified as teeth with
an accuracy of 94.33% (mAP). The combined accuracy of these two
models was 94.76% on the ensemble model, but following the post-
refinement of the ensemble model’s findings, the cooperation model’s
accuracy was 99.33%.

Example 5. Asillustrated in Fig. 10, a patient had many missing teeth,
yet all 8 teeth were successfully segmented with an accuracy (mAP) of
85.33%. The identification model accurately recognized all teeth, with
an accuracy (mAP) of 90.88%, except for a few teeth with several tooth
numbers for the same tooth. On the maxilla, the identification model
correctly classified a premolar as a canine, a canine as both a canine and
a premolar, and an incisor as both an incisor and a canine. A premolar is
appropriately identified as a canine on the mandible. The ensemble
model’s accuracy (mAP) was 88.10%. Still, after post-refinement, the
collaboration model’s accuracy (mAP) climbed to 98.74% by numbering
the premolar, canine, and incisor on the maxilla and the premolar on the
mandible.

Table 8 summarizes the testing accuracy for the case studies dis-
cussed. The accuracy of each model was determined by comparing the
observed and predicted results. The ensemble model’s testing accuracy
was calculated by averaging the two individual models. After merging
the outputs, ensemble refinement was done to each to obtain the com-
bined output. Finally, the collaborative approach’s testing accuracy is
calculated as the average of the two refined models.
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Fig. 4. Comparative evaluation for categories 1-5: (a) Input (b) (M;z): YOLO-v5 detection (c) (M;;): Faster R-CNN detection (d) (Ms,): U-net segmentation (e)

(Mg ): Mask R-CNN segmentation (f) (M,): Collaborative learning.
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Fig. 5. Comparative evaluation for categories 6-10: (a) Input (b) (M;z): YOLO-v5 detection (c) (M1 ): Faster R-CNN detection (d) (M,z): U-net segmentation (e)

(M;1): Mask R-CNN segmentation (f) (M.): Collaborative learning.
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Fig. 6. Case 1: Healthy dentition example: This is a set of 32 healthy teeth with no dental treatment that was successfully segmented and identified using both
segmentation and identification models. All 32 teeth were discovered. The ensemble and collaborative models perform the best in terms of tooth detection and
identification, with a mean average precision (mAP) scores of 98.65% and 99.12%, respectively.
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Fig. 7. Case 2: Teeth Not Detected: This example has 31 permanent teeth with 3 treated teeth successfully detected by both segmentation and identification models,
but one tooth of the 31 was not detected. The ensemble and collaborative models detected and identified the teeth with the mean average precision (mAP) of 94.97%

and 97.77%, respectively.
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Fig. 8. Case 3: Active orthodontic treatment example: An active orthodontic case can regularly be seen in panoramic radiographs, since mid-treatment panoramic
radiographs are important in orthodontic care. Both segmentation and identification models correctly detected the 31 permanent teeth and three treated teeth,
however one tooth was not detected. Even with braces, the ensemble and collaborative models had a mean average precision (mAP) of 93.73% and 98.83%,

respectively, in detecting and identifying teeth.
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Fig. 9. Case 4: Natural dentition with dental implants and some missing teeth example: Dental implants are becoming a regular part of dental care. This example
shows a patient with 27 permanent teeth and five missing teeth were effectively detected using both segmentation and identification models, although teeth were not
discovered. Interestingly, the collaborative model enhanced the ensemble model’s mAP score from 94.76% to 99.33%.

Table 6

Cutting edge research: Testing accuracy for tooth segmentation and identification models with dental panoramic radiographs, CBCT datasets (D;: Training, D,:

Validation, D;: Testing).

Deep Learning Modeling for Dental Panoramic Radiographs

Research Dataset Data Split (Images) Accuracy F1-Score mAP
M_: Collaborative (Ours) Panoramic Radiographs: Ds: 150 98.77% 98.83% 97.30%
M;1: Mask R-CNN (Ours) UFBA [37] Dy, Dy, Ds: 193, 83, 1224 96% 98% 95%
Msz: U-Net (Ours) Dy, Dy, Ds: 193, 83, 1224 96.97% 93.63% 92.08%
Zhao et al. [2] Dy, Ds: 1200, 150 96.94% NA NA
Koch et al. [19] Dy, Ds: 80%, 20% 94.76% NA NA
Jader et al. [4] Dy, Ds: 193, 1224 98% 88% NA
Oktay et al. [20] Dy, Ds: 200, 278 98.11% 93% 82%
Pinheiro et al. [21] 6-fold CV: 450 NA NA 77.3%
Lee et al. [22] Panoramic Radiographs Dy, Ds: 40, 10 NA 87.5% NA
Wirtz et al. [23] Panoramic Radiographs Dy, Ds: 10, 14 81.8% 80.3% NA
Silva et al. [5] Jader Dataset [4] D,, Dy, D: 324, 108, 778 96.7% 91.6% NA
Deep Learning Modeling for 3D Dental Images

Research Dataset Data Split (Images) Accuracy F1-Score mAP
Cui et al. [3] CBCT Scans Dy, Ds: 12, 8 Subjects 99.55% NA NA

Cui et al. [24] 3D Dental Models Dy, Dy, Ds: 1500, 100, 400 NA 94.2% NA

Lee et al. [25] CBCT Scans D,, Dy, Ds: 80, 20, 20 NA NA 90.91%
Kakehbaraei et al. [26] CBCT Scans 30 Subjects 99.93% NA NA
Zhang et al. [27] 3D Dental Models D,, Ds: 100, 20 98.87% NA NA

Table 7
Cutting edge research: Testing accuracy for tooth identification for dental panoramic radiographs, CBCT, and oral photographs datasets (D;: Training, D;: Testing, D,:
Validation).
Research Dataset Class# Data Split (Images#) Accuracy  F1 mAP
M_: Collaborative (Ours) Panoramic 32 Ds: 150 98.44% 98.75%  97.78%
M : Faster R-CNN (Ours) UFBA [37] 4 Dy, Dy, Ds: 750, 150, 100 91% 90% 91%
Miz: YOLO-v5 (Ours) Radiographs 4 Dy, Dy, Ds: 750, 150, 100 99.5% 99.85% 99.5%
Lai et al. [44] Panoramic NA Dr, Ds: 22,262, 1168 87.21% NA NA
Radiographs
Sathya et al. [45] Panoramic (s1)2 (s2)4 + 4 (s3)6 + Dy, Ds: (s1)120042, 200 (s2)120042, 800 (s3)191449, Precision: (s1)100% (s2)95.24%
Radiographs 6 1600 (s3)90.5%
Thanathornwong et al. Panoramic 1 Dy, Dy, Ds: 70, 10, 20 subjects NA 81% NA
[46] Radiographs
Chung et al. [48] Panoramic 32 Dy, Dy, Ds: 574, 162, 82 NA 98.43% 91%
Radiographs
Li et al. [49] CBCT Dataset 4 Dy, Ds: 200, 200 87% NA NA
Moriyama et al. [50] Oral Photographs 2,3,15 D,, Ds: 2100, 525 Accuracy: Screening: 76.5%,

Severity: 73.1%, Depth: 47%

6. Discussion

Our contribution is to construct a collaborative model by developing
two distinct task models: tooth recognition and teeth segmentation.
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Collaborative learning provides the following advantages: (1) The tooth
identification task’s performance was increased from 4 to 32 different
types of teeth through collaboration with a tooth segmentation model;
(2) The tooth segmentation model’s performance was improved through
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Fig. 10. Case 5: Patient with implants and multiple missing teeth example: This case is extremely complicated, involving only 8 permanent teeth and twenty-four
missing teeth that were effectively discovered using both segmentation and identification models. Nonetheless, even in this difficult scenario, when compared to the
ensemble model, the collaborative model’s performance in recognizing and labeling teeth improved considerably, with mean average precision (mAP) increasing

from 88.10% to 98.74%.

Table 8
Case study results: Testing accuracy.

Individual Models

Ensemble M, Collaborative M,

Tooth Segmentation Mg

Tooth Identification Mj

Before Refinement After Refinement

Case# Teeth# mAP F-1 mAP F-1 mAP F-1 mAP F-1

Case 1 32 98.75% 98.15% 98.50% 98.93% 98.65% 98.54% 99.12% 99.45%
Case 2 31 99.20% 98.33% 90.75% 89.25% 94.97% 93.79% 97.77% 98.33%
Case 3 31 98.63% 98.20% 88.83% 90.15% 93.73% 94.17% 98.83% 99.11%
Case 4 27 95.20% 97.15% 94.33% 95.88% 94.76% 96.51% 99.33% 99.51%
Case 5 8 85.33% 87.48% 90.88% 93.25% 88.10% 90.365% 98.74% 98.91%

a refinement process for false positive cases to make it more consistent
with the tooth identification output; and (3) The two models were in-
tegrated into a collaborative model using the inferencing ensemble
approach. While the models are not physically connected, their inter-
action provides insight into the outcomes of the inference of these two
models.

First, regarding tooth identification, either YOLO-v5 or Faster
R-CNN model can be employed to identify teeth. Faster R~-CNN and
YOLO-v5 are adequate to achieve a 91% and 99.5% accuracy rate when
detecting four distinct tooth kinds. YOLO-v5 (M)2) outperforms Faster
R-CNN (M) in detecting four unique tooth kinds. However, regardless
of whatever one is picked, there is no discernible change in the overall
performance of the collaborative model. This is because only tooth
numbering is derived from the tooth identification model. Along with
Mask R-CNN [51], Faster R-CNN [47] was constructed utilizing the
Detectron2 framework [55]. Thus, we built the collaborative model with
Mask R-CNN (M) and Faster R—-CNN (M;; ) while achieving an accu-
racy of 98.44% for M,’s tooth segmentation and identification tasks.

Second, we have made significant improvements to two tasks, such
as tooth segmentation M; and tooth identification M;, by upgrading the
models through a thorough training and validation method. Regarding
tooth segmentation, while the Mask R-CNN model (M) excels in
segmenting 32 distinct types of teeth with a 96% accuracy, the U-Net
model (Myy) is limited to semantic segmentation of the single class
“tooth” with a 97.05% accuracy. Mask R-CNN takes Mj; substantially
more processing power than U-Net M, so that it is better appropriate
for our application due to its instance-based segmentation.

Third, collaborative learning is improved for multi-task learning
through the integration of two separate models. In fact, selecting the
appropriate weight for each task is not simple, and the problem becomes
even more complicated when dealing with complex models performing
multiple tasks. Our collaborative modeling methodology is unique in
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compared to prior strategies for aggregate modeling. Rather than
combining multiple models, we combined the inference findings from
these two distinct models. Additionally, because each model is special-
ized for a specific task, post-processing considerably improves the
outcome by fine-tuning the inferencing outputs from several models.
Multitask learning thus outperforms two separate tooth segmentation
and identification models.

The collaboration model improved their tooth identification accu-
racy from 91% (M;;: four types of molar, premolar, canine, incisor) to
98.77% (M,: 32 types of teeth) and the tooth segmentation accuracy
from 96% (My) to 98.44% (M,), respectively. Furthermore, this
technological advancement is made possible by the combination of these
two models, which enables greater adaptability to dental applications of
varied magnitudes.

We conducted a thorough evaluation of the collaborative model’s
effectiveness in enhancing overall performance through collaboration
with cutting-edge works. Our evaluation revealed that our study out-
performs existing studies in the tasks such as tooth segmentation and
identification. We were, however, unable to reproduce and compare
their cutting edge research findings in the same setting. This was due to a
lack of models, source code, and data. As a consequence, we compared
the collaborative model M_ to the underlying deep learning networks by
comparing Mask R-CNN (M) vs. U-Net (M) and Faster R-CNN
(Mi1) vs. YOLO-v5 (Myp). After conducting a thorough evaluation, we
were able to justify our methodology for the collaborative learning M..

Our current study has limitations as well. For example, the proposed
framework may not suit unusual dental conditions, such as those con-
taining maxillary and mandibular advancements and setbacks with oral
surgery appliances, maxillary nance appliances, mandibular lower
lingual holding arches, pathologies, and others. Furthermore, our
models may not be the most robust when dealing with low-quality data,
such as low resolution, partial information, small pixel size images, or
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different formats, such as 3D images. Nevertheless, by addressing these
inadequacies, the proposed models can benefit dentists by allowing
them to evaluate a tooth’s suitability for treatment and identifying many
possible dental restorations. Additionally, this research might be
expanded to include the identification of teeth based on their structure
and a 3D data set and analysis to detect and cure growth irregularities in
children while their teeth are still developing.

7. Conclusion

We have proposed and demonstrated the efficacy of a novel method
for collaborative learning in this study. The proposed collaborative
learning approach combines inference results from two sequentially
created tooth segmentation and identification learning models to
generate a summary of the combined findings from inferencing the in-
dividual models. Significant improvement is achieved through post-
processing and fine-tuning of the two models. Collaborative learning
M. outcomes significantly outperformed those of individual learning, e.
8., 98.77% vs. 96% and 98.44% vs. 91% for tooth segmentation M; and
tooth identification M;, respectively. Additionally, comparable or su-
perior learning outcomes are obtained compared to state-of-the-art ac-
curacy in tooth segmentation and tooth identification. Finally, we
examined five case studies to demonstrate the proposed model’s
robustness: healthy dentition, missing teeth, orthodontic treatment in
progress, natural dentition with dental implants and missing teeth, and
patients with implants and multiple missing teeth.
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