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A B S T R A C T   

Panoramic radiographs are an integral part of effective dental treatment planning, supporting dentists in iden
tifying impacted teeth, infections, malignancies, and other dental issues. However, screening for anomalies solely 
based on a dentist’s assessment may result in diagnostic inconsistency, posing difficulties in developing a suc
cessful treatment plan. Recent advancements in deep learning-based segmentation and object detection algo
rithms have enabled the provision of predictable and practical identification to assist in the evaluation of a 
patient’s mineralized oral health, enabling dentists to construct a more successful treatment plan. However, there 
has been a lack of efforts to develop collaborative models that enhance learning performance by leveraging 
individual models. The article describes a novel technique for enabling collaborative learning by incorporating 
tooth segmentation and identification models created independently from panoramic radiographs. This collab
orative technique permits the aggregation of tooth segmentation and identification to produce enhanced results 
by recognizing and numbering existing teeth (up to 32 teeth). The experimental findings indicate that the 
proposed collaborative model is significantly more effective than individual learning models (e.g., 98.77% vs. 
96% and 98.44% vs.91% for tooth segmentation and recognition, respectively). Additionally, our models 
outperform the state-of-the-art segmentation and identification research. We demonstrated the effectiveness of 
collaborative learning in detecting and segmenting teeth in a variety of complex situations, including healthy 
dentition, missing teeth, orthodontic treatment in progress, and dentition with dental implants.   

1. Introduction 

Recent years have seen significant advancements in deep learning, 
which has heightened its profile in healthcare, notably dentistry. Deep 
learning-based image processing algorithms have made substantial 
progress in healthcare imaging applications such as radiographs, cone- 
beam computed tomography (CBCT), and magnetic resonance imaging 
(MRI). Deep learning-based image processing techniques have the po
tential to aid in accurate diagnosis, allowing dentists to identify 
appropriate dental treatments. For instance, orthodontists could use 
deep learning-based processing techniques to investigate root absorp
tion from panoramic radiographs to inform a patient’s treatment plan 

[1]. Furthermore, precise tooth segmentation techniques would be ad
vantageous for determining dental age, forensic identification, and the 
location of impacted teeth [2]. 

Deep learning enables the identification and classification of features 
from complex and diverse medical images, resulting in a quantifiable 
forecasting model that aids clinicians in developing the most effective 
treatment plans [3]. Panoramic radiographs are used to visualize the 
patient’s mineralized oral health in two dimensions [4]. Thus, a 
comprehensive dental radiograph examination is a critical component of 
the diagnostic technique in daily clinical practice. Tooth segmentation is 
a technique that allows for the separation and isolation of teeth from 
specific areas of the mouth based on their morphologies, numbers, and 
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positions [5,6]. One example of a difficulty encountered when success
fully reading a panoramic radiograph is determining the precise location 
of teeth while monitoring these images. As a result, a comprehensive, 
accurate dental radiograph examination is a critical component of the 
diagnostic technique used in daily clinical practice. Deep learning 
techniques can assist with this by enabling fully automated approaches 
while still allowing for human interpretation. Many dentists work in 
single-practice settings and regularly evaluate radiographs 
independently. 

One analysis of panoramic radiographs by dentists includes tooth 
numbering and detection. Occasionally, these diagnoses are inaccurate, 
impeding the best possible treatment planning approach. Diverse deep 
learning algorithms may be beneficial for resolving issues encountered 
during numbering and detection, such as radiographic artifacts, manual 
labeling, asymmetric development, and anatomical complexity [7]. As 
the value of dental imaging applications has increased, new paradigms 
for deep learning have emerged. For instance, deep learning ensembles 
are a novel collaboration across deep learning models that aims to 
improve overall accuracy by combining the results of individual models 
[8]. Collaboration can take place for a single task or numerous tasks 
among multiple models [9–13], for example, via voting or average 
weight. Moreover, ensemble deep learning approaches have been 
developed to investigate the relationship between group accuracy and 
variation measurement [14]. 

Meta learning is a method that allows for the combination of pre
dictions from multiple independent models. Deep ensembles have 
several advantages, including collective intelligence based on various 
models and inherent scalability [15]. However, determining the optimal 
methods for combining the predictions of multiple models is not 
straightforward. Developing deep ensemble models with distinct ma
chine learning tasks or learning performances, on the other hand, pre
sents significant challenges. It raises the question of whether 
multi-tasking should be incorporated into the learning process or 
should be learned separately [16]. By comparing the performance of 
various models, the Akaike information criterion for differential weights 
was used to identify the collaborative model [17]. Attempts to aggregate 
multiple-objective losses by performing a weighted linear sum of the 
losses for each task typically result in Ref. [18]. 

In this paper, we propose an ensemble model capable of performing 
various tasks using a variety of models and then enhancing overall 
performance through model collaboration. The rationale for and in
novations in the proposed method are as follows: We hypothesized that 
collaborative inference using multiple models would be more effective 
than inference using a single model. This deep ensemble model was 
created for multiple machine learning tasks, including segmentation and 
recognition of teeth in panoramic radiographs. We believe that two 
stages can be beneficial when learning deep ensemble models for 
feasibility and robustness: The first stage of local learning aims to 
construct a model independent of other models by utilizing its data. The 
second stage involves obtaining inference results from the models and 
then collaboratively tuning them, a process known as ensemble 
inferencing. 

The proposed collaborative learning model is a novel approach for 
summarizing and refining the inferencing results of the two models. The 
collaborative model has the following advantages: (i) It reduces reliance 
on individual model building because models are built independently 
using their own data. (ii) Collective inferencing results are summarized 
as outcomes. (iii) Refinement can improve both individual model and 
overall inferencing results. 

This article’s major contribution may be summarized as follows:  

● Two high-performance classifiers (tooth segmentation and tooth 
identification) have been created and optimized using publicly 
available dental panoramic radiograph image datasets (see Fig. 1).  

● We created a collaborative learning model for tooth segmentation 
and identification using these two high-performance classifiers.  

● We have developed a unique strategy for collaborative learning that 
enhances performance by utilizing the learning refinement process.  

● Our newly developed two classifiers and collaborative methods were 
superior to previously reported techniques. 

2. Related work 

This study focuses on dental anatomy recognition by the use of two- 
dimensional (2D) radiographs with distinct color codes and identifying 
each tooth, which aided in tooth detection. We intend to someday assist 
dentists in validating and explaining such interpretations to their pa
tients. We follow the International Standards Organization’s (ISO) norm 
for tooth numbering, which divides the teeth into four quadrants: upper 
right, upper left, bottom right, and lower left. Each quadrant has eight 
teeth, for a total of 32 in the permanent dentition, which can be clas
sified as molar, premolar, canine, or incisor (see Fig. 1(a)). 

The following research study identifies and describes the previously 
most effective deep learning methods for tooth detection and segmen
tation. Recently, clinical image segmentation tasks, such as segmenta
tion of teeth on radiographs, have focused on tackling various 
perplexing issues, such as automated diagnosis and overlapping teeth. 
These strategies can be categorized into two categories: classical tech
niques that rely on prior knowledge and image highlights, and deep 
learning-based solutions that are powered by data. 

2.1. Ensemble and collaborative model 

It is critical to consider how to design ensemble models in order to 
maximize performance by combining multiple models [14]. Sagi et al. 
[13] demonstrated how ensemble models could be used to enhance the 
predictive performance of a single model by training and integrating 
multiple models. Kendall et al. demonstrated that collaborative net
works outperform task-trained networks [28]. 

Suhail et al. [29], using a collaborative model that included the R 
technique for feature analysis, an n-net-based neural network, and 
random forests to classify teeth using decision trees. Clinicians may 
benefit from this system that helps confirm expert findings because it 
will assist the dentist in selecting the best treatment plans, reduce 

Fig. 1. ISO numbering and dental panoramic radiographs with masks and annotations.  
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human error, and improve uniformity. Furthermore, experts verified the 
decision tree’s practicality by cross-validation of the data. 

Hasan et al. [30] proposed using a multi-feature fusion model in 
conjunction with an ensemble classifier to determine the optimal dental 
impression tray from maxillary arch images. In the face of a restricted 
dataset, a unique multi-feature fusion model combined with an 
ensemble classifier would improve image labeling. Finally, the goal was 
to automate the dental process to assist the dentist’s clinical judgment 
and provide a second level of analysis confirmation. 

Lee et al. [31] used a variety of transfer learning approaches in 
conjunction with deep convolutional neural networks (CNNs) to 
monitor osteoporosis in dental panoramic radiographs (DPRs). Several 
transfer learning strategies affect deep CNN models, including the basic 
CNN3 and the Visual Geometry Group 16 (VGG-16). VGG-16 was more 
optimal since transfer learning and fine-tuning improved the overall 
effectiveness of the deep CNN in screening osteoporosis in DPRs. 

Yaduvanshi et al. [32] explored the use of automated segmentation 
techniques, more specifically ensemble-based segmentation methodol
ogies, to diagnose oral cancer in its early stages and thereby boost the 
survival rate via computer-aided diagnosis (CAD). While numerous 
ensemble models for segmentation problems exist, no combination is 
sufficiently dynamic to handle every dataset. For example, the model in 
Ref. [29] is valid only for non-surgical procedures and does not support 
the extraction of unusual features. 

Similarly, the requirement for a larger dataset and the usage of 
EfficientNet-based designs is designed to facilitate future work to 
address the limitations of PaXNet [33]. Additionally, incorrect catego
rization occurs due to the absence of original data, which requires 
additional training images for deep learning algorithms to function 
correctly. Therefore, the importance of having more qualified, labeled, 
and validated datasets, as well as an adequate amount of datasets, to 
achieve outcomes by combining deep learning methodologies has been 
emphasized [31]. 

2.2. Tooth segmentation and identification for panoramic radiographs 

Due to deep learning’s efficacy, numerous tooth segmentation 
techniques have demonstrated promising results. Some of works on 
tooth segmentation or tooth identification tasks are based on U-Net [34]. 
Krois et al. [35] investigated the generalizability of expert systems for 
segmenting and identifying apical lesions on panoramic radiographs. 
The training and testing of U-Net-based CNNs with a root-canal fillings 
dataset reveals that dental practice experience in the training dataset is 
more essential than image features for improved results. Additionally, 
when segmenting panoramic radiographs, the unclear behavior of deep 
learning architectures in terms of generalizability is observed. It is 
critical to evaluate models using neutral datasets to avoid unduly opti
mistic outcomes due to data memory. According to Refs. [23,26], small 
training datasets worsen the model’s impracticality due to lower data 
variances. Their work is based on U-Net, whereas our collaborative 
model is robust enough to use a variety of individual models for tooth 
segmentation and tooth identification. The collaboration may be 
broadened to encompass a range of distinct individual models and 
datasets. 

Mask R–CNN based works [2,4,19–21] are the most pertinent for 
segmenting teeth and accurately identifying and numbering teeth. Zhao 
et al. [2] created a two-staged attention segmentation network (TSAS
Net) to localize and classify teeth in radiographs. The first stage uses the 
attention model to determine the tooth’s approximate location. 
Following that, the precise tooth borders are recognized using a fully 

convolutional network with an accuracy of 96.94%. It demonstrates the 
superiority of the fully convolutional network over previous models. 
Koch et al. [19] proposed an accurate tooth segmentation model for 
panoramic radiographs that combines fully convolutional networks 
(FCNs) [36]. Several strategies, such as network grouping, symmetrical 
data management, test-time extension, and bootstrapping of low-quality 
annotations, were used to improve segmentation performance. Jader 
et al. [4] investigated the use of Mask R–CNN (regional convolutional 
neural network) for segmenting individual teeth in the most difficult 
panoramic radiographs. Oktay et al. [20] proposed concurrently 
detecting, segmenting, and counting teeth in panoramic X-ray images 
employing Mask regions with convolutional neural network features 
(RCNN) and multi-class labeling each tooth type with a unique class 
name. Pinheiro et al. [21] built an end-to-end deep learning architecture 
for deciduous teeth segmentation and numbering using Mask R–CNN 
and PointRend. 

Lee et al. [22] proposed developing a deep learning solution for 
automated teeth segmentation on dental panoramic images using a mask 
R–CNN algorithm with a custom annotated datasets. This approach 
applies to both interpretable diagnostic systems and forensic classifica
tion, which need comparable segmentation tasks. Wirtz et al. [23] 
provided a coupled shaped model for robust and accurate tooth seg
mentation in low-quality panoramic radiographs, so assisting dentists in 
their diagnostic work. The model employs a deep neural network to 
obtain the binary mask of the teeth to statistically identify form and 
space changes and therefore improve segmentation quality. Silva et al. 
[5] tested four neural networks on testing datasets, including Mask 
R–CNN, HTC (hybrid task cascade), PANet (path aggregation network), 
and ResNet (residual neural network), to perform tooth numbering and 
segmentation on difficult dental radiographs. The results indicate that 
while all frameworks are possible in certain situations for estimating the 
size, number, and placement of teeth, the accuracy of the PANet in the 
particular case was superior to that of the other frameworks in the 
competition. Furthermore, the models above performed well when teeth 
were in good condition but failed when teeth were damaged or incor
rectly labeled. 

However, these studies have not explored collaborative models or 
learning via multi-task refinement. Our approach to these problems, on 
the other hand, is fundamentally different, as our work is focused on 
collaborative modeling aided by autonomous models for multi-task 
scenarios. For instance, rather than combining both tasks into a single 
model, we demonstrate the collaboration of two distinct models for 
tooth segmentation and tooth identification. Due to the adaptability of 
the proposed work, other tasks such as recognizing dental restorations or 
clinical situations can easily be added and their outcomes can be sum
marized. We discuss the benefits and shortcomings of these studies in 
Table 1 and explain in Section 5.3 how we surpassed them on both tasks 
using individual and collaborative models trained on the UFBA’s 
panoramic radiography dataset [37]. However, we omitted some of 
recent tooth segmentation works, such as Wu et al. [38], Lian et al. [39], 
Wu et al. [40], Tian et al. [41], Tian et al. [42], from our comparative 
evaluation. This is because their proposed work did not report their 
performance measures such as accuracy, F-1, and mAP. Lei et al. [43] 
was not included since it was proposed for retinal fundus images. 

2.3. Tooth identification 

Lai et al. [44] proposed a Learnable Connected Attention Network to 
accurately match panoramic radiographs, recognizing the practical 
value of human recognition based on tooth identification in forensic 
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odontology. The design collects the interdependent information from 
the coordinating features retrieved from the channel attention module 
and the learnable connected module to forecast the precise results. 
Sathya and Neelaveni [45] recommended a novel three-step transfer 
learning method for automatically detecting human-based features in 
panoramic radiographs. The first stage involves determining the tooth’s 
position and classifying it into one of the four previously outlined cat
egories. Finally, the teeth are compared to the source images to posi
tively identify persons in forensics once they have been allocated 
numbers. The suggested framework beats CNN, D-CNN, Seven-layer 
CNN, and ResNet-50 under the specified circumstances, with a 95% 
accuracy rate. Thanathornwong and Suebnukarn [46] introduced the 
Faster R–CNN model [47] to detect compromised teeth on the pano
ramic radiograph to reduce dentists’ diagnostic work. The Faster R–CNN 
was successfully trained on a minimal amount of labeled imaging data to 
detect unhealthy teeth. 

Chung et al. [48] developed a spatial distance regularization 
loss-based method for teeth localization based on point regression. The 
proposed network recognized each tooth autonomously using center 
point regression for all anatomical teeth (i.e., 32 points in the permanent 
dentition). The L2 regularization loss for Laplacian spatial distances 
improved center point detection accuracy. The final detection was 
accomplished using a multitasking, class-agnostic identification neural 
network with parallel training of center offsets. The proposed approach 
accurately identifies both missing and existing teeth. In terms of re
strictions, the scarcity of training data is the primary problem [49]. 
Moriyama et al. [50] increased accuracy by examining pocket locations 
using radiographs and blood test data in conjunction with concurrent 
training. Sathya et al. [45] examined dataset expansion, the use of 
contemporary CNNs, and advanced augmentation approaches. 

Krois et al. [35] proposed using a seven-layer deep CNN with global 
average and max pooling to categorize teeth into four categories: molar, 
premolar, canine, and incisor. Experiments demonstrated that this 
method outperforms three contemporary teeth classification methods, 
with an average accuracy of 87%. Moriyama et al. [50] developed a 
MapReduce-like approach for estimating the depth of periodontal 
pockets that includes mapping, CNN, and reduced phases. The mapping 
process identifies tooth numbers and photographs of pocket regions. 
CNN estimates pocket depth based on pocket premises, and the lowering 

Table 1 
Cutting Edge Research: Deep Learning based Tooth Segmentation and 
Identification.  

Deep Learning Modeling for Dental Panoramic Radiographs 

Work Approach Objective Limitation 

Our Work Collaborative 
Learning (Mask 
R–CNN and Faster 
R–CNN) 

Autonomous tooth 
segmentation and 
tooth identification 

Incapable of 
correctly 
segmenting 
overlapping teeth 
and dental 
implants. Applied 
only to panoramic 
dental radiographs; 
not fully applicable 
to CBCT images. 

Zhao et al. 
[2] 

Two-staged 
attention 
segmentation 
network (TSASNet) 

Autonomous tooth 
segmentation and 
identification using 
attention network 

Incapable of 
precisely 
segmenting the 
foreground pixels 
into tooth regions. 

Koch et al. 
[19] 

FCN based on U- 
Net with Network 
ensembling, data 
augmentation and 
symmetry 
exploitation 

Bootstrapping of 
low quality 
annotations for 
teeth segmentation 

Deficiency in the 
design and 
evaluation of multi- 
task predictive 
models. 

Jader et al. 
[4] 

Mask R–CNN with 
ResNet-101 

Detection of teeth 
or missing teeth, 
constituent parts, 
and prosthesis 

Lack of capability 
for segmenting 
mouth and teeth 
components, 
detecting missing 
teeth, or generating 
medical reports 

Oktay et al. 
[20] 

Mask regions using 
convolutional 
neural network 
(RCNN) 

Recognition, 
segmentation, and 
numbering of teeth 
in panoramic X-ray 
images 

Inability to 
recognize missing 
and implanted 
teeth; Lack of 
flexibility and 
extensive modeling 
required to manage 
multiple tasks. 

Pinheiro 
et al. [21] 

Mask R–CNN for 
dental panoramic 
X-ray 

Tooth numbering 
and segmentation 

Incapable of 
numbering 
overlapping and 
deciduous teeth or 
ones with implants; 
and absence of 
experts’ evaluation. 

Lee et al. [22] Mask R–CNN for 
dental panoramic 
images 

Automated teeth 
segmentation and 
identification 

severe shortage of 
evaluation for 
abnormal teeth, 
such as missing or 
overlapped teeth, 
and a dearth of 
multi-task network 
modeling. 

Wirtz et al. 
[23] 

Couple Shaped 
Model 

Segmentation and 
labeling of 28 
individual teeth 

Insufficient data, 
particularly for 
third molars, results 
in low segmentation 
accuracy and 
robustness. 

Silva et al. 
[5] 

Analyzed four 
neural networks 
(Mask R–CNN, 
HTC, PANet, and 
ResNeSt) 

Segmentation and 
numbering of the 
tooth on complex 
dental radiographs 

Insufficient data 
sets and model 
support for 
numbering and 
classifying teeth in 
noisy 
environments. 

Deep Learning Modeling for 3D Dental Images 
Cui et al. [3] Two-staged 

network 
architecture 
(ToothNet) 

Autonomous tooth 
segmentation and 
identification 

Less generalizable 
due to the scarcity 
of 3D datasets. 

Cui et al. [24] Learning-based 
segmentation 

Tooth segregation 
and address 
uncertainties 

Limited tooth 
segmentation 
results in inaccurate  

Table 1 (continued ) 

Deep Learning Modeling for Dental Panoramic Radiographs 

Work Approach Objective Limitation 

approach 
(TSegNet) 

generated by 
missing, crowding 
and misaligned 
teeth 

performance, 
particularly for 
third molars and 
primary (baby) 
teeth. 

Lee et al. [25] Point-based tooth 
localization 
network for CBCT 

Effective heatmap 
regression by 
separating 
Gaussian 
distributions from 
the network. 

Absence of 
systematic and 
realistic 
multitasking 
modeling. 

Kakehbaraei 
al [26]. 

Marker-controlled 
watershed (MCW) 
algorithm and local 
threshold 
approaches 

Segmentation of 
tooth, pulp tissue 
and tooth enamel 

Limited training 
data and models for 
enamel and pulp 
segmentation, as 
well as the 
performance delay 
associated with 
segmentation. 

Zhang et al. 
[27] 

Deep learning- 
based tooth 
segmentation 
model in harmonic 
parameter space 

Autonomous and 
accurate 
segmentation. 

The model’s overall 
segmentation 
accuracy was 
compromised due 
to a lack of training 
data and lengthy 
image processing.  
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component totals the projected depths for all identical pockets. Experi
mental results indicate that the suggested approach can detect acute 
periodontal disease autonomously. 

In comparison to some previous research, which identified just four 
unique tooth types (molars, canines, premolars, and incisors), our 

collaborative model enables the accurate recognition and identification 
of 32 individual teeth through model improvement. The tooth identifi
cation models 

have been improved by the aggregation of tooth identification and 
tooth segmentation, followed by the improvement of collaborative 
learning with better accuracy. The qualitative and quantitative 
comparative evaluations for tooth identification have been presented in 
Table 2 and Section 5.3. 

2.4. 3D tooth image segmentation and identification 

Cui et al. [3] introduced a two-staged network architecture, Tooth
Net, in which a supervised deep learning approach is used to capture the 
edge map from CBCT images. After concatenating the learned map 
features, these learned map features are directed to the Region Proposal 
Network (RPN) to achieve autonomous tooth segmentation and identi
fication. Cui et al. [24] proposed the TSegNet approach for proficient 
tooth segregation. They demonstrated incomplete segmentation while 
classifying wisdom teeth. Restricted datasets, manual labeling, insuffi
cient masking, and segmentation dependence on the algorithm utilized 
are only some of the significant shortcomings of 3D segmentation 
models [27]. 

Lee et al. [25] established a framework for individual tooth seg
mentation based on points that do not require additional classification. 
However, despite the enhanced performance of point-based recognition 
networks on dental images, it is challenging to discriminate adjacent 
teeth due to their similar topologies and proximity. Kakehbaraei et al. 
[26] combined a marker-controlled watershed (MCW) algorithm with 
local threshold techniques for segmenting teeth. Primarily, the 
noise-free image is preprocessed by filling holes, maintaining intensity. 
Then the MCW algorithm is performed on the gradient image updated 
with markers to complete the segmentation process. 

Zhang et al. [27] proposed a model that isomorphically transfers the 
3D tooth prototype into a 2D harmonic parameter space to produce the 
image. The image is passed to a deep (CNN) for accurate and autono
mous segmentation, and the resulting boundary mask is projected back 
to 3D models. The fuzzy clustering and cuts algorithm is then used to 
refine the results further. Wu et al. [38] created an innovative method 
for automatically dividing tooth forms to preserve energy and analyze 
orthodontic qualities. Similarly, MeshSegNet [39] was proposed for an 
end-to-end deep learning approach for automatic tooth identification 
that takes a range of raw surface features as inputs and extracts 
multi-scale local contextual data. Wu et al. [40] extended MeshSegNet 
techniques for classifying teeth and identifying landmarks in raw 
intraoral images and selecting a ROI on the original mesh to build a 
lightweight PointNet variant for regressing the corresponding landmark 
heatmaps. 

For large numbers of missing teeth in a random arrangement, deep 
adversarial-driven dental inlay restoration (DAIS) may provide efficient 
occlusal surface ends [41]. The technique of generative adversarial 
network (GAN) centered image synthesis (IS) was proposed for the 
objective of creating images of the latent transitional space between the 
source and target domains [42,43]. Tian et al. [42] showed a novel 
two-stage conditional GAN for replicating the surface of a dental crown. 

Deep learning approaches for 3D CBCT data are attracting increasing 
interest. Some are based on deep learning modeling in two dimensions, 
while others are based on three-dimensional modeling. Due to the 
computational requirements of 3D modeling, it would be more practical 
and efficient to use 2D modeling for CBCT. We did not discuss our 
collaborative models for CBCT in this paper. However, because of the 
flexibility of adding additional models, distinct views or structures can 
be developed independently and dynamically integrated into ensemble 
inferencing and summarization via collaborative learning. This is the 
direction in which our future work will take. 

Table 2 
Deep learning-based tooth identification cutting edge research.  

Work Approach Objective Limitation 

Our Work Collaborative 
Learning using 
Faster R–CNN 
model [47] and 
Mask R–CNN 
model [51] 

To obtain 
identification of 
32 distinct teeth 
on 2D panoramic 
radiographs 

Required to 
evaluate the 
effectiveness of 32 
individual tooth 
detection model, 
particularly for 
aberrant detection, 
and increased 
performance 
through 
collaborative 
learning. 

Lai et al. [44] Channel attention 
mechanism and 
cosine loss 

Classification 
with 2D 
panoramic 
radiographs 

Restricted owing 
to the extra data 
from varied angles 
and the 
comprehensive 
model 
development for 
accurate detection. 

Sathya et al. [45] Three-step 
transfer learning 
method using 
AlexNet 

Automatic 
feature 
extraction, tooth 
classification and 
numbering in 
panoramic 
radiographs 

Due to the domain- 
specific approach 
and metrics based 
on four classes 
(Molar, Premolar, 
Canine, or Incisor), 
it is limited in its 
ability to number 
teeth in cases of 
overlapped or 
missing teeth. 

Thanathornwong 
et al. [46] 

Faster R–CNN 
model [47] 

Panoramic 
radiography for 
the detection of 
compromised 
teeth 

Lack of experts’ 
evaluation in 
diagnosing teeth; 
Unable to utilize 
new augmentation 
approaches for 
improving dataset 
and more recent 
CNN architectures. 

Chung et al. [48] Point regression 
for spatial 
distance 
regularization 
loss 

Promising high 
performance in 
identification 

Advanced data 
augmentation 
techniques are 
required to 
increase the 
variety of tooth 
forms used to 
validate the 
model. 

Li et al. [49] Seven-layer deep 
CNN with global 
average and 
maximum 
pooling 

CBCT Image 
Teeth 
categorization for 
molar, canine, 
premolar, and 
incisor 

Limited 
classification for 
four teeth types 
and low 
performance 
owing to the use of 
only a few images 
from the original 
source. 

Moriyama et al. 
[50] 

MapReduce- 
inspired model 
for estimating the 
periodontal 
pocket depth 

Estimation of 
pocket depth and 
aggregation of 
the pocket depth 

Low performance 
due to two 
unrelated models 
for tooth 
recognition and 
depth estimation; 
Inability to 
compose the 
models end-to-end  
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3. Background and motivation 

We now discuss the fundamental methods that support the collabo
rative paradigm in consideration. We considered the underlying estab
lished framework (ℳc) when developing a collaborative model. First, 
we used the Non-Max Suppression (NMS) technique in the refinement 
process of the collaborative model. Second, for object detection, our 
teeth identification model (ℳi) was created using the Region Proposal 
Network from Faster R–CNN [47], and YOLO-v5 (You Only Look Once 
version 5) [52]. Third, we constructed a model for teeth segmentation 
(ℳs) by combining the instance segmentation approach Mask R–CNN 
[51] with the semantic segmentation technique U-Net [34]. 

3.1. Bounding box regression 

The bounding box regression [53] was performed using four co
ordinates: x, y, w, and h, which identify the box’s center coordinates, as 
well as its width and height. Scale-invariant transformations between 
two centers and log-scale transformations between widths and heights 
were computed using Eq. (1) given a predicted bounding box coordinate 
p = (tx, ty, tw, th) (center coordinate, width, height) and its corresponding 
ground truth box coordinates g = (t∗

x, t∗
y , t∗

w, t∗
h). 

tx =
x − xa

wa
, ty =

y − ya

ha

tw = log
(

w
wa

)

, th = log
(

h
ha

)

t∗
x =

x∗ − xa

wa
, t∗

y =
y∗ − ya

ha

t∗
w = log

(
w∗

wa

)

, t∗
h = log

(
h∗

ha

)

(1) 

All the bounding box correction functions are di(p) where i ∈ {x, y, w, 
h}. The bounding box regression can be expressed as a function of an 
anchor box and a nearby ground-truth box by minimizing the SSE loss 
using Eq. (2). 

ℒr =
∑

i∈{x,y,w,h}

(ti¬di(p))
2

+ λ ‖ w‖2 (2) 

The regularization term is essential in this case, and the cross- 
validation is to choose the optimal λ. Additionally, not all anticipated 
bounding boxes match to corresponding ground truth boxes. Box 
regression is irrelevant when there is no overlap. Thus, while training 
the box regression model, only predicted boxes that are within the IoU 
threshold (δ) of a neighboring ground truth box are preserved using Eq. 
(3). 

IoU =
xa ∩ x∗

xa ∪ x∗
(3) 

When the precision is δ = 0.7, the overlapping is solved using an 
optimal non-maximum suppression (Algorithm 1), in which any 
bounding boxes with a value less than δ are eliminated. The algorithm 
illustrates the usage of non-maximum suppression in our suggested 
model: First, select the box with the highest score as the first step. Then, 
calculate its overlap with all other boxes and delete any that exceed the 
IoU threshold (δ = 0.7). Finally, repeat step 1 until no more boxes have a 
lower score than the currently selected box. The remainder is main
tained and utilized to generate the final forecasts.  

3.2. Object detection modeling 

We carried out object identification modeling with YOLO-v5 [52], 
and Faster R–CNN [54], which are composed of convolutional layers for 
training the extract filters and classification layers for predicting classes 
and bounding boxes. YOLO-v5 predicts the relative offset of the pre
dicted bounding box’s center point from the linked cell’s top left corner, 
whereas Faster R–CNN is based on RPN indicating the offset of the 
prediction box and anchor. The following sections detail the steps 
involved in detecting objects using YOLO-v5. It will begin by taking an 
image as input, reshaping it, and then extracting its features via a CNN 
architecture. The data is then transferred to two entirely connected 
layers that reshape and transform it into a predetermined grid. Once the 
entire image has been transformed into a grid, the data for object 
detection is provided. Next, it will attempt to determine whether an 
object is present or not in each grid. After establishing these values, the 
bounding box is determined using NMS (non-maximal separation) (Al
gorithm 1). 

RPN is a fully convolutional network that anticipates object borders 
using object scores at each detection. Based on the RPN model based on 
non-maximum suppression (Algorithm 1) was designed. The positive 
label will be assigned to one of two types of anchors (Eq. (3)): (i) the 
anchor/anchors with the greatest Intersection-over-Union (IoU) overlap 
with a ground-truth box, or (ii) any anchor with an IoU overlap more 
significant than δ = 0.7 with any ground-truth box. 

The object detection loss is calculated as the product of the log and 
bounding-box losses. The projected probability pi corresponds to an 
anchor (an object’s index i) in a nxn mini-batch. p∗

i = \{1,0\} indicates 
whether the anchor is positive or negative. The vector representing the 
anticipated bounding box ti is compared to the related ground-truth box 
to establish whether the anchor is positive. The word pi ∗ ℒb indicates 
that the regression loss is active only when the anchors are positive 
(p∗

i = 1) and is deactivated otherwise (p∗
i = 0). 

G. Chandrashekar et al.                                                                                                                                                                                                                       



Computers in Biology and Medicine 148 (2022) 105829

7

ℒo = ℒ({pi}{ti})

=
1

Nc

∑
ℒc(pi, p∗

i ) + λ
1

Nb

∑
p∗
i

ℒb(ti, t∗
i )

(4) 

For the regression loss, the loss function Sℒ1 defined in Ref. [54] is 
used, i.e., ℒb(ti, t∗

i ) = Sℒ1 (ti −t∗
i ) as defined in Eq. (5). 

Sℒ1 (x) =

{
0.5x2, ​ if ​ |x| < 1,

|x| − 0.5, otherwise (5) 

Thus, the object detection model {pi} and {ti} make predictions based 
on the classification c and region detection b layers’ compositions, 
respectively. 

3.3. Image segmentation modeling 

We employed image semantic segmentation and instance segmen
tation approaches to segment teeth. U-Net [34] is a well-known model 
for segmenting biological images semantically. It has shown exceptional 
performance on several natural and medical image segmentation tasks. 
The U-Net generates a lower-dimensional representation of the images 
using a CNN network, which is then upsampled to create the final seg
mentation map. The weight map is a segmentation of the ground truth 
that has been predefined. The ground truth segmentation is subjected to 
morphological image processing to establish the fine borders that 
separate cells. A weight map is generated, with a significant weight 
assigned to these brief cell division borders. By incorporating this weight 
map into the calculation of cross-entropy loss, the U-Net is severely 
penalized for failing to establish these specific cell borders or for doing 
so in an inefficient manner. The loss function of the U-Net is defined to 
compare the predicted mask to the ground truth mask, hence optimizing 
the model’s parameters for the upcoming training sample. 

For the instance segmentation, Mask R–CNN [51] was created to 
forecast the class label used to pick the output mask. For each RoI, the 
mask branch produces a Km2-dimensional output encoding K binary 
masks of resolution m*m, one for each of the K classes. Assume that ℒc is 
the classification loss, ℒb is the bounding-box loss, and Lm is the RoI 
associated with the kth mask’s ground-truth class. On each sampled RoI, 
the multi-task loss was estimated as defined in Eq. (6). 

ℒi = ℒc(p, u) + ℒb(tu, v) + ℒm

= −logpu +
∑

i∈(x,y,w,h)

smoothi(tu
i − vi)

−
1

m2

∑

1≤i,j≤m
[yijlogŷk

ij +
(

1 − yijlog(1 − ŷk
ij)

]

(6) 

ℒc is a multinomial cross-entropy loss that can be calculated using 

softmax on a per-pixel basis. ℒb is calculated using IoU (Eq. (3)), whereas 
smoothℒ1 is the smooth ℒ1 loss (Eq. (5)). ℒm is defined as the average 
binary cross-entropy loss calculated using a sigmoid on a per-pixel basis. 
Thus, the network can construct masks for each class without regard for 
a class competition. 

4. Design of collaborative learning model 

We proposed a collaborative learning approach to supplement 
existing object recognition and instance segmentation algorithms (see 
Fig. 2). Collaborative learning can be defined as integrating two deep 
learning models to obtain better results. First, the segmentation and 
identification models are trained and developed individually. The 
optimizer is Stochastic Gradient Descent (SGD) with momentum that 
attempts to accelerate gradient vectors in the right direction, resulting in 
a more rapid convergence. The configuration of the deep neural network 
models used for tooth segmentation and identification training is shown 
in Table 3. Then, the outputs of the two models are combined to create a 
panoramic radiograph image that incorporates detection from both 
models. When findings are related, refinement is utilized to further 
refine them. 

4.1. Step 1. modeling and inferencing 

We developed two distinct models for tooth segmentation and tooth 
identification. Also, we performed inference utilizing these models, 
which are forwarded to the consequence phase for aggregation of the 
inferencing results. 

Model 1: Tooth Segmentation Modeling. To segment teeth, we 
used two segmentation models, ℳs1: Mask R–CNN [51] and ℳs2: U-Net 
[34] with the panoramic radiograph dataset. While both ℳs1 and ℳs1 

Fig. 2. Collaborative deep learning architecture.  

Table 3 
Configuration for individual models.   

Segmentation Identification 

Parameter/Task ℳs1 ℳi1 

Network Mask R–CNN Faster R–CNN 
Pretrained Model ResNet-101 
Stepsize 50000 
Learning Rate 0.001 
Batch Size 2 
Max Iterations 300 
Threshold IoU 0.7 
ROI Heads/image 64 
Optimizer SGD with Momentum  
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are CNN-based techniques for recognizing and segmenting teeth, Mask 
R–CNN (ℳs1) is instance segmentation that recognizes 32 individual 
teeth using dental masks, and U-Net (ℳs2) is semantic segmentation 
that does not distinguish between distinct individual teeth. As demon
strated in a panoramic radiograph in Fig. 1(b), the normal number of 
teeth is 32 in the permanent dentition, and the teeth mask displayed in 
Fig. 1(c) is annotated for the 32 teeth segmentation. Mask R–CNN uses 
ResNet-101 as the backbone for feature extraction. After extracting 
features using ResNet-101, FPN (Feature pyramid Network) with an
chors are created with identified ROIs (Region of interests). After the 
ROIs are aligned, classification and localization are applied by regress
ing the bounding boxes. Finally, each object is detected and segmented 
by the complete convolution network indicated using bounding boxes. 
The U-Net model creates a binary mask comprised of 1s and 0s from an 
input image, a grayscale radiographic image of teeth (including borders 
between teeth). Until the instance segmentation (Mask R–CNN), all teeth 
are labeled as “tooth” without distinction of individual teeth. The tooth 
segmentation model was created using the panoramic radiograph 
dataset [49] and Facebook Research’s Detectron2 Library [55] for py
thon 3.7. 

Model 2: Tooth Identification Modeling. Our modeling of tooth 
identification is based on two models, ℳi1 and ℳi2 using the most 
recent object detection algorithms, the Faster R–CNN framework [47] 
and YOLO-v5 [52]. These models aim to construct a tooth identification 
model capable of sorting teeth into four categories (molar, premolar, 
canine, incisor). The ℳi1 model based on the Faster R–CNN framework 
[47] is also one of the most acceptable frameworks for object detection 
due to its region classification and RPN architecture based on anchor 
boxes and non-maximum suppression (Algorithm 1). The ℳi2 model 
based on YOLO-v5 [52] recognizes objects in real-time with high pre
cision by incorporating anchors into the detection process and 
employing a pre-trained version generated from the COCO dataset. First, 
the image is divided into cell boxes since Anchor boxes are essential for a 
high detection rate. Second, if the bounding box’s center is in a cell, the 
bounding box is predicted by each cell box. 

For the ℳi1 modeling, the bulk of human tooth structures resemble 
one another; the model detected multiple overlapping bounding boxes 
for each object during initialization. When the precision is 0.7, an 
optimal non-maximum suppression algorithm is used to resolve the 
overlapping, eliminating any bounding boxes with a value less than 0.7. 
The balance of the data is retained and used to make final forecasts. The 
technique for achieving optimal non-maximum suppression in the ℳi1 
model is illustrated in Algorithm 1. The ℳi2 model (YOLO-v5 network 
[52]) is composed of a single-stage, whereas the ℳi1 model (Faster 
R–CNN network) is composed of two stages. ℳi1 is an FPN-based 
network, whereas ℳi2 is based on SPP (Spatial pyramid pooling) and 
PANet for multi-channel feature fusion with mosaic training and self 
adversary training. 

Due to a scarcity of available radiographs for training, the architec
ture is utilized to practice multi-class detection (molar, premolar, 
canine, incisor). First, 100 radiographs were annotated, and the 
augmentation technique was used to produce additional images during 
the pre-processing portion of the identification model. Next, the tooth 
identification model was used in conjunction with the collaborative 
approach is depicted in Fig. 2. When compared to the ℳi1 (Faster 
R–CNN) model, the ℳi2 (YOLO-v5) model performed well for the four 
different tooth kinds (molar, premolar, canine, incisor). The detailed 
results are reported in Section 5.3. 

4.2. Step 2: inferencing aggregation 

The collaborative model’s second phase involves aggregating the 
predictions of various models to summarize the detection results (see 
Fig. 2). This stage of the collaborative model is referred to as the 
ensemble model since it does not require any refinement and is solely 
focused on synthesizing observations from two independent models: 
tooth segmentation and tooth identification. At this stage, the accuracy 
is calculated as the weighted average of the accuracy of two distinct 
models. The initial weights are equal, and the final weights can be 
calculated by evaluating the contributions of each model after the 
refinement. The summary of integrated inferences will be saved in a 
standard format (MS coco) for usage in the collaborative inference 
process. 

4.3. Step 3: inferencing refinement 

Collaborative Inference (CI) is the final stage of the collaborative 
learning model; it utilizes an ensemble of teeth segmentation and 
identification algorithms to refine the integrated inference from the 
previous phase. CI is a highly effective method for creating collaboration 
between two classifiers since it enables the refinement of independent 
models produced using a mapping schema. 

Two separate classifiers, tooth segmentation and tooth identification 
are refined in conjunction via mapping. The mapping strategy for the CI 
is designed to boost detection during inference by employing the com
bined inferencing summary created by these two models. For instance, 
the identification technique is inefficient when teeth are missing or 
overlapping. The feedback from the tooth segmentation model improves 
the accuracy of teeth identification due to the model’s refinement. 
Similarly, collaboration with the identification model boosted the seg
mentation outcomes. For example, because the identification model can 
determine the center of each tooth, any false positives that extend 
beyond the confines of the tooth segmentation model are easily repaired. 
This process may occur continuously or sequentially, depending on the 
inference platform’s design. 

4.4. Collaborative learning algorithm 

The collaborative learning model that is necessary for the end-to-end 
process is described in the following steps by Algorithm 2. First, before 
developing individual classifiers, we perform the preprocessing. Second, 
we independently train the tooth segmentation model (ℳs) and the 
tooth identification model (ℳi) using Mask R–CNN and Faster R–CNN, 
respectively. Third, we perform inference to determine the segmentation 
of 32 classes using the segmentation model (ℳs). Fourth, we determine 
the four tooth types with the testing data (𝒟s) using the identification 
model (ℳi). Fifth, we obtain the ensemble model output (ℴe) by 
combining these two outputs. Sixth, we fine-tune the collaborative 
model’s composite output (ℴc) through the refinement operation ℛ(ℴe) 
(Algorithm 3): (i) Filter overlapping boxes by applying non-maximum 
suppression to the identifying bounding boxes. (ii) Converge and map 
the segmentation and identification outputs to detect bounding boxes 
that do not contain a target object. (iii) Identifying 32 distinct individual 
teeth by locating the midpoint of each enclosing box and applying the 
ISO standard for tooth numbering. (iv) Eliminate segmentation findings 
that are beyond boundaries. Finally, produce a summary of the refining 
results, including the collaborative model output and an accuracy 
report.  
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The loss function for the collaborative learning model ℒc was 
computed using Eq. (7) to reduce model selection bias and uncertainty 
by refining integrated predictions. First, ℒe was calculated using Eq. (7) 
by combining the loss functions of the two models, such as segmentation 
loss ℒs for tooth segmentation model ℳs and identification loss ℒi for 
tooth identification model ℳi. 

Second, following the computation of ℒe, the collaborative learning 
model’s loss function ℒc is computed to obtain the average prediction by 
combining ℒe and the refinement function ℛ across the two models, 
resulting in an increase in predicted accuracy. 

ℒe = ℒs(ℳs) + ℒi(ℳi)

ℒr = ℛ(ℳs, ℳi)

ℒc = ℒe + ℒr

(7)  

5. Experimental results 

5.1. Dataset and evaluation measures 

Our key dataset for tooth segmentation and tooth identification is the 
UFBA-UESC dental dataset [37], 1500 panoramic radiographs were used 
to train the tooth segmentation model, which was then extended for 
identification and labeling. The dataset is described in detail in Table 4. 
The technique of deep neural network training is characterized as 
achieving the convergence criterion and continuing until the optimal 
learning results are obtained. The criterion for model selection is based 
on a loss function that minimizes the error associated with preset labels 
as determined by empirical and cross-validated residual sums of squares. 

Individual models (tooth segmentation and tooth identification) as 
well as collaborative models are evaluated. We employed a variety of 
metrics in this review, including accuracy, precision, recall, F1 score, 
and mAP (mean average precision). TP denotes the true position, TN 
denotes the true negative, FP denotes the false positive, and FN denotes 
the false negative. Precision assesses the proportion of positive class 
predictions (TP + FP) that are genuinely positive class predictions (TP). 
Recall quantifies the number of positive class predictions (TP) made 
from the dataset’s positive examples (TP + FN). F-Measure generates a 
single score that accounts for both precision and recall concerns in a 
single number. The mean average precision (mAP) is calculated as the 
average of the precision score for each query, where Q is the total 
number of inquiries. 

Precision =
TP

TP + FP
(8)  

Recall =
TP

TP + FN
(9)  

F1 =
2 × Recall × Precision

Recall + Precision
(10)  

Accuracy =
TP + TN

TP + FN + FP + TN
(11)  

AveP =

∑n

k=1
P(k) × rel(k)

D

mAP =

∑Q

q=1
AveP(q)

Q

(12)  

where D denotes the total number of relevant dental images and rel(k) 
denotes an indicator function equal to one if the item at rank k is a 
relevant dental image and zero otherwise. 

5.2. Results 

Individual models for tooth segmentation models (ℳs1 and ℳs2) and 
tooth identification models (ℳi1 and ℳi2) were developed separately. 
The dataset and performance for tooth segmentation, tooth identifica
tion, and collaborative model construction using panoramic radiographs 
are shown in Table 4. First, the two tooth segmentation models (ℳs1 and 
ℳs2) were constructed using about 193 annotated training images, 83 
validation images with approximately 300 epochs, and were evaluated 
using approximately 1224 testing images. Second, the tooth identifica
tion models (ℳi1 and ℳi2) were developed using 750 training images, 
150 validation images, and 100 testing images. The identification 
models were trained on 100 annotated panoramic radiographs from the 
UFBA and 650 images created with data augmentation techniques (flip, 
saturation, and contrast) of Detectron2 [55]. Roboflow [56] was utilized 
to generate the annotated images. Multiple images were generated for 
training, validation, and testing utilizing augmentation. 

The learning and loss curves for four independently trained models 
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are shown in Fig. 3 (Faster R–CNN and YOLO-v5 for tooth identification; 
Mask R–CNN and U-Net for tooth segmentation). Examining models’ 
learning and loss curves during training enables us to demonstrate our 
work’s convergence criterion and optimization strategy, which are 
based on a loss function that minimizes the error associated with pre
defined labels. 

Third, the collaborative model was inferred by merging the outputs 
of two of the best individual models: tooth segmentation ℳs1 and tooth 
identification ℳi1. Through collaborative learning, multiple bounding 
boxes were recognized around the final detected images as part of the 
identification model. The bounding boxes with poor accuracy were 
removed using non-maximum suppression. We create an ensemble 
model to segment, recognize, and number 32 individual teeth using 
those two models ℳs1 and ℳi1. 150 images were utilized to evaluate the 
collaborative model from the UFBA [37] dataset by combining the 
output from two distinct models and performing refining on the 
outcome. 

Table 5 shows the testing datasets that were used for evaluation of 
segmentation, identification, collaborative models. This table presents 
the UFBA’s ten detailed categories of the dataset based on the number of 
images used to test teeth segmentation, tooth identification, and 
collaborative models. It is worth noting that the testing images used to 
evaluate three distinct models can overlap. Fig. 4 and Fig. 5 illustrate an 
example of the testing results for the tooth identification models (ℳi1 
and ℳi2), the tooth segmentation models (ℳs1 and ℳs1), and collab
orative model ℳc for each of the ten distinct categories of UFBA 
panoramic radiographs [37]. 

We validated our findings using images that were not included in our 
collection. As illustrated in Figs. 6–9, we obtained the findings from the 
two models. After applying U-Net to the training data, we obtain a 90% 
accuracy on the testing data. We also tested the model on actual images, 
and it performed admirably. After detecting and labeling teeth, an ac
curacy of approximately 98% was obtained. The accuracy of the multi- 
class label detection using Detectron2 [55] was approximately 85%. 

5.3. Comparison with state-of-the art research 

In Table 6 and 7, we compared the accuracy of teeth segmentation, 
recognition, and collaborative learning models to the state-of-the-art 
research in terms of accuracy, F-Score, and mean average precision 
(mAP). These results demonstrated the enhancement of our proposed 
works compared to existing works via a comparative evaluation. 
Because most state-of-the-art studies in tooth segmentation and identi
fication do not provide their model, source code, or data, we were un
able to replicate their results and compare them to our own in the same 
context. Additionally, as previously stated, our work is not directly 
comparable to several prior studies on tooth segmentation and identi
fication [3,24,26,27]. This is because they concentrated their efforts on 
deep learning on CBCT or 3D dental images. 

Specifically, Table 6 compares our approach to the cutting edge 
research in deep learning-based tooth segmentation. For the tooth seg
mentation task, we selected ℳs1: Mask R–CNN over ℳs2: U-Net because 
to its superior instance segmentation (32 distinct classes) compared to 
U-Net’s semantic segmentation (a single class). Through collaborative 
learning with the tooth segmentation and tooth identification models, 
the performance (accuracy, F-1, and mAP) was improved from 96%, 
98%, 95% (ℳs1) to 98.77%, 98.83%, 97.30% (ℳc). As previously 
stated, we excluded several recent teeth segmentation studies [38–42] 
from our comparative evaluation in Table 6, due to their absence of 
performance metrics such as accuracy, F-1, and mAP. Additionally, we 
omitted Lei et al. [43] since their study was presented for retinal fundus 
images. 

The comparative evaluation with the state-of-the-art research in 
deep learning-based tooth identification is shown in Table 7. Collabo
rative learning improves teeth identification models by expanding the 
task: Individual models (ℳi1 and ℳi2) classify teeth into four unique 
categories (molar, canine, premolar, and incisor), whereas the collabo
rative model classifies teeth into 32 distinct categories. ℳi2 is a more 
precise model than ℳi1 in terms of accuracy, F-1, and mAP (99.5%, 
99.85%, 99.5% vs. 91%, 90%, 91%). The collaborative model ℳc 

Table 4 
Dataset and Performance for Model Building with Panoramic Radiographs 𝒟r : Training Data, 𝒟a: Augmented Data, 𝒟v: Validation Data, 𝒟s: Testing Data (Collaborative 
Learning’s testing data are randomly selected from the Tooth Segmentation’s testing data. For the identification model, augmented data (𝒟a) generated by Detectron2 
[55] were used.).  

Model Dataset 𝒟r (𝒟a) 𝒟v (𝒟a) 𝒟s Epoch# Training Time Testing Time 

Tooth Segmentation (ℳs) 193 83 1224 300 30 min 120 min 
Tooth Identification (ℳi) UFBA [37] 100 (650) 45 (105) 100 300 30 min 10 min 
Collaborative Learning (ℳc) – – 150 – – 30 min  

Fig. 3. Training performance for tooth identification models (faster R–CNN and YOLO-v5) and tooth segmentation models (mask R–CNN and U-net) (top Row: 
Learning curve and bottom Row: Loss curve). 
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attained an accuracy of 98.44%, 98.75% for F-1, and 97.78% for mAP, 
all of which are comparable to state-of-the-art accuracy. Additionally, 
because to the expanded task (32 classes vs. 4 classes), the collaborative 
model ℳc outperforms ℳs1. In general, the proposed model, collabo
ration model ℳc, outperforms existing deep learning models for a va
riety of dental tasks, including tooth segmentation ℳs1 and tooth 
recognition ℳi1. 

5.4. Case study 

Five case examples are presented to illustrate the performance of the 
tooth segmentation model (ℳs1) and the tooth identification model 
(ℳi1) and collaborative model (ℳc). These five cases include those 
involving restored teeth, missing teeth, and dental implants. 

Example 1. As illustrated in Fig. 6, each of the two individual models, 
as well as the ensemble (pre-refinement) and collaborative (post- 
refinement) model, were effectively implemented. The output of the 
segmentation and identification models is integrated, and the ensemble 
model and summary of the results are displayed. In addition, individual 
model detection findings were incorporated into the ensemble model. 
The ensemble model was subjected to a post-refinement process to 
improve the accuracy of the collaboration model. First, segmentation 
accuracy was 98.75%, as all 32 permanent teeth were accurately 
segmented and recognized. Second, the identification model allocated 
each tooth a unique number; however, one tooth was mistakenly labeled 
with two separate numbers. It correctly identified the number and type 
of all teeth, including molars, premolars, canines, and incisors, and then 
achieved an accuracy of 98.50%. Third, when the conclusions from these 
two models were combined, the ensemble model had an accuracy of 
98.65%. Finally, after post-processing, the image and using ISO 
numbering standards, the collaborative model’s accuracy was 99.12%. 

Example 2. As illustrated in Fig. 7, the segmentation model accurately 
identified all 32 permanent teeth, with a 99.20% mAP score. In addition, 
the identification model accurately recognized the tooth numbers and 
types, including molars, premolars, canines, and incisors; however, a 
few teeth were duplicated for the same type. For example, a premolar in 
the mandible, also known as the lower jaw, was recognized as a molar 
using the Identification model. One of the incisors in the maxilla, also 
known as the upper jaw, was likewise misidentified as canine but 
retained a 90.7% mAP score. The ensemble model included the results of 
the segmentation and identification models, whereas the collaborative 
model improved accuracy through a collaborative refining process. As a 
result, the combined accuracy of these two models on the ensemble 
model was 94.97%. However, after post-processing the ensemble model 
findings to compensate for incorrectly identified tooth numbers using 
ISO numbering standards, the collaboration model’s accuracy was 
97.77%. Fig. 7 illustrates the respective output images, as well as a 
summary of the number of teeth and missing teeth. 

Example 3. As illustrated in Fig. 8, we analyzed a panoramic radio
graphs image with orthodontic braces. Although the braces appear 
radiopaque on the panoramic radiograph, the segmentation model with 
an mAP score of 98.63% accurately segmented and recognized 32 teeth. 
While most teeth were accurately recognized with their given tooth 
numbers, a handful was mistakenly identified. The identification model 
correctly classified an incisor as both an incisor and a canine. In the 
maxilla, a canine was categorized as both a premolar and a canine, and a 
premolar as both a premolar and a canine in the mandible, with an 
accuracy (mAP) of 88.83%. These two model detection findings were 
incorporated into the ensemble model with an accuracy (mAP) of 
93.73%, which was then refined further. The accuracy of the collabo
rative model was increased through a refining process. By comparison, 
post-refinement of the ensemble model findings improved the collabo
rative model’s accuracy (mAP) to 98.83% by appropriately numbering 
the incisor, canine in the maxilla, and premolar on the mandible that the 
identification model had incorrectly recognized. 

Example 4. We examined a panoramic radiological image of a tooth 
set with dental implants and multiple missing teeth, as shown in Fig. 9. 
The segmentation model correctly recognized the 27 mandible teeth 
(mAP 95.20%). Although the identification model correctly identified 
all teeth with their associated numbers and types (premolars, canines, 
and incisors), dental implants were incorrectly identified as teeth with 
an accuracy of 94.33% (mAP). The combined accuracy of these two 
models was 94.76% on the ensemble model, but following the post- 
refinement of the ensemble model’s findings, the cooperation model’s 
accuracy was 99.33%. 

Example 5. As illustrated in Fig. 10, a patient had many missing teeth, 
yet all 8 teeth were successfully segmented with an accuracy (mAP) of 
85.33%. The identification model accurately recognized all teeth, with 
an accuracy (mAP) of 90.88%, except for a few teeth with several tooth 
numbers for the same tooth. On the maxilla, the identification model 
correctly classified a premolar as a canine, a canine as both a canine and 
a premolar, and an incisor as both an incisor and a canine. A premolar is 
appropriately identified as a canine on the mandible. The ensemble 
model’s accuracy (mAP) was 88.10%. Still, after post-refinement, the 
collaboration model’s accuracy (mAP) climbed to 98.74% by numbering 
the premolar, canine, and incisor on the maxilla and the premolar on the 
mandible. 

Table 8 summarizes the testing accuracy for the case studies dis
cussed. The accuracy of each model was determined by comparing the 
observed and predicted results. The ensemble model’s testing accuracy 
was calculated by averaging the two individual models. After merging 
the outputs, ensemble refinement was done to each to obtain the com
bined output. Finally, the collaborative approach’s testing accuracy is 
calculated as the average of the two refined models. 

Table 5 
Dataset for segmentation, identification, collaborative models ℳs: Tooth segmentation model, ℳi: Tooth identification model, ℳc: Collaborative model; 𝒟r : Training 
data, 𝒟a: Augmented data, 𝒟v: Validation data, 𝒟s: Testing data.  

ID Category Total Segmentation (ℳs) Identification (ℳi) ℳc 

𝒟r 𝒟v 𝒟s 𝒟r(𝒟a) 𝒟v(𝒟a) 𝒟s 𝒟s 

C1 32 teeth + Dental Appliance + Restoration 73 0 0 73 6 (54) 2 (10) 6 25 
C2 32 teeth-Dental Appliance + Restoration 220 116 44 60 5 (49) 3 (13) 10 15 
C3 32 teeth + Dental Appliance 45 31 12 2 22 (163) 12 (29) 5 10 
C4 32 teeth-Dental Appliance 140 46 27 67 8 (66) 5 (11) 40 50 
C5 < 32 teeth + Dental Implant 120 0 0 120 14 (62) 6 (4) 4 10 
C6 > 32 teeth 170 0 0 170 6 (60) 4 (10) 5 5 
C7 < 32 teeth + Missing + Dental Appliance 115 0 0 115 11 (72) 2 (9) 5 10 
C8 < 32 teeth + Missing-Dental Appliance 457 0 0 457 12 (33) 4 (5) 10 5 
C9 < 32 teeth + Missing + Dental Appliance 45 0 0 45 10 (47) 3 (8) 10 5 
C10 < 32 teeth + Missing-Dental Appliance 115 0 0 115 6 (44) 4 (6) 5 15 
Total 1500 193 83 1224 100(650) 45(105) 100 150  
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Fig. 4. Comparative evaluation for categories 1–5: (a) Input (b) (ℳi2): YOLO-v5 detection (c) (ℳi1): Faster R–CNN detection (d) (ℳs2): U-net segmentation (e) 
(ℳs1): Mask R–CNN segmentation (f) (ℳc): Collaborative learning. 
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Fig. 5. Comparative evaluation for categories 6–10: (a) Input (b) (ℳi2): YOLO-v5 detection (c) (ℳi1): Faster R–CNN detection (d) (ℳs2): U-net segmentation (e) 
(ℳs1): Mask R–CNN segmentation (f) (ℳc): Collaborative learning. 
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Fig. 6. Case 1: Healthy dentition example: This is a set of 32 healthy teeth with no dental treatment that was successfully segmented and identified using both 
segmentation and identification models. All 32 teeth were discovered. The ensemble and collaborative models perform the best in terms of tooth detection and 
identification, with a mean average precision (mAP) scores of 98.65% and 99.12%, respectively. 

Fig. 7. Case 2: Teeth Not Detected: This example has 31 permanent teeth with 3 treated teeth successfully detected by both segmentation and identification models, 
but one tooth of the 31 was not detected. The ensemble and collaborative models detected and identified the teeth with the mean average precision (mAP) of 94.97% 
and 97.77%, respectively. 

Fig. 8. Case 3: Active orthodontic treatment example: An active orthodontic case can regularly be seen in panoramic radiographs, since mid-treatment panoramic 
radiographs are important in orthodontic care. Both segmentation and identification models correctly detected the 31 permanent teeth and three treated teeth, 
however one tooth was not detected. Even with braces, the ensemble and collaborative models had a mean average precision (mAP) of 93.73% and 98.83%, 
respectively, in detecting and identifying teeth. 
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6. Discussion 

Our contribution is to construct a collaborative model by developing 
two distinct task models: tooth recognition and teeth segmentation. 

Collaborative learning provides the following advantages: (1) The tooth 
identification task’s performance was increased from 4 to 32 different 
types of teeth through collaboration with a tooth segmentation model; 
(2) The tooth segmentation model’s performance was improved through 

Fig. 9. Case 4: Natural dentition with dental implants and some missing teeth example: Dental implants are becoming a regular part of dental care. This example 
shows a patient with 27 permanent teeth and five missing teeth were effectively detected using both segmentation and identification models, although teeth were not 
discovered. Interestingly, the collaborative model enhanced the ensemble model’s mAP score from 94.76% to 99.33%. 

Table 6 
Cutting edge research: Testing accuracy for tooth segmentation and identification models with dental panoramic radiographs, CBCT datasets (𝒟r : Training, 𝒟v: 
Validation, 𝒟s: Testing).  

Deep Learning Modeling for Dental Panoramic Radiographs 

Research Dataset Data Split (Images) Accuracy F1-Score mAP 

ℳc: Collaborative (Ours) Panoramic Radiographs: 𝒟s: 150 98.77% 98.83% 97.30% 
ℳs1: Mask R–CNN (Ours) UFBA [37] 𝒟r, 𝒟v, 𝒟s: 193, 83, 1224 96% 98% 95% 
ℳs2: U-Net (Ours) 𝒟r, 𝒟v, 𝒟s: 193, 83, 1224 96.97% 93.63% 92.08% 
Zhao et al. [2] 𝒟r, 𝒟s: 1200, 150 96.94% NA NA 
Koch et al. [19] 𝒟r, 𝒟s: 80%, 20% 94.76% NA NA 
Jader et al. [4] 𝒟r, 𝒟s: 193, 1224 98% 88% NA 
Oktay et al. [20] 𝒟r, 𝒟s: 200, 278 98.11% 93% 82% 
Pinheiro et al. [21] 6-fold CV: 450 NA NA 77.3% 
Lee et al. [22] Panoramic Radiographs 𝒟r, 𝒟s: 40, 10 NA 87.5% NA 
Wirtz et al. [23] Panoramic Radiographs 𝒟r, 𝒟s: 10, 14 81.8% 80.3% NA 
Silva et al. [5] Jader Dataset [4] 𝒟r, 𝒟v, 𝒟s: 324, 108, 778 96.7% 91.6% NA 
Deep Learning Modeling for 3D Dental Images 
Research Dataset Data Split (Images) Accuracy F1-Score mAP 
Cui et al. [3] CBCT Scans 𝒟r, 𝒟s: 12, 8 Subjects 99.55% NA NA 
Cui et al. [24] 3D Dental Models 𝒟r, 𝒟v, 𝒟s: 1500, 100, 400 NA 94.2% NA 
Lee et al. [25] CBCT Scans 𝒟r, 𝒟v, 𝒟s: 80, 20, 20 NA NA 90.91% 
Kakehbaraei et al. [26] CBCT Scans 30 Subjects 99.93% NA NA 
Zhang et al. [27] 3D Dental Models 𝒟r, 𝒟s: 100, 20 98.87% NA NA  

Table 7 
Cutting edge research: Testing accuracy for tooth identification for dental panoramic radiographs, CBCT, and oral photographs datasets (𝒟r : Training, 𝒟s: Testing, 𝒟v: 
Validation).  

Research Dataset Class# Data Split (Images#) Accuracy F1 mAP 

ℳc: Collaborative (Ours) Panoramic 
UFBA [37] 
Radiographs 

32 𝒟s: 150 98.44% 98.75% 97.78% 
ℳi1: Faster R–CNN (Ours) 4 𝒟r, 𝒟v, 𝒟s: 750, 150, 100 91% 90% 91% 
ℳi2: YOLO-v5 (Ours) 4 𝒟r, 𝒟v, 𝒟s: 750, 150, 100 99.5% 99.85% 99.5% 
Lai et al. [44] Panoramic 

Radiographs 
NA 𝒟r, 𝒟s: 22,262, 1168 87.21% NA NA 

Sathya et al. [45] Panoramic 
Radiographs 

(s1)2 (s2)4 + 4 (s3)6 +
6 

𝒟r, 𝒟s: (s1)120042, 200 (s2)120042, 800 (s3)191449, 
1600 

Precision: (s1)100% (s2)95.24% 
(s3)90.5% 

Thanathornwong et al. 
[46] 

Panoramic 
Radiographs 

1 𝒟r, 𝒟v, 𝒟s: 70, 10, 20 subjects NA 81% NA 

Chung et al. [48] Panoramic 
Radiographs 

32 𝒟r, 𝒟v, 𝒟s: 574, 162, 82 NA 98.43% 91% 

Li et al. [49] CBCT Dataset 4 𝒟r, 𝒟s: 200, 200 87% NA NA 
Moriyama et al. [50] Oral Photographs 2, 3, 15 𝒟r, 𝒟s: 2100, 525 Accuracy: Screening: 76.5%, 

Severity: 73.1%, Depth: 47%  
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a refinement process for false positive cases to make it more consistent 
with the tooth identification output; and (3) The two models were in
tegrated into a collaborative model using the inferencing ensemble 
approach. While the models are not physically connected, their inter
action provides insight into the outcomes of the inference of these two 
models. 

First, regarding tooth identification, either YOLO-v5 or Faster 
R–CNN model can be employed to identify teeth. Faster R–CNN and 
YOLO-v5 are adequate to achieve a 91% and 99.5% accuracy rate when 
detecting four distinct tooth kinds. YOLO-v5 (ℳi2) outperforms Faster 
R–CNN (ℳi1) in detecting four unique tooth kinds. However, regardless 
of whatever one is picked, there is no discernible change in the overall 
performance of the collaborative model. This is because only tooth 
numbering is derived from the tooth identification model. Along with 
Mask R–CNN [51], Faster R–CNN [47] was constructed utilizing the 
Detectron2 framework [55]. Thus, we built the collaborative model with 
Mask R–CNN (ℳs1) and Faster R–CNN (ℳi1) while achieving an accu
racy of 98.44% for ℳc’s tooth segmentation and identification tasks. 

Second, we have made significant improvements to two tasks, such 
as tooth segmentation ℳs and tooth identification ℳi, by upgrading the 
models through a thorough training and validation method. Regarding 
tooth segmentation, while the Mask R–CNN model (ℳs1) excels in 
segmenting 32 distinct types of teeth with a 96% accuracy, the U-Net 
model (ℳs2) is limited to semantic segmentation of the single class 
“tooth” with a 97.05% accuracy. Mask R–CNN takes ℳs1 substantially 
more processing power than U-Net ℳs2 so that it is better appropriate 
for our application due to its instance-based segmentation. 

Third, collaborative learning is improved for multi-task learning 
through the integration of two separate models. In fact, selecting the 
appropriate weight for each task is not simple, and the problem becomes 
even more complicated when dealing with complex models performing 
multiple tasks. Our collaborative modeling methodology is unique in 

compared to prior strategies for aggregate modeling. Rather than 
combining multiple models, we combined the inference findings from 
these two distinct models. Additionally, because each model is special
ized for a specific task, post-processing considerably improves the 
outcome by fine-tuning the inferencing outputs from several models. 
Multitask learning thus outperforms two separate tooth segmentation 
and identification models. 

The collaboration model improved their tooth identification accu
racy from 91% (ℳi1: four types of molar, premolar, canine, incisor) to 
98.77% (ℳc: 32 types of teeth) and the tooth segmentation accuracy 
from 96% (ℳs1) to 98.44% (ℳc), respectively. Furthermore, this 
technological advancement is made possible by the combination of these 
two models, which enables greater adaptability to dental applications of 
varied magnitudes. 

We conducted a thorough evaluation of the collaborative model’s 
effectiveness in enhancing overall performance through collaboration 
with cutting-edge works. Our evaluation revealed that our study out
performs existing studies in the tasks such as tooth segmentation and 
identification. We were, however, unable to reproduce and compare 
their cutting edge research findings in the same setting. This was due to a 
lack of models, source code, and data. As a consequence, we compared 
the collaborative model ℳc to the underlying deep learning networks by 
comparing Mask R–CNN (ℳs1) vs. U-Net (ℳs2) and Faster R–CNN 
(ℳi1) vs. YOLO-v5 (ℳi2). After conducting a thorough evaluation, we 
were able to justify our methodology for the collaborative learning ℳc. 

Our current study has limitations as well. For example, the proposed 
framework may not suit unusual dental conditions, such as those con
taining maxillary and mandibular advancements and setbacks with oral 
surgery appliances, maxillary nance appliances, mandibular lower 
lingual holding arches, pathologies, and others. Furthermore, our 
models may not be the most robust when dealing with low-quality data, 
such as low resolution, partial information, small pixel size images, or 

Fig. 10. Case 5: Patient with implants and multiple missing teeth example: This case is extremely complicated, involving only 8 permanent teeth and twenty-four 
missing teeth that were effectively discovered using both segmentation and identification models. Nonetheless, even in this difficult scenario, when compared to the 
ensemble model, the collaborative model’s performance in recognizing and labeling teeth improved considerably, with mean average precision (mAP) increasing 
from 88.10% to 98.74%. 

Table 8 
Case study results: Testing accuracy.   

Individual Models Ensemble ℳe Collaborative ℳc 

Tooth Segmentation ℳs1 Tooth Identification ℳi1 Before Refinement After Refinement 

Case# Teeth# mAP F-1 mAP F-1 mAP F-1 mAP F-1 

Case 1 32 98.75% 98.15% 98.50% 98.93% 98.65% 98.54% 99.12% 99.45% 
Case 2 31 99.20% 98.33% 90.75% 89.25% 94.97% 93.79% 97.77% 98.33% 
Case 3 31 98.63% 98.20% 88.83% 90.15% 93.73% 94.17% 98.83% 99.11% 
Case 4 27 95.20% 97.15% 94.33% 95.88% 94.76% 96.51% 99.33% 99.51% 
Case 5 8 85.33% 87.48% 90.88% 93.25% 88.10% 90.365% 98.74% 98.91%  
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different formats, such as 3D images. Nevertheless, by addressing these 
inadequacies, the proposed models can benefit dentists by allowing 
them to evaluate a tooth’s suitability for treatment and identifying many 
possible dental restorations. Additionally, this research might be 
expanded to include the identification of teeth based on their structure 
and a 3D data set and analysis to detect and cure growth irregularities in 
children while their teeth are still developing. 

7. Conclusion 

We have proposed and demonstrated the efficacy of a novel method 
for collaborative learning in this study. The proposed collaborative 
learning approach combines inference results from two sequentially 
created tooth segmentation and identification learning models to 
generate a summary of the combined findings from inferencing the in
dividual models. Significant improvement is achieved through post- 
processing and fine-tuning of the two models. Collaborative learning 
ℳc outcomes significantly outperformed those of individual learning, e. 
g., 98.77% vs. 96% and 98.44% vs. 91% for tooth segmentation ℳs and 
tooth identification ℳi, respectively. Additionally, comparable or su
perior learning outcomes are obtained compared to state-of-the-art ac
curacy in tooth segmentation and tooth identification. Finally, we 
examined five case studies to demonstrate the proposed model’s 
robustness: healthy dentition, missing teeth, orthodontic treatment in 
progress, natural dentition with dental implants and missing teeth, and 
patients with implants and multiple missing teeth. 
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