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Abstract

Understanding software evolution is essential for software development tasks, includ-
ing debugging, maintenance, and testing. As a software system evolves, it grows in size
and becomes more complex, hindering its comprehension. Researchers proposed several
approaches for software quality analysis based on software metrics. One of the primary
practices is predicting defects across software components in the codebase to improve
agile product quality. While several software metrics exist, graph-based metrics have rarely
been utilized in software quality. In this paper, we explore recent network comparison
advancements to characterize software evolution and focus on aiding software metrics
analysis and defect prediction. We support our approach with an automated tool named
GraphEvoDef. Particularly, GraphEvoDef provides three major contributions: (1) detect-
ing and visualizing significant events in software evolution using call graphs, (2) extracting
metrics that are suitable for software comprehension, and (3) detecting and estimating the
number of defects in a given code entity (e.g., class). One of our major findings is the
usefulness of the Network Portrait Divergence metric, borrowed from the information the-
ory domain, to aid the understanding of software evolution. To validate our approach, we
examined 29 different open-source Java projects from GitHub and then demonstrated the
proposed approach using 9 use cases with defect data from the the PROMISE dataset. We
also trained and evaluated defect prediction models for both classification and regression
tasks. Our proposed technique has an 18% reduction in the mean square error and a 48%
increase in squared correlation coefficient over the state-of-the-art approaches in the defect
prediction domain.
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1 Introduction

Software comprehension is an imperative and indispensable prerequisite for software devel-
opment activities such as maintenance, testing, and quality management (Kriiger 2019; Xia
et al. 2017). As a software system grows, its functionality and components’ interactions
increase in size and complexity. Without a proper understanding of the software system and
its inner interactions, adding or changing a feature increases the risks of introducing errors
and potentially undesirable behavioral changes. This problem becomes even more compli-
cated when investigating the system’s evolution, i.e., comparing the changes among several
software releases. Software evolution is responsible for 50%-90% of the total development
cost (Ghezzi et al. 2002; Fernandez-Saez et al. 2018).

In practice, software developers and testers often investigate the software system releases
to grasp and depict the functionality changes. Software developers specifically need to
understand software changes introduced in a specific release while working on fixing
defects.

A software defect is a deviation from the software specifications or end-user expectations
and can lead to unpredictable results or failures. CISQ (2018) analysis has found that in
2018, low-quality software costed more than $2.8 trillion in the United States alone, of
which 16.87% was spent on known/fixed faults cost while 37.46% were software failure
losses. Furthermore, this also demonstrates that finding and correcting defects are costly
software development activities caused by internal or external effects. Internal costs such
as waste, scraping, and/or rework occur before software goes into production. The external
costs of production-ready software include the costs of re-producing, discovering, fixing,
and verifying defects and their locations.

Allamanis et al. (2018) pointed out that detecting defects is a core challenge in software
engineering because discovering defect patterns or defining appropriated measures to detect
them is not a trivial due to the complexity of software features and the diversity of software
structure. Because software defects are expensive, prediction of defects has been the subject
of research for the last several decades, leading to many tools and predictive models (Song
etal. 2011; Akiyama 1971).

These approaches help classify software artifacts (e.g., classes, modules, subsystems and
files) as being defect-prone or not. There are even models that predict defect density (the
number of defects / SLOC) or the likelihood of a software artifact to have a defect. Predict-
ing malfunctions early in software development helps optimize the efforts of engineers and
testers. Developers can prioritize code inspection and testing, starting with code areas hav-
ing more defect-prone possibilities. Consequently, testers can efficiently utilize their limited
resources and prioritized their test workflows.

Software defect prediction approaches are significantly cheaper than software measure-
ment and reviews. Empirical studies have indicated that the probability of detecting software
defects using prediction models could be higher than the possibility of discovery in current
software reviews (Menzies et al. 2010). Many of these techniques, such as statistics-based
models, parametric models, and machine learning-based models, are used (Alsaeedi and
Khan 2019; Rahman and Devanbu 2013). Defect prediction can improve software testing
and has the potential to improve the overall software quality assurance process (Hall et al.
2011). The recent advances in information theory have revolutionized the modeling and
analysis of complex systems in many disciplines and practical problems, such as under-
standing biological systems (Le Novere 2015), modeling the network’s topology (Wang
et al. 2014), and modeling software systems using complex graphs (Akoglu et al. 2015;
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Bhattacharya et al. 2012). Graph-based techniques enable capturing the structure and essen-
tial properties of the system. It can unleash various methods and tools to investigate and
study the design patterns, detect abnormalities, and forecast new trends.

In this paper, we aim at employing deep learning techniques on metrics and measure-
ments extracted from software call graphs (Grove et al. 1997) to study and investigate
software evolution and defect prediction. A call graph helps visualize the software system
function calls in which each node in the graph corresponds to a function, and each directed
edge depicts a function relationship (Gharibi et al. 2018b). The call graph contains its logical
workflows, execution pathways composed of caller-callee relationships that may accurately
depict the constantly evolving state of the system. Figure 1 illustrates a code snippet with
its corresponding call graph.

Specifically, we investigate whether graph-based techniques can facilitate the compre-
hension and analysis of software systems during software evolution using static call graphs.
Through this work, we answer the following research questions:

— RQ1: Can Network Portrait Divergence, like other graph-based metrics, detect signifi-
cant events in software evolution?

— RQ2: How does the proposed software class-level metric Network Portrait Divergence
compare to other metrics for software defect prediction?

— RQ3: Can Network Portrait Divergence help to improve the prediction of software
defects?

Our hypothesis is that network patterns and measures can help represent the software
system as a graph, which can be analyzed to capture the software evolution’s essential prop-
erties and improve software quality through defect prediction. To prove our hypothesis,
we study and analyze 29 open-source software systems, such as JUnit (2019), Cassandra
(2019), Camel (2019), ZooKeeper (2019) over their entire lifespan, a total of 384 releases.
We have chosen Java applications as our case studies so that our work is comparable to the
most recent work in this domain (Qiao et al. 2020; Ferenc et al. 2018) and also because
the majority of these applications are available as open-source projects with proper defect
datasets.

We map the source code into a path-based execution model and analyze where and how
software releases have occurred. We also investigate the impacts of changes identified by

class GraphEvo H
public static void main(String[] args){

AQ); :
B(O); L
} / main\
public static int A(){ (
} A \
public static int B(){ \ ) B
B(); 4B
} 4
} c

Fig. 1 An example of a Java code snippet and its corresponding call graph
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the level-based possible paths. This study consists of three main steps. First, we construct
the static call graph for each release of the software system and extract software metrics.
Second, we analyze the software metrics, including the Network Portrait Divergence, and
select the set of metrics with the strongest relationship to the defects. Third, we train two
deep learning models for defect prediction: (1) a binary classifier to predict whether or not
a specific software entity (class or module) includes a defect and (2) a regression model
to estimate the number of defects in a given software entity. Additionally, we provide a
semi-automated tool to compare the call graphs, their metrics, and visualize them to the
developers and testers who can further build upon our results. We show that the applied
graph-based methods and metrics can appropriately detect significant structural properties,
quantify, and visualize the similarities and differences among several software releases. Our
contributions can be summarized as follows:

—  We exploit graph-based metrics to study software evolution and identify code changes
to aid software quality. Our study illustrates that call graph analysis and graph-based
metrics can help understanding software evolution and identifying code changes made
to the software releases. Specifically, we propose to answer questions on code changes
such as: Has the code structure changed significantly? and where.

—  Our study distinguishes the metrics suited for defect prediction and compares the met-
rics to the Network Portrait Divergence. We leverage this metric with existing software
metrics as the base features to train deep learning models for defect prediction.

—  We implemented GraphEvoDef to help developers identify code modules that can have
defects and predict defect counts. We also provide an open-source Python tool to
automate our study’s analysis. We equip our paper with a tool that can automati-
cally (1) construct and visualize call graphs for a given Java code-base or Jar files
and (2) compare and visualize the analyses results for software evolution and defect
prediction tasks.

2 Related Work

The recent rise of network data across different scientific domains has led to new tools and
methods (Gharibi et al. 2018b) for understanding and evaluating networks. Although call
graphs have promoted software comprehension tasks, they are still limited to capturing a
single software system’s functionality at a time. However, as a software system evolves,
understanding multiple releases’ similarities and differences become a crucial and daunting
task. To this end, our research focused on processing multiple versions of a software system
and measuring the changes based on an information-theoretic approach.

2.1 Software Metrics

—  Code and Complexity Metrics (Zimmermann et al. 2007; Zhang 2009): Complexity
metrics indicate how complex a code block is. A module with a complex piece of
code and many paths would have a higher risk. Researchers proposed and implemented
many complexity metrics (i.e., very well-known Cyclomatic Complexity (CC) metric
of Thomas McCabe), mostly calculated based on the source code. CC metric is the mea-
sure of independently testable paths that exist for that module (method/class/package).
Some examples of code metrics are lines of code and lines of comment. Examples
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of complexity metrics are system complexity, McCabe and Halstead’s cyclomatic
complexity, and essential complexity.

—  Object-Oriented Metrics (Zhou and Leung 2006; Subramanyam and Krishnan 2003):
Object-oriented programming paradigm produces these metrics, and they work with
the specific programming concepts, such as inheritance, class, cohesion, and coupling.
Researchers have proposed several object-oriented metrics suites. The most popular
one of which has been the Chidamber-Kemerer (CK) metrics suite. The CK suite has 6
metrics which are Weighted method per class (WMC), Coupling between object classes
(CBO), Lack of cohesion in methods (LCOM), Depth of inheritance tree (DIT), Number
of children (NOC) and Response for a class (RFC).

—  Change or Process Metrics (Moser et al. 2008; Krishnan et al. 2011; Bell et al. 2011;
Nagappan et al. 2010): Changes made during the software development process are
collected throughout the software life cycle across its multiple releases. Some process
metrics are code churn measures, change bursts, and code deltas. The code churn met-
ric shows how code evolves while the change burst metric considers the sequences of
the progressive changes (Nagappan et al. 2010). The code delta metric computes the
difference between two builds in terms of a specific metric, such as code lines.

—  Developer Metrics (Matsumoto et al. 2010; Nagappan et al. 2010): As each developer
contributes to the software, these metrics are recorded. Some of these metrics are the
cumulative number of developers revising a module, the aggregate count of developers
who changed the file over all the releases, and the developer’s code.

—  Network Metrics (Zimmermann and Nagappan 2008, 2009; Premraj and Herzig 2011):
These metrics are the most recent ones for fault prediction. Dependency relation
between different entities produces the network metrics. The network nodes are classes
or interfaces or any entities, while the directed edges represent dependency between
the two such entities. The application of network analysis on this graph provides the
network metrics values to find a correlation between the dependencies and defects.
Some of these network metrics are degree centrality, closeness centrality, betweenness
centrality, eigenvector centrality, size measures, constraint measures, and ego network
measures.

These categories and their underlying software metrics are set to signal a vast research area
in software metrics selection. Better prediction models can be built when these subsets are
combined appropriately.

2.2 Network Portrait Divergence

Portrait divergence (Bagrow and Bollt 2019) was recently developed to compare networks
using their portraits. Unlike the previous ad-hoc comparison measures (see Section 3),
Network Portrait Divergence is based on information theory, which provides a reliable inter-
pretation of the divergence measure. Thus, it can compare the networks based on their
topology structures and do not assume that they are defined on the same nodes. Moreover,
unlike the current expensive node matching optimization methods, Network Portrait Diver-
gence is a graph invariant, and therefore it is relatively computationally efficient. Note that
this approach can treat both directed and undirected networks in the same way.

To calculate the Network Portrait Divergence among the portraits of several releases of
a software system, we need to

—  Extract all possible execution paths of each of the software releases using their call
graphs
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— Construct a set of network portraits for each of the releases based on their execution
paths

— Calculate the portrait divergences among the releases of the software system under
investigation using their portraits.

Existing works considered all nodes to have the same weightage (Walunj et al. 2019).
In this paper, we will be calculating Network Portrait Divergence for each class/module by
iterating over classes and assigning weightage one by one. We will describe this in detail in
Section 3.

2.3 Defect Prediction and Deep Learning

Various methods have been developed to promptly predict the most probable locations of
defects in large code-bases and can be categorized as either classification or regression mod-
els (Kamei and Shihab 2016). These focus on approaches that correlate with potentially
defective code. Machine Learning techniques have serviced most of the defect predic-
tion models. Those techniques derive several features from software code and feed them
to standard classifiers such as Support Vector Machine, Naive Bayes, Random Forests,
and Decision Tree. Researchers have been carefully designing features that can distinguish
defective code from non-defective code, such as code size, code complexity, code churn met-
rics, code change, or process metrics, as described in the Software Metrics section (Huda
et al. 2017; Li et al. 2018; Manjula and Florence 2019).

Chen and Ma (2015) built a defect prediction model using decision tree regression
(DTR) for CPDP and WPDP and found similar performances for both scenarios. With the
help of DTR, Rathore and Kumar (2016) were able to forecast the number of faults for
intra- and inter-release situations. Additionally, several empirical studies (Yao et al. 2020;
Hammouri et al. 2018; Rathore and Kumar 2017; Chen and Ma 2015) showed that DTR
showed the best performance among the other machine learning algorithms. Support Vec-
tor Regression (SVR) is an extension of support vector machine (SVM) that is based on
the concept of structural risk reduction (Vapnik et al. 1997). Many defect prediction empir-
ical software engineering research has utilized the SVR approach (Zhang et al. 2018; Cao
et al. 2018). Deep learning is currently becoming more widespread in the field of software
engineering. Zhao and Huang (2018) proposed a new approach, DeepSim, to measure the
code’s functional similarities. They have used a deep neural network (DNN) model to learn
semantic representation features and direct binary classification. Some researchers have
also used word embeddings, followed by RNN and code semantics, to make code sugges-
tions (Guo et al. 2019), while some researchers have considered multi-class classification
(Arshad et al. 2019).

A novel deep neural network named Code-Description Embedding Neural Network
(CODEnn) was proposed to help developers perform code search (Gu et al. 2018). The
DNN based code search was built on high-dimensional vector space using code snippets
and natural language descriptions. Some more approaches automatically discover discrimi-
nating features in the source code and help detect code clones (White et al. 2016). The deep
learning-based defect prediction model (i.e., DPNN model) introduced in Qiao et al. (2020),
first obtained 11 metrics in the MIS dataset (Lyu MR and et al 1996), and 21 metric vari-
ables from the KC2 dataset from the PROMISE repository (Shirabad and Menzies 2005),
and then used a DNN regression model to learn features from the matrix and predict the
number of defects. DPNN consists of two separate neural networks, one for the MIS dataset
and one for the KC2 dataset, each with four layers and 11 and 21 inputs.
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SVR, FSVR and DTR were all outperformed by DPNN. According to the authors, DPNN
significantly reduces the mean squared error (MSE) and increases the squared correlation
coefficient.

2.4 Call Graphs

Call graphs have been extensively studied and used to show the software system’s inner-
interactions in terms of function calls. Some existing studies either focus on generating and
analyzing the call graphs of one system at a time (Gharibi et al. 2018a, c; Alanazi et al. 2021)
or focus on the power law of the node degree distribution. For example, the researchers
in Vasa et al. (2007) built a tool to detect and visualize the static interactions between the
classes of software systems written in Java; the work in Wang et al. (2009) studied the
call graphs of 223 releases of the Linux kernel to identify similar graph structures; while
Bhattacharya et al. (2012) analyzed the releases of well-known projects to evaluate the use
of information theory in understanding software evolution. Other studies have focused on
collaborative software graphs. The software components as software networks and software
systems were assessed based on design quality principles (Savi¢ et al. 2019). Code2Vec
(Alon et al. 2019) has used Abstract Syntax Tree to extract all software paths as vectors
and later aggregate them to form Code2Vec neural model. The neural model is employed to
predict method names.

2.5 Studies on Network Comparison

Typical software networks such as call graphs have nodes representing functions; edges
are the function calls between nodes and specific degree distribution. This network evolves
with each software release as new functions are introduced, and old ones are deleted
or re-wired, resulting in exhibiting small-world and scale-free network properties (Myers
2003). When comparing such networks, the methods may be divided into two cate-
gories: Known Node-Correspondence (KNC) and Unknown Node-Correspondence (UNC)
(Tantardini et al. 2019).

— KNC—Both networks have a common node-set (or at least a portion), and their pair-
wise connection is known. As a result, in general, only graphs of comparable size and
application scope may be compared. This may be the case of some minor releases when
no new functions are introduced to the code; it is only that certain functions have been
re-wired.

— UNC—Any two networks, regardless of their scale, density, or application sector, can
be compared. Most often, these techniques employ one more statistics, which then
determines a distance. This might be the case for almost all versions where features
are introduced or modified. It is more influenced when few software versions undergo
complete revamp.

We see several attempts to quantify dissimilarities, such as social networks, time-
evolving networks, biological networks, power grids, infrastructure networks, and software
networks. Tantardini et al. (2019) compared real-world datasets using the distances men-
tioned in Table 1 for directed/undirected and weighted/unweighted scenarios. With the same
size and density networks, most distances in the table could achieve perfect classification.
They also concluded that UNC distances, such as spectral distances, graph-based measures,
and Network Portrait Divergence, are particularly well suited for structural comparisons
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Table 1 Classification of network distances

Network distance name Type  Description

Euclidean KNC It is the shortest distance between two points in

N-dimensional space.

Manhattan (Hamming 1950) KNC  Itis the sum of the lengths of the line segment projections
from the points onto the coordinate axes.
Canberra KNC  Itis a numerical measure of the distance between two
(Lance and Williams 1966) points in a vector space.
Jaccard (Jaccard 1901) KNC It measures dissimilarity between sample sets.
DeltaCon (Koutra et al. 2016) KNC  Itis a distance calculated using the fast belief-propagation
method for determining node affinities.
Clustering Coefficient UNC  It’s a metric for how closely nodes in a graph tend to cluster
together.
Diameter UNC  Itis the maximum distance between the pair of vertices.
DGCD-129 UNC  Between two networks, the Directed graphlet correlation
(Sarajli¢ et al. 2016) distance (DGCD-129) is defined as the Euclidian distance

between their upper triangle values in their Directed
graphlet correlation matrices.
MI-GRAAL (Kuchaiev et al. 2010; UNC  It’s a confidence score derived using multiple node statistics
Kuchaiev and Przulj 2011) (degree, coefficient clustering, etc.) assigned to each pair,
and then the nodes are aligned from the lowest to the
highest score.
Network Portrait Divergence UNC  Itis an information-theoretic measure for comparing
(Bagrow and Bollt 2019) networks by constructing graph-invariant distributions

from the information contained in portraits.

because they provide information on the amount and significance of changes in graph struc-
tures. Also, Hartle et al. (2020) systematically compared graph distances using package
netrd (McCabe et al. 2020) and found that the Network Portrait Divergence is well suited
for real-world network comparisons.

Most of the current approaches in this field examine the structural properties of a single
software system at a time, including model dependency (Rahman et al. 2019; Concas et al.
2007), class collaboration graphs (Rahman et al. 2019; Valverde and Solé 2003), and inher-
itance graphs (Savic et al. 2017). Other related works have discussed motifs (Stone et al.
2019; Russo 2018). They cannot capture the changes between the same topology networks,
i.e., the same arrangement of the edges and their directions between the nodes and different
sets of nodes.

Other approaches (Gao et al. 2010) used graph edit distance matrices to measure the
number of edges and nodes required to transfer one network into another. Similar to the
primary approaches, distance measures are also limited to capturing the network topology
only. Advanced research in this area proposes the comparison of network subgraphs and
motifs. A motif is an interconnected set of nodes of a complex network of a given size, and
types (Milo et al. 2002). The number of nodes in a motif represents its size, and the topology
represents its type. The variations between the networks in these methods are examined
based on differences in subgraph counts and patterns. The network structure across a diverse
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set of domains was explained using the structural diversity of real-world networks (Ikehara
and Clauset 2017). They suggested that the origin of a network, i.e., technological, social,
or biological, could not necessarily be a factor in creating similar network structures.
Overall, our research surpasses the discussed related studies in two ways: First, we extend
and combine several graph metrics to capture the structural and functional software evolu-
tion across several releases of popular Java-based open-source systems. Second, we provide
a tool that can facilitate this study’s reproduction using other software systems as test cases.

3 Proposed Work

Our study explores the use of Network Portrait Divergence for identifying significant events
in software evolution, comparing it to other software metrics, and applying it to software
defect prediction. We also equip our study with an open-source Python tool that implements
our method; i.e., it can automatically visualize and define the software evolution for a vari-
ety of software releases with features to highlight variations in execution paths to help the
software engineers identify and quantify software changes made in a given software release.
For example, the tool can help answer the questions: What are the new execution paths that
are added to the software? and where?.

Our approach consists of two main steps, and it is illustrated in Fig. 2. First, we construct
a call graph for each release of the software system under investigation. While the call graph
can explain the features and behavior of a single software system’s functionality, we aim to
utilize call graphs in characterizing software evolution over time. Second, we study, analyze,
and evaluate graph metrics across several releases to characterize the system’s evolution. In

Java Jar Files Caller-Callee lists Static Call Graphs All Sllmple
Execution Paths
Caller  Callee
i Caller Callee
LB Calle Call
— ‘:'aller ec:uu —l

F R F1) F2()
KT
| | F2) F6()

| |

WE o
™ G e w
D R I Mo

e s w7 w7
4 a3 a5 a1 a3

Bug Prediction Software Metrics Network Portraits

Software Evolution
Insights

Fig.2 Overview of our approach
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addition, we provide comparison and visualization features to help software engineers better
understand the code and execution-level changes. Then, based on the evaluated metrics, we
train and build defect prediction models. Before explaining the methods mentioned above in
more detail, we first present the study subjects used in our evaluation in the next subsection.

3.1 Study Subjects

The analysis is focused on 384 releases of 29 open-source Java software systems, including
software libraries and applications, namely JUnit (2019), Cassandra (2019), Camel (2019),
Zookeeper (2019), and more. A list of the study subject applications and their number of
versions used in our study are listed in Fig. 3. These software systems have been chosen
on the basis of the following criteria: (1) they must be open-source systems written in Java,
(2) they must have a minimum of six-month history with at least two versions of the soft-
ware, (3) they must be of substantial size, thousands of source-line of code (KSLOC), and
additionally (4) they are preferred to be highly rated and well-followed by developers. The
search for these software systems was carried out using Google BigQuery (2018). Figure 3
also lists the applications code-base size, which can be small, medium, and large based
on KSLOC. Small applications are those with less than 100 KSLOC while medium appli-
cations are those with 100 KSLOC to 500 KSLOC and applications with more than 500
KSLOC are categorized as large applications.

We also used a dataset of 9 open-source Java-based projects from the PROMISE dataset
(Shirabad and Menzies 2005). Projects contain more than 4546+ classes and 1,251,619+
lines of code. The projects’ descriptive statistics are shown in Table 2. #Instances/Classes,
#Count of Versions #LOC, #Buggy Instances, % of Buggy Instances, and #Defects are the
number of instances or classes, the number of code lines, the number of buggy instances,
the percentage of buggy instances, and the number of defects respectively. Each instance
represents a class file that contains 21 static code metrics (e.g., CBO, WMC, RFC, LCOM),
which present all the variables involved in our study. Table 3 lists the metric names and their
description (Spinellis 2018). These metrics are used as dependent variables and are used to
analyze in the metric selection section.

60
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Fig.3 The study subjects: applications and their versions
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Table 2 Details of Java projects for metric analysis (promise dataset)

No  Project Versions  # Instances/classes ~ LOC # Buggy (% of buggy inst.)  # Defects
1 Ant 5 745 208,653 166 (22.3%) 338

2 Camel 2 965 113,055 188 (19.5%) 500

3 Ivy 2 352 87,796 40 (11.4%) 56

4 Lucene 3 340 102,859 203 (59.7%) 632

5 Pbeans 2 745 208,653 166 (22.3%) 338

6 Poi 3 442 129,327 281 (63.6%) 500

7 Velocity 3 229 57,012 78 (34.1%) 190

8 Xalan 4 885 411,737 411 (46.4%) 1,213

9 Xerces 2 588 141,180 437 (74.3%) 1,596

Table 3 Static code metrics

Metric suite (number of metrics)

Metric acronym

Metric full name

CK suite (6)

Martins metrics (2)

QMOOM suite (5)

Extended CK suite (4)

McCabe’s CC (2)

Others (3)

WMC
DIT
LCOM
RFC
CBO
NOC
CA

CE
DAM
NPM
MFA
CAM
MOA
IC
CBM
AMC
LCOM3
AVG_CC

MAX_CC

LOC

Network Portrait Divergence

BUG

Weighted method per class

Depth of inheritance tree

Lack of cohesion in methods

Response for a class

Coupling between object classes

Number of children

Afferent couplings

Efferent couplings

Data access metric

Number of public methods

Measure of functional abstraction

Cohesion among methods

Measure of aggregation

Inheritance coupling

Coupling between methods

Average method complexity

Normalized version of LCOM

Mean values of methods within
the same class

Maximum values of methods in
the same class

Lines of code

Measures the software complexity
changes

Non-buggy or buggy
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3.2 Constructing and Visualizing Call Graphs

A call graph is defined as a directed graph, 8 = (V, E), where V is the set of vertices,
i.e., nodes of the graph, and E is the set of directed edges of the graph. In a software
call graph, the nodes represent functions, and the edges represent function calls. Note that
the term “function” in our research encompasses the different types of program proce-
dures, including class member functions (also known as methods), static functions, and
stand-alone functions. Edges are ordered pairs of nodes, e = (u, v), where each edge is
considered to be directed from node u to node v. The node u, initiating a call, is named
the caller function, and the node v is named the callee. For a vertex u the number of
incoming calls, also called arrows, is called the indegree and denoted deg™ (1) and the
number of the outgoing calls, arrows, is called the outdegree and is denoted deg™ (u).
A vertex with deg™(u) = 0 is called a source; we call it an entry point as it is the
origin of the outgoing calls and represents the entry point for an execution path. Simi-
larly, a vertex with deg™(u) = 0 is called a sink; we call it an exit point since it is
the end of the incoming calls and represents the end of an execution path. A vertex with
degt(u) = 0 AND deg™(u) = 0 is called an isolated node. Isolated nodes are repre-
sented in the call graph. However, they are not included in any execution path, and they
need further investigation by the developers since they represent unused functionality in the
system.

Nevertheless, visualizing a single software system’s call graph has proven to facilitate
understanding its behavior and functionality at the source-code level (Alanazi et al. 2021).
In order to visualize the call graph of a single system, we translate its edges and nodes
from the OOP language that they were written with to a graph description language, DOT
(Gansner and North 2000), which in return can be rendered using different tools, such as
Graphviz (Ellson et al. 2001), to actual graphs in jpg, svg, or pdf formats. Figure 4 shows
part of the call graph generated for our tool.

\/\7 / seffle

I

: \ getValue

getResource |

<

>setName setValue

setResource

getFile
setLocation

Fig.4 Snippet of the call graph generated by GraphEvo
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3.3 Characterizing Software Evolution

Network Portrait Divergence (Bagrow and Bollt 2019) was developed to compare networks
using their portraits. Unlike the previous ad-hoc comparison measures, Network Portrait
Divergence is based on information theory, which provides a reliable interpretation of the
divergence measure. Thus, it can compare the networks based on their topology structures
and do not assume that they are defined on the same nodes. Moreover, unlike the current
expensive node matching optimization methods, Network Portrait Divergence is a graph
invariant, and therefore it is relatively computationally efficient. Note that this approach can
treat both directed and undirected graphs in the same way.

3.3.1 Constructing Network Portraits

Network portrait is an efficient way to capture and visualize several structural properties of
a given network (or a call graph in our case). We uyse the output of the previous step (i.e.,
step 1: extracting the call graph and its execution paths, an example is shown in Fig. 5),
to construct the network portraits. The network portrait B is defined as an array with (I, k)
elements, such that By = the number of nodes which have k nodes at distance | for 0 <
I <dand 0 < k < N — 1, where the distance is the length of shortest path, and d is the
graph diameter, and N is the number of nodes in the graph. Note that a distance [ = 0 is
admissible. It is also worth mentioning that network portraits are always identical for the
same graph despite the nodes’ labels or orders. We illustrate the pseudocode to construct the
network portraits in Algorithm 1, which results in a matrix that encodes several structural
properties of the graph, including the number of nodes in the graph in the zeroth row, the
degree distribution in the first row, and then the degree distributions of the next nearest
neighbors and so forth. Also, the network portraits are graph invariant, i.e., they assign equal
values to isomorphic graphs. Network portraits are important for graph comparison, as we
explain in the next step.

FO->F1->F3
FO->F2->F1->F3
FO->F3
F1->F3

\ F2->FO0->F1->F3
F2->FO->F3
F2->F1->F3

(a) A Call graph example (b) A list of possible execution paths

Fig.5 Example of call graph with execution paths

@ Springer



118 Page 14 0f33 Empir Software Eng (2022) 27:118

Algorithm 1 Constructing network portraits.

1 procedure NETWORK_PORTRAITS(paths)
2 counter < count(paths)

3 while counter # 0 do

4 path < pathList(counter)

5 pathLength < length(path)
6

7

8

9

startNode < start(path)

lastNode < last(path)

nodeEntry.StartNode < startNode
nodeEntry.EndNode < lastNode

10 nodeEntry.distance < pathLength

11 portraitFreq.Add(nodeEntry)

12 counter < counter — 1

13 end

4 networkPortrait < PathsByLength(portrait Freq)
15 return network Portrait

—

3.3.2 Comparing Call Graphs Using Network Portrait Divergence

Network Portrait Divergence between two graphs G and G’, D;s(G, G'), is defined using
Jensen-Shannon divergence in (1).

1 1
Dys(G,G') = S KL(P|IM) + - KL(Q|IM) M

where M = %(P + Q) is the mixture distribution of P and Q. Here, K L is defined in (2)
and P and Q are defined in (3).

max(d,d') N Pk, 1)
KL DIIQK D)= > > Pk.Diog @)
I=0 k=0 Qk. 1)
Where the log is base 2.
(k,) = pklDhP) = ! B ! ik’B 3)
pk, 1) = p( =N l,k(X:Cin%)k/=0 1,k

Where 7, is the number of nodes within the connected component ¢, the sum y__ n? runs
over the number of connected components and the n. satisfy ), ng = N. Likewise for
Q(k, 1) using B’ instead of B. Selecting two nodes is random with replacement and the
probability that they are at a distance / from one another is given in (4).

N
# paths of length 1
p(distance l) = paths of length I _ 5 ZkBl,k “)
#paths Q- .n2) =

The Network Portrait Divergence 0 < D;; < I quantifies the differences between two net-
works using a single value: the higher the value, the less similar the two networks are. Two
identical networks have a Network Portrait Divergence of 0. Network Portrait Divergence

@ Springer



Empir Software Eng (2022) 27:118 Page 150f33 118

receives the desirable qualities, including symmetric and normalized from Jensen-Shannon
divergence. Furthermore, Network Portrait Divergence is applicable to both directed and
undirected networks. In this paper, we used the Network Portrait Divergence to measure
the software evolution over time using its network portraits extracted from each release’s
call graph.

4 Results and Discussion

In this section, we answer the research questions and discuss our experiments’ results and
findings. Before that, however, we explain the experiments and their setup. In particular, we
introduce two experiments: one studies the significance of the mentioned software metrics
and compares them while the other uses these metrics to build models for defect prediction.

4.1 Experiment 1: Software Metrics Comparison

Several features (software metrics) are important for building an effective predictive model.
The features’ relevance can be evaluated individually through univariate, fast, and straight-
forward approach. However, before building (i.e., training) a predictive model, we wanted
first to study the usefulness of the software metrics listed in Table 3. Here, we utilize the
ANOVA (Analysis of variance) test that selects the features with the most substantial rela-
tionship to the output variable. ANOVA operates using one or more categorical independent
features and one continuous dependent feature. It provides a statistical test of whether the
mean of several groups are equal or not (Fig. 6).

Software predictive models mainly use supervised learning techniques, which require
large amounts of data to train a reliable model. However, if there is no or insufficient past
data for a particular software application, then a training set can be modeled using external
projects with known defect information. This type of predictive models is referred to as
Cross-Project Defect Prediction (CPDP). Otherwise, if the software holds sufficient defect
data from all of its releases and is used to form the training set, then this strategy is called
Within-Project Defect Prediction (WPDP).

Figure 7 shows the snippet of the training dataset where each row represents a class
of software and a list of class-level metrics as the independent variables. For the classifi-
cation task, the target attribute is the column DEFECTIVE, the binary class, whether or
not each class is defective. In the regression task, only the target variable is changed to
DEFECT_CNT, the number of defects. By the use of a combination of training set strategy
and type of problems, we arrived at four scenarios and analyzed the metrics performances.

— Classification problems on CPDP: Building a classification model based on the train-
ing data, i.e., labeled data of external projects, and predicting the defect labels of
unlabeled modules within the target project.

— Regression problems on CPDP: Building a regression model based on the training
data, i.e., historical labeled software modules, and then predicting the count of defects
for unlabeled modules within the target project.

— Classification problems on WPDP: Building a classification model based on the train-
ing data, i.e., historical labeled software modules, and then predicting the defect labels
of unlabeled modules within the same project.
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Fig.6 Color-coded visualization of ant call graph evolution

— Regression problems on WPDP: Building a regression model based on the training
data, i.e., historical labeled software modules, and then predicting the count of defects
for unlabeled modules within the same project.

A Jie o |e|le|s|n R M N oo ° a ® s |t u v w X v z am

VERSION CLASS NAME WMC DIT NOC CBO RFC LCOM Ca Ce NPM LCOM3 LOC DAM MOA MFA CAM IC CBM AMC AVGCC MAXCC NEWONE PORTRAIT DEFECT.CNT  FAULTY

2 | ant13 AnClssloader 17 2 0 2 64 76 0 2 9 0892 713 06 O 0872 03393 1 3 400588 3 10 1 00199 2 Defective

3 | ant13  Buidivent 11 2 0 3 15 13 0 3 1 075 9 o 02 o208 0 0 72727 s 1 1 0.0041 o NotDefective

4 | antl3 BuildExeption 14 4 0 1 28 0 0 1 14 038 153 1 0 0758 03333 1 2 9787 s 2 1 00137 o NotDefective

S | antl3 Buldistner 7 1 0 1 7 2 0 1 7 2 7 0o o ) 1 o o o 12 1 0 o o NotDefective

6 |ant13 Buidlogger 4 1 0 1 4 6 0 1 4 2 4 0 o s o0 o o 2 1 o [ 0 NotDefective
ant13  Constants o 1 0 o o o 0 0 o0 2 o o o [ o o o o o o 0 o 0 NotDefective

5 | ant13 Defautogger 14 1 0 4 32 4 0 4 12 0852 257 1 0 0 037 o 0 1871 8 6 1 0.0015. 2 Defective

9 antl3 Desiablefitr 2 1 0 0 6 1 0 0 2 2 s 0 o0 0 o667 0 0 25 63 8 [ o o NotDefective

10 | ant13 DirectoryScanner 23 1 0 2 51 181 0 2 14 0734 1407 1 0 0 0209 0 0 50697 11 35 1 01543 o NotDefective

" ant13  Flesanner 13 1 0 0 13 78 0 0 13 2 B 0o o o 0369 0 0 o 2 1 o o 0 NotDefective

Fig.7 Example illustrating a snippet of the dataset featuring metrics from the Ant system, version 1.3
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4.2 Experiment 2: Training Predictive Deep Learning Models

We demonstrate through the training of two different deep learning models the usefulness of
the software metrics that we studied—specifically the effect of network portrait divergence
on improving the performance of these models. Particularly, we train two models for two
tasks: defect classification and defect regression. Defect classification predicts whether or
not a code entity contains a defect; i.e., a binary classification task. Defect prediction is a
regression task that estimates the number of defects in a given code entity. For both tasks,
we first collected and processed the dataset and then trained and evaluated the models. We
briefly discuss each of the experiment steps in the following:

Data collection: First, we had to identify proper case studies (i.e., open-source applica-
tions), which we utilized the PROMISE dataset for this task (Shirabad and Menzies 2005;
Ferenc et al. 2018). PROMISE includes lists of Java projects with some software metrics
and defect information. For all case studies, we calculated network portraits at the class
level. We also used our tool to extract the missing metrics. The number of features added
up to 22 distinctive features. The number of data entries reached 4,796 (creating a table
of size 4796 x 22). We have stored and organized these data in a csv file for simplicity.
Data Processing: We normalized the data into smaller range values suitable for the
neural network learning process. We utilized the Scikit Learn library, Standard Scaler
function to standardize the features (subtracting of the mean and scaling to unit variance),
for a vector input x the standard scaler is determined as z = (x — u)/s, where u is the
average of the training samples and s is their standard deviation.

Neural Network Architecture We experimented with various neural network structures
(i.e., different organization of dense layers) in order to find an optimal architecture that
yielded the best performance results. Note that we used the same neural network architec-
ture, but changed the objective functions to train two separate models, one for classification
and one for regression. The architecture consists of a set of fully connected layers (FC)
sorted in the following order, as shown in Fig. 8:

— Input Layer: dimension (layer size): 22 (equivalent to the number of features).

1
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! I
1 . > > > 5 N X
1 C ,
! . . I
1 . ° 1
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1 . i
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Fig.8 Neural network structure overview (layers are not scaled to reflect their size)
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— FCI: A fully connected layer (aka., dense layer) with 32 neurons followed by a
BatchNorm1D layer of size 32. Activation: ReLU (Rectified Linear Unit).

— FC2: A fully connected layer with 16 neurons followed by a BatchNorm1D layer of
size 16. Activation: ReLU.

—  Dropout: a dropout function with a probability of 0.3.

—  Output Layer: one neuron.

For the classification model, we used the Binary Cross-Entropy loss function with logits
and the Adam optimizer with the default value for the learning rate, i.e., 1 x 1073. For the
regression model, named GraphEvoDef, we used the loss function Smooth L1 that uses a
squared term if the absolute element-wise error goes below 1 or an L1 term otherwise. It is
less susceptible to outliers than MSE and avoids exploding gradients. We used Adam as the
optimizer function and assigned it the default learning rate 1 x 1073,

RQ1 Can Network Portrait Divergence, like other graph-based metrics, detect signifi-
cant events in software evolution?

This section answers this question by discussing the examined software systems’ results.
Specifically, we show how the changes in graph metrics over several releases can indicate
non-obvious events in the software evolution, which could affect various software engineer-
ing concerns. We attempted to provide an answer at both software and class levels. When
engineers want to see changes in the overall software, they typically look at metrics at the
software level. Changes at the class level are more granular and precisely correspond to the
engineer’s concerns. For example, class changes are more important for engineers when
working on a module with multiple classes.

Software Level The metrics results for our case studies, including the number of the nodes,
the number of edges, the number of execution paths, the average degree of the graph, the
clustering coefficient, the graph diameter, and the modularity ratio, are listed in Table 4.
Note that the table includes the results for only five releases of six case studies due to space
constraints. The complete list of results is available on our website https://vijaybw.github.io/
graphevodef/. Our tool can visualize all of these values in addition to the graph comparison
and Network Portrait Divergence in a user-friendly web-based interface. Figure 6 depicts
the color-coded visualization of the call graph generated from 5 versions of the software
Ant as a case study. The nodes represent the functions while edges represent the interactions
among them. We also highlight the newly added functions with different colors as shown in
Fig. 6 with zoom in and zoom out features. It also outlines the software metrics plot with
the Network Portrait divergence value on a line chart.

We first observed the increase in the number of nodes, edges, and execution paths as
the software evolved—which is a natural behavior during software evolution. Some of the
systems exhibit linear growth in these metrics, namely jMock (an Expressive Mock Object
Library for Java) and JGAP (Java Genetic Algorithms Package). However, Guava witnessed
the highest growth among the five systems in the releases 20.0 and 21.0, while its size
decreased from 132.96 KSLOC to 106.85 KLOSC. We believe that this change happened
due to code re-factoring since the number of nodes and edges sharply grew in these two
releases compared to the previous releases while the system’s overall size decreased. This
implies that significant code changes had happened to increase system quality. It was also
apparent that the most used releases of the SLF4J system were stable and did not grow over
the first four releases compared to a slight increase in the last release.
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Table 4 Metric values for the selected software systems based on network portraits

Software Release Nodes Edges Paths Avg-Degree Clustering-Coef Diameter Modularity

Ant 1.3 591 965 8392  0.036 3.26 12 0.716
1.4 824 1389 15835 0.032 3.37 13 0.703
1.5 1347 2248 33616 0.028 3.34 15 0.731
1.6 1838 3408 61638 0.025 3.71 17 0.692
1.7 3445 5145 21381 0.018 2.99 17 0.837
JUnit 4.1 213 283 819 1.33 0.41 9 0.865
4.3 370 573 1828  1.55 0.28 9 0.772
4.5 361 490 1104 1.36 0.41 9 0.875
4.7 414 573 1193 1.38 0.39 9 0.876
49 439 611 1266  1.39 0.39 9 0.872
jMock 2.1 84 94 76 0.706 0 1 0.876
22 85 95 76 0.702 0 1 0.881
2.5 114 133 112 0.692 0 1 0.916
2.6 127 117 118 0.673 0 1 0.926
2.8 128 120 121 0.687 0 1 0.93
JGAP 35 1748 2336 4783 1.335 0.016 6 0.868
3.6 1763 3218 5042  1.337 0.016 6 0.872
3.6.1 1765 3219 5123 1.336 0.016 6 0.869
3.6.2 1772 3242 5185 1.343 0.016 6 0.868
3.6.3 1772 3242 5185 1.343 0.016 6 0.867
Guava 17.0 1981 2593 3604  1.098 0.043 4 0.943
18.0 1987 2576 3466  1.092 0.042 4 0.943
19.0 1975 2582 3466 1.1 0.042 4 0.936
20.0 2218 2945 4277  1.094 0.041 5 0.945
21.0 2288 3035 4416  1.097 0.04 5 0.943
SLF4] 1.6.2 11 32 31 1.091 0 1 0.119
1.6.3 11 32 31 1.091 0 1 0.119
1.6.6 11 32 31 1.091 0 1 0.119
1.7.0 11 32 31 1.091 0 1 0.119
1.7.25 13 37 36 1.154 0 1 0.152

Network Portrait Divergence The metrics we discussed above could exploit important
characteristics of the graph and its evolution. However, when changes are made at the code
level without any structural changes, i.e., the number of nodes did not change, the previ-
ous metrics fail to detect such changes. Therefore, along with the previous metrics, we used
the Network Portrait Divergence metric to compare two graphs despite their nodes’ number
and order. We observed that Network Portrait Divergence can quantify the change in soft-
ware evolution and represent it in the form of network portraits, which subsequently provide
insights on the execution path changes.

We found that Network Portrait Divergence can measure changes between software
releases efficiently. For example, Table 5 shows the Ant release’s metrics and its color-coded
Network Portrait Divergence. A higher number means that every two adjacent releases are
more distinct. The zero value means that the two releases are the same. The highest portrait
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Table 5 Network portrait
divergence values for ant Version 1.3 1.4 L5 1.6 1.7

Portrait NA 0.1277 0.1692 0.1771

value is coded in red, the least in green, and the remainder of the numbers have a gradi-
ent color. We note that the two most different releases, i.e., the most changes, happened
between releases 1.6 and 1.7; these are the ones that exhibited a sharp drop in the number
of execution paths after the sharp growth in these values in releases 1.4 and 1.6. Not only
can Network Portrait Divergence quantify code change, but it also identifies the changes’
locations on the function-level, which can help understand system evolution.

The metrics indicate a range of structural changes over the releases of a single software
system, but the structure was remarkably similar amongst the software systems examined.
As seen in Table 4, one can observe the overall similarity across the most examined soft-
ware systems and their evolution. In addition to many major releases, this table also shows
some minor releases for the software JGAP and SLF4J, which have fewer or zero structural
changes. Metrics typically change more for major releases due to the addition or modifi-
cation of functionalities. Minor releases often contain defect fixes which are less likely to
include structural changes. The Network Portrait Divergence shifted in apparent proportion
as the Ant expanded in terms of functions and new paths. As Ant progressed from version
1.6 to 1.7, there were major improvements, such as the addition of 80% new nodes (func-
tions) compared to the previous version, which was reflected by the significant change in
the Network Portrait Divergence as well.

Class Level We examined the 22 software metrics at the class level and conducted Spear-
man’s correlation analysis on all nine software systems. As illustrated in Fig. 9(a), the
Network Portrait Divergence exhibits a weak correlation with LOC, RFC, and CBO but
a marginal relationship with NPM and CE. Kernel Density Estimation (KDE) is a well-
established statistical method for studying distributional data characteristics that yields a
continuous function that estimates the data’s density distribution (Scott 2015; Silverman
2018). We can see the relationships between these metrics as shown in Fig.9(b). Also, we
infer that the Network Portrait Divergence is positively correlated to RFC, CE, LOC, and
CBO. The Network Portrait Divergence also has a negative correlation with CAM. Except
for LOC, these five metrics are calculated by counting the length of one sub-paths in specific
scenarios, bringing them closer to Network Portrait Divergence. We compared the diver-
gence of Network Portrait Divergence to these five metrics and two additional graph-based
metrics: edges and execution paths. The edges represent the number of function calls into
and out of the class. The number of execution paths is the number of paths that pass through
the class’s functions.

Table 6 outlines the analysis of four classes from the Ant software and findings are dis-
cussed in this section. These classes range in size from small to large. Class AntStructure
underwent significant refactoring in version 1.7; previously, it had been updated consis-
tently. To be precise, AntStructure was split into three additional classes at version 1.7, and
all of its connections to other classes were rewired. RFC and LOC reflect the appropri-
ate metrics changes, whereas Network Portrait Divergence reflects the appropriate bump to
account for the execution path changes.
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Table 6 Class level comparison with Network Portrait Divergence (Promise dataset)

Version Ant-1.3 Ant-1.4 Ant-1.5 Ant-1.6 Ant-1.7

Class: org.apache.tools.ant.taskdefs. AntStructure

DEFECTS 0 1 0 1 0
PORTRAIT 0 0.129 0.169 0.125 0.177
Edges 8 10 10 12 4
Execution Paths 8 11 11 15 6
CBO 6 7 7 7 7
RFC 55 60 61 61 40
NPM 3 3 3 3 4
Ce 6 7 7 7 7
LOC 643 748 758 749 871
Class: org.apache.tools.ant.taskdefs.Delete
DEFECTS 0 0 0 3 5
PORTRAIT 0 0.131 0.171 0.126 0.179
Edges 9 9 9 11 31
Execution Paths 63 67 97 125 78
CBO 8 10 11 28 37
RFC 49 52 56 98 134
NPM 16 17 19 38 40
Ce 8 10 11 28 37
LOC 579 699 715 890 1129
Class: org.apache.tools.ant.taskdefs.ExecuteOn
DEFECTS 0 1 0 0 2
PORTRAIT 0 0.134 0.176 0.132 0.183
Edges 16 21 21 43 59
Execution Paths 73 115 169 683 367
CBO 12 16 17 20 25
RFC 42 55 56 77 103
NPM 5 9 10 16 20
Ce 12 16 17 20 25
LOC 395 730 757 1164 1279
Class: org.apache.tools.ant.DirectoryScanner
DEFECTS 0 0 0 2 3
PORTRAIT 0.154 0.141 0.173 0.117 0.173
Edges 32 57 53 69 96
Execution Paths 601 1259 2779 2221 234
CBO 2 2 6 9 10
RFC 51 52 67 119 142
NPM 14 14 21 28 31
Ce 2 2 6 9 10
LOC 1407 1489 1171 1739 2382
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Class Delete’s code-base and connections have been steadily growing with each software
release. It had become a component of numerous execution paths 97 and 125 in versions 1.5
and 1.6. And later, it was reduced to 78, which is roughly equivalent to version 1.4. Version
1.7 receives three times the number of function calls in or out but eliminates execution paths.
This behavior indicates that the class is not doing too many activities. All of the metrics
reflect the correct changes, and Network Portrait Divergence reflects them as well.

Class ExecuteOn had a 47% increase in execution path changes, which Network Por-
trait Divergence can detect despite no change in other metrics. Additionally, the number of
execution paths were significantly reduced in version 1.7, while the number of edges were
increased. This behavior could indicate that the class has been extended with new functions,
and all existing call-in/call-out have been rearranged. RFC, in collaboration with Network
Portrait Divergence, has correctly identified the changes.

Class DirectoryScanner is a large class with numerous execution paths. From versions
1.3 to 1.6, we can see that all of the metrics increased steadily. The execution paths were
significantly reduced in version 1.7, while the edges were increased. Now, all of the metrics,
including Network Portrait Divergence were constantly changing. The portrait number is
the same in versions 1.5 and 1.7; this could be because execution paths in version 1.5 were
increased by 120%, while execution paths in version 1.7 were reduced by 90%, and edges
were increased by 39%.

The Network Portrait Divergence can attain new variations in some scenarios where
typical class level metrics may show little changes. Also, we may see different results in
some scenarios where changes were made to the class and major changes to its connections.
Network Portrait Divergence can provide new insights that can help identify significant
events in software evolution and help understand some simple software evolution tasks such
as relating feature to code changes and understanding rationale behind refactorings.

RQ2: How does the proposed software class-level metric network portrait divergence
compare to other metrics for software defect prediction?

Building a predictive model requires several features. As discussed in Section 3, we
did experiments to identify top-performing metrics for software defect prediction. The first
experiment was to find the top 10 software metrics. The ANOVA test selects the features
with the most significant relationship to the output variable. ANOVA F-score is calcu-
lated for all investigated projects for both the tasks classification and regression separately.
Figure 10 illustrates the used features while Fig. 11 depicts the analysis results of the

W #1 rfc
H #2 ce
W #3 loc
#4 wmc
M #5 cam
W #6 portrait
W #7 lcom
W #8 npm
W #9 cbo
B #10 moa

Fig. 10 Top 10 metrics
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Fig. 11 Univariate and features importance analysis

selected features. According to cumulative performance ranking Fig. 10, all metrics (RFC,
CE, LOC, WMC, CAM, PORTRAIT) are highly correlated with the number of defects for
both CPDP and WPDP. As shown in Fig. 10, we have found that the Network Portrait Diver-
gence metric exists in the top six important metrics referring to the association with the
number of defects.

Secondly, we wanted to find the influential metrics in 22 software metrics. We performed
the univariate analysis and features importance analysis for all investigated projects for the
tasks classification and regression separately. Figure 11 shows graphs outlining the metric
analysis for CPDP and WPDP scenarios. CAM, LOC, and RFC are the most influential
metrics. We also could see that Network Portrait Divergence is performing well for the
classifications scenario.

Rathore and Kumar (2019) provides details on which software metrics were used in
software defect prediction models. Each of the constructed models used only several metrics
(usually five to ten) in the regression task. Nine or more defect prediction models have used
the metrics (LOC, RFC, CBO, AMC, CA, LCOM). In comparison, the least used metrics
were CMB, DAM, and WMC and were only used for one defect prediction model. LOC,
RFC, and CAM are also weakly correlated with Network Portrait Divergence, demonstrating
the overall significance of Network Portrait Divergence usage.

RQ3: Can Network Portrait Divergence help to improve the prediction of software
defects?

As discussed in the answers to RQ1 and RQ2, we were able to determine the usefulness
of Network Portrait Divergence for the prediction of software defects. For the classification
and regression tasks, we built deep learning models as described subsection Experiment 2.

To assess the performance of our models, we used the measure F'1 for the classification
task, and MSE and R? for the regression task. The F'1 score is calculated as (5), and it
transmits the balance between the precision and the recall of the model. Mathematically,
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precision is the number of true positives divided by the number of true positives plus false
positives. The recall is the number of true positives divided by the number of true positives
plus the number of false negatives. For example, given a highly-imbalanced dataset where
the number of bug-free classes is much higher than the number of bug classes, a model
can predict only class O (i.e., no bug) and still achieve very high accuracy, sometimes even
in the 90% range. Therefore, the F'1 score can provide a much accurate evaluation for our
prediction model.

2 X (precision x recall)
Fl= it 5)
(precision + recall)

We used MSE and R? for the regression task. The M SE score calculates an average
squared discrepancy between the predicted results y and the actual true value y as shown in
(6), where n is the number of total data samples.

R o
MSE = ;Z(yl i) (6)

i=1

Using an input function of an independent variable, the proportion of the variance of the
dependent variable is determined by R2. It is determined by putting in a regression model,
the association between the real y and the predicted ¥ values. In other words, the percentage
of the response variable variation that is explained by a linear model, as seen in (7).

S i — )2

R? = &
Yo i = 9)?

@)

Our defect classification model evaluation produced an overall accuracy of 94.48% with
an F1 score of 0.76. The confusion matrix is shown in Table 7, actual and predicted values
for the model. We consider these results acceptable, given the fewer features considered in
this study, which prove informative. We argue that increasing the dataset size would increase
our performance significantly. These results are also better than the models produced in
similar studies as we show later.

To measure defect regression model’s overall performance, we used the MSE and R?
measures on the predicted results. We also compared our neural network results to the results
produced by the models: DTR, SVR, and DPNN. These three models were chosen for the
following reasons. First, all of these state-of-the-art methods give automated predictions of
defects in software modules. Second, to the best of our knowledge, these methods are more
accurate than other comparable approaches (Qiao et al. 2020; Yao et al. 2020; Alsolai and

Table 7 Classification confusion

matrix Actual Predicted
Non-defective Defective
Non-defective 1835 234
Defective 434 1094
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Roper 2020; Hammouri et al. 2018; Rathore and Kumar 2017). We tested all the afore-
mentioned models on the dataset described above. All experiments were performed using
NVIDIA Titan RTX GPU with 64G RAM. We implemented our models using PyTorch
and monitored the experiments using an internal model management tool, called ModelKB
(Gharibi et al. 2019, 2021).

The evaluation results are shown in Fig. 12. The proposed approach achieves better
results compared to DTR, SVR, and DPNN in terms of M S E when Network Portrait Diver-
gence metric is considered. In contrast to selecting a metrics set, selecting a modeling
technique appears to have less impact on the M SE values of the model. Furthermore, our
approach outperforms other approaches in terms of R? by a substantial margin. Compared
to the other models, our model provides a better fit to the data that has been observed. As
shown in Fig. 12, the Network Portrait Divergence leads to better result in both M SE and
R? values.

Network Portrait Divergence has contributed to the model being a better fit, proving its
usefulness for Software defect prediction. Typically low M SE and high R? are desirable for
the deep learning models. Our method improves on the state-of-the-art approaches by 18%
in terms of M SE and 48% in terms of the R2. Based on the findings, we can conclude that
the proposed approach is accurate and outperforms the current approaches significantly.

MSE Values

u With Portrait Divergence MSE u Without Portrait Divergence MSE
8.12

1 ' l '
DTR

DPNN GraphEvoDef (ours)

(a) MSE Values

R2 Values

m With Portrait Divergence R?  m Without Portrait Divergence R?
0.46

0.32
0.25
0.14
0.
DTR SVR

DPNN GraphEvoDef (ours)
(b) R? Values

Fig. 12 Defect prediction evaluation results
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5 Threats to Validity

Our research methodology is comprised of various steps, including the identification of
software versions, the construction of call graphs, the comparison of metrics, the creation
of models, and the analysis of relevant studies (Wohlin et al. 2012).

We briefly describe the threats to validity in this section. We begin by discussing con-
struct validity followed by the internal and external validity threats.

5.1 Construct Validity

Construct validity of a study assesses if the conclusions are likely to be erroneous as a result
of incorrect concept engagement, incorrect modeling, or misleading data.

Our approach does not account for code changes made within a function without affect-
ing the overall function calls since we study software evolution using the software structure
itself using call graphs. Such code changes might lead to introducing new defects that
are not detectable using our tool and software metrics. If certain defects occurred due to
incorrect logic within a given method and were fixed without affecting its connectivity to
other methods, the Network Portrait Divergence would not change. However, this specific
challenge is out of the scope in our study and can be addressed in a future work by incor-
porating dynamic call graphs that require running the actual application with particular test
cases.

5.2 Internal Validity

Threats to internal validity concern the causal relationship resulting from study design and
execution artifacts. As a result, it may include uncontrolled or unmeasured variables and
those introduced during the study’s execution.

The use cases collected and studied in this paper were not gathered from a single loca-
tion; and, hence, their metrics and defect data were not consistent. We did not validate these
collected datasets for correctness (e.g., Was the number of defects associated with a soft-
ware release actually correct?). However, after extensive manual efforts, we were able to
complete these datasets and ensure they all included the features needed to train the deep
learning models. Moreover, we developed the GraphEvoDef to automate this process in the
future. We aim to polish and then publish the dataset used in this work in a future paper.

5.3 External Validity

As part of this study, we identify two potentially similar external threats. One threat is that
the study subjects do not cover all areas of software development in their entirety. The
number of product versions and defects discovered will almost certainly vary by domain
and language. Nevertheless, our work aimed to show that applying network comparison
advancements to Java-based systems is feasible and actually helpful. Another threat is that
the granularity will undermine the validity of our findings. Our experiments drew on two
distinct data sources, each containing metrics at the function and class levels. As a result,
it is impossible to claim that network metrics collected at the function level are adequate
indicators of defective classes in large and complex systems. However, we argue that the
number and diversity of the studied subjects in this work was sufficient to prove the overall
usefulness and meet the study targets, as explained in Section 4.
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6 Conclusions

We discussed in this paper the use of Network Portrait Divergence to identify significant
events in software evolution, how it compares to other software metrics, and how it can be
used to predict software defects. Particularly, we implemented (1) a framework to construct
call graphs and calculate their Network portrait divergence, (2) evaluated several metrics to
detect discrepancies between several software system releases, and (3) we presented a semi-
automated tool, named GraphEvoDef, for assisting software engineers in predicting defects
and improving software quality.

We studied 384 software releases of 29 open-source Java systems. The study found that
graph metrics would take advantage of similarities and disparities in software system struc-
ture for evolution comprehension. We also studied the importance of software metrics and
found that the Network Portrait Divergence metric is useful for identifying significant events
in software evolution and its application to defect prediction. Following that, we built two
defect prediction models. In comparison to existing techniques, our models achieved an
18% reduction in the mean square error and a 48% increase in the squared correlation coef-
ficient. The findings of the review indicate that the solution suggested with GraphEvoDef is
accurate and can enhance state-of-the-art approaches. We have also implemented an appli-
cation that can replicate our study with two or more releases through any Java open source
project. The rest of the study results and charts are listed on the tool’s website: https://
vijaybw.github.io/graphevodef/.

Our future work will extend in several dimensions: we will focus on building a complete
dataset with a larger number of software systems and release the dataset for further appli-
cations in this domain. We also plan to investigate the impact of class-based metrics related
to the tests accompanying the code. Another possible direction is to investigate the code
pull-requests made in a software version control system to collect more metrics about the
software and its evolution.
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