Received: 15 June 2020 Revised: 16 October 2020

Accepted: 24 November 2020

DOI: 10.1002/joc.6946

RESEARCH ARTICLE

K RMets

Using Bayesian statistics to detect trends in Alaskan

precipitation
James H.R. White' | John E. Walsh® | Richard L. Thoman Jr?
'Department of Atmospheric Sciences, Abstract

University of Alaska Fairbanks,
Fairbanks, Alaska

2Alaska Center for Climate Assessment
and Policy, University of Alaska
Fairbanks, Fairbanks, Alaska

Correspondence

James H.R. White, Department of
Atmospheric Sciences, University of
Alaska Fairbanks, 2160 N. Koyukuk Dr.,
Fairbanks, AK 99775.

Email: jwhitel19@alaska.edu

Funding information
Climate Program Office, Grant/Award
Number: NA160AR4310162

1 | INTRODUCTION

Air temperature has exhibited a clear positive trend over the past several
decades throughout the arctic, including Alaska. Other variables, such as pre-
cipitation, have much more uncertain trends due to inhomogeneities in mea-
surement and high internal variability. The use of linear regression to analyse
precipitation in Alaska has resulted in often contradictory results. This paper
proposes the use of Bayesian models such as the R package Rbeast to allow for
the more nuanced analysis. The examples given in this paper show how Bayes-
ian analysis can be used to detect subtle changes and better constrain the dis-
agreement between data sources. Applied to gridded data, Bayesian analysis
shows how precipitation has changed overtime across Alaska. Change has
accelerated over the past decade, but only precipitation increase on the North
Slope can be assigned high confidence. Overall, this analysis highlights how
Bayesian techniques may be uniquely useful to climate research in regions

with heterogeneous data sources and substantial internal variability.
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While climate models largely agree that Alaska's pre-
cipitation, particularly summer precipitation, is likely to

Alaska, like much of the Arctic, is experiencing unprece-
dented environmental change (Walsh et al., 2011). While
changes in some climate variables, like temperature,
exhibit easily identifiable trends, changes in other variables
are much more unclear (Bieniek et al., 2014). Precipitation
is one such variable because of its many complex processes,
large spatial variability, high inter-annual to decadal vari-
ability and even difficulties in basic measurement in some
environments. Yet precipitation is a highly consequential
variable driving winter snowpack, river discharge and asso-
ciated floods, and glacier mass accumulation. Precipitation
is also a key determinant of soil wetness, drought, and
wildfire potential. In these and other ways, precipitation
impacts infrastructure, ecosystems, and humans.

increase by 2,100, observed trends over the past century
are much less conclusive (Lader et al., 2017). Most past
studies have shown mixed results and uncertain trends
for both average and extreme observed precipitation
around the state over the past century (McAfee
et al., 2013; Bennett and Walsh, 2014; McAfee et al.,
2014). These issues are enhanced by the spotty and incon-
sistent station data records in Alaska. Heterogeneities in
precipitation histories arise not only from the intermit-
tency of observations at some stations, but also from
changes in instrumentation and changes in the measure-
ment locations (Scaff et al., 2015). Given these heteroge-
neities and the importance of precipitation as a
high-impact climate variable, there is a need for more
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rigorous assessments of variations and trends in precipi-
tation over regions such as Alaska.

The present study brings more rigorous analysis tech-
niques to assess historical variations of precipitation.
While most prior studies have utilized different forms of
linear regression which may not be well suited to precipi-
tation data, methods such as the Bayesian analysis tech-
nique utilized here have the potential to yield more
detailed confidence information and estimation of
change (Hobbs, 1997). Regardless of whether such analy-
sis methods improve confidence in trends, these methods
can provide useful insight to precipitation time series,
especially to changes in the mean, seasonal cycle, and
trend.

2 | BACKGROUND AND
MOTIVATION

McAfee et al. (2013, 2014) provided comprehensive sum-
maries of previous studies that have attempted to detect
changes in Alaska's precipitation through the early 2010s.
Past analyses based on both station and gridded data
have used different types of linear regression (most often
ordinary least squares regression) or occasionally spline
fitting analysis. Linear regression has many advantages
such as simplicity and reproducibility. However, it faces
many challenges including strict assumptions that are
often not met in Alaska and is highly sensitive to outliers
and missing data (Wilks, 2011). Furthermore, linear
regression can risk oversimplifying trends, missing
important short-term variations, and giving little infor-
mation on uncertainty at any given time. Spline fitting
can give a more wholistic picture but struggles to provide
the clean, objective results for which linear regression is
so often used. These shortcomings have led past studies
of Alaska precipitation to often divergent conclusions
about historical and ongoing trends (McAfee et al., 2013).

In Alaska, sparse and discontinuous station data con-
found assessments of trends. To alleviate this problem,
recent research has utilized climate regions that attempt
to aggregate data together into a more complete dataset.
The Alaska climate divisions were originally developed
by Bieniek et al. (2012) and are now used operationally
by the National Centers for Environmental Information
(NCEI). The climate divisions for Alaska can be seen in
Figure 1. NCEI obtains divisional climate data by area-
weighted averaging of a gridded dataset based on
continuous NCEI station records and a high-resolution
climatology (Daly et al., 2012). These data are aggregated
into the current 13 Alaska climate regions in the
nCLIMDIV database (Vose et al., 2014). While the under-
lying gridded data likely suffer from many of the issues

seen in other gridded datasets that rely on interpolation,
the regional aggregation may help reduce the impacts of
heterogeneities at individual locations.

As an alternative to station-based products, reanalysis
can provide an independent, continuous source of precip-
itation data. Additionally, many reanalysis products,
especially ERA (European Center for Medium Range
Weather Forecasting Re-Analysis), have proven useful in
Alaska (Bieniek et al., 2016). Reanalysis, however, carries
its own set of issues, including bias compared to observa-
tions, inability to resolve local effects, and uncertainties
associated with model physics. These biases have been
documented for Alaska by Lindsay et al. (2014) and Lader
et al. (2016). Given the often-discordant results of obser-
vational studies, reanalysis still offers a useful indepen-
dent source to consider, especially since the complete
spatial coverage is achieved by physically based methods.

To illustrate how different datasets compare using tra-
ditional linear regression, trends from two reanalysis
products were evaluated against the NCEI regional obser-
vational data. The recent ERAS5 reanalysis
(Copernicus, 2017) and a downscaled version of ERA-
Interim using the WRF (Weather Research and Forecast-
ing) model (Bieniek et al., 2016) were chosen due to their
skill in depicting precipitation (Lader et al., 2016). These
reanalysis products were aggregated into the climate divi-
sions using the same area averaging methodology as the
NCEI data. From this data, total annual precipitation was
graphed, and an ordinary least squares linear regression
was then applied.

The time series for selected regions (Figure 2) illus-
trates several notable features. First, both reanalysis prod-
ucts show a clear bias compared to the observationally-
based dataset, although ERA5 is generally closer to
observations than the downscaled ERA-I. Such reanalysis
bias has been well documented in past research (Lader
et al., 2016; Marshall et al., 2018). Second, linear regres-
sion results vary widely. While generally not statistically
significant when using a Wald test, linear trend lines
based on the various sources converge in some regions,
diverge in others, and largely agree in some. Of the
3 datasets and 13 regions over the 1979-2018 time period,
the trends show statistical significance at the 95% level in
only two instances: the NCEI data for the South-Central
and West Coast regions. These results contrast with
recent local observations of extreme precipitation and
predictions for the Arctic as a whole (Min et al., 2008),
whose model results suggest a widespread moistening of
the Arctic over the second half of the 20th Century. In
order to get a more complete picture, this same analysis
can be extended back to 1925 for the NCEI data,
although both reanalysis products currently only go back
to 1979. The linear regression results for this longer time
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FIGURE 1 A map of the NCEI climate regions. Diamonds indicate stations that are analysed later in this paper. Regions from Bieniek

(2012) [Colour figure can be viewed at wileyonlinelibrary.com]

period are shown in Table 1. This method still only pro-
duces two statistically significant trends; interestingly in
two different regions than previously noted.

Past research has noted the strong influence of
teleconnections such as the Pacific Decadal Oscillation
(PDO) on Alaskan precipitation (Wendler et al., 2017).
Because a well-known PDO shift occurred in the mid-
1970s, such an influence is likely to lead to a breakpoint in
the centre of the NCEI timeseries (Hartmann and
Wendler, 2005). To account for the possibility of
breakpoints in the data, a segmented linear analysis
(Muggeo, 2016) was applied to the long-term NCEI data. If
a breakpoint was found to be statistically significant at the
95% level, it was added to the regression line. An example
of this analysis for the same regions in Figure 2 is pres-
ented in Figure 3, and the overall numerical results for all
regions are summarized in Table 2. The inclusion of
breakpoints greatly enhances the significance of trends in
several regions, particularly coastal regions and in South-
ern Alaska. Most Interior regions do not exhibit confident
breakpoints and show the same trends as in Table 1.

Overall, these examples of linear regression are not
meant to serve as a comprehensive comparison of

reanalysis and observations nor as a detailed analysis of
the merits of linear regression. Rather, these examples
show how linear regression can often produce differing
results on different datasets and time periods, confounding
its utility for meaningful trend detection. Although subtle
changes may exist, linear regression gives only a single
answer over a large swath of time. Furthermore, these
examples show how breakpoints may exist in the data that
can be used to improve the informativeness of linear
regression. The Bayesian approach used in the rest of this
paper helps alleviate many of the issues of simple linear
regression by adding an uncertainty analysis, allowing for
the presence of breakpoints, and determining trends at
instantaneous points in time. Thus, the Bayesian method
described in the following section provides a more com-
prehensive analysis and avoids many of the pitfalls associ-
ated with linear regression.

3 | METHODS

Bayesian modelling leverages prior information to infer
model structure. Using prior knowledge, one can set the
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Select Linear Trends in Annual Precipitation 1979-2018
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FIGURE 2 The time series of observational NCEI, UAF downscaled WRF, and ERAS5 annual precipitation. Upper panel is for NCEI
Region 2 (Alaska west coast), middle panel is for Alaska state-wide average, and lower panel is for NCEI Region 8 (Northwest Golf of Alaska
coast). Data are displayed over 1979-2018 period of reanalysis. Linear regressions were constructed using ordinary least squared method.

Regions were chosen to illustrate how linear analysis may indicate differing trends in observations and reanalysis [Colour figure can be

viewed at wileyonlinelibrary.com]|

general structure of a model, but exact model parameter
values are left unknown (though they also may be con-
strained with prior knowledge). Parameter values are
then inferred using new observations and Bayesian infer-
ence to create probability distributions of likely parame-
ter values. Rbeast is a Bayesian model developed to
analyse time series and identify change points in those
time series (Zhao et al., 2019). While originally developed
for applications of remote sensing to vegetation, the
model can be applied to any time series of data that
meets its assumptions. The model assumes that an input
time series can be decomposed into four separate compo-
nents: a seasonal component modelled with a harmonic
function, a background component modelled with a
piecewise linear regression function, some number of
possible change points for both the seasonal and back-
ground components, and some amount of random noise.
In the present application, total monthly precipitation
values were used for all Rbeast modelling to ensure that
all these assumptions were met. Monthly precipitation
throughout Alaska has clearly identifiable seasonal
cycles, some climate-based background average, the pos-
sibility of having changepoints, and some amount of
noise due to internal variability or the chaotic component
of the climate system. Monthly precipitation totals were
retrieved from the nCLIMDIV database for regional

(i.e., climate divisional) information (Vose et al., 2014),
the Copernicus datastore for ERA5 data (Copernicus,
2017), and the GSOM version 1 dataset for station data
(Lawrimore et al., 2016).

A roadmap for the Rbeast model is shown in Figure 4.
A distribution of possible parameters is created by the
model as a prior distribution. Prior distributions reflect
prior knowledge of the parameter values. In this case, the
model initially assumes no general knowledge and hence
creates flat distributions. Prior distributions are created
for each of the model components as in Figure 4. These
distributions can be influenced in a few key ways by the
user. Most importantly, the harmonic component period
was set at 12 to reflect the actual seasonal cycle. For this
study, the maximum number of change-points in the sea-
sonal component was set to 6 and the maximum number
of background change-points was set to 12. The minimum
changepoint separation was set to 1 year to help minimize
the influence of outlier events. The exact values of these
parameters do not have a large effect on the results but
can help improve model consistency and confidence.
These distributions describe many different possible
piecewise linear regression and harmonic components,
alongside changepoint point number and positions in
those components, that could be used to describe a time
series. After prior distributions are created, the actual
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TABLE 1 A table containing the ordinary least squared
regression results applied for the annual NCEI regional
precipitation data over the period (1925-2018)

LS linear regression

Region Slope p Region
1-Nslope 0.10 .53 1-Nslope
2-Wcoast 0.50 11 2-Wcoast
3-Cint -0.10 .58 3-Cint
4-NEInt 0.40 .04 4-NEInt
5-SEInt 0.00 1.00 5-SEInt
6-Cook —0.60 .36 6-cook
7-Bristol 0.20 .68 7-Bristol
8-NWCoast —1.00 .93 8-NWCoast
9-NECoast -3.20 13 9-NECoast
10-Npan -1.50 .29 10-Npan
11-Cpan 5.00 .03 11-Cpan
12-Span 2.20 .16 12-Span
13-Aluet —6.00 A5 13-Aluet
Statewide 0.58 .52 Statewide

Note: Slope is listed in (mm-year™) and coloured according to its magnitude
(green being more positive). p-values are calculated via Wald test and
represent the confidence in the slope being non-zero.

of Climatology

observed (or reanalysis) precipitation data is ingested to
create a single posterior Bayesian distribution. The poste-
rior distribution essentially “weights” the prior distribu-
tions based on their ability to accurately fit the time
series. The prior distribution defines the space of parame-
ters that could be used to describe a time series and the
posterior distribution weights those functions according
to their likelihood to actually describe a given time series.
The resulting distribution is analytically intractable. In
order to understand the results, this distribution is then
sampled using a complex Monte Carlo procedure. For
determining sample size, this study follows the guidelines
of past sensitivity analysis (Zhao et al., 2013). For individ-
ual examples, four sampling chains were used with 60,000
samples each using a burn-in period of 10,000 samples.
Sample chains represent the number of sample runs com-
pleted, sample size is the length of each chain, and burn-
in is a number of samples discarded at the start of a chain.
Because the process is inherently stochastic, exact results
can vary between model runs. The parameters chosen
here minimize this variability and differences between
runs generally do not affect the results presented in this
paper. No further processing was done to Rbeast output;
rather the model results are visualized “as is” to provide
insights to the precipitation trends.

Select Linear Trends in Annual Precipitation 1925-2018

NCEI Region 2: West Coast
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FIGURE 3 Asin Figure 2 but for the entire time period (1925-2018) of the NCEI data. A piecewise linear regression model was
constructed using methods from Muggeo (2016), which determines the validity of a breakpoint by finding the difference in slopes. The fit is
improved by the breakpoint analysis [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 A table containing the

Single breakpoint regression . .
breakpoint regression results from

Region Break P Break Slopel Slope2 P1 P2 Region Muggeo (2016) applied for the annual
NCEI regional precipitation data over

1-Nslope 0.34 0.11 0.00 0.54 1-Nslope the period (1925-2018)

2-Wcoast 0.09 0.48 0.00 0.10 2-Wcoast

3-Cint 0.10 —0.15 0.00 0.58 3-Cint

4-NEInt 0.08 0.40 0.00 0.04 4-NEInt

5-SEInt 0.05 —0.02 0.00 0.94 5-SEInt

6-Cook 0.39 —0.60 0.00 0.35 6-Cook

7-Bristol 0.01 1991.31 -0.93 4.70 0.15 0.08 7-Bristol

8-NWCoast 0.00 1956.00 —16.55 5.52 0.00 0.00 8-NWCoast

9-NECoast 0.01 1954.00 —34.51 5.74 0.01 0.10 9-NECoast

10-Npan 0.01 1971.98 -9.43 6.45 0.01 0.08 10-Npan

11-Cpan 0.03 1971.42 —7.12 16.67 0.26 0.01 11-Cpan

12-Span 0.28 1.96 0.00 0.21 12-Span

13-Aluet 0.20 —0.59 0.00 0.49 13-Aluet

Statewide 0.00 1969.00 —2.48 2.04 0.01 .01 Statewide

Note: Slope is listed in (mm-year™) and coloured according to its magnitude (green being more positive).
“Break P" represents the significance of a breakpoint where “P1” and “P2” represent the confidence of the
first and second slope respectively being non-zero.
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FIGURE 4 A schematic representation of the Rbeast model [Colour figure can be viewed at wileyonlinelibrary.com]

4 | RESULTS

indicates that changepoints are most likely placed in the
late 1970s but that there may have been another period

Rbeast outputs a number of parameters that describe the
Bayesian distribution. Figure 5 shows a detailed example
of Rbeast output. For easy comparison to linear analysis,
this example uses NCEI monthly precipitation totals for
the Northwest Gulf region (Figure 1). The results show a
clear decline in background precipitation from the 1920s
until the late 1970s. At that point, a period of rapid
increase occurs, followed by several decades of unchang-
ing background precipitation. The uncertainty around
the period of rapid change is much greater than at other
points in the record. The probability distribution

of change during the late 1950s. Changepoints are
highlighted simply by taking the average number of
changepoints in the posterior distribution and then pick-
ing the highest probability points in the changepoint
probability distribution up to that number of chan-
gepoints with at least 1 year separation. Specific chan-
gepoints are highlights to add context for analysis, but it
may often be more useful to look at the shape of the
changepoint probability distribution itself. The presence
of one identified changepoint means that the sampled
Bayesian models most often used one breakpoint, but
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component rather than the background climate component. The final panel shows the instantaneous slope of the background component to
aid in trend identification [Colour figure can be viewed at wileyonlinelibrary.com]

some used more, and others used fewer. The seasonal
component (bottom half of the figure) has no indicated
changepoints. Overall, this series implies a period of rap-
idly changing background precipitation for the North-
west Gulf Coast during the late 1970s followed by a
period of no significant change in the background precip-
itation nor in the seasonal cycle.

Piecewise linear analysis for Northwest Gulf region's
data for 1925-2018 showed an overall decreasing trend
followed by an increasing trend with a breakpoint around
the early 1950s. The Bayesian Analysis finds a similar
overall shape, but the decreasing trend continues until
1970 with a rapid increase over only about 5 years.
Where linear analysis implies a gradual increase in pre-
cipitation, the Bayesian analysis indicates a much more
rapid shift. The Bayesian analysis places its changepoints
later than the linear breakpoint (the mid-1970s rather
than the early 1950s) but the probability distribution
implies a subtle change in the 1950s as well. The shift
identified in the Bayesian analysis is likely related to the
breakpoint placement in the linear analysis. The mid
1970s changepoint in the Bayesian analysis aligns well
with past research which places a PDO associated climate
shift around this time period (Hartmann and
Wendler, 2005). The example illustrates how RBeast can
add significant context to changepoint and trend

detection. Compared to linear regression, its results can-
not be simply aggregated into a table, as doing so would
eliminate much of the context that Bayesian
analysis adds.

Beyond producing Rbeast output for each NCEI time
series, Rbeast analysis was used to compare reanalysis
and some station data records. These comparisons show-
case many of the unique strengths of a Bayesian
approach. Due to the length of the reanalysis, these com-
parisons are constrained to the time period (1979-2018).
Several notable examples are now presented.

Figure 6 displays a comparison between the Univer-
sity Experimental Station and its corresponding ERA5
grid cell. The University Experimental Station is a long-
term weather station record that has been consistently
maintained near the University of Alaska Fairbanks cam-
pus. Excluding a short, wet period around 1989, the sta-
tion data record shows a period of relatively little change
from 1979 until 2012. It rapidly increases from about
2012 through 2015 before flattening out at this higher
level. This increase is associated with a changepoint,
however, because the credible interval before and after
the changepoint overlap, the change is unlikely to be sig-
nificant. The ERAS5 results show an overall similar, but
less pronounced change than the station data. The wet
period in the early 1990s appears more prolonged in the
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FIGURE 6 A comparison between the university experimental station and ERAS reanalysis covering the period (1979-2018). The top
panel shows the station data and corresponding Rbeast model fit while the second panel displays the same information for the reanalysis

data. The middle two panels show the background component and corresponding changepoint probability distribution for the station data

while the bottom two panels show the same data for the reanalysis output. Note that there is some missing data left blank in the station data

series in 2003 [Colour figure can be viewed at wileyonlinelibrary.com]

reanalysis and the recent wetting does not appear as
strongly. The changepoint distribution is similar, though
exact placement is much less confident for the reanalysis
data. The Fairbanks example shows a location where
reanalysis and observations largely agree in terms of gen-
eral trends. The muted shift in reanalysis likely stems
from reanalysis data showing relatively lower extreme
highs compared to observations. This likely illustrates the
importance of convective and terrain-associated precipi-
tation in the Fairbanks area which is often not well
resolved in reanalysis models (de Leeuw et al., 2014).
Figure 7 is a similar comparison for King Salmon in
Southwest Alaska. The station data for King Salmon
shows that precipitation has slightly but consistently
increased linearly over the record. A changepoint is
placed around 2010 indicating a recent increase in the
precipitation trend. Though consistent, the confidence
level of this change is not high. The reanalysis results dif-
fer substantially from the station-based results. The
reanalysis exhibits little change until 2010 with gradually
increasing precipitation appearing more recently. It has a
changepoint placed around 2017 associated with the
recent precipitation increase, though the probability

distribution shows very low confidence in this change
point. The reanalysis change in precipitation has even
lower confidence than the station data. In contrast to the
preceding comparison for Fairbanks, the two series here
show relatively little agreement. Other comparisons in
Southwest Alaska, such as Bethel, show similar results to
King Salmon. The exact mechanisms for this disagree-
ment are unclear, but similar to Fairbanks, much of the
warm-season rainfall in this area is controlled via small-
scale (unorganized) convection which is often not well
captured by reanalysis.

Figure 8 shows a comparison for Kuparuk, which is
an NWS cooperative station on the Alaskan north coast,
west of Prudhoe Bay. The station data show a slightly
positive increase until around 2010 where the precipita-
tion increase appears to accelerate. A changepoint is
placed around 2012 alongside an acceleration of the pre-
cipitation increase. The reanalysis data exhibit a very
similar trend to the station data but with a much wider
confidence interval. A changepoint occurs in 2012 along-
side the station data changepoint, though the probability
distribution indicates that the reanalysis changepoint is
less confident. Unique amongst the examples displayed
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FIGURE 7 Asin Figure 6, but for the King Salmon Airport station and ERAS reanalysis [Colour figure can be viewed at
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here, the red line in the reanalysis series indicates a chan-
gepoint in the seasonal harmonic component. This sug-
gests that the North Slope data may be exhibiting some
change in seasonality most likely driven by increasingly
wet summers in contrast to dry winters. Similar precipita-
tion increases and agreement between reanalysis and sta-
tion data is seen in other North Slope stations such as
Utqiagvik.

Figures 9 and 10 show how Rbeast can provide
insights to precipitation in Southeast Alaska. In the
results for Juneau (Figure 9), the station data indicate a
rapid, short term increase in precipitation between 1990
and 1995. This increase is associated with three chan-
gepoints, although the probability distribution indicates
little confidence in their exact placement. The wide
uncertainty interval during this period indicates little
overall confidence in the background component and
hence the trend. The background remains flat for most of
the rest of the record with only a recent decrease. The
reanalysis series differs greatly, exhibiting a nearly flat
trend with only very recent drying. The confidence inter-
val is very wide, indicating little confidence in the recent
change. Although one changepoint is placed, the rela-
tively flat probability distribution indicates very little con-
fidence. Similar disagreement, though with different
timing, occurs in some other Southeast Alaska stations

such as Ketchikan. These similar stations are all first
order, automated stations. Figure 10 shows the results for
different Southeast Alaska station in Auke Bay, just a few
miles from Juneau. In contrast to the Juneau station, this
data is collected by NWS cooperative observers, not an
automated station. The station record here indicates
essentially no change until 2010 where there is a subtle
increase followed by a decrease after 2015. An uncertain
changepoint is associated with the initial change in 2010.
The reanalysis data is very similar, although no increase
is observed in 2010. The magnitude of station-reanalysis
disagreement for Auke Bay is much smaller than for
Juneau. For both cases, the wide confidence interval sug-
gests notable though not significant change. In contrast
to Juneau, several other cooperative stations in Southeast
Alaska, such as Little Port Walter and Petersburg, show
similar agreement to Figure 10. Disagreements between
station data and reanalysis, as illustrated by the 1990
spike in Juneau, present a clear issue, as such disagree-
ment is present at several automated stations but wholly
absent from nearby Co-Op stations. The NCEI regional
data includes both Co-Op sites and first order automated
stations, and hence may be influenced by these incongru-
ent shifts. Rbeast analysis for the Central Panhandle
region in Figure 11 exhibits an increase in uncertainty
after 1990 around the time of the spike seen in Juneau.
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This time series also exhibits a further increase around
2000 that can be seen in some other areas of the Central
Panhandle region but not in Juneau. The 1990 spike has
been noted as an inhomogeneity by (McAfee et al., 2013).
These results suggest that the 1990 spike may be caused
by station changes rather than actual precipitation,
though station metadata does not report any specific
change around 1990 (Lawrimore et al., 2016). This exam-
ple shows a situation where reanalysis may provide a
more accurate picture than station data alone. It should
be noted that all data sources in Southeast Alaska exhibit
a recent decrease in precipitation, likely associated with
widespread recent drought (Bathke et al., 2019).

More broadly, reanalysis data allows for exploration
on a larger geographic scale in order to assess broad-scale
trends. For this purpose, we use the spatially complete
ERAS data. The native ERAS5 grid is used and Rbeast is
run on each grid cell individually; no extra information is
ingested form surrounding cells. Figure 12 shows esti-
mated changes over various timeframes in background
precipitation using RBeast based on ERA5. Relative to
1979, the 1990s (panel b) and 2000s (panel c) saw drier
conditions in much of the interior and west coast while
wetter conditions are apparent on the North Slope. In the
2010s (panel d), much of the Interior and Southwest

Coast was wetter than preceding decades and the North
slope saw further intensification of a wetter climate.
Southeast Alaska, on the other hand, experienced drying.
There is also a gradual wetting trend observed in the far
western Aleutian Islands and much of the Chukchi Sea
throughout the record. In contrast, the Bering Sea experi-
enced more mixed trends, with recent wetting in the west
but little change in the central and eastern Bering Sea.
Over the Arctic Ocean, there is a decrease north of the
Chukchi Sea, peaking in intensity in the early 2000s.
Areas of high confidence change are generally limited to
the 2010s and to the North Slope and west of the far
Aleutian Islands. High confidence change only occurs in
areas of increased precipitation; no area of precipitation
decrease is highlighted with high confidence.

5 | DISCUSSION

In situ observations often provide a more detailed and
confident record for a given location, but reanalysis
enables investigation over large areas where observations
are not present. Figure 12 illustrates how Bayesian analy-
sis may be applied to a gridded dataset. The details
afforded by Bayesian analysis allow for identification of
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trend intensity over time. Furthermore, the uncertainty
statistics allow for areas of high certainty to be
highlighted. While trends vary greatly, some definite con-
clusions can be made. Precipitation on much of the North
Slope has significantly increased over the past 40 years.
Additionally, precipitation has significantly increased
over the western Bering Sea, although little observational
data exists to verify the reanalysis there. No area of
decrease is marked as significant, so the broad trends
point to a wetter climate. This finding aligns well with
current climate projections (IPCC, 2013; Lader
et al., 2017).

While overall trends are positive, the trends have
changed unevenly around Alaska in the last 40 years, and
many areas, such as the Interior, have only recently seen
increased precipitation. Furthermore, short term climate
events such as the drought in Southeast Alaska (Bathke
et al., 2019) can have large effects on the Rbeast results, so
these trends that are not statistically significant are not
necessarily related to climate change. That said, areas
highlighted as significant change are more likely associ-
ated with climate change rather than interannual variabil-
ity. The Kuparuk location shown in Figure 8 is within the
area of statistical significance in Figure 12d. In this case,
the two data sources agree that precipitation has gradually
increased over 40 years, though the increase in the
reanalysis data is somewhat less confident. The narrow
confidence interval in this example suggests that the sig-
nificance of this change is due to both the large magni-
tude of the change and the narrower confidence interval
generated from less variable precipitation.

The results presented here highlight differences
between Bayesian analysis and traditional linear regres-
sion. Perhaps the most obvious practical difference is that
Bayesian analysis allows for direct decomposition of
background and seasonal signals. Furthermore, Bayesian
statistics allow for trends to be analysed at specific points
in time rather than as a single linear regression spread
over a large period. This allows the Bayesian analysis to
identify short-term or subtle trends that are missed by
linear analysis. Alongside instantaneous trend identifica-
tion, Bayesian statistics also allow for a varying confi-
dence range, giving a more nuanced picture of
uncertainty. Breakpoint analysis in linear regression
yields a single deterministic location, while Bayesian
analysis can identify many possible changepoints while
providing probability distributions for their placement.
Bayesian analysis also enables a more temporally detailed
analysis while giving an explicit picture of component
uncertainty. While interpretation may be less straightfor-
ward than linear analysis, the added context can provide
significant nuance. The examples explored here showed
often very wide uncertainty ranges, likely stemming from

the large inter-annual variability in precipitation. Less
variable parameters like temperature show narrower con-
fident ranges, allowing Bayesian analysis to detect subtle
changes that linear analysis may miss.

6 | CONCLUSIONS

The examples given in this paper show how Bayesian
analysis can be used to detect subtle changes in precipita-
tion and better constrain the disagreement between dif-
ferent sources of precipitation data. For example, the
application of Rbeast shows how Bayesian methods can
be used to detect the start and end dates of trends and,
more importantly, to assign confidence levels changes in
trend components. The method can also identify changes
in the seasonal cycle, although there was little evidence
for such changes in the precipitation data examined here.

This analysis drew upon several data sources, includ-
ing records from individual stations, precipitation data
aggregated into climate divisions, and a state-of-the-art
atmospheric reanalysis, ERAS5. Reanalysis has the advan-
tage of spatial and temporal completeness, and it argu-
ably provides the best avenue to a robust assessment of
trends over time. Application of the Bayesian method to
the different sources of data for a specific location can
lead to the identification of spurious heterogeneities in
the station data. Examples presented here for Southeast
Alaska showed that the change to the automated observ-
ing system in the early 1990s resulted in such a heteroge-
neity in the station data at some locations, demonstrating
further the insights that can be provided by the Bayesian
method.

When applied to ERAS5 gridded precipitation data for
Alaska and the surrounding seas, Rbeast shows how pre-
cipitation has changed spatially over time. Recent
increases are found over northern Alaska, parts of the
Interior, nearshore regions of the Beaufort and Chukchi
Seas, and a large area of the western Bering Sea. Except
for the northern Alaska coastal region, these changes
emerged only with the addition of the most recent decade
(2010-2019) to the ERAS5 reanalysis. However, only
northern Alaska's increase of precipitation can be
assigned high confidence. The emergent character of this
increase over much of the Alaska domain is consistent
with global climate model projections of increased pre-
cipitation in high latitudes due to anthropogenic forcing.
In this respect, the Bayesian method appears to be an
ideal candidate for systematically monitoring a variable
that has widespread impacts in Alaska, as noted in the
Introduction. The results presented here show the poten-
tial of the Bayesian method to not only monitor but to
diagnose the trends in climate variables. Applications to
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other variables such as temperature, wind speed, and
even cryosphere variables such as sea ice and snow cover
appear to have merit, especially since the seasonal cycle
of these variables can be stronger than the seasonal cycle
of the precipitation, which was the focus of this study.
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