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Abstract: Linear quadratic optimal control problem is considered for linear stochastic differential equations
with the coefficients being bounded operators on the spaces of square integrable random variables. The main
motivation of our study is linear quadratic optimal control problems for mean-field stochastic differential
equations. Open-loop solvability of the problem is investigated. The well-posedness of a relevant system of
linear coupled forward-backward stochastic differential equations with operator coefficients is established,
which leads to the existence of open-loop optimal control. Finally, as an application of our main results, a
general mean-field linear quadratic control problem in the open-loop case is solved.
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1 Introduction

Let (Q,F,F,P) be a complete filtered probability space on which a standard one-dimensional Brownian
motion {W(t),t > 0} is defined such that F = {F;};>¢ is the natural filtration of W (-) augmented by all the
P-null sets in F. Consider the following controlled linear (forward) stochastic differential equation (FSDE,
for short) on [t, T):

(L.1) { dX(s) = [A(s)X (s) + B(s)u(s) + b(s)]ds + [C(s) X (s) + D(s)u(s) + o(s)|dW (s), s € [t, T,
' X(t) =z

In the above, X(-) is called the state process taking values in the n-dimensional Euclidean space R™; u(-)
is called the control process taking values in R™; (¢, ) is called an initial pair with ¢ € [0,T) and square
integrable R™-valued random variable x; b(-) and o(:) are called non-homogeneous terms. To explain the
coefficients of the system, we first recall the following spaces: For any ¢ € [0, T],

T
L3(t, T;R™) = {gp D [t, T] x Q@ — R™ | ¢(-) is F-progressively measurable, E/ lo(s)]2ds < oo},
t

L%, (4 R") = {¢: Q — R™ | € is Fy-measurable and E[¢[? < o0 }, L*(;R™) = L3 (O R™).
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For any Banach spaces X and Y, we let .Z(X;Y) be the set of all linear bounded operators from X to Y, and
denote .Z(X;X) = Z(X). Also, when X is a Hilbert space, we let . (X) be the set of all bounded self-adjoint
operators on X. In the state equation (1.1), we assume that

(12)  A(s),C(s) € .,sf(L;S(Q;Rn)), B(s),D(s) € g(L;? (QR™); L% (2 ]R”)), Vs € [0, 71,
with certain additional conditions. In what follows, the set of all initial pairs is denoted by
7= {(t,x) |te0,1), z e LQE(Q;R”)},

and the set of all admissible controls is denoted by U[t, T = La(t, T; R™).

One can show that under certain conditions, for any initial pair (¢, z) € 2 and control u(-) € U[t, T}, the
state equation (1.1) admits a unique strong solution X (-) = X (-;¢,x,u(:)). The performance of the control
process is measured by the following cost functional:

T
J(t, zu(-)) =E <QX(T),X(T)>+2<9,X(T)>+/t ((Q(S)X(S),X(S»+2<S(S)X(8),U(8)>

HR(s)u(s),ul(s)) +2(a(s), X (5)) + 2(p(s), u(s)) ) ds].

(1.3)

where g € L2(Q;R"), q(-) € LA(0,T;R™), p(-) € L2(0,T;R™), and

Ge y(ﬁ(Q;R“)), Q(s) € Y(Lfrs (; R”)),

(1.4)
S(s) € Z (L3, (UR"): LE (UR™)),  R(s) € 7 (13, (R™),  Vse[0.7],

with certain additional conditions.
Our optimal control problem can be stated as follows.

Problem (OLQ). For given (¢,2) € 2, find a u(-) € U[t,T] such that

(1.5) Jtzu() = b JEzu).

The above Problem (OLQ) clearly includes the classical stochastic linear quadratic (LQ, for short) optimal
control for which all the coefficients and quadratic weighting operators in the cost functional are matrix-
valued processes ([34, 29, 30]). On the other hand, by allowing the coefficients of the state equation and
the quadratic weighting operators in the cost functional to be linear bounded operators between Hilbert
spaces of square integrable random variables, our problem will cover stochastic LQ optimal control problem
for mean-field FSDEs with cost functionals also involving mean-field terms (which is referred to as MF-LQ
problems). In [33], for a simple MF-LQ problem (with deterministic coefficients), under proper conditions,
optimal control is obtained via the solution to a system of Riccati equations. See [11, 17] for some follow-up
works.

For classical LQ optimal control problem and two-person differential games (with deterministic coef-
ficients), in [26] (see also, [27, 28]) open-loop and closed-loop solvabilities/saddle points were introduced,
and the following interesting equivalent relations were established for LQ optimal control problems with
deterministic coefficients: The open-loop solvability of the LQ problem is equivalent to the solvability of a
forward-backward stochastic differential equation (FBSDE, for short), and the closed-loop solvability of the
LQ problem is equivalent to the solvability of the corresponding Riccati equation. For two-person differen-
tial games, similar results are also valid. In the current paper, we focus on the open-loop solvability of our
Problem (OLQ). The studies of closed-loop case and differential game problems will be carried out in our
future publications. For the solvability of FBSDESs or Riccati equations arising in the classical LQ stochastic



optimal control problems and stochastic differential game problems, one is referred to [22, 8, 36, 38]. We
may regard the current work as a continuation of [33, 11, 17] and [26, 27, 28].

Due to the appearance of the operator coefficients in the state equation and the cost functional, some
new methods and techniques need to be developed. Actually, our results on the FSDEs and BSDEs with
operator coefficients are of independent interests themselves. Based on these preparations, as expected, we
will establish the equivalence between the open-loop solvability of Problem (OLQ) and the well-posedness of
a coupled FBSDE with operator coefficients. Also, the well-posedness of the revelent FBSDE with operator
coefficients is established under some conditions so that Problem (OLQ) is solved. Aa an application of our
general abstract results, we present the solution to the mean-field LQ problem (which is a major motivation
of the current work). An explicit open-loop optimal control for the MF-LQ control problem is derived.

The rest of this paper is organized as follows. Some motivations of Problem (OLQ) are carefully presented
in Section 2. We also develop some general results for FSDEs and BSDEs with operator coefficients. Section
3 is concerned with Problem (OLQ). Open-loop optimal controls are characterized, and the solvability of the
revelent coupled FBSDEs with operator coefficients is established by method of continuation. In Section 4,
an MF-LQ optimal control problem is worked out.

2 Preliminaries

2.1 DMotivations

In this subsection, we look at some motivations of our Problem (OLQ). First of all, for the state equation
(1.1), let us look at some special cases.

e The classical linear SDE:

{A<s>5 — A(s)¢, C(s)=C(s)§, V&€ L% (R,
B(syn = B(s)y, D(s)=D(s)y,  Vne€ L% (LGR™),

with A(-),C(-), B(:), D(-) being some matrix-valued processes.
e The case of simple mean-field SDE (MF-SDE):

A(s)€ = A(s)€ + A(s)E[A(s)¢],  C(s)¢ = O(s)€ + C(s)E[C(s)¢], V€ € L% ((4R™),

(
B(s)n = B(s)n + B(s)E[B(s)n], D(s)n = D(s)n+ D(s)E[D(s)n], Vne L% (%R™),

for some matrix-valued processes A(-), A(-), A(-), etc. In the case that all the coefficients are deterministic
(as in [33, 11, 17]), the above will be reduced to the following simpler form:

{«4(8)5 = A(s)E+ A(s)E[¢], C(s)€ = C(s)€+ C(s)E[E], VE € LE (% R™),
B(s)yn = B(s)n+ B(s)E[n], D(s)n=D(s)n+ D(s)E[n], Vne L% (4R™),

for some matrix-valued deterministic functions A(-), A(-), etc.

o The extended MF-SDE:

A(s)E = A(s)E + / Ay ($)E[Ax(5)€] u(d),
R Ve € L% (O R™),

C(s)E = C(s)E + / Ci(5)E[Cr (5)€] u(d),

Bs) = Bls)n-+ | Ba(s)E[Ba(s)a]u(d),
& Vi€ L3 (R™)

D(s)yn = D(s)n + / Da(s)E[ D (s)n] (d),
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with A(-), C(-), B(-), D(-) being matrix-valued processes and Ay (-), Ax(-), etc. being families of matrix-valued
processes parameterized by A € R, and () being a Borel measure on R. A special case of the above is the
following (with p(-) supported at {1,2,3,---}):

A(s)E = A(s)E+ Y AL(s)E[A(s)E] = A(s)E + A(s) 'E[A(s)€],
el _ i _ Ve € L% (R,
C(s)E = C(s)€+ > C(9)E[Cr(s5)¢] = C(5)& + C(s) "E[C(s)¢],
(2.2) k21
B(s)n = B(s)n+ Y _ Bi(s)E[Bi(s)n] = B(s)n+ B(s) "E[B(s)n],
e _ i} _ vn € L% (;R™),
D(s)n = D(s)n+ > Di(s)E[Dy(s)n] = D(s)n+ D(s) "E[D(s)n], '
k>1

with

A(s)" = (Au(s), Az(s ) ), Als)" = (Ai(s)T, Aa(s) ),
etc., for some matrix-valued processes A (-), Ax(-), etc.
);

From the above, we see that by allowing A(-),C(-), B(:), D(-) to be operator-valued processes (not just

matrix-valued processes), our state equation can cover a very big class of stochastic linear systems.

Next, we look at the cost functional. To get some feeling about the operators in the cost functional, let
us look at the case of (2.2). Let

com [ X(D) (X0 ()
(1) = <E[GX(T)]>, X(s) = <E[Q(S) X(S)]>7 u(s) = (E[ﬁ(s)u(s)J,

Gh Q1(s) Ry(s)
G=|Gz2|, Q(s) = [ @205) |, R(s) = | Ba(s) | .
Then the quadratic term in the terminal cost could look like the following:

e (G GT X(T) X(T)
E(GX(T),X(T)) = E< (c‘; G ) (E[éX(T)]> ’ (E[éX(T)]> >

E[(GX(T), X(T)) + 2(GX(T), E[GX(T)]) + (GE[GX ()], E[GX (T)])]
E(GX(T) + GTE[GX(T)] + GTE[GX(T)] + G E[G|E[GX(T)], X (T))
E(GX(T), X(T)),

Go Gu G -
G' =@, G=|G2w|, G=|Gn G2 -], GT =G,

The quadratic terms in the integrand of the running cost should look like the following:

(s) Q(s) (s) X(s
E(Q(s)X(s), X(s)) = << Q(s) Qs )>< E[Q ()X(s)]) ( E[Q(s) (s)]>>
) ) + I,

where

with

><v

= E[{Q(s)X(s), X(5)) +2(Q(5)X (), E[Q(s)X (s)]) + (Q(s)E[Q(s) X (5)], E[Q(s) X (S)M
= E(Q(s)X(s) + Q(s) "E[Q(s)X (5)] + Q(s) "E[Q()X (5)] + Q(s) "E[Q(s)|E[Q(5) X (s)], X (5))
= E(Q(s) X (s), X(s))



with

and
E(R( (o) ule) = 5( (ﬁii i ) (E[ﬁqfiji(s)]) | (E[ﬁg?z(s)]) )
= E[@(S)U(S), u(s)) + 2(R(s)u(s), E[R(s)u(s)]) + <ﬁ(8)E[ﬁ(S)U(S)]aE[ﬁ(S)U(S)M
= E(R(s)u(s) + R(s) 'E[R(s)u(s)] + R(s) "E[R(s)u(s)] + R(s) "E[R(s)|E[R(s)u(s)], u(s))
= E(R(s)u(s), u(s))
with
Rio(s) Rii(s) Riz(s) -
R(s)T = R(s), R(s)= (Rzg(s)) R(s) = (Rm'(s) Rys(s) ) , R(s)T = R(s)
Also,
BS(IX(0)u(0) = B (58 : D (E[Qﬁg(sn) ’ (E[ﬁﬁi(s)]) )
= E[<5(8)X(8) u(s)) + (S(s)X (), E[R(s)u(s)])
+(S(s)E[Q(s)X ()], u(s)) + (S(s)E[Q(s) X (s)] E[R(S)M(S)M
= E(S(s)X(s) + R(s) "E[S(5) X ()] + S(s)E[Q(5) X ()] + R(s) "E[S(s)|E[Q(s) X (5)], u(s))
= E(S(s)X(s),u(s))
with

The linear terms in the cost functional could look like the following;:

= X(T)

(e X(r) =5( (#), (E[éX(T)]) ) = Elan + GTBlgl, X(7)) = Blg. X (1),

_ q0(s) NX(S) _ s Q(s)TEla(s s)) = s s
Bla(s). X(9) = £( (1)), (E[Q(S)X(S)Q ) = Elan(s) + Qo) Ela(o)l X (o)) = Elg(e), X)),
(5

_ Po N“(S) = s) +R(s)TE[p(s)]. u(s)) = s), u(s
E<p<s>,u<s>>E<(p(s)),<E[R(s)u(s)]>> E(po(s) + R(s) "E[p(s)] u(s)) = E{p(s). u(s))

with G, Q(-) and R(-) as above, and

9 q1(s) p1(s)
g=|2]|, as=|26)]|, pis)=]|r0)].



Hence, in the above case, we have

G¢ = G¢ + GE[G] + G 'E[G] + G E[GE[GE], ¢ € L*(X%R"),

Q)¢ = Q)€+ Q(s) "E[Q(s)¢] + Q(s) "E[Q(s)¢] + Q(s) "E[Q()|E[Q(5)€], & € L, (%R,
(2:3)  S(s)¢ = S(s)¢ +Ro(s) "E[S(5)¢] + S(s)E[Q(s)¢] + R(s ) E[S(s)[E[Q(s)¢], &€ Lk (%R™),

R(s)n = R(s)n + R(s) "E[R(s)n] + R(s) "E[R(s)n] + R(s) "E[R(s)[E[R(s)n], n € L% (LR™),
9=90+G E[g], a(s)=ao(s) + Q(s) 'Ela(s)], p(s) = po(s) + R(s) "E[p(s)].

When all the weighting functions in the cost functional are deterministic, the above will be reduced to the
following: (see [33])

G¢ = GE+GE[¢], €€ L*(R"),
Q(s)E = Q)€ + Q(s)E[E],  S(s)€ = S(s)€ + S(s)E[¢], ¢ € Lk (4R,
R(s)n = R(s)n+ R(s)E[n], ne L% (LR™).

The above suggests that if the coefficients of the state equation are given by (2.1), the corresponding operators
in the cost functional could look like the following:

6¢ = G¢ + [ (GTBIGN + GTEGA (@ + [ [ GIGLEGu@Nn(dr), € e @R,
Qs)¢ = Qs)¢ + [ (Oa(s)TEIQA(:)E) + @ () BIOA(3)¢](aN
+ [[ 6T QB G @), € € L (R,
(2:4) S =S5(s)¢ + [ (Ba(s)TESA(5)e) + Sr()EIQ()e] ()
+ [ B B BRI (@), € < L5 (@R,
R(spn = R+ [ (Ra(o) TELRA(s)n] + Ra (o) TELRa(5)0] )

+ [ [ @) B (BB @), e L (@R,

In the above, @AU, @Ay(), §>\u('), ﬁAV(~) are deterministic, and
(2.5) G, =Guny  Qu(s)T=0Qurls),  Ra(s)T =Rua(s), VAveR, sel0,T).

The above shows that our framework can cover many problems involving mean fields.

2.2 The state equation and the cost functional
We return to our state equation (1.1) and cost functional (1.3). Recall the spaces

L% (;R™) C L*(;R™) = L%, (4 R™Y),  s€[0,7],
each of which is a Hilbert space with the norm defined by the following:

1
lelle = (BIER)™, V¢ € LF (% R™).
Next, we introduce the following space:
LE(Q; O([t, T];R™)) = {(p L [t, T] x Q = R™ | ¢(-) is F-adapted, s — ¢(s,w) is continuous almost surely,

EL:EI;“] \(p(s)|2] < oo}.

Now, we introduce the following definition.



Definition 2.1. An operator-valued process B : [0,T] — f(LQ (Q;R™); L2(€; R”)) is said to be strongly

F-progressively measurable if
B(s) € g(LQ (4 R™); L% (9 R”)) Vs € [0, 7],

and for any 7(-) € L2(0,T;R™), B(-)n(-) is F-progressively measurable. The set of all strongly F-progressively
measurable operator-valued processes in . <L2 (Q;R™); L2(€; R”)) is denoted by % <L2 (Q;R™); L2(€; R”)) ,
and denote

Lo (L2(QR"); LA RY)) = % (L2(QRY)).
Further, for any p € [1, 0], we denote
22 (LR LR ) = {B() € Z (L (R™); LA RY) ) | [B()] € L7(0, T R)},
where ||B(-)|| stands for the norm of the operator B(-), and
k% (L2(Q;R”);L2(Q;R")) = <L2(Q;R”)).
Also, we let
K7 (LQ(Q;R")) - {B(-) c L (LQ(Q;R”)) | B(s) e y(Lffs (Q;R”)» Vse [07T]}.
Strong measurability for operator-valued functions can be found in [35]. Our operator-valued processes
have an additional feature of F-adaptiveness. Therefore, the above definition is necessary.
Now, we introduce the following linear FSDE with operator-valued coefficients:
(2.6) { dX(s) = [A(s) X (s) + @(s)ds + [C(s) X (s) + ¥ (s)|dW (5), s € [t,T],
X(t) ==
We have the following well-posedness of FSDE (2.6).
Proposition 2.2. Let A(-),C(-) € 42 (LQ(Q;R”)> and ¢(-),9(-) € LA(0,T;R™). Then for any (t,x) €

9, there exists a unique solution X (-) = X (-;t,x) € L&(Q; C([t, T]; R™)) to (2.6) and the following estimate
holds:

T
(2.7 | s X < KElol+ [ (1ot + o)) ar]
s€ft,T) t
for some constant K > 0 depending on || A(-)|| 22, 7;r) and [|C(*) || z2(t,75r) -
Proof. Let (t,z) € 2 be fixed. For any X(-) € L2(; C([t, T]; R™)), we define the process X (-) by

S

X(s) = H/j (A X(r) —l—g@(r))dr—i—/t (K@) +w(r))aw(r), s € [t,T].

By the classical theory of SDEs, we see that X () — X(-) is a map from L2(Q; C([t,T];R™)) into itself. For
any t < t1 < to < T and any s € [t1, ta],

xP < s{IxP + ([ 140K + ot |dr) #| [ e +vave|}

By the Burkholder-Davis-Gundy inequality, we have

E[ sup |X(T)|2] S3E{|X(t1)|2“‘(S_tl)/S

Te[tl,s] t1

<3{IX(P + 20— 1) [ (MOX0IP + loP)dr + 262 [ (IeIX0P + o)) ar

ty

A(M) X (r) + @(r)’zdr +co /s

ty

C(rX(r) + w(r)‘er}
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where co > 0 is the constant in the Burkholder-Davis—Gundy inequality.
Let K = 3max{1,2T,2c3}. We have

. 5w X)) < K{BIXF]+E [ (1o0)F + e )i

- / (LG + 1COI) X ()P ar .

t

Thus
B[ s (X)) < K{E[XC)P] < [ (It + o)) ar

TE[t1,8]

+K / (A2 + c)?)dr B sup |X<T>|2].

TE[t1,9]

Since for § > 0 small enough, we have

K / o (IA@)I2 + lle(r)2)dr < 1,

the map X (-) — X (-) is a contraction from L2(Q; C([t,t + §];R™)) into itself. Therefore, it admits a unique
fixed point which is a solution to the state equation on [t,t + §]. Repeating the same argument, we can
obtain the unique existence of the solution X (-) € L(Q; C([t, T]; R™)) to the state equation.

Moreover, for the solution X(-), from (2.8), we have

[ sup 1XIF] < KE{jaf + [ (1ot + o))

+K / (1AW + le@I?)E[ sup [X(0)]ar

TE[t,r]
Then (2.7) is derived by Gronwall’s inequality. O
For the coefficients of state equation (1.1), we introduce the following hypothesis.

(H1) The coefficients of the state equation satisfy:
A() e 22 (L2(R), c() e £ (LH(@R™),
B(),D() € £ (LAQR™); LARY)), b(),0() € L0, T;R"),

Clearly, under (H1), Proposition 2.2 leads to the well-posedness of state equation (1.1). Now, for the cost
functional, we introduce the following hypothesis.

(H2) The operator G € V(LQ(Q; R")) and the operator-valued processes
Q() e A (1ARM), S() e L2 (LR IAOR™)), R() €72 (LH(R™)),

Also,
g€ L*(%R™), q(-) € LE(0,T;R™), p(-) € L§(0, T;R™).
We have the following result.

Proposition 2.3. Let (H1)—-(H2) hold. Then for any (t,z) € 9 and any u(-) € U][t, T], the cost functional
J(t, x;u(+)) is well-defined.



Proof. First of all, Proposition 2.2 implies that the state equation (1.1) admits a unique state process
X()=X(5t,z,u(v)) € LA C([t, T); R™)). Let us observe the following estimates:

E(GX(T), X(T)| < |GIEIX(T)?, El{g, X(T))| < (Elg|?) = (E|X(T)[?)3;
T T T
[ BRG ). wds < [ IR ) |2ds<( s IR (2 [ futoPas).
T
/tE|<S(s)X(s),u(s)>|ds<(/t E|S(s) s|2ds / lu(s |ds
<</t ||Ss||ds (]Eg:xipr( /|u |ds ;

/tTIE|<Q(s)X(s),X (s) |ds</T [Q(s)ELx (5)Pds < ( / 19(s) |ds)1[«:[ sup |X(s)P°]

s€ft,T]
r % 57\ 2
El{g(s), X (5))ds < ( CaPas)” (] s 1xe)F])"
t se[t T]
/ E|(p(s), u(s))|ds < / 1(s) |2ds / ju(s) Pds)
This implies that the cost functional J (¢, z;u(-)) is well-defined. O

Next we look at the quadratic form of the cost functional (1.3), from which we will get some abstract
results for Problem (OLQ).

It is clear that for given ¢ € [0,T), (z,u(-)) — X (-;¢,2,u(-)) is affine. Therefore, we may write
X (5t u(-) = [FL()u()I() + [Fo(t)z]() + folt, ),
where
A(t) € 2 (Ult. TH LA TR ), Fo(t) € 2(L%, (MR L TiRY), - folt,-) € Lt T;R").
Let

Fi(tyu() = [F()u()(T),  Fot)z = [F®)2)(T),  fo(t) = folt,T).
Consequently,

J(t, x;u(-))
—E[(G{R(Ou()+Fo(a+To()}, Fu(0u()+Fo(Da+Fo()) +2(g, Fu(®u() + Fo(t)a + fo(®))

+/tT(<Q(S){[F1(t)U(-)](S) + [Fo)z](s) + fo(t,s) }, [Fu(t)u()](s) + [Fo(t)z](s) + fo(t, 5))
F2(S($){[F1(0)u()(s) + [Fo(t)](s) + fo(t,s) }, u(s)) + (R(s)u(s), u(s))
+2(a(s), [F (0u()](s) + [Fo(D)a](s) + folt, ) +2(p(s), u(s)) ) ds]

= <g[ﬁ1u + Fyr + fo], Fou+ Fox + J?0> + 2(g, Fru+ Fox + J?o>
+HQ(Fyiu + Fox + fo), Fiu + Foz + fo) + 2(S(Fiu + Fox + fo),u) + (Ru,u)
+2<q, Fiu+ Fyx + f0> + 2<p, u>
= (Pau(-),ul-)) + 2(u(-),¢1) + ¥o,
with
&, = FYGF, + FfQF, + SF, + F;S* + R,
o1 = By [G(Fox + fo) + | + 7 [Q(Fox + fo) +a] + S(Fox + fo) + p,
wo = (G(Fox + fo), Fox + fo) + 2(g, Fox + fo) + (Q(Fox + fo), Fox + fo) + 2(q, Fox + fo).
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Clearly,
®y € y(L{ﬁ(t,T; Rm)), o1 € L2(t, T;R™),  ¢p € R.

Therefore, according to [21], we have the following result.

Proposition 2.4. For any (t,z) € 2, the map u(-) — J(¢,z;u(-)) admits a minimum in U[t, T if and
only if

(2.10) Py >0, p1 € %(@g) = the range of ®s.
In particular, if the following holds:
(2.11) Dy > 41,

for some § > 0, then (2.10) holds and the map u(-) — J(¢,z;u(-)) admits a unique minimum given by the
following:

(2.12) a() = =05 1 (-).
It is clear that if
(2.13) G>0, R()=0I, Q()—S()R()'S() =0,

then (2.11) holds. Thus, under (H1)-(H2) and (2.11), Problem (OLQ) admits a unique open-loop optimal
control.

If we denote
J(tzu() = J(t 25 u(-); (), 0(),9,4(), (),
indicating the dependence on the nonhomogeneous terms b(-),o(-) in the state equation and the linear
weighting coefficients g, q(+), p(+), then we define

(2.14) JO(t;u(r)) = J(t,0;u(-);0,0,0,0,0) = (®ou(-),u(-)), Yu(-) e U[t, T).
Hence, we see that the following is true.

Proposition 2.5. Let (H1)-(H2) hold. Then the following are equivalent:

(i) u(:) = J(t, z;u()) is convex;

(ii) @2 > 0;

(iii) JO(t;u(+)) = 0 for all u(-) € U[t, T).

2.3 BSDEs with operator coefficients

In this subsection, we consider the following BSDE with operator coefficients:

4y (s) = — (A(s)"Y () + C(5)" Z(s) + o(s) ) ds + Z(s)dW (s), s € [1,T),
Y(T) =€ € LA(Q;R™).

(2.15)

We have the following well-posedness and regularity result for the above BSDE.

Proposition 2.6. Suppose (H1) holds and o(-) € L2(t,T;R™). Then (2.15) admits a unique adapted
solution (Y (+), Z(-)) € L&(Q; C([t, T); R™)) x L&(¢, T;R™), and the following estimate holds:
T T
(2.16) B[ swp [YP + [ |Z)Pas] <KE[gP + [ leo)Pds].
s€(t,T] t t

where K > 0 is a constant.
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Proof. Step 1. For any 8 > 0, denote Mg[t, T] the space LZ(%;C([t, T);R™)) x Li(t, T;R™), endowed
with the following norm

1

2 T 2 2
1Y)y ZCD Mgty = {E[ sup |Y(s)[%e? h(s)} +]E/t 1Z(s)%e? h(s)ds} ,

se(t,T]

where _
h(-) ::/t AP+ lICE)I? + 2] dr.

It is clear that the norms [ - || vq,[,r) with different 3 > 0 are all equivalent. We shall work with Mglt, T
and specify (3 later. For any (y(-),z(-)) € Mgl[t,T], amap 7 : Mg[t,T] — Mglt,T] is defined by

T(y(),2() = (Y(), 2()),
where (Y(+), Z()) is the adapted solution to the following BSDE:

T T
V() =€+ [ (A9l +C0)a0) + oln)dr - [ 2w, se k1)
The wellposedness of the above BSDE from the classical theory of BSDEs implies that the map .7 is well-
defined. For any s € [t,T], applying Itd’s formula to |V (r)|2e#"(") on the interval [s, T], we have

2 T ,
|Y(3)‘2€5 h(s) +/ [ﬁQh/(T)‘Y(T‘)P + ‘Z(T)‘2:| B h(r)dr

(2.17) = gD + 2 / T (Y (), A) y(r) + Cr)2(r) + () Y

—2 / T(Y(r), Z(r)e” P aw (7).

Then, by letting 8 > 0, we get

E{Y(s)|2652h(s)+/T [ﬂgh/(r)|y(r)|2+|Z(T,)|2}e[32h(r)dr}

S

= ]E{|f|2eﬂ2h(T) + Q/ST <Y(r), A(r) y(r) + C(r)* 2(r) + 80(7”)>6ﬁ2h(r)dr}

<E[lepes™ ™) + [ T{ﬁz(nA(r)n? + eI + 1)EY () +

S

%E“y(”'z + 120 + () 2] }eﬁ2h<">dr.

Therefore,
2 T 2
B{ VR s [ [P eR +120)P] e ar

T
<B{Iele ™ b 2 [ WP + 1500 + o) P ar),

Next, for any (y;(+), z:i(+)) € Mglt,T],i=1,2, let T (y;(-),z:i(-)) = Yi(-), Zi(:)), i = 1,2 and
GC) = () —y2(), 2() =21() — 22(), Y() =Yi(-) = Ya(), Z(-) = Z1(-) — Z5(-).

Similar to (2.18), we have

(2.18)

E{|Y(s)|2852h(s) +/5T [ﬁ2|Y(’I“)|2+ |Z”(r)|2}eﬁ2h(r)dr}

T
< B [ [P + )PP dr < ST 4 DGO R
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Consequently,

T
. 2 1
(2.19) B [ 120)Pe M0 ar < (T~ 4+ DI Oy
t
) 2 (s 1 I
(2.20) . B[V P < 2 (7= 0+ D102

Similar to (2.17), we have

V(s)2e7 M) < 2 / (¥ (r). AGY5(r) + € 2() ) Oy — 2 / V(). Z(r))e” O (r)

S S

T
<2/t VOAE) 5() +C(r)*2(r) 50 dr+2\/ ), 2 PO aw ()

Then

E { sup |Y(s)|2652h(5)]
s€t,T]

T . 2 T N ~ 2
< QIEI/t [V ()| A 5(r) + C(r)*2(r)|e? hwdr%—QE{ sup / (Y (r), Z(r))e? "aw (r)

s€t,T]

|

=1+11.

We first estimate I as follows:

T
I< ]E/t (ﬁ\Y(r)P + l|,4(f,n)*,g(r) + C(T)*é(r)‘2)6ﬁ2h(r)dr

_ su 2B%h(s) 2 g PVI2ElG ()12 PVIZE5 ()12 ] 822 g
<o —n{ s BI7Pe ]+ 2 [ (1A PEOIE + 100 PRI 0
< ST =+ 12160 2O

e ([ i) 3 o) s
< @ -vevraa( [ raoiea) vz s iee >||2)}||<@<> SOy

On the other hand, by the Burkholder—Davis—Gundy inequality,
T R , 1
1< 2es( [ ORI )
t

R s/ (T, 3
(2.21) < ZCQE{( sup |Y(s)|2652h(5)> (/ Z(r)2652h(r)dr> }
sE[t,T] t

1 . T
< E[ sup |Y(5)|26ﬁ2h(8)} +2C§E/ \Z(r)\ZGBQh(T)dT,
2 Lsep,m ¢

where ¢y > 0 is the constant in the Burkholder-Davis-Gundy inequality. By (2.19),

1 ~ 2h(s 1 . ~
II< E[ sup [V (s)[%e” )} + 2526(T =t + DG, 2O, 1
2 lserm B
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Hence,

| sup 7))
s€[t,T]

<{5la-tevrea( [ ' AwPar) +2( s e@)1?) |+ @ = e+ HIEO 0 e

t s€(t,T]

Consequently, by selecting 5 > 1, we have

1Y (), ZC) sy < %II(@(‘M('))IIM@,T],

where

K=2(T-t+1)%+ 4(/; ||.A(r)||2dr) - 4( sup ||C(s)||2) + (T —t+1)(1 + 4c3).

s€ft,T]

By taking 8 = 2K, which is bigger than 4 obviously, we get the mapping .7 to be contractive on Mglt, T].
From the contraction mapping theorem, we know there exists a unique adapted solution (Y'(-),Z(:)) €
L2(Q: C([t, T); R™) x LE(t, T;R™) to BSDE (2.15).

Step 2. For the solution (Y'(-), Z(-)), from (2.18), we have

E{|Y(s)2652h(s) + /ST {(52 - %)D’(THQ +(1- 612)|Z(r)|2} eﬁzh(”dr}

1 T
<E{I6Pe ™ 1 55 [ oo Oar).

ﬁ2
Consequently,
T 2 52 2 T 2
(2.22) B[ 120)P 0 < o 1E{|52e5 MO [ (e hmdr},
t - t
T
(2.23) sup E[|Y(s)|2eﬁ h<s>} < E{|§|Qeﬁ W(T) +/ lo(r)|2e? W)dr}.
s€[t,T) t

Coming back to (2.17), we have

T
V()PP < €MD 2 [ Y (LAGY y(r) +Cr)"5(0) + p(r)| e

+2 sup
s€t,T]

/ T<Y<r>7 Z(r))e? MO aw (r)

By virtue of the technique of (2.21),

T
E| sup |Y<s>|26ﬁ2h“)}<2E[|f|2632h<“}+6u«: [ letper
t

s€t,T]
T 2
+</ [2 + 6”./4(7")”2} dr> { sup E[|Y(S)|265 h(s)] }
t s€t,T]

T
+<6 sup ||C(r)||2+4c§)]E/ |Z(r)|2652h(7')dr.
sEt,T] t

Combining the above inequality with (2.22) and (2.23), and thanks to 1 < eP*h(s) PP 5 ¢ [t,T], we
obtain the desired estimate (2.16). The proof is completed. O
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3 Open-Loop Optimal Controls and FBSDEs

3.1 Solvability of Problem (OLQ)

This subsection is devoted to Problem (OLQ). We focus on the open-loop case for the optimal control. First
the definition of the open-loop optimal control is introduced as follows.

Definition 3.1. A control process u(-) € U[t, T is called an open-loop optimal control of Problem (OLQ)
at (t,x) € 2 if

3.1 J(t,z;u(-)) = inf  J(t, z;u(-)).

(3.1) tzal) = ok JEzul)

If a(-) € U[t, T] exists satisfying (3.1), we say that Problem (OLQ) is open-loop solvable at (t,x) € 2. And
X(-) = X®O)(.) is called the optimal state process.

In this subsection, we will derive the sufficient and necessary conditions for open-loop optimal controls
for Problem (OLQ). The main result can be stated as follows.

Theorem 3.2. Let (H1)-(H2) hold. Given (t,z) € 9. Then u(-) € U[t,T] is an open-loop optimal
control of Problem (OLQ) at (t,z) € Z with X (-) being the corresponding open-loop optimal state process
if and only if u(-) — J(t,z;u(-)) is convex and the following FBSDE with operator coefficients:

dX(s) = (A(S)X(s) + B(s)a(s) + b(s))ds + (C(s)X(s) +D(s)a(s) + a(s))dW(s),
a¥ (5) = — (A(s)" V() +C(s)" Z(5)+ Q3) X (5)+8(s) " u(s) + a(s) ) ds+ Z (s)AW (s),
X(t) =2,  YV(T)=gX(T)+g,

(3.2) s € [t, T,

admits an adapted solution (X (-),Y(-), Z(-)) such that the following constraint holds:
(3.3) R(s)u(s) + B(s)*Y (s) + D(s)*Z(s) + S(s) X (s) + p(s) = 0, s € [t,T], as.

Proof. For (t,x) € 9 and u(-),u(:) € U[t,T), let X(-) = X(-;t,x,u(-)) and X(-) = X(-;t,z,u(-)) be the
state process (1.1) corresponding to u(-) and @(-), respectively. Denote

X()=X()=X(),  a()=u()—a().

Then X(-) satisfies the following FSDE:

{ dX (s) = (A(S)X(s) + B(s)a(s))ds v (C(s)X(s) + D(s)a(s))dW(s), se[t,T),
X(t) =o0.

Now, let (Y(+), Z(-)) be the adapted solution to the BSDE in (3.2). Then we have the following duality:
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Hence,

St u() — J(t w5 a() = E{<Q[X(T) + X (1), X(1)) +2(g, X(T))

+ " (1K () + X (51 X (5) + (SEILX(s) + X5, 2(s) + (SEK(),uls) + (o)
+(R(s)[u(s) + u(s)], (s) +2(q(s), X(s) +2(p(s), ils) ) ds |
= B{(GX(T), X(T)) + 2(GX(T) + g, X(T))
+ " (@)X (6), X(5) + 2(S(5) X (51, 1(s) + (R(s)a(s) ()
+2[(QU5) X (s), X (5)) + (S(5) X(s),ls)) + (S(5) X (s), (s))
H(R(s)a(s), a(s)) + (a(s), X () + (p(s), als)) | ) ds |
= E{(GX (), X(T)) + / " (@)X (6), X(5)) + 2S5 X (51, (s) + (R(s)i(s) als) ) ds

+2[(GX(T) + g, X(T)) + / " (1Q(6)X () X(6)) + (S(5) X (5), ()
H(S(5) X (), 0(s) + (R(s)a(s), als)) + {a(s), X () + (p(s), als)) ) ds] |
= JO(t;a(-)) + 2 /t ' (R(s)a(s) + B(s)"Y (s) + D(s)"Z(s) + S(5) X (s) + p(s), (s) ).
Consequently,
J(t w5 a() + au() = J(t 55 () = a2t () — a()
+20E /t ! <R<s)a(s) + B(s)*V (s) + D(s)* Z(s) + S(s)X () + p(s), u(s) — a(s)>ds.

Thus, if constraint (3.3) holds and u(-) — J(¢,x;u(-)) is convex (which is equivalent to JO(t;u(-) —a(-)) = 0,
see Proposition 2.5), we have the optimality of @(-). Conversely, if %(-) € U[t,T] is a minimum of u(-) —

J(t, z;u(-)), then by letting oo — 0o, we see that the constraint (3.3) holds, and u(-) — J(¢, x; u(+)) is convex.
O

We note that (3.2)—(3.3) is a coupled linear FBSDE with operator coefficients. The above theorem tells us
that the open-loop solvability of Problem (OLQ) is equivalent to the solvability of an FBSDE with operator
coefficients. A similar result for LQ problem with constant coefficients were established in [27]. The proof
presented above is similar to that found in [27], with some simplifications.

3.2 Well-posedness of FBSDEs with operator coefficients

We now look at the solvability of FBSDE (3.2)—(3.3). To abbreviate the notations, we drop the bars in

X,Y,Z,u of (3.2) and (3.3), that is, we consider the following:

(
(3.4) dY (s) —(A(s)*Y(s) +C(8)*Z(s) + Q)X (s) + S(s) u(s) + q(s))ds + Z(s)dW(s), ¢ [t, T,
) =9X(T)+y,
Z

X(t) =z, Y( (
(s) (s) +D(s)"Z(s) + S(s)X(s) + p(s) = 0.

dX(s) = (A(s)X(s) + B(s)u(s) + b(s))ds + (C(S)X(s) +D(s)u(s) + U(s))dW(sL
; g
R(s)u(s) + B(s)*

T
Y
For the well-posedness of the above equation, we need the following hypothesis.
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(H3) (i) Operator processes C(-), D(-), Q(+),S(+), R(+) are compatible in the following sense:
Ic = DRTIS|, IS"R7 € L*(t, T5R),  [|Q—S*R™'S|| € L*(¢, T3 R);
(ii) For some § > 0,
G=0, Q()=S()R()7'S() =0, R() =4l
Let us make some remarks on (H3). First of all, R(-) > 61 means that
E(R(s)u,u) > 6E[ul?, Yu € L% (4 R™), ae., s € [t,T)].
Similarly for G > 0 and Q(-) — S(-)*R(-)~*S(:) > 0.
Next, (H3)—(ii) ensures the existence of the inverse of operator R. Moreover, we have

)
B(R(s) u,u) > Wﬂfﬂuﬁ for any u € L% (5 R™), ae., s € [t,T].

On the other hand, by virtue of Schur’s Lemma in operator form, (H3)—(ii) is equivalent to the following:

520 (5 =)0 ROz

Now, under (H3), u(-) can be expressed explicitly as
(3.5) u(s) = —R(s)"! (B*(S)Y(s) +D*(s)Z(s) + S(s)X (s) + p(s)), selt,T].

By substituting it into the first two equations of (3.4), the system becomes a coupled FBSDEs with operator
coefficients as follows (the dependence on time s is omitted):

dX = ((A ~BR7IS)X - BR™YB*Y + D*Z) — BR 1p + b) ds
+((C=DRT1$)X ~DRB'Y +D*2) = DR \p+ 0 )dW (s),
(3.6) dy = — ((A* _SRTIBIY 4 (CF - S RIDNZ 4+ (Q-SRIS)x  SET]
SR+ q) ds + ZdW (s),
X(t)=z, Y(I)=6X(T)+y.

The following is the main result of this subsection.

Theorem 3.3. Let (H1)—-(H3) hold. Then there exists a unique adapted solution (X(-),Y (-),Z(-)) €
[LA(S; C([t, T); R™))]? x La(t, T;R™) to coupled FBSDE (3.6) with operator coefficients.

Before presenting a proof of Theorem 3.3, we introduce the following auxiliary FBSDE with operator
coefficients parameterized by « € [0, 1]:

dX© = (a(A ~BR7IS)X® — BR™L(B*Y® + D*Z%) + <p) ds
+(a(C = DRTIS)X* ~ DRI(BY +D*2%) + ) dW (s),
(3.7) dy® = f(oz(A* —S*RTIBIY + a(CF — S*RIDF) 2° s € [t,7],
Fa(Q - S"RIS)X + y) ds + ZdW (s),
X*(t)=¢  YHT) =agX*(T) +n,

where
(& 0,0, 7,m) € M[t,T] = L%, (4 R™) x [Lg(t, T; R™)]* x L*(Q;R™).

The first preparation is to get an a priori estimate of the adapt solution to the parameterized equation (3.7).
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Proposition 3.4. Let (H1)—(H3) hold. Let (X1,Y1, Z1) and (X2,Ys, Z3) be the solutions to (3.7) corre-

sponding to the different (&1, ¢1, ¥1,71,M), (&2, 02,2, V2, n2) € M[t, T|, respectively. Then, for any € [0, 1],
the following estimate holds:

T
B{ swp [X:(5) = Xa(0)P + sup Wi(s) = Ve + [ |Za(s) - Za(o) s}
(38) s€t,T] s€t,T] s

T
<KE{les = & +m—mP+ [ (o1 = ool + 1o =l + 1 = al?)ar .
t

where K > 0 is a constant.

Proof. For convenience, we denote (X,f/, Z) = (X1 — X9, Y1 — Y3, 7y — Z5), which satisfies

dX = (a(A-BR7'$)X ~ BR™(B'Y +D*2) + ¢)ds
+<a(c —DRIS)X — DR YB*Y +D*2) + w)dW( ), s€tT],
ay = — (a(A* —S*"R7IBYY +a(C - SRID)Z+a(Q-SRTIS)X + ?)ds
+ZdW (s), [t7 1Y,
X(t)y=¢  Y(T)=agX(T)+

with (€, @,0,4,9) = (&1 — &, 01 — @2,%1 — 2,7 — Y2, — 02)-
For the forward equation, by applying Proposition 2.2, we have

| sup %]

s€t,T)

T
< K]E{|é|2 +/ [} —BRNBY +D2)+ ¢ +
t

|- DR(BY +D°2) +4|’]d }
~ T ~ A A
< KIE{|§|2 + [ e+ 1o + |B*Y+D*Z|2]dr}.

Similarly, for the backward equation, thanks to ||C — DR™!S|| € L>*(0,T;R) and ||Q — S*R~IS| €
L?(0,T;R), Proposition 2.6 leads to

B[ sw PP+ [ T|Z<s>2ds]

se[t,T)

T
gK]E{agX(T)+ﬁ|2+/ ‘a(g—s*Rls)wads}
t

T T
<K1E{ﬁl2+ / |@|2dr+(g||2+ / ||Q—8*R18||2dr) sup |X<s>|2}
set,T]

<KE{ﬁ|2 / A2dr + sup |X(s >2}.

s€t,T]
Then, we get
. . T
B s (X + s WP+ [ (20)P0]
(3.10) s€[t,T) SE[L,T) ¢

T
<RI 1P+ [ (6P + 0P + B2+ BT + 0" 2Far .
t
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On the other hand, by applying Itd’s formula to <X7 )7'), we have
T A A A A
]E/ (RN B*Y +D*2),B*Y +D*Z)dr
t

(3.11) = —aE{<gX(T), X(T)) + /T<(Q ~S*RS)X, X>dr}

w{€ 70 - 6,500 + [ [69)+16.2)+ .o}
By Assumption (H3)—(ii),

IRI” :
5

E/tT IB*Y + D*Z|2ds < E{(é,f/(t)) - (ﬁ,X(T)H—/tT [(@,Y) +<1/A),Z>+('Ay,f(>}dr}.

Then, for any € > 0, we have

T T
]E/ |B*Y + D*Z|?ds < dE{ sup |X(s))? 4+ sup [V (s)? +/ |Z(s)|2ds]
t s€[t,T] s€[t,T) t

K A ) T . .
+ i@l + [ [loF 4192 + P]ar

Selecting € = 1/(2K), we get the desired result (3.8) from (3.10) and (3.12).

(3.12)

O

Remark 3.5. As we known, for the coupled FBSDEs, the main role of the monotonicity condition is to
uncouple the interdependence of the forward X (-) and backward (Y (), Z(-)) when studying the estimates of

(X(), Y (), 2())-
Note that, for the linear system, our condition (H3)-(ii): G > 0, Q(-) — S(-)*R(-)"'S(-) = 0, R(-) = 4!
which acts as the classical monotonicity condition, has been used in (3.11).

Next, we give the continuation lemma.

Lemma 3.6. Let (H1)-(H3) hold. Then there exists a constant {y, > 0 such that, if for some o € [0, 1),
for any (&, ¢,v,7v,n) € M[t,T], FBSDE (3.7) has a unique solution, then for « = ag + ¢ with £ € [0, {p],
ap + ¢ < 1, (3.7) is also uniquely solvable.

Proof. Let £y be undetermined. Let ¢ € [0, ¢y], we focus on the following FBSDE:

dX = (ozo(A —BRS)X — BR™YB*Y + D*Z) + (A — BR™1S)X + <p>ds

+(a0(c ~DR7IS)X — DR™YB'Y +D*Z) + £(C — DR™'S)X + ¢) AW (s),
3.13) YV =- (ao(A* —S*R'B)Y +ao(C* = S*R7'D)Z + ap(Q - S*R7IS)X s e[t T]
A" — S*RTIBY + 4(CF — S"R™IDY)Z + 4(Q — S*R™IS)X + 7) ds

+ZdW (s),
X(t)=¢  Y(T)=agX(T)+LGX(T) +n,

where (X,Y, Z) € [L3(Q; C([t, T]; R™))]*> x La(t,T;R™) is arbitrarily chosen.

Our assumption ensures the solvability of the above equation, so that a mapping £ from [L2(Q; C([t, T]; R™))]* x
La(t, T;R™) into itself defined as

(X(),Y (), Z() = Lagre(X(), (), Z())
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makes sense. For another given (X(-),V(-), Z(-)) € [L2(Q; C([t, T);R™))]? x L&(t,T;R"), let

Denote

Proposition 3.4 leads to

B{ s X+ sw WP+ [ T|Z<s>|2ds}

se(t,T] s€(t,T]
T
< K|€|2E{|QX(T)2 + / [|(A —BR7'S)X> +|(C - DR™'S)X|?
(3.14) t
+H(A* = S*R7IB)Y + (C* —S*R™ID")Z + (Q — S*R—ls)zeﬂ dr}

T
<wle{ sw 1ROF+ s PR+ [ 126)Pds)
s€[t,T) s€[t,T] t

where K > 0 is a constant independent of g and £. Therefore, we can choose £y > 0, such that K3 < 1/4.
Then, for any £ € [0, £oy], Log+¢(+) is a contraction map. Consequently, there exists a unique fixed point for
the mapping L4,+¢ which is just the unique solution to FBSDE (3.7) with oo = ag + /. O

Now we present a proof of Theorem 3.3.

Proof of Theorem 3.3. When o = 0, (3.7) becomes

dX° = ( — BRI BY +D* 2% + @)ds + ( ~DRYBY° +D*2°) + w) AW (s),
dY° = —yds + Z°dW (s), s € [t, 7).
X)) =¢  YUT)=n,

In this case, the solvability of (3.7) is obvious, which is due to the part (Y, Z%) of backward equation can
be solved firstly; then substituting it into the forward equation, we solve X°.

By Lemma 3.6, for any (£, ¢,v,7,n) € M[t,T], and any « € [0,1], (3.7) is uniquely solvable. Particularly,
when o = 1, (3.7) with

=z, ¢=-BR'p+b, ¢=-DR 'p+o, y=-SR 'p+q n=g

becomes (3.4) which is also uniquely solvable.

O

Remark 3.7. In our setting, the norms of coefficients || A—BR~1S|| and |Q—S*R~1S|| are only required
to belong to L?(t,T;R). In other words, these two norms are not necessary to be bounded.

Corollary 3.8. Under (H1)-(H3), Problem (OLQ) admits a unique open-loop optimal control given by
(3.5), where (X(+),Y(-), Z(-)) is the unique solution to FBSDE (3.6).

Proof. Let us denote by J°(¢;u(-)) the cost functional (1.3) when x,b(-),0(-),g,4q(-), p(-) are all 0. Ob-
viously, Assumption (H3)-(ii) implies JO(¢;u(-)) > 0 for all u(-) € U[t,T]. By Proposition 2.5, we know
u(-) — J(t,x;u(-)) is convex. Moreover, by Theorem 3.3 and the expression (3.5), there exists a unique
(X(),Y("),Z(),u(-)) satisfying (3.2) and (3.3). Thanks to Theorem 3.2, we obtain the result. O
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4 Mean-field LQ control problem

We have mentioned that the major motivation of this work comes from the study of stochastic LQ problem
of mean-field FSDE with cost functional also involving mean-field terms. In this section, we will apply the
results obtained in the previous section to the mean-field case.

We shall use the mean-field setting (2.2) and (2.3) given in Subsection 2.1. That is, the involved operator
coefficients of Problem (OLQ) are, Vs € [t, T,

A(S)€ = A(S)f ( )TE[;&(S>§L V§ c L_%_—‘(Q;Rn),

4.1
Y B(s)y = B(s)y + _(s) EBG g2 0,
D(s)n = D(s) (s) "E[D(s)n], !

and

G¢ = G¢ + GTE[G¢] + GTE[GE] + G TE[G]E[G¢], ge L*(;R™),

Qs)¢ = Q)6 + Q(s) "E[Q(s)¢] + Q(s) "E[Q(s)] + Q(s) "E[Q()|E[Q(s)¢], € € L (%R,
(42) 4 S(5)€ = S(s)¢ + R(s) "E[S(s)¢] + S(s)E[Q(s)¢] + Ro(s ) [S(s)]lE[Q(s)f‘L £ € L3 (%R"),

R(s)n = R(s)n+ R(s) 'E[R(s)n] + R(s) 'E[R(s)n] + R(s) 'E[R(s)E[R(s)n], 7€ L (%R™),

9=90+G Elg], a(s)=qo(s) +Q(s) Ela(s)], p(s) = pols) +Ro(s) "Elp(s)].
For any (t,z) € 2, our state equation is given by
aX(s) = (A(5)X (5) + A(s) "E[A(s)X (5)] + B(s)u(s) + B(s) E[B(s)u(s)] + b(s) ) ds
430 +(C6)X(s) + C(s) "EIC()X (5)] + D(s)u(s) + D(s) "EID(s)u(s)] + or(s) )W (s), s € [t,T],
X(t) =z,

and the quadratic cost functional is
J(t,zyu()) = ]E{<GX(T)7X(T)> +2(GX(T), E[GX(T)]) + (GE[GX (T)], E[GX(T)])

~ T _ ~ o~ ~ ~
(4.4) +2(go, X(T)) + 2(g, E[GX(T)]) + /t [<QX, X) + 2(QX,E[QX]) + (QE[QX],E[QX])
+2(SX, u) + 2(SX,E[Ru)) + 2(SE[QX],u) + (SE[QX], E[Ru]) + (Ru, u)

+2(Ru, E[Ru]) + (RE[Rul, E[Rul) + 2(q0, X) + 2(q, E[QX]) + 2(po, u) + 2<i>,E[ﬁu]>}ds}.
The argument s is suppressed in the above functional. Here,

{A(‘),A('),A('),B(~),B(~),1~3(‘),C(~) C().C(-), D(-),D(-),D("),
Q(), Q S (

are glven bounded F-progressively measurable matrix-valued processes with appropriate dimensions. G,
G, G G are given bounded Fr-measurable matrix-valued random variables with appropriate dimensions.
Moreover, Q(-), Q(-), R(-), R(-), G, G are symmetric. b(-), o(-), qo(-), @(-), po(-), p(-) are given square
integrable F-progressively measurable processes with appropriate dimensions, and gg, g are given square
integrable Fr-measurable random variables with appropriate dimensions.
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Remark 4.1. Note that all the coefficients in bold are all infinite dimensions as shown in Subsection
2.1. Taking a bounded process A(-)" = (A;(-), Az(:),---) as an example, A(-) is bounded means

|A(-)"|| = esssupsup | A;(s)| < oo.

S,w) i
@ ()
As the square-integrable property, take q(-) = a2() | as an example. q(-) is square-integrable means

T oo
la()l =E / > las(s)Pds < oo

There are similar explanations for the above used another infinite-dimensional bounded and square-integral
processes.

According to the classical well-posedness of MF-SDE (refer to [2]), for any u(-) € Li(t,T;R™), there
exists a unique adapted solution X*(-) satisfying (4.3), then the cost functional J (¢, z;u(-)) is well-defined.

Further, the cost functional can be rewritten as follows:

_ - _ T
i) = B @X(D), K1) + 22 X() + [ [1Q()X(5). X()
(4.5) ¢

+2(S(5)X(s), u(s)) + (R(s)u(s), u(s)) + 2(a(s), X(s)) + 2{p(s), U(S)ﬂ dS},

where, for any s € [t, T], the above used notations (introduced in Subsection 2.1) are repeated again as

e _ X(T) . X(s) B u(s)
X(T)<E[(~; (T)]>, X(S)<]E[Q(5)X(s)]>’ u<s)<E[ﬁ(s)u(Sﬂ>,
(¢ & S Qs QT g (St 8Gs)
G‘(G G)’ Q”‘(Q@) Q(S)>’ S”—<s<s> S(s))

where G, Q, S, R satisfy

(4.6) G >0, (28 S;gg;) >0, R>0 ( é g) .

with O being the matrices zero with different appropriate dimensions.
Now, we propose the MF-LQ stochastic optimal control problem as follows:
Problem (MF-LQ). Find an admissible control @(-) € LZ(t,T;R™) such that

(4.7 J(t,xza()) = inf J(t, x;u(t)).

u(-)eL2(t,T;R™)

In the above 4(+) is called an open-loop optimal control of Problem (MF-LQ), and the corresponding optimal
state trajectory X%(-) is denoted by X(-).

The following result characterizes the optimal control @(-) of Problem (MF-LQ).
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Theorem 4.2. For any given (t,z) € 2, u(-) € U[t, T] = Li(t, T;R™) is an open-loop optimal control of
Problem (MF-LQ) at (t,x) with X(-) being the corresponding open-loop optimal state process, if and only
if u(:) = J(t,z;u(+)) is convex and (X(),Y (-), Z(-),a(-)) € [LA(Q;C([t, T};R™))]? x LE(t, T;R™) x U[t, T
solves the following system (the argument s is suppressed):

Ri+2R"E[Ri] + RTE[R|E[Ru] + B'Y + BTE[BY] + D' Z + D'E[DZ]
+5X + RTE[SX] + SE[QX] + RTE[SJE[QX] +p=0, se€[t,T),
dX = (AX + ATE[AX] + Bu + BTE[Bu] + b) ds
+(CX + CTE[CX] 4 Du+ D'E[Da] + 0) dw, s et T),
(4.8) av = —(ATY + ATE[AY]+CTZ + CTE[CZ] + QX + Q"E[QX] + QE[QX]
+Q E[QE[QX] + STu+ STE[Ra) + Q E[S 4] + QE[S|E[Ra] + q) ds
+Zaw, sclt,T),
X(t) ==,
Y(T) = GX(T) + GTE[GX(T)] + GTE[GX(T)] + G TE[GIE[GX (T)] + g0 + G E|g].

Moreover, if (4.6) holds true, then the above system (4.8) admits a unique solution, and Problem (MF-LQ)
admits a unique optimal open-loop control.

Proof. According to the results obtained in Section 3 (Theorem 3.2, Theorem 3.3 and Corollary 3.8), we
only need to verify the operators in (4.1) and (4.2) satisfy Assumptions (H1), (H2) and (H3).

Tt is easy to check that Assumptions (H1), (H2) and (H3)-(i) are satisfied.

Next we will show (4.6) implies Assumption (H3)-(ii). Firstly, for any & € L?(Q;R"),

E(GE.€) = E(GE + GTE[GE] + GTE[GE] + GTE[GIEGE).¢)
= E(G¢, &) + 2E(G¢, E[GE)) + E(GE[GE], E[GE))
—E(GE8) > 0,
where &' = (¢7, (E[GE)T).
Secondly, for any s € [¢t,T], any £ € L%:, (;R™), any n € L%—S (;R™), we have (the argument s is

s

suppressed for simplicity):

E<(§ fa) (i) ’ <§)> =E(Q¢,¢) + 2E(S¢, n) +E(Rn,n)

— {E(Q¢. &) + 2E(Q¢, E[Qg]) + E(QE[Qg], EIQE)) |
+2{E(S¢,n) +E(S¢, E[Rn]) + E(SE(Q¢], ) + E(SE[Qg], E[Rar) |
+{E(Rn, 1) + 2B(Ro, E[Rn]) + E(RE[Ry], E[Ro]) }

— E(Q&.€) + 2E(S¢,1) + E(Rn, m)

el (@ ST (&) (¢

_E<< S R ) (n) ’ (n)> =0

where €7 = (€7, (E[Q¢))T) and 0" = (", (ER4))T).
Thirdly, for any s € [t,T], any n € L% (Q;R™),

E(Rn,n) — E[n|* = E(Ray,n) — 5E<(é g) 7l7fl> = 1E<[R— 5 (é g)} n7n> > 0.
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Remark 4.3. Due to the condition (4.6), the inverse of operator R(-) exists. In other words, @(-) can
be solved from the algebraic equation (the first two lines) in the system (4.8). Therefore, system (4.8) is
essentially a coupled mean-field FBSDE.

Next, we try to present the explicit expression of the optimal control %(-) by means of the coupled
mean-field FBSDE (4.8). For this, the following lemma is necessary.

Lemma 4.4. Under (4.6), E[[ +2RR'RT + ﬁR—lﬁTE[ﬁ]} is invertible.

Proof. We only need to show that all the eigenvalues of E [I +2RR'RT + ﬁRflﬁTE[ﬁ] are NONZero.

From R = R RT >4 ro we know R is positive definite, and R — RR-IRT is positive
“r R)7°0 o) P ’ P
semi-definite.
Firstly, if R = 0, then R is necessary 0. In this case, [ + 2RR™'RT + RR™'RTE[R] = I is positive.
Secondly, if R > 0,
E[I +2RR'RT + ﬁR*lf{TE[ﬁ]}
- E[((E[ﬁ])*l +2RR'RT(ER]) ! + ﬁR*IﬁT)E[ﬁ]}
49) —E[(R(R'RT + RRT(E[R) '), R'RT + R 'RT(E[R]) " )|E[R]
+E [1 - RR‘lf{T(]E[f{])_l]
- E[<R(R‘1f{T + R—1RT(E[ﬁ])—1) JRTIRT + R‘lf{T(E[ﬁ])‘lﬂE[R]
+E[R - RR'RT)(E[R])".
From R and R being positive definite, we know all the eigenvalues of the following matrix

EKR(R*lﬁT n R*1RT(IE[]§])*1>,R*11~{T + RIRT(E[R]) 1>}]E[ﬁ]

are positive.
On the other hand, E[R — RR™'RT] being positive semi-definite, and (E[R])~! being positive definite
imply us that E[R — RR™!RT](E[R])~! has the non-negative eigenvalues.

Therefore, from (4.9), we get E[I +2RR'RT + ﬁRflﬁTE[ﬁ]} is invertible.

Corollary 4.5. Under (4.6). The optimal control u(-) has the following explicit expression:
_ JONN ~ _ ~ SOOI T
= (2RT + RT]E[R}) (]E [I +2RR'RT + RR*lRTE[R]D E[RR-'A] - A.
where
A=B"Y +B'EBY]|+D'Z+D'E[DZ] + SX + R'E[SX] + SE[QX] + R"E[S|E[QX] + p.

Proof. To get the explicit expression of the optimal control @(-), we need to solve the following algebraic
equation:

(4.10) Rii+2RTE[Ri] + RTE[R|E[Ra] = —A
Firstly, multiplying RR~! on the both sides of the above equality, and taking expectation, we get
E[7+2RR'RT + ﬁR*lﬁTE[ﬁﬂE[ﬁa] — _E[RR'A].
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Due to E[7 + 2RR'RT + ﬁR*lf{TE[f{]} is invertible, we know

E[Ri] = — (E [I +2RR'RT + f{R*lﬁTE[ﬁ]} ) TE[REIA]
Therefore, the optimal control () is
a=— (QRTE[ﬁa] + f{TIE[ﬁ]]E[f{a]) —A
— (215{T v ﬁTE[ﬁ])E[ﬁﬂ] —A

- (QRT + ﬁT]E[ﬁ]) (IE [I +2RRIRT + f{R‘lf{TE[f{]DilE[f{R‘lA] — A

5 Conclusion

It is the mean-field LQ Problem (MF-LQ) that inspires us to study the LQ optimal control problem with
operator coefficients (i.e., Problem (OLQ)). As we known, (4.3) and (4.4) is a new form of mean-field LQ
problems. Besides, all the coefficients are allowed to be random in our study. As a start, we only study the
open-loop case. The closed-loop cases of the control problems, as well as differential games are under our
investigation.
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