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CONTINUITY OF THE VALUE FUNCTION FOR DETERMINISTIC
OPTIMAL IMPULSE CONTROL WITH TERMINAL STATE
CONSTRAINT

YUE Zuou!, XINWEI FENG**** AND JIONGMIN YONG?>***

Abstract. Deterministic optimal impulse control problem with terminal state constraint is consid-
ered. Due to the appearance of the terminal state constraint, the value function might be discontinuous
in general. The main contribution of this paper is the introduction of an intrinsic condition under which
the value function is proved to be continuous. Then by a Bellman dynamic programming principle, the
corresponding Hamilton-Jacobi-Bellman type quasi-variational inequality (QVI, for short) is derived.
The value function is proved to be a viscosity solution to such a QVI. The issue of whether the value
function is characterized as the unique viscosity solution to this QVI is carefully addressed and the
answer is left open challengingly.

Mathematics Subject Classification. 49N25, 491.20, 49L.25.

Received November 7, 2020. Accepted November 18, 2021.

1. INTRODUCTION

It is well-known that in general classical continuous-time optimal control theory, there are two major
approaches: variational method leading to Pontryagin’s maximum principle (MP, for short), and dynamic pro-
gramming method leading to Hamilton-Jacobi-Bellman (HJB, for short) equation. The former could work for
the problems with possible terminal state constraint and it gives necessary conditions for (possibly existed)
open-loop optimal controls [27, 39]. The latter usually works for the problems without terminal state constraint
and it leads to a characterization of the value function as the unique viscosity solution to the HJB equation,
then formally, optimal control of state feedback form can be obtained [1, 5, 17, 23, 39]. In the case that there
exists a terminal state constraint, the value function might not be everywhere defined (which involves the
controllability issue), and even in the set on which the value function is defined, due to the set of admissible
controls is depending on the initial pair, the continuity of the value function is not guaranteed. As a result,
the corresponding satisfactory general theory of viscosity solution to the HJB equation for the terminal state
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constrained is not available as of today. Therefore, people had made some efforts to introduce proper conditions
so that the continuity of the value function can still be obtained. One such an effort is for time optimal control
problem (with a target set which is a terminal state constraint). To ensure the continuity of the value function,
the so-called small time local controllability (STLC, for short) was introduced by Sussmann in 1987 [1, 30, 37].
This condition means that when the state gets close to the boundary of the target set (from outside), only a
small amount of time is needed to drive the state to the target by a control action. This then will lead to the
continuity of the value function.

For optimal impulse control problems, similar to the continuous control case, one also has two major
approaches. For variational method, there are works on MP; we mention [9, 12, 16, 18, 28, 33, 38], for a
partial list of both stochastic and deterministic cases. On the other hand, since the initiation of optimal impulse
control problems by Bensoussan—Lions in the early 1970s [6, 7], the dynamic programming method has been
a very popular approach to the problem. It is interesting that the corresponding HJB equation is a quasi-
variational inequality (QVI, for short) to which the value function is the unique viscosity solution [2, 3] under
proper conditions. There are quite a few follow-up works, see [13-15, 23, 35, 36] for deterministic cases, and
[4, 10, 20, 22, 24, 25, 31] for stochastic cases. The same as the continuous control case, to our best knowledge,
in all the existing literature treating optimal impulse control problems by dynamic programming principle, the
terminal state is constraint-free. A natural question arises: What if the terminal state is constrained? Then one
expects that, in general, the value function is not continuous, and might even not be defined somewhere. Recall
that for continuous control case, there is an STLC condition that ensures the continuity of the value function.
The major contribution of this paper is the discovery of an intrinsic condition that can play a similar role as
STLC in the optimal impulse control problems. Under such a condition, the continuity of the value function
will be proved and, consequently, it will be proved by mean of dynamic programming method that the value
function is a viscosity solution to the Hamiton-Jacobi-Bellman QVT.

As far as applications are concerned, it is known that optimal impulse controls can be used in may areas,
for examples, [8] for management problems, [26] for SIR epidemic problems, [34] for HIV treatment, [19] for
mathematical finance, [21] for some biology systems, to mention a few. For the optimal impulse control problem
with a terminal state constraint, our motivation is as follow: Suppose a unit (could be a company, a bank, a
state, or even a country) is running its business during a certain time period, say a month, a quarter-year,
one year, etc. Besides it keeps normal running, at the end of the period, certain types of goods/assets (such as
cash, food, gas, medicine, etc.) have to reach a certain reserve level. If the goal could not be reached by its own
production, it is allowed and has to buy from outside with some costs. This means that the state (goods/assets)
of the unit can be controlled by some impulses. The problem is to minimize the total cost with the terminal
state constraint being satisfied. Clearly, such a framework is very general and could cover many real application
problems. This also shows that the problem that we are going to study in the current paper is quite meaningful,
both in mathematics and in applications.

Due to the presence of the terminal state constraint, the value function of the optimal impulse control problem
is proved to be locally Holder (or Lipschitz) continuous only, even under our discovered condition, and it could
grow at least linearly (no slower than the growth of the impulse cost). These properties essentially prevent us
from directly using the current available techniques to prove the value function being the uniqueness of viscosity
solution to the corresponding HJB QVI. Actually, we remind ourselves that the study of uniqueness of viscosity
solutions to HJB equations for terminal state constrained problems was not successful in some other situations
(see [29, 32] for the so-called stochastic target problems).

On the other hand, the obtained HJB QVI for the value function of our optimal impulse control problem
with terminal state constraint looks like that for an optimal impulse control problem without terminal state
constraint. Then a natural question arises: Can we indirectly characterize our value function by via the problem
without constraint? In fact, if we can show that our impulse control problem is equivalent to a problem without
terminal state constraint, then our goal is achieved. Some discussions will be carried out and the answer is not
definite at the moment because we do not yet have the uniqueness of the viscosity solution to HJB QVI in
the function class that our value function belongs to. Combining the above, we see that the issue of unique
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viscosity solution characterization for the value function of the problem with terminal state constraint remains
challengingly open at the moment.

The rest of the paper is organized as follows. Section 2 is devoted to some preliminary results, including
the formulation of the problem, listing of the hypotheses, and the description of the value function domain.
In Section 3, we will investigate the continuity of the value function and present an interesting example there.
In Section 4, we will derive dynamic programming principle and HJB QVI to which the value function is a
viscosity solution. A comparison is made in Section 5 between the optimal impulse control problems with and
without terminal state constraint, which reveals some interesting facts. Finally, concluding remarks are collected
in Section 6.

2. PRELIMINARY RESULTS

In this section, we present some preliminary results.

2.1. Formulation of the problem

Let us first formulate our impulse control problem. Consider the following equation:

X(s) = o + / F X()dr +£(s), s € [LT), (2.1)
t
where f:[0,7] x R™ — R™ is a given map, (t,z) € [0,T) x R™ is called an initial pair, and

5(5) = kal[.,-k,T] (S), s € [t,T] (2.2)

k>1

is called an impulse control with {7 }r>1 C [t,T] being a non-decreasing finite sequence, and & € K, k > 1,
called admissible impulses, for some non-empty closed convex cone K C R"™ with the vertex at the origin. In
the above, we allow 7, = 7441 for some k > 1. Let JZ[t, T| be the set of all impulse controls of form (2.2). Note
that &(-) defined by (2.2) is completely determined by the sequence {(7x,&x) | k > 1}. The notation £(-) includes
the information of both {} and {74 }. Under some mild conditions, for any initial pair (¢,z) € [0,7) x R™ and
impulse control £(-) € J£[t, T, equation (2.1) admits a unique solution X (-) = X(-;¢,z,£(-)). We also note that
(2.1) can be equivalently written as the following impulsive way:

X(s) = f(s,X(s)), s € (Th-1,Tk), k>2,
X(t) ==, (2.3)
X(m) = X(7;,) + &

Clearly, both &(-) and X (-) are right-continuous. In addition, we require that the terminal state satisfies the
following constraint:

X(T) € D, (2.4)

where D is a non-empty proper domain in R" (non-empty open and connected subset D # R") with D being
its closure. We may also call D a target. For any initial pair (¢,2) € [0,T) x R", we introduce the following
associated admissible impulse control set

1.1 = {&0) € #1T) | X(Tit,2.6()) € D). (2.5)
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In general, #*[t,T)] is different from #[t,T], and £ *[t,T| could even be empty for some (¢,z). In the case
AP, T # &, to measure the performance of the impulse control £(+), we introduce the following cost functional

T
J(ta€()) = / 405, X (5))ds + B(X(T) + 3 €(m X (71 — 0), &), (2.6)

E>1
where £(+) is of form (2.2) which is identified with {7y, &k }x>1, and
g:[0,T] xR" = [0,00), h:R"—=1[0,00), £:[0,7]xR" x K — (0,00) (2.7)

are suitable maps. Here, the terms on the right-hand side of (2.6) are called the running cost, the terminal cost
and the impulse cost, respectively. The meaning of X (73 — 0) stands for the following: Suppose

Ti < Tigl = Tig2 = - =Ty < Ty'q1,

then

X(mp —0) = X (7341 — 0) + Zgj, i+1<k<i, Y g0,

Jj=i+1 j=i+1

which is the state right before the impulse &, is made. This is needed only if there are more than one separate
impulses made at a same time (although such an impulse cannot be optimal). In the above, we may assume
that g and h are just bounded uniformly from below. By a translation (if necessary), we can simply assume
that they are non-negative, for convenience. This will be assumed throughout of the paper. We emphasize that
the impulse cost £(t, z, ) is strictly positive. Mimicking the classical case, we formulate the following optimal
impulse control problem.

Problem (C). For any initial pair (¢,2) € [0,T) x R", find a £(-) € #*[t, T] such that

J(x;8() = inf (@ asE() = VIt @), (2.8)

e(ex=[t,T)

We call £(-) an optimal impulse control, the corresponding X (-) = X (-;t,z,£&(-)) an optimal state trajectory,
(X(-),€(+)) an optimal pair, and V(-,-) the value function of Problem (C).

Recall a common convention that inf @ = oo, regarding @ C R. Thus, it is convenient to make the following
convention:

We let
(V) = {(t,x) € [0,T] x R™ | V(t,z) is well-defined and ﬁnite}, (2.10)
which is called the domain of the value function V'(-,-). Since g(-,-), h(-) are non-negative and £(-, -, -) is positive

(see (2.7)), one automatically has
9(V) = {(t,2) € [0, T] xR | #[t,T] # &} = 9(K; D). (2.11)

The notation Z(K; D), meaning that K-valued impulse control brings the state to the target set D, emphasizes
the compatibility of the set K, D, and the dynamics (2.1).
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2.2. Domain of the value function

Before going further, let us introduce the following hypotheses, which will be used in the following. First,
we impose conditions on the terminal state constraint set D and the set K in which the impulse control takes
values.

(H1) Let D C R™ be a non-empty proper convex domain (open and connected subset, different from R™)
and K C R" be a closed convex cone with the vertex located at the origin.

Note that K being a closed convex cone with the vertex located at the origin implies that if £ and £’ are two
admissible impulses, so is £ + &’. Also, K is allowed to have empty interior.

Sometime, we need a little stronger conditions for D and K.

(H1') Let D C R™ be a bounded domain and K = R™; or D C R™ be a conic domain with the vertex being
at the origin and K C R"™ be a closed convex cone with the vertex located at the origin such that

D—K=R" (2.12)

Concerning the well-posedness of the state equation, we introduce the following assumptions.
(H2) The map f:[0,7] x R™ — R" is continuous and there exists a constant L > 0 such that

|f(t,z) — f(t,2")| < Llz — 2], vt € [0,7], z,2’ € R™. (2.13)

|f(t,0)] < L, vt € [0,T]. (2.14)

Now, for the cost functional, we introduce the following two assumptions for the running, the terminal and
the impulse costs, respectively.

(H3) The maps g : [0,7] x R™ — [0,00) and h : R™ — [0, 00) are continuous. There exist constants L, u > 0
and 0 < 6 < 1 such that

0< g(t,2),h(z) < L1+ |2|*™0),  Y(t,z) € [0,T] x R", (2.15)

lg(t,x) — g(t,2")], [h(2) — h(z")] < L(l + 2"V Ifc’l“) e —2'|’,  vte0,T),z,2" €R". (2.16)

(H4) The map £:[0,7] x R™ x K — (0,00) is continuous. There exist constants ¢y, dp, g, > 0, 8 € (0, 1]
and L, it,0 > 0 the same as those in (H3) such that

lo+ ap€)? < l(t,z,€) < L+ alé)?, (t,x,€) € [0,T] x R" x K, (2.17)

0t 2, 6) = et Ol < L(1+ ol Vo) )z = &', V(£,€) € [0,T] x K, @,2' €R", (2.18)

min {{(t, 2, &) + ((t,x + &), 0(t,2,8) + Utz + £, )} — Ut 2,§ + ) > o,

2.19
(ta) € 0,7 x B, &,¢ € K, (2.19)

Lt x, &) — Lt —t'| <L, 2,8 <Lt x,6), t<t, zeR", € K. (2.20)
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As we have indicated in the introduction section, one can assume that g and h are bounded below uniformly.
Here, we directly assume them to be non-negative just for convenience. Condition (2.17) implies that as long
as an impulse is made, no matter how small the £ is, there is a strictly positive fixed cost 3. Also, roughly
speaking, the larger the ||, the larger the cost. Condition (2.19) means that if at (¢,2) an impulse of size £ + &’
needs to be made, then one should make just one impulse of that size instead of making an impulse of size
¢ immediately followed by another with size &’. Hence, in an optimal impulse control, 7, < 741 if both are
impulsive moments. In the case that £(¢,z,£) is independent of z, this condition is reduced to

0t 6 +¢) < (t,€) + (.8,

which is a classical condition assumed in the optimal impulse control problems. Because of this condition,
& U(t,x,€) should be “sublinear”. Hence, 8 € (0,1] and £ — £(t,z,&) grows at most linearly (see (2.17)).
Condition (2.20) means that if an impulse is going to be made, then the later the better, which is essentially
due to the discount effect.

In what follows, we call the impulse control that contains no impulses the trivial impulse control, denote it by
&o(+). Clearly, under &y(+), the state equation is a usual ordinary differential equation (ODE, for short) without
jumps. Thus, usual estimates for ODEs are valid. Note that due to the presence of the (strictly positive) impulse
cost, the trivial impulse control is different from the zero impulse control (which contains impulses with £ = 0).
Let us first present the following result concerning the state trajectories.

Proposition 2.1. Let (H1)-(H2) hold. Then for any (t,x) € [0,T] x R™ and £(-) € [t, T] of form (2.2), state
equation (2.1) admits a unique solution X (-) = X (-;t,z,£(+)), and the following estimates hold:

X ()| <T@+ |z)) + Y PTG, my(s), s € [T, (2.21)
k>1
X (5" +0) — X(s+0)| <L(s'—s)+[ (1)) +3 féxle™ Lﬂ B eb) 13 6], 0<s<s <T. (222)
TS/ s<TL<s’

IFX() = X(-;t,2,&() with 2 € R", then
IX(s)— X(s)| <e"C Dz -2,  selt,T) (2.23)

Proof. First of all, for any (¢,z) € [0,7] x R™ and &(-) € J#[t,T)], by a standard argument, (2.1) admits a
unique solution X (-) = X (-;¢,2,£(+)). If X(-) = X(-;¢,2,£(+)), then X (-) — X (-) satisfies

X(s) —)A((s) =z §7+/ts[f(s,X(s)) — f(s, X(s))]ds, s € [t,T].

Thus, by (H2) and Gronwall’s inequality, we can get (2.23). We now prove (2.21). Let £(-) be of form (2.2), and
t < T < Tk =Tgp1 =+ = Thr < Tir41. Then, on (7g, Tr11), state X (-) satisfies (2.3). Thus,

X(s)] < |X Tk|+2|a|+/ (LHIX@)dr, 5 € (m ).
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Consequently, by Gronwall’s inequality, we have

K

X(s) < eL(S_Tk)(l +HIXEOI+) \fz‘|)a 8 € (T, Thr41)-
ik

Then, recursively, we obtain (2.21).
Now, let t < s < s’ <T. Then

X (' +0) - (s+0|—‘/ Fr, X()dr + 3 &1, 1 ()

S<Tk
’

g/ L(1+[X(r)|)dr + Z €11, 17 (57)

S<Tk
’

g/ L(1+e D@4 |z) + ) PTG 1, 1y (r )dr+2|&c\1[m, (s")

k>1 s<Tk
<L(s’—s)+( e+ 3 16 |e_LT") Sy Yl
TS s<TER<S!
This proves (2.22). O

In the above, (2.21) and (2.23) are standard; whereas, (2.22) seems to be new, from which, we see that
although s — X (s) might have jumps, these jumps can be controlled in some specific way. This is pretty natural
and will be useful in the sequel.

To look at the domain Z(V) of the value function, we first note that under (H1), one always has

{T}yxDC 2(V)=2(K;D) C 2(R";D) = [0,T] x R". (2.24)

Thus, Z(V) is always non-empty, and when K = R"™, the domain 2(V') of V (-, -) is the whole space [0,T] x R™.
Let us now present the following result.

Proposition 2.2. Let (H1)—(H2) hold. Let
ODCD-K={n-¢|neD, ¢ K}, (2.25)

Then 2(V) is a non-empty open set in [0,T] x R™.
Proof. We already know that 2(V') is non-empty. Let (t,2) € 2(V), then there exists an impulse control

&(-) € #®[t,T) such that X (T;t,z,£(-)) € D. There are two cases.
Case 1. X(T;t,x,£(+)) € D. Then there exists an € > 0 such that

BE (X(T7 ta x7€())) g Da

where B.(z) is the open ball centered at = with radius . Consequently, for 0 < § < e~ LT=Y¢  as long as
|z — Z| < d, one has

1 X(T5t,2,6() — X (T t,2,6()| < X0 — 2] < e
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Hence, £(+) € #®[t, T, leading to (t,2) € 2(V). On the other hand, for ¢ > t, we let

=D Glin()+ Y &l ()

TRt TR >t

—~

This amounts to moving all the impulses no later than # to £. Denote X (-) = X(-;£,z,£(-)). Then for s € [£,T],

—Jf—ka‘

Tk gt

t
L(s—f) d (s—1)
<e /\er )ldr < /t(1+|X(r)|)dr
<L L(s—*) L(r— t) L(r—) <C F—1).
< Le /t(1+e A+l + Y e lal)dr <O(1+lal+ Y lal)(E-1)

<< t<T <t

|X(s) = X(s)] < M7

Hereafter, C' > 0 stands for a generic constant which could be different from line to line. Thus, when t—t>0
small enough, we have X (T;t,z,&(-)) € D, leading to &(-) € #*[t,T). Finally, for £ < t, we take

= ng]-[Tk,T](')a

k>1

~

i.e., we make a trivial extension of &(-) from [t,T] to [f,T]. Denote X (-) = X(-;1,2,&(-)). Then

R0~ = 1X(s1.0.600) ol < [ 176 XE)lar <2 [ (141K6)])ar
< L/; LD (1 4 (z)dr < C(1 + |2))(t — D).

Hence, for s € [t,T],

|X(5) = X(5)] < "C]e — X(0)] < C(1L+ [a])(t — D).

Consequently, when ¢t — ¢ > 0 small enough, X(T;f,x,g(-)) € D, leading to E() € #*[t, T]. Combining the
above, we obtain

(t,7) € 2(V), if |t — t| + |2 — 2| is small enough.

Case 2. X(T;t,z,£(+)) € OD. In this case, by (2.25), there exists a £ € K such that by defining

) =D &l () + &Ly (),

k>1
we have
X(T;t,2,€(-) € D.

Then it is reduced to Case 1. O
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The following result tells us more about 2(V).

Proposition 2.3. Let (H1)-(H2) hold.
(i) It holds that

D-K=R", (2.26)
if and only if (2.12) holds. In this case,
9(V) = 2(K;D) = [0,T] x R". (2.27)

(ii) If D is bounded, then (2.26) holds if and only if K = R™.

Proof. (i) First of all, it is always true that D — K C D — K. Thus, the sufficiency is clear. We now prove
the necessity. Under (H1), both D — K and D — K are convex. Moreover, D — K is open and

D-KCD-K. (2.28)
In fact, for any zg € D — K, we have some 1y € D and &, € K such that
zo = 1o — &o-
Since D is open, there exists a § > 0 such that
Os(no) = {n € R™ | [n —nol < 8} C D.
Now, for any x € Os(x¢), we have
n=mno+z—1x0€ Os(no) C D,
which leads to
r=x0+r—z0 =10+ (T —20) —&=n—6 €D - K.
Thus, D — K is open. The convexity of D — K and D — K is clear. Next, for any
r=n—£€D-K, neD, (€K,
we can find a sequence 7 € D such that n; — 1. Then

x= lim (n — &) € D—K,
k— o0

proving (2.28). Now, if D — K # D — K, by the convexity of D — K, we must have D — K # R™. This, together
with (2.28), contradicts (2.26).

Finally, we prove (2.27). For any (¢,z) € [0,T] x R™, under the trivial impulse control £y(-), the state will
arrive at X (T — 0;t,2,&0(+)) € R™. By (2.26), we have some 7 € D and £ € K such that
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Then by defining impulse control

€() = €1y (),
we have

X(T;t,2,6(-)) = X(T — 0;t,2,&(-)) + € =n € D.
Thus, £ *[t,T] # @. This proves our conclusion (see (2.11)).
(ii) First of all, if K = R"™, then of course. (2.26) holds. Now, if K # R™, then there must be a ¢ € K, |(| =1

such that

(¢.§) >0, V{eK.

Now, we claim that A\ ¢ D — K for large enough A > 0. In fact, if there exists an n* € D and a ¢* € K such
that

A=t —Eh
This leads to
=M+ &N
Hence,
M) = A+ () = A
Since {7*}x>0 is bounded, we may assume that n* — 7. But this will lead to a contradiction. O

One of the most interesting examples satisfying (2.26) is the following:
D:K:Riz{xGR”|xi>0}.

Consequently, for such a case, one has (2.27). The above proposition gives two important cases: D is a bounded
set with K = R"™ and D is unbounded with K # R™ such that (2.26) holds. They are mutually exclusive.
However, we point out that they are not exhausting. Here is a simple example that is neither of the above cases:
In R?, let

1
K:{(ml,xg)‘xl,m}O}, D:{<$1,$2)|1‘2> o .’1?1<1}.
1

1—
Then D is unbounded and
DCD-K= {(1‘1,332) ‘ T < 1} £ R2,
If we regard (2.26) as the best case, then since 0 € K, the worst case should be
D-K=D. (2.29)

An example of such is the following:

K = {(z1,22) | x1,22 > 0}, D = {(z1,32) | z1,22 < 0}. (2.30)
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For the case that (2.26) fails, including the case of (2.29), when X(T'—0) ¢ D, there is no way to make an
impulse at T so that X(T') € D. Therefore,

[T} x (D-K)|n2(V)=2, o [{T}xR"|N2(V)+#{T}xR"

For such a case, one has to make impulses before 7' and drive the state to D (at T') via the state equation.
Thus, it might still be possible that

[{t} xR N2(V) = {t} xR",

for some t € [0,T). We will see a concrete example below.
Let us now look at the following simple example to get some more feeling.

Example 2.4. Consider
X(s)=xz+ (s—1t)+&(s), s €t T (2.31)

We consider several cases.
(i) K =[0,00), D = (0,1). For this case,

D — K =10,1] = [0,00) = (=00, 1],
and
2V)={(t,z) e[0,T| xR |z +T -t <1}.
(ii) K = (—00,0], D = (0,1). For this case,
D - K =[0,1] - (—00,0] = [0,00),
and
2(V)={(t,x) € [0,T] xR |z +T —t>0}.
(i) K = [0,00), D = (0,00). For this case,
D— K =[0,00) — [0,0) =R, 2(V)=10,T] x R.

(iv) K =[0,00), D = (—00,0). For this case,

D — K = (—00,0] — [0,00) = (—00,0] = D,
and
2(V)={(t,z) €[0,T] xR |z +T —t < 0}.

Now, we look at the general situation. Under (H1)-(H2), for any « € D, we may let B.(z) C D, with B.(x)
being the ball centered at = with radius e. Let ¢ € [0,T] such that T — ¢ > 0 is small enough so that

| X (s;t,2,&()) — x| < L+ L)e!T (1 + |2))(T - t) < e, s € [t,T).



12 Y. ZHOU ET AL.

This means that &(-) € K*[t, T]. Hence, under (H1)—(H2), the following is always true:
9(V)=2(K;D) # @. (2.32)

We now would like to get a more precise description of 2(V). For state equation (2.1), we consider the following
“backward” system

Y@wzc—/ fr Y ()dr, s €[0,T],

with ¢ € D — K. The solution is denoted by Y (-; T, (). Let
YHT,D—K)={Y(tT,() | C€eD—-K}.
For any € % (t;T,D — K), one has some ¢ € D — K such that
x=Y(T,0).
Then, with the trivial impulse control &y(+), we have
X(T = 0:t,2,60() = Y(I;T,¢) =C€ D— K.
One can choose some £ € K such that

X(T —0;t,2,&(-)) + £ € D.

Thus, #(t; T, D — K) is the set of all possible initial state that if the system starts at (t,z), the state will reach
D — K at T under &y(+). Then, under a possible impulse at T, the state will hit D. Now, let IT = {¢q, t1, - ,tn}
be a partition of [t,T] with t =ty < t; < te < --- <ty =T. Then we may define inductively

Wt =W (t1;02%3 — K),
B = W (to: 1 %) — K).

We denote

@ (410) = % - K,
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which is the set of all initial states € R™ such that if the system starts at (t,z), with possible impulses at
to,t1, -+ ,tn, the state will reach D at T'. This can be described by the following:

D=l <=4V - K
T
AN K = AN =W (ty gt HY - K)
T
Yty oitn1, % P —K) =N 2 <oV ? K

i)
@1—} - K= @Hl E@(tl;tg,@r%—K)
r
@(to;tl,gnl—K) E@l—? <~ @1—?—K

In the above, horizontal arrows represent making impulses, and upper arrows represent running state equations.
Clearly, for any two partitions IIy and Il of [t, T] with II; C Ils, i.e., II5 is a refinement of Iy, we have

Y (t;11;) C ¥ (t;10y).
Hence, we may define

7(t)=JZ &) = lim #/(410),

et 1] —0
where ||II]| is the mesh size of IT defined by

[T} = max (£ —tr—1).

ma.
1<k<N

From the construction, we see that #%/(¢) is the set of all initial state that if the system starts from (¢,z), then
with impulse controls, the state can reach D at T, i.e.,

KT A0 =  ze(b). (2.33)

Hence, we have the following characterization of Z(V):

V)= |J [ xz0)] (2.34)
te[0,T]
The following example gives a concrete construction of % (t).

Example 2.5. Consider

Xy(s) = 21 + / " Xa(r)dr + & (s), -
t selt,T].

Xo(s) =xg — /tS X1 (r)dr + &(s),
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Let
D = {(z1,x9) | 2+ a2 <1}, K= Ri = {(z1,z2) ’ x1,x9 = 0}.

The backward system reads

T
n@:m—/’nmw—awx o
s s € |0,717.

T
n@=m+/‘nmw—@@7

For any n = (m1,72) € D and (¢1,¢2) € K, let

Yi(s)\ _ [cos(T—s) —sin(T'—s)\ (m —GC

Ya(s))  \sin(T —s) cos(T —s) ne—C )’
Note that as s decreases from T, the vector (Y;(s),Y2(s))" turns counter-clockwise. We may keep making
impulses to see that

V(1) = co (DU{(e1,22) | 71,2 < 0}),
Y (t) = co (@(T) U{(x1,22) | 25 < 21 cot(T — ), a1 > 0}), 0<T—t<,

@(T—g):{(xl,xzﬂxggl}, > (t) = R?, T—t>g,

where co (M) is the convex hull of the set M, i.e., the smallest convex set containing M. In the illustrative
figures, the blue arrow lines give the directions of impulses; the dashed arcs give the directions of the points
turning. Thus, in the last figure (of the situation T'—t > T +¢, any initial point (z1,z2) with 23 > 1, one could
first make a horizontal impulse £ = (£1,0) so that (z1 4+ &1, z2) is on the right of the dashed red line. Then
by the original system which makes the point turning clockwise, and at ¢t = T, the point will be in % (T). By
making an impulse at ¢ = T, the state will get into D.

From the above, we see that

V)N [{t} xR"] = 2(K;D)n [{t} x R"] £ {t} xR",  0<T—t< g
(V)N [{t} xR"] = 2(K; D) N [{t} x R"] = {t} xR*, T —t> g
However, one has

2(V) = 2(K; D) 2 [0,T] x D.

The above (2.34) gives a characterization for the domain Z(V') of the value function, in some sense. More
needs to be done. For example, what will be the boundary of such a domain, how the value function behaves
near the boundary of this domain, and so on. We are going to leave these problems open for the time-being, and
hope that we will be able to report some relevant results in the near future. Instead, in the current paper, we
consider the things more relevant to the continuity of the value function. Let us make some more preparations.
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Lemma 2.6. Let (H1) and (2.12) hold. Then there exists a nondecreasing continuous function v : (0,00) —
(0,00) only depending on K and D such that for any x € R™, there exists a £ € K satisfying

z+&eD, ¢ <v(la)). (2.35)
Further, if (H1") holds, then for some constant Cy, only depending on D and K,
v(r) =Co(1+r). (2.36)

Proof. First we claim that for any fixed M > 0, there exists a v > 0 only depending on K and D such that
for any x € R™ with |z| < M, there exists a £ € K with |§| < vy satisfying z + ¢ € D, i.e.,

d(x+¢ D)= inf [ +&—n[=0.
neb

Suppose this claim fails. Then there exists some M > 0 such that one can find a sequence x, € R™ with |zx| < M,
and

inf o +6 | =d(ex +€,D) >0, VEEK, [ <k k>1,
ne
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for some 0 > 0. We may assume xp — xo. Now for xg, by (2.12), there exists a £ € K such that
no = xo + & € D.
Hence, for k > ||, large enough, we have (noting that D is open)
rp+é =ak—T0+T0+E& =2k —T0+1m0 €D C D.

This is a contradiction. Hence, the claim is true. Now, we define
{ Vi—1 + 2(vk — ve—1)(Jo] — k + 1),
v(z) =

Vi,

which satisfies the our requirement. Hence, (2.35) holds.
Now, let (H) holds. If D is bounded with the bound M > 0, then for any x € R", let £ € K = R"™ such that
z+&=mne D. Clearly,

[l < el + Inf < M+ |,

which is what we want.

Finally, let D be a conic domain with vertex located at the origin. Then under our condition (2.12), we can
find a & € DN K, & # 0. (Note here that 0 ¢ D.) Now, for any x € R", if z € D (which includes the case
that = = A& for some A > 0), we trivially have 2 = x — 0 € D — K. Hence, by taking = x and ¢ = 0, we have
(2.35)-(2.36). Next, let = ¢ D. If

x = —A&o,

for some A > 0, then by taking n =0 € D and & = A, we have (2.35)—(2.36). Hence, we need only to look at
the case that z ¢ D, with z and &, being linearly independent. Consider the two-dimensional space H spanned
by = and &y. After a proper linear transformation, we may assume the following situation in R?:

DNK> 50 = (laO)Tv {7A€0 | A P O} = {(7>\70)T | A = 0} = (700,0] X {0}7
DOH ={(n,m2)" | —=ym < n2 < vam, m >0},

for some 71,v2 > 0 (depending on D and K). Then for (z1,22) € R?\ D, in the case that x5 > 0, we must have
To > Yox1. Take
T2 T2

m=—>0, mn =9, A= ——x1>0. (2.37)
Y2 Y2

One has n = (n1,m2) " € DNHC D, £ = X\ € K, and

(n1,712) — A(1,0) = (@mg) . (% — x1> (1,0) = (z1,22) = z.

72

Clearly,

X ) |x|

2 2 2
=3 < SR, gy = Y By < Y202

V2
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Thus, (2.35)—(2.36) hold. Likewise, in the case o < 0, we must have x5 < —y;21. Take

Th:;l’g >O, 2 = X2, )\:*ﬁfﬂl’l > 0. (238)
4t Y1

Then n = (n1,m2)" € DNHC D, £ = A\ € K, and

(m,m2) = A(1L,0) = (22,2 ) + (2 + 1) (1,0) = (@1,25) = .
! 71
Also,
/1+,y2 /1+72 /1+72
€] =A< F—a|, Il = S|z < F——al.
el 71 M
Hence, (2.35)—(2.36) hold for this case as well. O

The point of the above result is that under condition (2.12), the size of the impulse £ that drives the state
x to the constraint D is controlled by |z|. This is very important below. We also note that (2.12) seems to be
a little stronger than (2.26). In the case that K° # @ (K° is the interior of K), they are equivalent. It is not
clear to us at the moment if they are equivalent in general. Also, we point out that the function r» — v(r) can
grow arbitrarily fast. Here is a simple example.

Example 2.7. Let vy : [0,00) — [0,00) be a continuous strictly increasing function with v5(0) = 0 and vy (r) —
oo as r — oo (for example, vo(r) =" —1). Let

D= {($1,£L‘2) e R? ‘ T > VO(\CCQD}7 K = {(1’1.{172) e R? | T1, T = 0}.
Then, for any (z1,72) € R?\ D, one can take & = (£1,&2) € K with
&1 = vo(|we|) — 21, & =0,

which will lead to = + £ € D. This is actually the best choice as far as the norm [¢] is concerned. Clearly, if v(-)
is the function appeared in Lemma 2.6, then with z; = 0, one has

vo(|zal) < & < €] < v([22l), Vry € R.

Thus, v(-) cannot be growing slower than vg(-).
To conclude this section, let us present one more example.

Example 2.8. Let K = R?, and
D = {(z1,22) € R* | 21 > 0},

then for any = = (z1,0) € R? with z; < 0, we see that the £ = ({1, &) € K that makes z + K € D with smallest
possible |¢| should be £ = (—z1,0) and [§] = |z|.

The point that we want to make in the above example is that as long as D # R™ and D is convex, the
function v(r) appears in Lemma 2.6 will be at least of linear growth.

3. PROPERTIES OF THE VALUE FUNCTIONS

In this section, we will present some properties of the value function V(- ), including its continuity.
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3.1. Some bounds

Our goal in this subsection is to obtain, under certain conditions, including (H1)—(H4), the bounds of the
value functions, the smaller class of impulse controls on which the value functions are the infimum of the cost
functional, and each impulse control in this smaller class has no more than a fixed number of impulses with the
sizes of the impulses being bounded. More precisely, we have the following result.

Proposition 3.1. Let (H1)-(H4) and (2.12) hold. Then 2(V) = [0,T] x R"™ and
0< Vita) <), V(ta) e [0,T] xR, (3.1)

for some continuous increasing function v : [0, 00) — [0, 00). Moreover, for any (t,x) € [0,T] x R™, Problem (C)
admits an optimal impulse control, and

V(t,iC) = £(~)Eijré§”[t,T] J(t71},f()), (32)
where
A1) = {e) Zsklm e xelp,m) | N <MD Z|5|ﬂ< ALY )

Further, if (H1") is assumed, then the following holds:
0< V(t,x) < C(1 4 |z|WHIVB) Y(t,z) € [0,T] x R, (3.4)

and in the definition of # " [t, T], v(r) < C(1 + r#+OVE),

Proof. For any (t,z) € [0,T] x R™, under the trivial impulse control &(-), the state X(-) satisfies an ODE
without jumps. Thus, we have

X(sit, 2, &) < T+ Jal),  t<s<T.
Under (H1), making use of Lemma 2.6, there is a {r € K such that
X(T —05t,2,&() +&r € D, l&r] < v(|X(T = 05t,2,&(-))]),
Then we define
§0) = &rlyny () € A7 [, T).
This is the impulse control that only makes one impulse at 7' and make the state jump into D. Clearly,

~

T
0< V(t,2) < J(t,2:6() = /t g(s, X (5))ds + h(X (T — 0) + &) + £(T, X (T — 0), &) .

T
< [ L PP + L+ X = 0)+ &)+ L+ alérl?) < (),
t

for some continuous increasing function 7 : [0,00) — [0,00). This proves (3.1), which also leads to 2(V) =
[0, 7] x R™.
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Next, let (t,z) € 2(V) =1[0,T] x R", i.e., V(t,x) < co. Let &(+) € A *[t, T] satisfy
Vit z) +1 > J(tz;:€()),

then we have that the optimal impulse control must belong to this smaller class. Moreover,

N
J(t,2;6() = Nbo+ Y aoléel”

k=1
Then
N < V(t,z)+1 < o(|lx]) + 1’
Ly Ly

and

al Vit,z)+1 _ o(lz))+1

Z |6k < —= < :

el [e70} &o

Hence, (3.2)—(3.3) hold.
Now, let £°(+) € #;"[t,T] be a minimizing sequence for the cost functional £(-) — J (¢, z;£(+)). Then, we may
assume that

lim £°(s) = £(s) = > &Lz, 1) (), s € [t, 7],

e—0
k>1

with t <7 < 7 < --- and & # 0. This can be done as follows: Let us begin with the sequence (7{,&5). We
may assume that

lim (&) = (7, €9).
If £9 # 0, we define
(71,61) = (17, €1).
If £ = 0, we skip (70,£?). By taking sub-subsequence, we may assume that
lim (75, €5) = (75, ).
If 79 > 70 and &9 # 0, we define
(72,&2) = (73, &3).

Otherwise, if £ = 0, we skip (75, £9); and if 7§ = 70, £§ # 0, and £} + &9 = 0, we skip both (77,£7) and (79, £3);
if 79 =7 and €9 + &3 # 0, we redefine

(7_-1751) = (79’59 + fg)
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Clearly, with such a procedure, we can complete the construction of &£(-). By the convergence &5(-) — £(-)
pointwise, we see that actually the convergence is uniform. Then one also has the uniform convergence of
Xe() = X(-5t,2,65(4) to X(+) = X(-;t,2,£()). Tt is ready to see that (X(-),£(+)) is an optimal pair.

Finally, if (H1’) holds, by Lemma 2.6, we have from (3.5) that

0< V(t,z) < C(1+ |z]*T9) + aCo(1 + | X (T — 0)%) < C(1 + |z|*F0) + CoeP LTV o)z,

proving (3.4). O
We see that the appearance of the term CoefBL(T’t)a|x|B is due to the terminal state constraint. It is possible
that 8 > pu + 6. In this case, the value function might grow with the same order as the impulse cost.

3.2. Continuity of the value function

In this subsection, we will establish the continuity of the value functions V'(-, -). Note that unlike the classical
situation, when the terminal state constraint is presented, the value functions could be discontinuous. Also, some
proper conditions will ensure the continuity of the value functions. To be convincing, let us first look at a simple
example.

Example 3.2. Consider state equation (which is the same as that in Exam. 2.4)

X(s)=x+(s—t)+£&(s), seltT) (3.6)
The cost functional is defined by
T(t,x5€()) = D lre, X (i = 0), &), (3.7)
=
with
Lt x, &) =1+ €. (3.8)

Suppose K =R, D = (0,1). Let us consider Problem (C). For any (¢,z) € [0,T] x R with z + T — ¢ € [0, 1], we
take £(+) = &y(+), the trivial impulse control. Hence,

V(t,z) =0, if 4+T—-t€]0,1].
Now, if
z+T —t>1,

then, under &(+), we have

X(Tit,z,&()=ax+T—t>1.
Hence, during [t,T] an impulse has to be made. The most economical impulse will be

§()=—(@+T—t =11 7(),
where the choice 7 € [t,T] is irrelevant. Under such an impulse control, we have

Jt,z;€())=1+z+T —-t—-1=a4+T—t.
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Apparently, such an impulse control is optimal. Finally, if
r+T—1t<0,
then we take
§() ==+ T =01 1),
with an arbitrary 7, € [¢,T]. Again, this impulse control is optimal. With such a control, one has

Jt,x () =1+z+T —t|=1—z—T+1.

Consequently,
1—2—T+t, r+T—1t<0,
Vit,z) =4 0, c+T—tel0,1], (3.9)
x+T—t, r+T—1t>1.

Clearly, this value function V(-,-) is discontinuous (along the lines  + T —t =0and x + T — t = 1).
Now, we modify the cost functional as follows:

T(t,2:€(-) = MX(T)) + Y Uri, X (7 — 0), &), (3.10)
k>1
with
h(z) :9(:“ %)2 v €R. (3.11)

For any X € R (a possible terminal state location), take £ € K = R and look at the following;:

21\ 2
B(X +) + 0T, X6 =9(X +6-2) +1+¢,

requiring b = X + € € [0,1]. This is the cost at the terminal time T if the terminal state is X and an impulse £
is made at T'. Hence, let us consider the following function

2 2
F(b,X):h(b)+€(T,X,b—X):9<b—g>+1+|b—X|, be[0,1],

which will help us to decide whether we should make an impulse at 7. For any given X € R, we want to find
the minimum of b — F(b, X) over b € [0,1]. To this end, we first observe that

2 31
18(b—7) F1=18b— 2. ifb> X,
Fy(b,X) = 0 5

w(h—g)—lzl%—f%, ith< X,
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Hence,
31 31
F(—UX):, X <22 =,
*\ 90 0 Sgg =
A1 11
F%7TX):0, X>=b
Clearly,
1 2 A1
O<bhp=—<-<b=—<1
S S5 ST 90 <

Further, for X € (bg, b1), we have

Hence, for X € (bg,b1),

. 22
bg%F@Xy<ﬂXJ3f%ng)+L

To summarize, we have

31 22 31 247
H%Jj_%%—g>+l+%—X_I%—X X < by
. 212
F(b,X) = _o(x_2
min F(b, X) AFLX,X)__Q(X 5) +1, X €[bobi],
41 22 41 103
”WX%”Qﬁ_Q‘“+X_%—E@+K X > by,
and X — bnﬁi)nl] F(b, X) is continuous. Note that
€0,
36 247
h0) =22 > 28 = min F(b,0) = min |h(€) + 4T 12
(0)= 55 > 155 = ,min F(0,0) = min [n(e) + £T,0,)], (3.12)
and
81 283
A1) = = > 222 = min F(b,1) = min |h(1 o1, 3.13
()= 55 > 1o = min, F0.1) = min [n(1+8) + 4T, 1,6)], (3.13)

Now, we look at the equation

h(X) = min F(b, X
(X) R (b, X),

which give the point X at which there is no difference if the best impulse is made or no impulse is made. A
direct check shows that the above does not have solutions in [bg, b1]. Now, on (0,bg), we solve
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whose unique solution is

On (b1,1), we solve

whose unique solution is

The above tells us that (recalling b = X + &)

h(X) < X-@é%,l] |:h(X +£) +€(T7 ng):|7 X e <a07a1)a

WX) > min (WX HO AT XO] X €R (a0,00)

We see that

1 31 1 71
0< = _—<bhpg=—<b=—< = — < 1.
=99 SN0 =5y <" T g " =g <

The above means that if the terminal state X (T — 0) € (ag,a1), we should not make an impulse at T, and if
X(T —0) € R\ (ag,a1), we should make an impulse as follows:

1 1
?)—fX(T—O)7 X(T-0)<ay=—, orz+T—1< ayp,
) 90 90
& = Al - (3.14)
o XTI =0, XT-0)>a=g ol —t>a,

so that either X (T) = by = 31 or X(T) = by = g5. Combining the above analysis, we obtain the value function

2\ 2 1 71
9(1:+T—t—g), x—|—T—t€[ }E[ao,aﬂ,

90’ 90
247 1
Vite)=q == — T—t T—-t<—= (3.15)
180 (ZL’+ )7 T+ < 90 aq,
103 71
— T —t T—t>—=
g T rHE T Z 90 = W

which is continuous.
Now, let K =[0,00) and D = (0,1). Then from Example 2.4, we see that

2V)={(t,z) €[0,T]| xR |z +T -t <1},

and only positive impulses can be made. Hence, by looking above computation, we see that if X(T —
0;t,x,&(:)) < ap, we could make an impulse; for all other cases, we could not/should not make impulses.
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Therefore,
247 1
— — T—1t T—t< —
o @It wHT—t<gp
_ 2\ 2 1
VR =S o(eer—i- 2 aarore L) (3.16)
5 90’
400, r+T—1t>1.

This value function is continuous over 2(V) = 2(V') which is a closed set. B
Further, let K = [0,00) and D = (0, 00). The feature is that the state X (T — 0) will be either in D, or, it can

always be pulled back to D by an admissible impulse. Therefore, 2(V) = [0, T] x R. When X (T —0) < ag = %,
an impulse is necessary to meet the terminal state constraint, or to make the total cost smaller. Hence,
247 1
— —(z+T—-1), r+T—t< —,
V(t,x)={ 180 90 (3.17)

2 2
T—t—f) T—t>—.
9w+ 5) 0 *F 90

This function is continuous as well.

The above example shows that when the terminal cost function h(-) and the impulse cost are compatible,
one could get the continuity of the value function V(-,-). In the above example, a careful observation shows
that when the terminal state gets close to the boundary 9D of the constraint set D from inside, an impulse
should be made to reduce the cost. This essentially eliminates the possible jumps of the best costs between the
terminal state X (T — 0) being close to the boundary 9D from outside and from inside of D. On the other hand,
due to the terminal constraint, the value h(x) of h(-) for x € R™\ D is irrelevant to our problem. We now would
like to present general results.

Theorem 3.3. Let (H1)-(H4) hold and (2.12) be satisfied. Suppose

ol [h(z +E) +UT,2,6)| < h(z), VzeR"\D. (3.18)

Then there exists a continuous increasing function U : [0,00) — [0, 00) such that

V(t,2) = V(D) < C(L+ |2V [E")]e = 2°, V&, 7 €R", |o — 7| small, (3.19)
Vit,2)— V(Ea) <o(lal v E)E T Ve,Fe [0.7) |
In the case that (H1") holds,
—V(t.3 2D |z — 719 N tOVBY 1 — F
V(t,2) = V(D) < C[1+ (2] v [Z)"]lz = 2[° + C[1 + (2] v |2]) JIt =1, (3.20)

Y(t,z),(t,2) € [0,T] x R" |z — Z| small.

Proof. Let (t,z) € [0,T] x R™. From Proposition 3.1, there exists an optimal impulse control £(-) € J£*[t, T).
Due to condition (3.18), we claim that X(T') € D. In fact, if X(T') € 0D, then there exists a ( € K such that

X(T)+ ¢ € D, h(X(T) +¢) + 4T, X (T),¢) < h(X(T)).
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Thus, by letting

C() =&() + CLymy,

we have
J(t,2;¢(-) = J(t,2;€() + M(X(T) + ¢) + AT, X(T),¢) — h(X(T)) < J(t,2;£(-)) = V(t,2),

contradicting the optimality of ét() Hence, we may assume that X (7') € D. Now, for any 7 € R", let X() _
X(-;t,%,€(+)), we have

1X(s) = X(s)| <e"T DNz -3, t<s<T.

Recalling that D is open, for |z — Z| small, one sees that £(-) € J#*[t,T]. Consequently, ~making use of
Propositions 2.1 and 3.1, together with the Lipschitz continuity of z + (¢, z, £), we have (noting £(-) € % [t, T)

V(.3) < J03E) < Taé)+ L[ (14 1X0PVIRE ()P
+L(1+|X<T>\“vwx< )X (T) X’(T>|
+Z|€ T, X Tk— )7§k)_€(7jk7X(7ik_0)7gk)|

k>1
<V(t,z)+ C+|z* Vv I[ZM)|z —Z°.

for some constant C' > 0. By symmetry, we obtain the first estimate in (3.19).
Next, let 0 <t <t <T. Let &(-) € #"[t, T] be optimal for the initial pair (¢, ). Let

E<ST <o <o < Ty ST < Thotl-

Define

kal[t )+ D Gl

k>ko+1

~ ~

Denote X (-) = X(-;%,2,£(-)). Then

~ T =~ -~ o~ — ~ —
IEasf) = [ ot )+ hE@) +0(Fas Y &) + 3 0 K- 0).6)

kg/t\ Tk>/t\

J(t,2;€(-) / lg(r, X (r))|dr + / l9(r, X (1)) = g(r, X (r))|dr + [R(X(T)) — h(X(T))|

+[4(£x;§jék) =St X 0.60] + 3 [ R 0.6 — £ X - 0.6
k=1 k=1

k>ko

S
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Note that
ko ko k-1 ko k-1
ey 6) <X B+ 6.8) <> t(fa+ Y &.&)-
k=1 k=1 i=1 k=1 i=1

On the other hand,

hﬂn—@—x<Lﬂme0mW<Llﬁﬂ+WWmW

<L/10+*“”O+MDW<Ou+umn—w
t

Next,

T2 T2

Xm0 -s-gl< [ exOar <L [+ xm)

T1 T1

< [ 7 (1 e )+ MG ar < OO+ 6 )

By induction, we see that

k—1 k—1
X(n—0)—2— Y & <C(1+lal+ D I&) G-, 1<k <ho
i=1 =1

Also, for any s > t,

< C(l + |z| +i|§l|)(? t).

i=1

X (s) — X(s)] < D)

ko
v+ G- X(F)
i=1
Consequently, noting that £(-) € J#G*[t, T],

o~ —_ ? T o~ o~
J@m&DQWwﬂﬁ+lLﬂ+mem+Lé\Mﬂfﬂmw+ﬂﬂﬂfX@H

ko
+LY
k=1

<V(ta) +C(1+fo] + Y I6) (F-8) < V(t2) + () (T - 1),
k>1

k—1
T+ &= X(n—0)|+ LY [R(7 —0) = X (7~ 0)]
i=1 k>ko
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for some (|z|). Finally, let £ < t. Then we extend £(-) on [t, T] to E() on [t,T] trivially. One has

V(E2) < J(Ra:€0) < J(ta:€() + / lo(r, X()ldr + / l9(r, (1)) — glr, X (r))|dr

HI(X(T)) = M(X )|+ D 167, X (7 — 0),65) — €(Fr, X (7, — 0), &)
k>1

<V(t7x)+/ L(1+|)A((r)|)dr+L/t |X(r) — X(r)|dr

+LIX(T) = X(T)| + > [X (7 — 0) — X (7 — 0)]
k>1

<V(ta)+C(1+ o]+ D 1&1) (¢ — 1) < o(lal)(t - D).

k>1

This completes the proof of (3.19). Finally, in the case that (H1’) holds, our conclusion follows from the above
arguments, together with Proposition 3.1. O

We see that due to the appearance of the terminal constraint, the Holder continuity of the map x +— V (¢, x)
is only locally.

4. DYNAMIC PROGRAMMING PRINCIPLE AND HJB QUASI-VARIATIONAL
INEQUALITY

In this section, we are going to establish Bellman’s principle of optimality for our Problem (C). Then the
value function V(-,-) is showed to be a viscosity solution of the corresponding HJB equation, which is a
quasi-variational inequality. For convenience, in what follows, we will keep assumptions (H1’), (H2)—(H4) and
(3.18).

Theorem 4.1. Let V(-,-) be the value function of Problem (C). Then for any (t,z) € [0,T) x R™, the following
principle of optimality holds:

V(t,x) < glng< {Vt,z+ &) +U(t,z,8)} = N[V](¢t, z), V(t,z) € [0,T) x R™, (4.1)

7
V(t,z) < / g(r, X (r;t,z,&())dr + V(L X (G t,2,6())), YO<t<I<T, z €R™ (4.2)
t
Furthermore, if the strict inequality holds in (4.1), then there exists a t € (¢, T| such that
t ~ A~ o~
V(t,z) = / g(r, X(rit,x,&()))dr + V(t, X (t;t, 2, &0())), 0<t<t<t<T, z €R".
t

For z € R", it holds that
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where

NP [h](z) = geKiilJ,f-geD {h(z+&+T,z,¢}, zeR™ (4.4)

Proof. First of all, for z € R", we clearly have (4.3). Next, let (¢,2) € [0,T) x R™ and ¢ € K. For any
£(-) € [t T, we see that

€() = () +&() € A7[t, T,

Thus,
V(t, @) < J(ta;€()) = £t 2,0) + Tt e+ GEC))-
Consequently,
Vit,z) <Ll(t,x, )+ V(t,x+ (), V¢ e K.
Therefore,

V(t,z) < Cigf({v(tax + O+t z, Q) = N[V](Et, ).

On the other hand, for any 0 <t <t < T, we take any () € %X(at’w’go('))[a T). Extend it to E() e At T
in the way that no impulses are made on [t,¢). Then

~

V(t,z) < J(t,z;€(-) = / 9(r, Xy o (r))dr + J(£, X (5, 2,&()); €()).-

Consequently,

t
Vit,a) < / o, X (rst, 2, €0 ()))dr + V(5 X (8,7, &0())).
t
Finally, we assume that

V(t.2) < N[V](t.2) = inf {V(t,2+¢) + (t.2.0)}. (4.5)

For any e > 0, there exists an impulse control £°(-) = 2551[757T](s) € JH°[t,T] such that
i>1

St 65()) < Vit ) +e.
If 7§ =t, then

Vt,z)+e > J(t,x+ () + Lt 2, €) > V(t,z + &) + U(t, 3, £5), (4.6)
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where

EO) =D Elpen(s)  E=&,, =1, i1l

i>1

This is contradicting (4.5). Hence, 7§ > ¢. We further claim that there exists a ¢ > ¢ such that 7% > ¢ for all
€ > 0 small. If this is not the case, then for some € | 0, 77 | t. Thus,

V(t,z)+e > J(t,2;6°())

= [ ol X (st o) + € XU = 0st€0() €0) + J(F X O = 0t &) + EGEC) ()
> /t ' glr, X (s;t,2,80()))ds + £(71, X (17 — 058, 2&0(+)), &7) + V(Tf, X (1 —0; t,x,fo(-))).

Letting € | 0 and (we may assume that) £ — &1, we have
V(t,.’lﬁ) = V(t,.%‘ + 51) + Z(tax7§1)'

which is a contradiction again. Therefore, we get the existence of ¢ > t. Then for any t< t,

t
V(t,$)+€>/ g(r. X (rit,, & (-))dr + J (£, X (t,2,°)
t

> /t g(r, X (rst,x,&(-))ds + V(5 X (Et,2,&(-))).

Combing this with (4.2), the proof is complete. O
The following proposition is about the properties of N[-] and N”[-].

Proposition 4.2. The maps (t,z) — N[V](t,z) and x — NP[h](z) are continuous. Moreover, if (ty,zo) €
[0,T) x R™ such that

V(to,w0) = N[V](to,z0) = V(to, zo + &o) + £(to, To, o), (4.9)
for some &y € K, then
N[V](to, zo + &) — V(to, o + &o) = do- (4.10)
Similarly, if xq € R™ such that
h(zo) = NP[h](x0) = h(zo + &) + (T, o, &), (4.11)
for some &y € K, then
NP[h](zo + &) — h(zo + &) = o (4.12)

Proof. First of all, suggested by (3.2)—(3.3), for any € R", we may introduce

K ={ee k|l < (M)%}. (413)

Qo
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Then (3.2)—(3.3) tells us that for given initial pair (¢,z) € [0,T] x R™, we may restrict ourselves to the impulse
controls with the impulse vector taken from K(‘)w‘. Now, for any (t,z),(#,Z) € [0,T) x R”, and ¢ € K(lfv‘vlw‘,

Note that in the definition of N[-], £ € K is uniform in (¢,z). Thus, we have
IN[V](t,2) = N[VI(£,2)| < [D(|la] V [2]) + L] (|t =] + |« - Z]). (4.14)

Next, if for some (to, o) € [0,T) x R™, (4.9) holds for some &, € K(‘)mo‘7 then we claim that (4.10) holds. In fact,

for any &; € Kgxﬁ&)‘

V(to, zo + &o + &1) + L(to, w0 + €0, &1) — V(to, Zo + &o)

= V(to, o + &o + &1) + £(to, w0 + o, &1) + £(to, 70, &0) — {V(to»iﬂo +&o) + f(tovi’?O,fo)}

=V (to, wo+&+&1)+L(to, 0,0 +E&1) =V (to, o)+ V(to,w(),f())+€(t(),iU(J"‘nyfl)—Z(to,130750‘1‘51)]
> U(to, o, §o) + L(to, zo + &0, &1) — L(to, o, §o + &1) = do-

This proves (4.10).
Now, we look at NP[-]. By (4.13), we can redefine (compare with (4.4))

NP[h)(z) {h(z+ &+ T, z,¢)}, z € R™

= inf
€K a+E€D
We now show that x — NP[h](z) is continuous. For any given z € R", there exists a £ € K& C K such that
NP[h)(@) = hz +§) + UT,2,6),  w+£eD.

We claim that = + ¢ € D (not on the boundary 9D of D). In fact, if z + ¢ € 9D, then by (3.18), there exists a
& € K such that

NP[h](z) = h(z + &) + U(T,2,8) > h(x + £+ &) + LT,z + €, &) + 6T, x,€)
> h(z+ &+ &)+ 0T, 2,&+ &) > NP[h)(2),

a contradiction. Hence, by the openness of D, there exists a § > 0 such that Os(x +&) C D. Then for y € 05(z),
¢ € D — {y} and thus

NP[h)(x) = h(z +€) + 6T, z,€) > h(y + &) + UT,y,&) — v(jz| V |yl |« — yl)
> NP[h](y) = v(|a] V |yl |z — y]),

for some continuous function v : [0,00) X [0,00) — [0, 00) with v(r,0) = 0, for any r > 0. Switch the positions
of z and y, we obtain the continuity of z — NP[h](x). The proof of last conclusion is similar to the case of
N[V](-,-), with the restriction that x¢ + &, z0 + & + & € D and tg =T. O

The above result leads to the following Hamilton-Jacobi-Bellman equation for the value function V'(-,-). The
proof is standard.
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Theorem 4.3. Suppose that the value function V(-,-) € C*([0,T] x R™). Then V(-,-) satisfies the following
HJB quasi-variational inequality:
Vi(t, z) + (Va(t, ), f (1, )> +g(t,x) =0, NV|tz)-V(t,z) 20, (tz)e[0,T]xR",
(Vilt,2) + (Valts ), () + g(t,2) ) (NIV](,2) = V(t,2)) =0, (t,2) € [0,T] x R, (4.15)
V(T,z) = hP(z), r € R,

which can also be written as

min {Vi(t,2) + (Va(t, @), f(t,2)) + g(t,2), N[V](t,2) = V(t,2) } =0, (@) € [0,T) x R,

(4.16)
V(T,z) = hP(z), x € R™

From the previous sections, we see that under (H1'), (H2)—(H4) and (3.18), the value function V(-,-) €
C([0,T] x R™). However, it is known that the value function might not be C'([0, 7] x R™) in general. Therefore,
the above is a formal result. For (4.16), inspired by the viscosity solution notion introduced by Crandall-Lions
[11], Barles introduced the following corresponding notion [2, 3], which has been modified here for our impulse
control problem in finite time horizon (see [31]).

Definition 4.4. A continuous function V(-,-) is called a wiscosity sub-solution of HJB quasi-variational
inequality (4.16) if
V(T,z) < hP(z), r € R, (4.17)

and for any function ¢ € C1([0,T] x R") such that V(-,-) —¢(-, -) attains a local maximum at (¢,z) € [0,T) x R",
it holds

min {@u(t,2) + (pu (@), £(1,2)) + g(t,2), NIV](t,2) = V(t,2) | > 0. (4.18)
A continuous function V(- ) is called a wviscosity super-solution of HJB quasi-variational inequality (4.16) if
V(T,z) > hP(z), xcR, (4.19)

and for any function ¢ € C1([0,T] x R™) such that V' (-, ) — (-, -) attains a local minimum at (¢,z) € [0,7) x R™,
it holds

min {@1(t,2) + (pa (t,2), £(t,2)) + g(t,2), N[V](t,2) = V(t,2) } <0. (4:20)

A continuous function V(-,-) is called a wviscosity solution of the HJB quasi-variational inequality (4.16) if it is
both viscosity super-solution and viscosity sub-solution.

We now state the following result of existence of viscosity solution.

Theorem 4.5. Let (H1'), (H2)—(H4) and (3.18) hold, then the value function V' (-,-) is a viscosity solution to
the HJB quasi-variational inequality (4.16).

Proof. Obviously, V(t,x) satisfies the boundary condition.

Assume that ¥ € C*([0,7] x R™) such that V — ¥ takes a local maximum at some point (tg,z¢). For
sufficiently small |¢ — t],

V(to, w0) — ¥(to, w0) = V(t, Tty a0 (1) — U (t, Ttg,u0 (),
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where x4, 4, (t) is the trajectory corresponding to no-impulse case. Hence,

t
o</ngmmwmv+V@wm%@y—Wmmw

to

é/ﬁﬂnmwdﬂﬂr+W@wmmUD—W@mm)

to

Dividing both side by t — ¢y and letting ¢t — ¢y,

0 < g(t071'0) + \Ilt(t07x0) + \Ilz(tvaO)f(t(vaO)v
i.e., V(t,x) is a viscosity subsolution of the HJB quasi-variational inequality.
Next assume that ¥ € C*([0,T] x R™) such that V — W takes a local minimum at some point (tg,x¢). For
sufficiently small |t — tg],

V(tOvl'O) - \Il(tO»xO) < V(ta Ltg,z0 (t)) - \Il(t7xto,m0(t))a

where x4 5, (t) is the trajectory corresponding to no-impulse case. In this case, if V(t,z) = infec g {V (¢, 2 + &) +
L(t,x,€)}. Tt is obvious that

min{ ¥ (to, zo) + V. (to, ¥o) f (to, zo) + g(to, zo),gigf({‘/(fo,xo +&) + L(to, &)} — V(to,z0)} < 0.

I V(t,z) <infeex{V(t,z+ &)+ (¢, )}, there exists t € (to, T] such that

v%wwz/gmﬂmmww+vmmwﬂm Vit € [to, 1]

to
Therefore,
t
0= [ 90100, (1)} + V{t,0,5,(6) = V (10, 0)
to
t
> [ 90ty (1) + Wt 1 1)) = W0, 20),
to
i.e., V(t,x) is a viscosity supersolution of the HJB quasi-variational inequality. O

We have seen that Problem (C) admits an optimal impulse control (see Prop. 3.1). It is almost standard
that, via the value function, an optimal impulse control can also be constructed. We omit the details here.

5. AN OPTIMAL IMPULSE CONTROL PROBLEM WITHOUT TERMINAL STATE
CONSTRAINT

HJB QVI (4.16) suggests us to introduce the following modified cost functional:

~ T ~
J(t,x;€(~))=/t g(s, X (5))ds + hP(X(T)) + Y b(me, X (7 = 0), &), (5.1)

k>1
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and consider the problem with the above cost functional without terminal state constraint, call it Problem (C).
Let the value function be V (-, -). The question is whether V (-,-) = V(-,-)? If this is true, then since V (-, -) can
be characterized as the unique viscosity solution to (4.16), we indirectly obtain a characterization of the value
function V'(-,-). In this section, we discuss this issue.

We recall that

NP[h)(z) = min (h(x 1O+ z(T,x,g)), z e R", (5.2)
EeEK,x+£€D

and (for convenience, we denote the value function by VP(t, z))

min {h(x),ND[h](x)}, r €D,

VOTw) =hP) = i
N¥[h](x), zeR"\ D.

(5.3)

Taking D = R"™, the above is reduced to the case of no terminal state constraint. In other words, if there is no
terminal state constraint, then the terminal value of the value function is given by the following:

VE(T,2) = h¥" (z) = min {h(x), NE” [h](m)}, zeR", (5.4)
with
N [b](x) = min (h(a: +€) + 0T,z g)), z € R™. (5.5)

According to the above, we have
V(T,2) = (hW?)R" (z) = min {hD(x),NR" [hD](x)}, z € R™.
Let us calculate the following: (remember D # R™ and (2.19))

N [NP[]] (@) = min (NP[h](x + ) + ((T..€))

—min[ _min (W@ €+ O+ AT 60 +UT2.0)]

> min [qex,ﬁigri@ (h(x FEH O+ UT, 2,6+ c))} + 80 = NP[R](z) + 6.

Also,

N [b](2) = min (h(x +§) + (T.2.6)) < Lmin (hw+&) +UT,2,6)) =NP[)(2), @ eR".

We claim that under (3.18), the above equality holds. In fact, let
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for some & € K. If 2 + & ¢ D, then by (3.18), the above leads to

min (h(x + &) + U(T.2.6)) = h(z + &) + (T, 2. &)

>hiz+&)> min (h(:c &)+ (T, z, 5)),
¢eK,x+€€eD

which is a contradiction. Hence, our claim holds and for z € R™ \ D,
min {hD(x), NE [hD](x)} — min {ND [h](x), N®" [NP[h]] (x)} = NP[B)(2); (5.6)
For z € D,

min { min { h(z), ND[h](x)}, NF” {min {n, NP[h)] }] (JU)}
= min {h(x), NP ] (), N¥" [b] (), N*" [NP[1] ()}

= min {h(m), NE” [h]@)} = min {h(@, NP [h}(:@}.
These imply
(W2) (2) = hP(z), =z ER" (5.7)

From the above discussion, by a standard argument, we see that the value function 17( ,+) of Problem (6),
under some mild conditions, is the unique viscosity solution to the HIB QVI (4.16). We obtained

V(T,z) =V (T, z), Yz € R".

But this does not mean that

Vit,z) = V(t,z), Y(tz)e0,T] x R". (5.8)

The reason is that it is unknown whether HIB QVI (4.16) admits a unique viscosity solution in the function
class that the value function V'(-,-) belongs to. On the other hand, if this were the case, then (5.8) would hold.
Consequently, under proper conditions that make ‘7( ,+) to be globally Lipschitz (or Holder) continuous, one
should have the same continuity for the value function V (-, -). However, from our discussion in Section 3, this
seems to be unlikely. Hence, we end up with a challenging open questions:

(i) Is the viscosity solution to HJIB QVI (4.16) unique within the class of locally Lipschitz (or Hélder)
continuous functions?

(ii) Should there be some additional conditions for the HIB QVI so that it could characterize the value
function?

6. CONCLUDING REMARKS

In this paper, we have introduced an intrinsic condition under which, together with other routine conditions,
the value function of the optimal impulse control with terminal state constraint is continuous. This makes a big
step towards the characterization of the value function. Due to the presence of the terminal state constraint, the
value function is only locally Lipschitz (or Holder) continuous and its growth is not slower than the impulse cost.
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Therefore, the available techniques are not enough to characterizing the value function as the unique viscosity
solution of the HJB QVI. Moreover, efforts are made to the discussion on a seemingly equivalent optimal impulse
control problem without terminal state constraint. It leads to a challenging open question about the uniqueness
of viscosity solutions to the HIB QVI.
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