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A B S T R A C T

During a pandemic such as COVID-19, managing public transit effectively becomes a critical
policy decision. On the one hand, efficient transportation plays a pivotal role in enabling the
movement of essential workers and keeping the economy moving. On the other hand, public
transit can be a vector for disease propagation due to travelers’ proximity within shared and
enclosed spaces. Without strategic preparedness, mass transit facilities are potential hotbeds
for spreading infectious diseases. Thus, transportation agencies face a complex trade-off when
developing context-specific operating strategies for public transit. This work provides a network-
based analysis framework for understanding this trade-off, as well as tools for calculating
targeted commute restrictions under different policy constraints, e.g., regarding public health
considerations (limiting infection levels) and economic activity (limiting the reduction in travel).
The resulting plans ensure that the traffic flow restrictions imposed on each route are adaptive to
the time-varying epidemic dynamics. A case study based on the COVID-19 pandemic reveals that
a well-planned subway system in New York City can sustain 88% of transit flow while reducing
the risk of disease transmission by 50% relative to fully-loaded public transit systems. Transport
policy-makers can exploit this optimization-based framework to address safety-and-mobility
trade-offs and make proactive transit management plans during an epidemic outbreak.

1. Introduction

Operating public transit amid post-peak and post-epidemic periods is a double-edged sword: on the one hand, it provides basic
and low-cost mobility services to those not owning cars or who place environmental concerns at the center of commuting decisions;
on the other hand, human mobility, especially commuting by mass transit, contributes to the spatial propagation of infectious disease.
Policy-makers face this health-and-economic trade-off when lifting the restrictions and restarting public transit systems during the
unprecedented COVID-19 pandemic. There is evidence (van Dorn et al., 2020; Cohen and Kupferschmidt, 2020) that the epidemic
outbreak had a disproportional impact on mass transit operators and passengers compared with other groups of the population.
McLaren (2021) analyzed census and mortality data from 3140 counties in 2020 and found that the use of public transit attributed
to the racial disparity in COVID-19 deaths, and the positive effect was evident from March to May. In comparison, carpooling also
involved sharing a vehicle with other commuters for the length of the ride, but it did not help spread the virus.
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Fig. 1. Illustration of transmission of infectious disease in public transit; Susceptible population is under the risk of infection in public-transit commuting trips
and contacts in home and work regions.

Due to safety concerns, many countries have implemented a temporary closure of transit systems (Lewnard and Lo, 2020); in
some countries, ridership of public transit has dropped up to 90% (Amekudzi-Kennedy et al., 2020; DeWeese et al., 2020). While
the potential risk of epidemic exposure inside subway carriages or buses has been well-recognized (Feng et al., 2020), there is a
lack of scientific knowledge about the corresponding prevention strategies. This work aims to answer a critical question frequently
raised by transportation agencies and researchers: How to control traffic flows in public transit networks to improve safety and
preparedness during periods of spreading infection?

To answer this question, we first model the spread and mitigation of a particular epidemic disease through public transit
networks using a metapopulation compartmental model. The risk of disease transmission associated with public transit depends on
the characteristics of the disease and the intervention policies implemented across the entire environment being modeled (Fig. 1).
In particular, we focus on movements between residences and work locations.1 We propose a mathematical-programming-based
approach for designing targeted public transit policies, with the intent of minimizing the public health risk while maximizing
mobility in the context of dynamically evolving epidemics. We show that by applying targeted interventions on high-risk transit
routes and regions, most inelastic travel demand can be satisfied while the spatial propagation of the infectious disease is restrained.

1.1. Objectives and main contributions

This work focuses on optimizing the commute networks’ operations under disruptions caused by emerging infectious diseases.
These disruptions include government regulations on the use of transit, abrupt traveling behavior modifications, and limited access
due to the workforce shortage during the outbreak of a pandemic. We are specifically interested in controlling the mobility patterns
with dual objectives — providing reliable access to public transit services while slowing the communicable disease invasion.

The main contributions of this work are:

1. Developing an optimization-based analysis by integrating the spatial epidemic model and the commute network model.
2. Providing a forward–backward iterative method to solve the large-scale transit traffic control policies and obtain insight for

effective interventions.
3. Investigating the optimal subway route operations plans in Manhattan, New York City (NYC) and evaluating the impact on

COVID-19 pandemic transmission.

The method developed in this work can be applied to any infectious disease that can be potentially transmitted through public
transit services, e.g., risk of aerosol and contact transmissions inside vehicles. The spatial epidemic model on the commute networks
captures the influence of two most commonly implemented regulations: quarantine policies (population with severe symptoms is
forced to stay at home) and social-distancing policies on public transit. Our work is one of the first attempts to investigate the transit
traffic control policies with monitoring feedback considering the combined effects of repetitive commuting patterns and epidemic
dynamics. The model developed in this work requires access to only publicly-available data and thus can be easily adopted by local

1 We do so for simplicity of exposition and due to the detailed movement data available in this context. The model presented can be easily generalized to
include other movements.
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transportation agencies to make data-driven responsiveness and preparedness plans. Therefore, the model is suitable for facilitating
the healthcare measures to contain infectious diseases.

1.2. Related work

Metapopulation model for transportation networks. There is a resurgence of interest in modeling the disease contagion
processes associated with recurring commuting trips. The development of advanced metapopulation network models coincides
with the pattern of increasingly frequent epidemics in recent years. Keeling et al. (2010) initiated the stream of network models
for the spatial spreading of infectious disease in the commuter-to-work networks. They addressed that the infection dynamics in
the recurrent commute networks were significantly different from their counterparts in the kernel and random mobility networks.
Balcan and Vespignani (2011) drew a similar conclusion, whereas the diffusion rate and recurrent commuting rate jointly determine
whether or not the global spreading of the infectious disease occurs. Bichara and Iggidr (2018) analyzed how the heterogeneous
groups, patches, and mobility patterns affect the disease prevalence by a multi-group compartmental model. Since the individual’s
commuting patterns are no longer random, Yashima and Sasaki (2016) found that the commute networks’ topological characteristics
such as the networks’ degree distribution become relevant. When the degree of networks follows a heavy-tailed distribution, the
disease invasion threshold decreases significantly. Hence, the epidemic is not preventable by merely random interventions such as
quarantine and vaccination. Ding et al. (2021) proposed a combinatorial optimization model for the Transportation Lock-down and
Quarantine Problem within a network compartment model. They proposed an effective-distance-based heuristic method to solve
the best measures due to the intractability of exact methods. Therefore, studying the relationship between commute networks and
disease dynamics is of interest to epidemiology and transportation research.
Impact of COVID-19 pandemic on public transit. In an attempt to identify the risk of taking public transit during the outbreak of
COVID-19, an infectious disease with millions of confirmed cases globally, Mo et al. (2021) proposed an individual encounter model
that characterizes the transmission of the disease on public transportation facilities. As an agent-based model, the encounter model
captures the probability of contact between individuals and thus evaluates the risk of transmitting disease from an infectious person
to a susceptible one. They calibrated the model using the smart card data from Singapore. Using a similar approach, Qian et al.
(2021) conducted a cross-city comparison of the contact networks using the smart card data in China. They constructed a universal
generation model to explain the correlation between the metro contact network’s properties and the risk level of transmissible
diseases. Lu et al. (2021) created a Transport Proximity Deep Neural Network Weighted Regression (TPDNNWR) model to predict
the spatial propagation of the COVID-19 at the city level in China. This comparative study demonstrated that the deep-learning-based
model has higher prediction accuracy than other parametric regression models such as ordinary linear regression and geographically
weighted regression models. Chang et al. (2020) combined the metapopulation model and commute networks to explain why the
infection rates among disadvantaged groups were higher than the rest. Compared to agent-based models such as the individual
encounter model, metapopulation models require access to demographic survey data that is normally publicly available. Hu et al.
(2021) created an open-source platform to provide daily human movement information based on mobile device location data. They
developed a generalized additive mixed model to aggregate population-level mobility patterns and separate policy effects on human
mobility (e.g., social-distancing) from other confounding effects.

The effectiveness of social-distancing policies in public transit systems has been evaluated empirically. Kamga and Eickemeyer
(2021) conducted a comparing study on deploying various social-distancing policies in the U.S. and Canada during the eight-month
of the COVID-19 pandemic. They included the most common transit modes, including trains, subway cars, buses, and standard
policies such as adding train cars and rear door boarding. Kamga et al. (2021) used simulations to evaluate how much resources
are required to enforce the six-foot minimum distance in NYC’s subway systems. Their results revealed that 117 trains per hour
were beyond the current operational capacities. They proposed an alternative and more realistic policy that enforced a three-foot
minimum distance plus mask-wearing. Hensher et al. (2022) studied the covid-related work-from-home trends by fitting a mixed-
logit commuter mode choice model. They conducted surveys in major cities across Australia to calibrate a new strategic transport
model that considers the socioeconomic and geographical segments related to the working-from-home population.
Modeling transit as contact networks and compartmental models. Some prior works use contact networks to model the
transmission of an epidemic such as COVID-19 at an individual agent level by utilizing social activity data. In this approach, detailed
commuter movement data is required for model fitting—something that is not typically available in the early stages of an epidemic
and hard to obtain in general. More importantly, these models only studied infectious disease spreading in transit systems, ignoring
the interactions between commuters and other populations at home or in the workplace. Considering the short commuting period
compared with other activities during the day, separating commuters’ behavior from other populations fails to capture the long-term
implications of controlling traffic patterns and underestimates the value of public transit intervention policies.

Previous research mainly investigated the descriptive and predictive models, whereas this work aims to develop a prescriptive
model for transit networks. The remaining paper is organized as follows. Section 2 blends the advances in the metapopulation
epidemic models with the network fortification models. The resulting optimization facilitate the policy-making in transportation
that balances the need to return to normal activities and prevent public health hazards. Section 3 derives general rules for managing
public transit under public health measures. Section 4 implements this model in a case study of New York City’s subway systems
and tests the public transit control policy’s impact on spreading the contagious disease. Section 5 draws the final conclusion.
3
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Fig. 2. Construct commute network by integrating home-and-work network and public transit network.

2. Methodology

2.1. Metapopulation model for commute networks

This work focuses on the recurring commuting trips, which account for 79% of all transit trips in the United States (including
work and school trips) (Lee and Hickman, 2014). Commuting remains the primary demand for traveling during the epidemic period
and revives rapidly in reopening the economy (Wang et al., 2021; Hu et al., 2020).

The commute mobility patterns are mainly modeled by the following three approaches. First, we may model the movement in
urban commute networks on the individual level. Reconstructing the contact networks requires access to massive human motion
trajectory data notwithstanding (Mo et al., 2021). Tracking passengers’ use of public transit and alternative modes is costly. Thus,
any control policies derived from the contact networks are slow to implement, occasionally impossible due to privacy concerns, and
biased due to the limited electronic device users.

The second approach for modeling traveling patterns is random mobility models. These models assume that passengers follow
certain movement distributions, such as random walks over the network. Nevertheless, prior work has revealed that recurring
commute trips (i.e., individuals take the fixed routes back and forth) significantly impact the disease dynamics and the derived
control policies (Keeling et al., 2010). Therefore, random mobility models are unsuitable for public transit applications and
developing safe and effective transit control policies based on movement data.

A third option that is promising is the use of metapopulation models. First, conventional transportation planning uses basic
geography units such as traffic analysis zones (TAZ) or census tracts, so considerable resources and datasets are already in local
transportation agencies’ hands. A vast stream of literature has developed fundamental methods for generating and analyzing
these grid-based models. Second, leveraging the richness of urban planning and transportation models associated with these basic
geography units, researchers can explore the connections to commuters’ demographic features to develop context-specific plans in
preventing epidemics. For example, how to connect the use of public transport to the racial disparities (McLaren, 2021). Finally,
epidemic response policies and guidance are often made on a macroscopic network level. In what follows, we introduce how to
construct a metapopulation model for a public transit system (called ‘‘commute network’’ throughout this paper). All the notation
used in the paper is summarized in Table A.2 in Appendix A.

During the day, each resident is in one of three statuses: at home (‘‘𝐻 ’’), at work (‘‘𝑊 ’’), or commuting (‘‘𝐶 ’’). A commute
network integrates two separate systems: a home-and-work network 𝐻𝑊 = (𝐻𝑊 , 𝐻𝑊 ) consisting of basic geography units such
as census tracts or TAZs, and public transit networks 𝐶 = (𝐶 , 𝐶 ) serving daily commute between these home-and-work regions
(Fig. 2).

1. Home-and-work network 𝐻𝑊 :

(a) Residents live in a closed complete network with a fixed population 𝑁𝑣 ∈ Z+ for each 𝑣 ∈ 𝐻𝑊 . We denote
𝑵 = [𝑁𝑣]𝑣∈𝐻𝑊

whenever there is no possibility of confusion.
(b) Each region 𝑣 ∈ 𝐻𝑊 has a set of neighboring outflow regions +(𝑣) ∶= {𝑢 ∈ 𝐻𝑊 ∶ (𝑣, 𝑢) ∈ 𝐻𝑊 } and a set of inflow

regions −(𝑣) ∶= {𝑢 ∈ 𝐻𝑊 ∶ (𝑢, 𝑣) ∈ 𝐻𝑊 }. The fraction of residents at 𝑣 travels to 𝑢 ∈ +(𝑣) is 𝑟𝑣𝑢 ∈ [0, 1]. Flow
conservation ensures that the fractions satisfy ∑

𝑢∈+(𝑣) 𝑟𝑣𝑢 = 1 for all 𝑣 ∈ 𝐻𝑊 .

2. Public transit network  :
4
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Fig. 3. SEIR model on commute networks under quarantine policies.

(a) 𝐶 represents a set of public transit routes available to commuters. Each route may contain a single public transit line
or transfers between multiple modes or lines.

(b) Expanding  = 𝐻𝑊 ∪ 𝐶 such that edges 𝐶 connect each region 𝑣 ∈ 𝐻𝑊 to accessible routes 𝑤 ∈ 𝐶 .
(c) We define the outflow and inflow to public transit as +(𝑣) and −(𝑣), respectively, upon edges 𝐶 . The fraction of

population living in 𝑣 ∈ 𝐻𝑊 takes the route 𝑤 ∈ 𝐶 is 𝑝𝑣𝑤 ∈ [0, 1]. The summation of fractions ∑

𝑢∈+(𝑣) 𝑝𝑣𝑢 ≤ 1 holds
for all 𝑣 ∈  if +(𝑣) ≠ ∅ because residents can choose other modes of transport such as walking or driving.

3. Effective population:

(a) We define the effective work-time population as 𝑁𝑒
𝑣 (𝑡) ∶=

∑

𝑢∈−(𝑣) 𝑟𝑢𝑣𝑁𝑢.
(b) The effective commuting population as 𝐶𝑒

𝑣(𝑡) ∶=
∑

𝑤∈−(𝑣) 𝑝𝑤𝑣𝑁𝑣(𝑡) by assuming that commuters take the same route
back and forth so that 𝑝𝑣𝑤 = 𝑝𝑤𝑣 for any 𝑤 ∈ −(𝑣).

(c) Let 𝜌𝑁 and 𝜌𝐶 be the traffic flow fraction matrix 𝑟𝑢𝑣 for the home-and-work and 𝑝𝑣𝑤 for the public transit network,
respectively. We can rewrite the effective population as 𝑁𝑒(𝑡) = 𝜌⊺𝑁𝑁(𝑡) and 𝐶𝑒(𝑡) = 𝜌⊺𝐶𝑁(𝑡).

We call the integration of the two networks a commute network  = ( , ). The route is represented as a vertex in commute
networks because contagious diseases such as COVID-19 can spread via respiratory, aerosol, or contact transmission in vehicles.
Experiments have shown that the infectious virus particles can be detected from surfaces for up to 24 h or even three days (Van Dore-
malen et al., 2020; Chin et al., 2020). These results imply that travelers may be exposed to the disease in a carriage carrying infectious
passengers at different times. Since the risk of being exposed is possibly exceeding direct personal contact, the metapopulation model
has captured the average effect of the infection in the daily use of transit service.

A common concern is that the traveling behavior may shift away from public transit systems because of the epidemic
outbreak (Wang et al., 2021), and the government’s disease control plans, such as reducing the public transit service time or
alternative seating, exacerbate this trend. In addition, travelers may switch to a different mode, take a different route, or follow
different schedules to avoid contacting potentially infectious population. The travel rate 𝑝𝑣𝑢 for each 𝑣 ∈ 𝐻𝑊 and 𝑢 ∈ + implicitly
incorporates a mix of route and mode choices. Since factors such as traveling time and trip purpose still play a central role in these
distributions during an epidemic, this work uses fixed fractions 𝑝𝑣𝑢 throughout the analysis. Estimating travel behavior changes
requires new empirical research using post-epidemic data and is beyond the scope of this work.

2.2. Spatial epidemic model

Spatial epidemic models are widely used to model the spread of infectious disease and quantify workable disease control
strategies. Many infectious diseases have an extended period from infection to onset of symptoms, which causes a significant
challenge in addressing control strategies. For example, the respiratory symptoms of COVID-19 appear in as few as two days or as
long as 14 days after exposure (Chin et al., 2020). To capture this feature, we use a standard metapopulation SEIR epidemic model
that divide the population at time 𝑡 ∈ R+ at each vertex, 𝑁𝑣(𝑡), into four groups, susceptible, exposed, infectious, and recovered as
𝑆𝑣(𝑡), 𝐸𝑣(𝑡), 𝐼𝑣(𝑡), and 𝑅𝑣(𝑡), respectively; i.e., 𝑁𝑣(𝑡) = 𝑆𝑣(𝑡)+𝐸𝑣(𝑡)+𝐼𝑣(𝑡)+𝑅𝑣(𝑡) for all 𝑣 ∈ 𝐻𝑊 . In addition to these compartments, we
track the proportion of cases that are symptomatic, which we denote as 𝛼(𝑡). In each period, the symptomatic infectious population
𝑄𝑣(𝑡) = 𝛼(𝑡)𝐼𝑣(𝑡) is assumed to be quarantined in the home region 𝑣. The quarantined population is isolated from the rest while the
non-symptomatic individuals, (1−𝛼(𝑡))𝐼𝑣(𝑡), continue to move in commute networks. The standard SEIR model is presented in Fig. 3.

The transmission of the disease is captured by three parameters in the SEIR model: the contact rate 𝛽𝑣 (the average number
of contacts per person per time), the mean latent period 1∕𝛿, and the recovering rate 𝛾. The contact rate 𝛽𝑣 is vertex-dependent
because different regions 𝑣 ∈ 𝐻𝑊 and public transit lines 𝑣 ∈ 𝐶 may employ different risk mitigation measures. The node-specific
contact rates can incorporate the following factors in the spatial epidemic model: (a) social-distancing policies in transit systems
and other measures in workplaces; (b) personal contact risk due to transit travel (the risk factor can be mode specific); (c) varying
contact rates due to disease events and the at-risk population’s behavior changes. In particular, each combination of transit modes
corresponds to a different node in  .
5
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The Spatial SEIR model expands the aggregate SEIR model to commute networks using a graph-representation in Mori et al.
2020). The dynamics of the susceptible population, i.e., the rate of becoming exposed once having infectious contact with the
nfected population, is described as follows:

𝑑𝑆𝑣(𝑡)
𝑑𝑡

= − 𝑝𝐻𝑆𝑣(𝑡)
(

(1 − 𝛼(𝑡))𝛽𝑣𝐼𝑣(𝑡)
𝑁𝑣

)

− 𝑝𝑊 𝑆𝑣(𝑡)

(

∑

𝑢∈+(𝑣)

(1 − 𝛼(𝑡))𝑟𝑣𝑢𝛽𝑢[𝜌𝑁𝐼(𝑡)]𝑢
[𝜌𝑁𝑁]𝑢

)

(1)

− 𝑝𝐶𝑆𝑣(𝑡)

(

∑

𝑤∈+(𝑣)

(1 − 𝛼(𝑡))𝑝𝑣𝑤𝛽𝑤[𝜌𝐶𝐼(𝑡)]𝑤
[𝜌𝐶𝑁]𝑤

)

,

where 𝑝𝐻 , 𝑝𝐶 and 𝑝𝑊 represent the fraction of time during the day involving staying in the home region, commuting, and in the
workplace, respectively. These three terms calculate the probability of being exposed in the home region, work region, and while
taking public transit, respectively. As in the standard SEIR model, (1−𝛼(𝑡)) percentage of the infected population is isolated at their
home region. Note that ∑

𝑣∈𝐻𝑊
[𝜌⊺𝐶𝑁]𝑣 ≤

∑

𝑣∈𝐻𝑊
𝑁𝑣 as we do not assume that every trip (𝑢, 𝑣) is carried by public transit, and

choosing other modes such as driving bear no risk of contagion in commuting.
The Spatial SEIR model on commute networks can be written in a compact matrix form:

𝜕𝐒𝑡
𝜕𝑡

= −𝑝𝐻𝐒⊺𝑡 𝐈
𝐻
𝑡 − 𝑝𝑊 𝐒⊺𝑡 𝐈

𝑊
𝑡 − 𝑝𝐶𝐒

⊺
𝑡 𝐈

𝐶
𝑡 , (2)

𝜕𝐄𝑡
𝜕𝑡

= −
𝜕𝐒𝑡
𝜕𝑡

− 1
𝛿
𝐄𝑡,

𝜕𝐈𝑡
𝜕𝑡

= 1
𝛿
𝐄𝑡 − 𝛾𝐈𝑡

𝜕𝐑𝑡
𝜕𝑡

= 𝛾𝐈𝑡,

The Spatial SEIR model guarantees that 𝑑𝑁𝑣∕𝑑𝑡 = 0 for each 𝑣 ∈ 𝐻𝑊 and 𝑡 ∈ R+. These population vectors are given by:

𝐒𝑡 = [𝑆𝑣(𝑡)]
⊺
𝑣∈ , 𝐄𝑡 = [𝐸𝑣(𝑡)]

⊺
𝑣∈ ,

𝐈𝑡 = [𝐼𝑣(𝑡)]
⊺
𝑣∈ , 𝐑𝑡 = [𝑅𝑣(𝑡)]

⊺
𝑣∈ ,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐈𝐻𝑡 = [𝛽𝑣
𝐼𝑣(𝑡)
𝑁𝑣

]⊺𝑣∈
𝐈𝑊𝑡 = [

∑

𝑢∈+(𝑣)
𝑟𝑣𝑢𝛽𝑢

(1−𝛼(𝑡))[𝜌𝑁 𝐼(𝑡)]𝑢
[𝜌𝑁𝑁]𝑢

]⊺𝑣∈

𝐈𝐶𝑡 = [
∑

𝑤∈+(𝑣)
𝑝𝑣𝑤𝛽𝑤

(1−𝛼(𝑡))[𝜌𝐶 𝐼(𝑡)]𝑤
[𝜌𝐶𝑁]𝑤

]⊺𝑣∈ .

We can obtain the basic reproduction number 𝑅0 from the epidemic dynamics, which is a critical measurement to guide disease
ontrol. 𝑅0 is the average number of secondary cases produced by one infected individual introduced into a completely susceptible
opulation (Yashima and Sasaki, 2016). Emerging infectious diseases such as COVID-19 spread more rapidly in a region if 𝑅0 is large.
n addition, 𝑅0 also determines what proportion of the population should be immunized or vaccinated to eradicate the infectious
isease.

The basic reproduction number 𝑅0 is calculated by the dominant eigenvalue of the next generation matrix (NGM) 𝐺0 ∈
|𝐻𝑊 |×|𝐻𝑊 |. The epidemic dynamics described by Eq. (2) can be split into two parts (a) the rate of appearance of new infections

n compartments denoted as a matrix 𝐹 , and (b) the rate of transfer into compartments denoted as a matrix 𝑉 . NGM is defined by
0 = 𝐹𝑉 −1. The derivation of NGM for the Spatial SEIR model is a tedious but crucial task for the remainder of this paper. We
escribe how to compute the Jacobian matrix of the equation system Eq. (2) and the explicit expression of NGM in Appendix B.

The time-varying measures of the disease reproduction rate in a partially susceptible population is measured by the effective
eproduction number 𝑅𝑡, which is the dominant eigenvalue of effective NGM 𝐺𝑡 at time 𝑡 ∈ R+. We can take a shortcut by obtaining
he expression for changes in 𝑅𝑡 as a result of parameter changes in the epidemic model. For a fixed time 𝑡, let 𝜁 and 𝜂 be the
igenvectors associated with 𝑅𝑡 in the eigenvector decomposition of 𝐺𝑡, i.e., 𝜁⊺𝐺𝑡 = 𝑅𝑡𝜁⊺, 𝐺𝑡𝜂 = 𝑅𝑡𝜂, and normalized such that
⊺𝜂 = 1. If we vary the Spatial SEIR model parameters by controlling the transit ridership through the planning horizon, we can
valuate the change of the reproduction number as:

𝛥𝑅𝑡 =
𝜁⊺𝛥𝐺𝑡𝜂
𝜁⊺𝜂

. (3)

2.3. Optimizing transit flows with disease reproduction constraints

The control for this public transit system is to curb traffic flows on particular routes to balance the increasing commuting
demand and the hastening spreading of infectious diseases. For each 𝑢 ∈ 𝐻𝑊 , 𝑤 ∈ 𝐶 , we let 𝑥𝑢𝑤 ∈ [0, 1] denote the proportion of
subpopulation allowed to use this public transit route. Such a control can be realized by reducing service frequency on a particular
route, imposing capacity regulations inside public transit vehicles, or limiting capacity at these transit stops. In the fixed flow control
case, 𝒙 is fixed at time 𝑡 = 0; in the extended version, the policy-maker adaptively changes the guidance for using public transit 𝒙(𝑡)
after observing that 𝑅 hits certain thresholds over the planning horizon 𝑡 ∈ [0, 𝑇 ].
6
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2.3.1. Fixed flow control policy
If the transportation agency aims to manage public transit with limited information on the disease, the following static control

olicies are easy-to-implement.

efinition 1. A fixed flow control policy 𝒙 ∈ [0, 1]|𝐻𝑊 |×|𝐶 | is the proportion of flows allowed to use public transit over time
horizon [0, 𝑇 ] on each route (𝑣,𝑤), 𝑣 ∈ 𝐻𝑊 , 𝑤 ∈ 𝐶 .

Our primary goal is to set an initial control plan throughout [0, 𝑇 ] to maximize the transit network’s throughput while protecting
the public from the risk of exposure to infectious diseases. We can formulate the problem as follows:

maximize𝒙
∑

(𝑣,𝑤)∶𝑣∈𝐻𝑊 ,𝑤∈𝐶

𝑥𝑣𝑤𝑝𝑣𝑤𝑁𝑣 (4)

𝑠.𝑡. 𝛥𝑅0(𝒙) ≤ 𝜅(𝑅0(1) − 𝑅0(0))

0 ≤ 𝑥𝑣𝑤 ≤ 1, ∀𝑣 ∈ 𝐻𝑊 ,∀𝑤 ∈ 𝐶 .

The right-hand side of the disease reproduction constraint in Eq. (4) means that the change of basic reproduction number due to
opening public transit is within a tolerance 𝜅 ∈ [0, 1] from the worst case. The worst case is measured by 𝑅0 with the full reopening
of transit (𝒙 = 1 called the ‘‘control-free’’ case) and the best case is with no opening of transit at all (𝒙 = 0 called the ‘‘shutdown’’
case). Lemma 2 gives a more rigorous proof. Despite the fact that this constraint can be explicitly calculated by Eq. (3), we use this
relative measure of the disease spreading because of the instability of input data. The exact values of NGM are sensitive to input
data, such as the epidemic model’s parameters and route choice estimation in the metapopulation model. In contrast, the relative
value of 𝑅0(1) − 𝑅0(0) is a stable measure, and the derived control policy is more robust to the modeling errors.

The explicit expressions of constraints are derived from the NGM in Appendix B. Assuming a constant quarantine ratio of 𝛼, the
NGM under control policy 𝒙 at time 𝑡, 𝐺𝑡(𝒙), can be computed from the production of transmission and transition matrices. For each
tuple of 𝑢, 𝑣 ∈ 𝐻𝑊 , we have:

[𝐺𝑡(𝒙)]𝑣𝑣 = 1
𝛾

[

𝑝𝐻𝛽𝑣(1 − 𝛼)
𝑆𝑣(𝑡)
𝑁𝑣

+ 𝑝𝑊
∑

𝑢∈+(𝑣)
𝑟2𝑣𝑢𝛽𝑢

(1 − 𝛼)𝑆𝑣(𝑡)[𝜌
⊺
𝑁𝑁]𝑢

([𝜌⊺𝑁𝑁]𝑢)2
+

𝑝𝐶
∑

𝑤∈+(𝑣)
𝑥2𝑣𝑤𝑝

2
𝑣𝑤𝛽𝑤

(1 − 𝛼)𝑆𝑣(𝑡)[𝜌𝐶 (𝒙)⊺𝑁]𝑤
([𝜌𝐶 (𝒙)⊺𝑁]𝑤)2

]

,

[𝐺𝑡(𝒙)]𝑣𝑢 =
1
𝛾

[

𝑝𝑊
∑

𝑤∈+(𝑢)∩+(𝑣)
𝑟𝑢𝑤𝑟𝑣𝑤𝛽𝑤

(1 − 𝛼)𝑆𝑣(𝑡)[𝜌
⊺
𝑁𝑁]𝑤

([𝜌⊺𝑁𝑁]𝑤)2
+

𝑝𝐶
∑

𝑤∈+(𝑢)∩+(𝑣)
𝑥𝑢𝑤𝑝𝑢𝑤𝑥𝑣𝑤𝑝𝑣𝑤𝛽𝑤

(1 − 𝛼)𝑆𝑣(𝑡)[𝜌𝐶 (𝒙)⊺𝑁]𝑤
([𝜌𝐶 (𝒙)⊺𝑁]𝑤)2

]

.

With fixed 𝒙 over the planning horizon 𝑡 ∈ [0, 𝑇 ], the disease reproduction constraint in Eq. (4) is given by:

𝜁⊺(𝐺0(𝒙) − 𝐺0(0))𝜂 ≤ (𝑅0(1) − 𝑅0(0))𝜁⊺𝜂, (5)

where [𝐺0(𝒙) − 𝐺0(0)]𝑣𝑢 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝𝐶
∑

𝑤∈+(𝑣)
𝑥2𝑣𝑤𝑝

2
𝑣𝑤𝛽𝑤(1 − 𝛼)

𝑆𝑣
[𝜌𝐶 (𝒙)⊺𝑁]𝑤

, 𝑣 = 𝑢

𝑝𝐶
∑

𝑤∈+(𝑢)∩+(𝑣)
𝑥𝑢𝑤𝑝𝑢𝑤𝑥𝑣𝑤𝑝𝑣𝑤𝛽𝑤(1 − 𝛼)

𝑆𝑣
[𝜌𝐶 (𝒙)⊺𝑁]𝑤

, 𝑣 ≠ 𝑢.

Given controls 𝒙, there exists an obvious disease-free equilibrium 𝑆𝑣(0) = 𝑁𝑣 and 𝐼𝑣(0) = 0 for all 𝑣 ∈  at 𝑡 = 0. We can further
simplify Eq. (5) as:

[𝐺(𝒙) − 𝐺(0)]𝑣𝑢 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝𝐶 (1 − 𝛼)𝑁𝑣
∑

𝑤∈+(𝑣)

𝑥2𝑣𝑤𝑝
2
𝑣𝑤𝛽𝑤

[𝜌𝐶 (𝒙)⊺𝑁]𝑤
, 𝑣 = 𝑢

𝑝𝐶 (1 − 𝛼)𝑁𝑣
∑

𝑤∈+(𝑢)∩+(𝑣)

𝑥𝑢𝑤𝑝𝑢𝑤𝑥𝑣𝑤𝑝𝑣𝑤𝛽𝑤
[𝜌𝐶 (𝒙)⊺𝑁]𝑤

, 𝑣 ≠ 𝑢.
(6)

It is important to address that the optimal transit control policy computed above has limitations for the following reasons. First,
we assume that commuters’ choice of alternative modes of transport (e.g., driving, walking, ride-hailing) is risk-free from contagious
disease throughout the analysis. Potential commuters disregard the travel plans if no option is available. Second, the control plan
𝒙 is implemented at 𝑡 = 0 and remains the same throughout the planning horizon. This static policy is suboptimal in the face of
infectious disease’s evolving conditions. We propose a more general control policy in the next section.
7
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2.3.2. Flow control with monitoring feedback
In the course of disease preparedness plans, transportation planning authorities need to make sequential decisions during [0, 𝑇 ]

when there is an evolving situation with regards to an infectious disease.

Definition 2. A flow control policy with monitoring feedback 𝒙(𝜏) ∈ [0, 1]|𝐻𝑊 |×|𝐶 | is the proportion of flows allowed to use public
ransit at time 𝜏 ∈ [0, 𝑇 ] on each route (𝑣,𝑤), 𝑣 ∈ 𝐻𝑊 , 𝑤 ∈ 𝐶 .

Since the basic reproduction number 𝑅𝑡(𝑥(𝑡)) represents the expected future infections after adopting the public transit control
(𝑡), we intend to design a control policy adaptive to the progress of the infectious disease. The optimal control policy is derived by
olving the following extension of Eq. (4):

maximize
{𝒙(𝜏)}𝜏∈[𝑇 ]

∑

𝜏∈𝑻

∑

(𝑣,𝑤)∶𝑣∈𝐻𝑊 ,𝑤∈𝐶

𝑥𝑣𝑤(𝜏)𝑝𝑣𝑤𝑁𝑣 ⋅ 𝛥𝜏 (7)

𝑠.𝑡. 𝛥𝑅𝜏 (𝒙(𝜏)) ≤ 𝜅𝑅𝜏 (0),𝑅𝜏 (1)(𝜏)
[

𝑅𝜏 (1) − 𝑅𝜏 (0)
]

, ∀𝜏 ∈ 𝑻 ,

0 ≤ 𝑥𝑣𝑤 ≤ 1, ∀𝑣 ∈ 𝐻𝑊 ,∀𝑤 ∈ 𝐶 .

The objective function is the cumulative network throughput over 𝑡 ∈ [0, 𝑇 ]. In the transition from the widespread of the
infectious disease to reopening of the economy, the policy-maker prefers to set a series of thresholds of 𝜅 with regard to 𝑅𝑡 and wants
to determine corresponding transit control policies at periods 𝑻 = {0, 𝜏1,… , 𝑇 }. This corresponds to the public transit operator’s
intention to lift the safety measures after the spreading of the disease has slowed down. The disease reproduction constraint
guarantees that this sequence of health measures regarding 𝑅𝜏 is preserved at time 𝜏 ∈ 𝑻 , and each control 𝒙(𝜏) persists for 𝛥𝜏
periods. As a result, this constraint is adaptive to the impact of transit control policy up to time 𝜏. Note that 𝜅𝑅𝑡(0),𝑅𝑡(1)(𝑡) is dependent
on the values realized at period 𝑡. We use the fixed control policy as a starting point for the multistage control with monitoring
feedback in Algorithm 1.

Algorithm 1 Public transit flow control with monitoring feedback
Initial SEIR model 𝑺0,𝑬0, 𝑰0,𝑹0, population 𝑁 , and network flow 𝑟 over the commute network.
Solve fixed control problem 𝒙̂ and set the optimal control 𝒙(𝜏) ← 𝒙̂ for all 𝜏 ∈ 𝑻 .
while 𝑡 ≤ 𝑇 do

𝒙(𝜏) = 𝒙̂ for 𝜏 < 𝑡
Let 𝑡 ← 𝑡 + 𝛥𝑡:

⋅ Forward step: Simulate spatial SEIR model and obtain 𝑺 𝑡 and 𝑰 𝑡.
⋅ Backward step: Solve the subproblems of optimization in eq.(7) with 𝑻 = [𝑡, 𝑇 ] to obtain the optimal control 𝒙∗(𝜏), 𝜏 ≥ 𝑡 and

optimal value 𝑂𝑃𝑇 (𝑡).
Ensure: 𝛥𝑅𝜏 (𝒙) ≤ 𝜅(𝜏)(𝑅𝜏 (1) − 𝑅𝜏 (0)) for all 𝜏 ≥ 𝑡
Update control by 𝒙(𝑡) ← 𝒙∗(𝑡)
Update the objective value 𝑂𝑏𝑗 ← 𝑂𝑏𝑗(𝑡)

end while
return 𝒙(𝑡) for 𝑡 ∈ 𝐓 and the corresponding optimal value 𝑂𝑏𝑗.

Solving control at 𝑡 ∈ [0, 𝑇 ] is more computationally challenging than the fixed flow policy due to the confounding simulation-
nd-optimization issue. Given policy 𝒙(𝜏), simulating the spatial SEIR model and computing the trajectory of disease outbreak
ollowing a given transit flow control policy is time-consuming. The workload grows exponentially when the length of 𝑅𝑡 threshold

list increase. This imposes a need to reduce the enumeration of controls by separating the simulation and optimization compounds
using the following procedure in Algorithm 1.

We initialize the algorithm with the optimal fixed control policy. Then, in each backward step, we update the control policy
after the current period and simulate the epidemic dynamics up to the current period. This procedure is valid because 𝑅𝑡 is
a long-term measure for the outbreak of contagious disease under prior controls. Given a sequence of controls along 𝑻 , the
disease reproduction constraints have a knapsack structure, and the objective function is a linear combination of realized network
throughput. Nevertheless, the procedure is suboptimal because we do not enumerate all possible states of 𝑺 𝑡 and 𝑰 𝑡 as evaluating
each policy is costly. Since the disease reproduction constraints in optimization Eqs. (4) and (7) are non-convex and the dimensions
of 𝒙 ∈ R|𝐻𝑊 |×|𝐶 | are large, the intent is to find time-varying transit flow controls that obtain a local maximum within a small
number of iterations. Since the fixed flow control policy is a special case of the multi-stage policy with monitoring feedback by
setting 𝑻 = {0, 𝑇 } and 𝒙(𝜏) = 𝒙, this derived policy is more effective than the policies in Eq. (4). On the contrary, the fixed policy
is simpler to calculate and implement.

In practice, we can integrate the sequential data collection into the aforementioned analysis as follows:

1. At each period 𝜏 ∈ 𝐓, the observed infectious statistics is used to calibrated the epidemic model (𝑺 𝑡,𝑬𝑡, 𝑰 𝑡,𝑹𝑡).
2. If interventions starts in the middle of disease outbreak at period 𝑡 and controls were not available in the early stage, we set

𝒙 = 1 for periods [0, 𝑡] and resolve the control problem with monitoring feedback for periods [𝑡, 𝑇 ].
8
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The time complexity of the fixed flow control problem depends on the particular algorithm for the nonlinear optimization. Since
e use the trust-region method in this work, assuming a threshold value of 𝜖𝑔 on the gradient, the upper bound on the maximum

number of iterations is (𝜖2𝑔 ) (Curtis et al., 2018). The time complexity analysis of algorithms for flow control with monitoring
feedback is not considered for the following reasons. The iterative method in Algorithm 1 requires solving a system of ODEs and
computing eigenvalues repeatedly; thus, there is no explicit form of the inequalities involving 𝑅𝜏 . Furthermore, the primary objective
of these algorithms is to provide policy implications at the early stage of pandemics, so we believe that the computational runtime
(within reason) is not a major concern.

3. General rules for public transit control policy

This section specifies the existence conditions for optimal control and highlights the special structure and general rules for the
optimal transit flow control policies. For ease of analysis, we study the fully connected commute networks where each home region
is reachable from other work regions, and each commute region in 𝐶 connects to all regions in 𝐻𝑊 . This connectivity assumption
does not lose generality because we can model inaccessible routes by enforcing zero flow. The expanded network ( , ) based on
transit route is not fully connected as not each pair routes are connected. The following lemma provides the existence conditions
for optimal fixed control policy.

Lemma 1. If the operator uses a global proportional control on public transit flow, i.e., 𝑥𝑣𝑤 is a constant for all 𝑣 ∈ 𝐻𝑊 and 𝑤 ∈ 𝐶 ,
the change of basic reproduction number is proportional to the control-free case with the same constant.

Proof. Let set 𝑥𝑣𝑤 = 𝜎 for all 𝑣 ∈ 𝐻𝑊 and 𝑤 ∈ 𝐶 , which means that we allow a constant ratio of residents to use public transit
on each route. We have 𝜌𝐶 (𝑥) = 𝜎𝜌𝐶 (1), and hence 𝜌𝐶 (𝑥)⊺𝑁 = 𝜎𝜌𝐶 (1)⊺𝑁 and 𝑥𝑣𝑤

[𝜌𝐶 (𝑥)⊺𝑁]𝑤
= 1

[𝜌𝐶 (1)⊺𝑁]𝑤
. Since 𝑥𝑣𝑤

[𝜌𝐶 (𝑥)⊺𝑁]𝑤
appear in each

entry of Eq. (6), we have 𝜎[𝐺(1) − 𝐺(0)] = 𝐺(𝒙) − 𝐺(0) and 𝜎[𝑅0(1) − 𝑅0(0)] = 𝑅0(𝒙) − 𝑅0(0). □

It is worth noting that this lemma is true because we assume that people have access to alternative modes for commuting.
Lemma 1 is an important building block for solving optimization in Eqs. (4) and (7) because it means that, for any exogenous 𝜅,
we can set 𝒙 = 𝜅 to satisfy the constraints. In other words, the feasible set of the optimization problem is nonempty.

Definition 3. A control policy 𝒙 is more restrained than 𝒙′ if:

1. 𝑥𝑣𝑤 ≤ 𝑥′𝑣𝑤 for all 𝑣 ∈ 𝐻𝑊 and 𝑤 ∈ 𝐶 and there exists edges such that 𝑥𝑣𝑤 < 𝑥′𝑣𝑤.
2. Each pair of 𝑥𝑣𝑤 > 0, 𝑥𝑢𝑤 > 0 has dominating marginal effect on the controlled routes (𝑣,𝑤) and (𝑢,𝑤) with regard to the

effective population, i.e., 𝑥′𝑣𝑤𝑥′𝑢𝑤
𝑥𝑣𝑤𝑥𝑢𝑤

≥ [𝜌𝐶 (𝑥′)⊺𝑁]𝑤
[𝜌𝐶 (𝑥)⊺𝑁]𝑤

.

We then have the following lemma:

emma 2 (Monotonicity). If a public transit control policy 𝒙 is more restrained than 𝒙′, then 𝑅0(𝒙) < 𝑅0(𝒙′).

Proof. Without loss of generality, we assume the NGM associated with 𝒙 and 𝒙′ both have linearly independent eigenvectors. NGM
is nonnegative real-valued. We let the two NGM be 𝐺 ∶= 𝐺𝑡(𝒙) and 𝐺′ ∶= 𝐺𝑡(𝒙′). The difference 𝐺′ − 𝐺 in each entry is:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1 − 𝛼)𝑁𝑣𝑝𝐶
∑

𝑤∈+
𝛽𝑤𝑝2𝑣𝑤

[ 𝑥′2𝑣𝑤
[𝜌𝐶 (𝑥′)⊺𝑁]𝑤

−
𝑥2𝑣𝑤

[𝜌𝐶 (𝑥)⊺𝑁]𝑤

]

, 𝑢 = 𝑣

(1 − 𝛼)𝑁𝑣𝑝𝐶
∑

𝑤∈+
𝛽𝑤𝑝𝑣𝑤𝑝𝑢𝑤

[ 𝑥′𝑣𝑤𝑥
′
𝑢𝑤

[𝜌𝐶 (𝑥′)⊺𝑁]𝑤
−

𝑥𝑣𝑤𝑥𝑢𝑤
[𝜌𝐶 (𝑥)⊺𝑁]𝑤

]

, 𝑢 ≠ 𝑣.

Let 𝒙′ = 𝒙 + 𝝈. For an arbitrary 𝑤 ∈ 𝐶 , we can plug 𝒙′ into 𝐺′ − 𝐺 so we can represent the NGMs as 𝐺′ = 𝐺 + 𝝈′𝐺 with a
relatively small perturbation 𝜎′𝐺. We can observe that, if the conditions of restrained controls are satisfied, then each term above
is nonnegative. Note that 𝜎′𝐺 ≥ 0 is a function of 𝜎 and 𝑥. According to the matrix perturbation theory (Bhatia, 2007), we have
𝜆′𝑖 = 𝜆𝑖+𝜂⊺𝑖 𝜎

′𝐺𝜂 for each eigenvalue 𝜆𝑖. By definition, 𝑅0 is the largest eigenvalue of NGM and we conclude that 𝑅0(𝒙′) > 𝑅0(𝒙). □

Remark 1. Lemma 2 indicates that reducing the traffic flow on a particular public transit route does not necessarily reduce 𝑅0(𝒙).

This remark emphasizes the importance of solving a global optimization for transit flow control to slow down the spreading of
the infectious disease. Lemma 2 is not true if only condition 1 of restrained control holds. A counterexample is as follows. Instead
of computing 𝜎′𝐺, we only need to show that, for any given 𝒙 and arbitrary 𝑢 ∈ 𝐻𝑊 , 𝑣 ∈ 𝐻𝑊 , we have

[𝜎′𝐺]𝑣𝑢 =
(𝑥𝑣𝑤 + 𝜎𝑣𝑤)(𝑥𝑢𝑤 + 𝜎𝑢𝑤)
[𝜌𝐶 (𝑥)⊺𝑁 + 𝜌𝐶 (𝜎)⊺𝑁]𝑤

−
𝑥𝑣𝑤𝑥𝑢𝑤

[𝜌𝐶 (𝑥)⊺𝑁]𝑤
.

We can easily find 𝜎𝑣𝑤 > 0, 𝜎𝑢𝑤 > 0 such that [𝜎′𝐺]𝑣𝑢 < 0 by having a third vertex 𝑣′ with 𝑁𝑣′𝜎𝑣′𝑤 ≫ 𝜎𝑣𝑤 + 𝜎𝑢𝑤. Hence 𝑅0(𝒙)
increases with 𝒙. The optimization problem Eq. (4) is thus non-trivial because we cannot use gradient-based search method or split
9

the problem by column decomposition.
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3.1. Properties of the optimal transit flow control

A disease-free equilibrium (DFE) of the Spatial SEIR model is obtained by setting 𝑰 𝑡 = 0 and 𝑺 𝑡 = 𝑵 . At this equilibrium,
the expressions for 𝐺 and 𝑅0(𝒙) simplify dramatically, and can be used to obtain interpretable bounds on 𝑅0(𝒙) and 𝛥𝑅0(𝒙). The
asymmetry between the home-and-work network and commute network motivates the derivation of the following general rules for
obtaining upper-bounds on the public transit operations. These bounds are used to propose an efficient heuristic for the fixed flow
control problem in Eq. (4).

First, we examine the behavior of 𝑅0(𝒙).

Theorem 1. At the disease free equilibrium, with intervention 𝒙, we have

𝑅0(𝒙) ≤
1 − 𝛼
𝛾

max
𝑣∈𝐻𝑊

[

𝑝𝐻𝛽𝑣 + 𝑝𝑊
∑

𝑤∈𝑁+(𝑣)
𝑟𝑣𝑤𝛽𝑤 + 𝑝𝐶

∑

𝑤∈𝐶+(𝑣)
𝑥𝑣𝑤𝑝𝑣𝑤𝛽𝑤

]

. (8)

Proof. Since 𝑅0(𝒙) is the spectral radius of 𝐺(𝒙), we have 𝑅0(𝒙) ≤ ‖𝐺(𝒙)‖ for any induced matrix norm. Choosing the 𝓁1 norm, we
have

𝑅0(𝒙) ≤ ‖𝐺0‖𝓁1 = max
𝑣∈𝐻𝑊 ∪𝐶

𝑛
∑

𝑢=1
[𝐺0(𝒙)]𝑢𝑣.

Computing the sum of the entries for each column 𝑣 of 𝐺0(𝒙), we obtain
𝑛
∑

𝑢=1
[𝐺0(𝒙)]𝑢𝑣 =

𝑝𝐻 (1 − 𝛼)
𝛾

𝛽𝑣 +
𝑝𝑊 (1 − 𝛼)

𝛾

𝑛
∑

𝑢=1

𝑛
∑

𝑤=1
𝑟𝑢𝑤𝑟𝑣𝑤𝛽𝑤

𝑁𝑢

[𝜌⊺𝑁𝑁]𝑤

+
𝑝𝐶 (1 − 𝛼)

𝛾

𝑛
∑

𝑢=1

𝑚
∑

𝑤=1
𝑥𝑢𝑤𝑝𝑢𝑤𝑥𝑣𝑤𝑝𝑣𝑤𝛽𝑤

𝑁𝑢
[𝜌𝐶 (𝑥)⊺𝑁]𝑤

=
𝑝𝐻 (1 − 𝛼)

𝛾
𝛽𝑣 +

𝑝𝑊 (1 − 𝛼)
𝛾

𝑛
∑

𝑤=1
𝑟𝑣𝑤𝛽𝑤 +

𝑝𝐶 (1 − 𝛼)
𝛾

𝑚
∑

𝑤=1
𝑥𝑣𝑤𝑝𝑣𝑤𝛽𝑤.

Taking the maximum over 𝑣 gives the desired expression. □

Remark 2. This bound in Eq. (8) can be further simplified to

𝑅0(𝒙) ≤
(1 − 𝛼) max𝑣∈𝐻𝑊 ∪𝐶 𝛽𝑣

𝛾

(

𝑝𝐻 + 𝑝𝑊 + 𝑝𝐶 max
𝑣,𝑤

𝑥𝑣𝑤

)

,

which makes clear the relationship to 𝑅0 in the single population model, which would be given by (1−𝛼)𝛽
𝛾 .

In the absence of the transport network, a simple upper bound for 𝑅0(𝒙) would be given by the maximum 𝑅0 value for a particular
ertex. Based on the above results, we can see that introducing the commute network allows for further refinement of such an
pper bound via the control of public transportation flows. Furthermore, the coupling between the home–work network and the
ransportation network means that minimizing such an upper bound is not as simple as reducing capacity on the route with the
ighest flow rate. Instead, it is necessary to account for flow and transmission rates together when determining the routes with the
argest impact on the spread of the virus.

Beyond bounding the value of 𝑅0(𝒙) for changing transport flows, we can also examine 𝛥𝑅0(𝒙), which is serving as the constraint
n the transport control problem. The following theorem provides bounds on the change in 𝑅0(𝒙) that can be achieved simply by
ontrolling 𝒙:

heorem 2. Assume we have a policy 𝒙 that is more restrained than having no intervention. Then at the disease free equilibrium
𝑅0(𝒙) = 𝑅0(1) − 𝑅0(𝒙) satisfies

0 ≤ 𝛥𝑅0(𝒙) ≤ ‖𝜉‖𝓁1‖𝜂‖𝓁1
(

𝑝𝐶 (1 − 𝛼)
𝛾

)

max
𝑣∈𝐻𝑊

∑

𝑤∈𝐶+(𝑣)
𝑝𝑣𝑤𝛽𝑤(1 − 𝑥𝑣𝑤),

here 𝜉 and 𝜂 are the left and right eigenvectors of 𝐺0(1) normalized such that 𝜉⊺𝜂 = 1.

roof. The inequality 0 ≤ 𝛥𝑅0(𝒙) follows from Lemma 2. Taking norms on both sides of Eq. (3) gives

|𝛥𝑅0(𝒙)| ≤ ‖𝜉‖‖𝜂‖‖𝛥𝐺0(𝒙)‖

or any induced matrix norm. Again choosing 𝓁1, we have

‖𝛥𝐺0(𝒙)‖𝓁1 = max
𝑛
∑

[𝛥𝐺0(𝑥)]𝑢𝑣
10
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=
𝑝𝐶 (1 − 𝛼)

𝛾
max

𝑣∈𝐻𝑊

𝑚
∑

𝑤=1
𝑝𝑣𝑤𝛽𝑤

(

∑𝑛
𝑢=1 𝑝𝑢𝑤𝑁𝑢

[𝜌𝐶 (1)⊺𝑁]𝑤
−

𝑥𝑣𝑤
∑𝑛

𝑢=1 𝑥𝑢𝑤𝑝𝑢𝑤𝑁𝑢

[𝜌𝐶 (𝑥)⊺𝑁]𝑤

)

=
𝑝𝐶 (1 − 𝛼)

𝛾
max

𝑣∈𝐻𝑊

𝑚
∑

𝑤=1
𝑝𝑣𝑤𝛽𝑤

(

1 − 𝑥𝑣𝑤
)

,

hich gives the result. Note that each term in the sum is positive because of the definition of restrained policies. □

In this result, the eigenvectors 𝜉 and 𝜂 encode the impact of network structure on the spread of disease, while the maximum
ver 𝑣 accounts for worst-case transmission rates. Again, the coupling between disease transmission rates and public transportation
low rates means that simply restricting flow on the busiest lines is not guaranteed to have the largest impact on 𝑅0(𝒙).

.2. Heuristic method for transit flow control

With the properties of the system dynamics under transit flow control policies above, we first use these bounds to characterize
otentially optimal policies:

roposition 1. To maximize the upper bound (maximize the potential impact on 𝑅0) we should choose a policy 𝑥 from  = [0, 1]|𝐸| such
hat

𝒙 = arg max
𝒙∈

{

max
𝑣∈𝐻𝑊

𝑚
∑

𝑤=1
𝑝𝑣𝑤𝛽𝑤

(

1 − 𝑥𝑣𝑤
)

}

.

The expression for 𝒙 here does not guarantee optimality, but it can be used to guide control strategies by characterizing the
echniques that have the most potential impact. However, directly solving this argmax problem is infeasible for large networks, so it
annot replace the numerical methods implemented below. While the simpler expressions available at the disease-free equilibrium
rovide clearly interpretable bounds on 𝑅0(𝒙) and 𝛥𝑅0(𝒙), these results can be generalized to 𝑅𝑡(𝒙) and 𝛥𝑅𝑡(𝒙) as well.

We propose the following heuristic for the transit flow control problem in Eq. (4) and as a subroutine in solving Eq. (7):

Algorithm 2 Heuristic for public transit flow control
Initial SEIR model 𝑺0,𝑬0, 𝑰0,𝑹0, population 𝑁 , and network flow 𝑟 over the commute network.
Compute 𝑅0(0);
Solve fixed control problem 𝒙0 = argmax𝒙

{

max𝑣∈𝐻𝑊

∑𝑚
𝑤=1 𝑝𝑣𝑤𝛽𝑤

(

1 − 𝑥𝑣𝑤
)

}

and obtain 𝑅0(𝒙0).
while |𝑂𝑏𝑗𝑘+1 − 𝑂𝑏𝑗𝑘| < 𝜖 do

Compute 𝛥𝑅(𝒙𝑘) by (3).
if 𝛥𝑅(𝒙𝑘) > 𝜅(𝑅0(1) − 𝑅0(0)) then
𝒙𝑘+1 ← 𝒙𝑘 − 𝜎𝑘𝑝𝐶

(1−𝛼) max𝑣∈𝐻𝑊 ∪𝐶 𝛽𝑣
𝛾 ;

Update control by 𝒙 ← 𝒙𝑘+1 and calculate 𝑂𝑏𝑗𝑘+1.
end if

end while
return 𝒙 for and the corresponding optimal value 𝑂𝑏𝑗.

Proposition 2. The basic reproduction number 𝑅𝑡(𝒙) < 1 for any 𝑡 ∈ [0, 𝑇 ] if and only if

lim
𝑘→∞

𝐺𝑡(𝒙)𝑘 = 0.

Proposition 2 holds due to the convergence of the power series of the NGM as 𝑅0 is the spectral radius of NGM for any control 𝒙.
This condition has valuable practical meaning because 𝑅0 < 1 is a central indicator that the infection cannot spread in a population.

In summary, solving for optimal flow control policies in Eq. (4) or Eq. (7) is computational challenging because of the nonlinear
disease reproduction constraints. We can leverage general observations drawn above to improve computational efficiency. Besides,
these observations also have important policy implications regarding transit-relate disease control plans.

4. Numerical results and case study

We validate the general rules for public transit control policies in Section 4.1 and test the impact of input data in Section 4.2.
In Section 4.3, we present the improvement of control policy with monitoring feedback. To solve a case study of NYC’s subway
system in Section 4.4, we investigate the impact of network complexity to shed light on solving the problem in large-scale commute
networks.
11
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Table 1
Parameters and data sources for NYC case study.

Parameter Epidemic model

Average contagion
rate 𝛽

Length of infectious
period 1∕𝛾

Length of latent
period 𝛿

Quarantine
ratio 𝛼

Value 0.422
(Prem et al., 2020)

6.5 days
(Yang et al., 2020)

5.1 days
(Lauer et al., 2020)

0.15
(Nishiura et al.,
2020)

Parameter Public transit network

Origin–destination
daily flow

Subway ridership
in pandemic

Transit network
transfer connectivity

Source Regional MTA
(NYC, 2020)

NYC case study
(Wang et al., 2021)

MTA map
(NYC, 2020)

Parameter Spatial SEIR weights and Appendix D (Clewlow and Laberteaux, 2016) Constraint 𝜅

Hours active at home Hours in work Commute time

Value 8 h 8 h 1 h 0.5

4.1. Calibrating metapopulation and epidemic models

We combine multiple sources of data to fit a realistic metapopulation SEIR model with transit flows and calibrate this model
ith the COVID-19 infection record. The details of the model calibration are described in Appendix D. Table 1 summarizes

he epidemic model’s parameters from existing COVID-19 literature and the calibrated traffic flow data used in the rest of the
umerical experiments. We consider an NYC case study because it has one of the world’s largest public transit systems that keeps
roviding essential transportation services during the COVID-19 pandemic. About 39% of the population in NYC use public transit
or commuting, which is more than the population driving private cars (27%) (Tajalli and Hajbabaie, 2017). NYC was also one of
he cities with the most COVID-19 cases in 2020. While the ridership of the subway witnessed a significant drop (Wang et al., 2021)
mid the early stage of the epidemic, we hope to understand how a safe and effective management policy can help achieve a good
rade-off between risk mitigation and mobility.

We obtain the local infection rate 𝛽𝑣 as follows:

𝛽𝑣 = 𝛽 ⋅
𝑑𝑣
𝑑
, ∀𝑣 ∈  ,

here 𝛽 is the average contagion rate reported from the city-level aggregated analysis, 𝑑𝑣 is the population density in region 𝑣 and
̄ is the average population density.

Given the population 𝑁𝑣 for 𝑣 ∈ 𝐻𝑊 and daily commuting flows on the home-to-work network, we need to determine the
probability of choosing each route 𝑝𝑣𝑤 for each 𝑣 ∈ 𝐻𝑊 and 𝑤 ∈ 𝐶 . We assume that each potential commuters behavior can be
modeled via the following multinomial logit model (MNL):

𝑝𝑣𝑤 = 𝑃 (𝑦 = 𝑤|𝑑𝑤) =
exp(𝜖𝑑𝑤)

∑

𝑤′∈𝐶 exp(𝜖𝑑𝑤′ )
,

here the Manhattan distance (i.e., 𝐿1 norm distance) walking from the origin to nearest subway lines 𝑑𝑤 is the single explanatory
variable, 𝑦 is the dependent variable for route choice, and 𝜖 is a constant depending on commuters’ heterogeneity. Also, we assume
that commuters use the same route from home to work and back (Yashima and Sasaki, 2016; Qian and Ukkusuri, 2021).

Each route’s flow 𝑤 ∈ 𝐶 is ∑

𝑣∈𝐻𝑊
𝑝𝑣𝑤𝑁𝑣 and illustrated in Fig. 4a. This route choice estimation is arguably inaccurate due

to the lack of accurate movement data during the pandemic. We enhance the accuracy of route choice model by reweighing the
routing probabilities by the MTA subway ridership data (NYC, 2020). This is because trips other than commuting are also important
components in the infectious contact in public transit. Section 4.2 shows that optimal control policies are insensitive to these
estimation errors.

The recurring commuting patterns and the corresponding route-specific controls on public transit are necessary only if the density
and the degree of the underlying commute network have a heavy-tailed distribution (Yashima and Sasaki, 2016). The distributional
assumption is verified as the estimated distributions of the subway flow ∑

𝑣∈𝐻𝑊
𝑝𝑣𝑤𝑁𝑣 in Manhattan, NYC is obviously heavy-tailed

n Fig. 4b.

.2. Aggregating commute networks and sensitivity analysis

We conduct three types of sensitivity analysis to understand the errors caused by model reductions and the input data inaccuracy.
hese tests are conducted on a small commute network of Fig. C.14 in Appendix C).

• Test on route choice: A sensitivity analysis of the route choice model.
• Test on commute network characteristics: A sensitivity analysis of network properties such as the network degree.
12

• Test on epidemic model: A sensitivity analysis of the epidemic model’s parameters.
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Fig. 4. Case study: controlling public transit (subway) in Manhattan, NYC during the outbreak of COVID-19 in 2020.

4.2.1. Sensitivity test on route choice
The first sensitivity analysis assumes that residents follow a random route choice model with a uniform distribution in this

sample network. Unlike the distance-based choice model in the case study, we randomize the route choice to test how the lack of
movement data access affects the transit control policy. We evaluate the variations of both objective and the reproduction rate of
the emerging disease when people’s route choice deviates from their daily routine before the epidemic.

We simulate 1000 experiments and repeatedly compute the optimal controls for public transit flow from Eq. (4). The upper
bound for the total transit throughput of about 85 depends on the sampled choice model. Note that, if there is no intervention in
commute networks, i.e., 𝒙 = 1, the disease spreads with 𝑅0 = 1.75; if the public transit is shut down, the disease is under control
with 𝑅0 = 1.39. It is worth mentioning that the implementation of public transit flow controls is critical for public safety, while
this policy alone is not sufficient for containing infectious diseases. The aim is to provide convenient mobility services to essential
workers and others while curbing the spread of epidemics. We draw additional observations from this experiment:

1. The optimal control 𝒙 is small for regions with the large outflows and vice versa.
2. The objective and optimal controls 𝒙 is relatively sensitive to the uncertain route choice (Fig. 5a) because 𝑝𝑣𝑤 are linear

coefficients in the objective.
3. The disease reproduction constraint is also sensitive to the route choice model (Fig. 5b).

The 𝑦-axis of Fig. 5 is the probability density function, which can be greater than one such that the integral over the variable of
interest is one. Accurate estimation of the route choice model is an important component of computing optimal control plans. This
work provides what we believe to be a reasonable approximation of route choice, given the trade-off between model complexity
and performance. However, more in-depth modeling of travel behavior changes during the on-peak and post-epidemic periods is
worth further investigations. The transportation authorities should be mindful of safe and reliable first- and last-mile connections
to public transit during the epidemic outbreak.

4.2.2. Test on commute network characteristics
We solve the fixed transit flow controls in Eqs. (4) and (7) by nonconvex programming with an increasing number of regions.

Fig. 6 shows that the computation time grow sub-exponentially as the size of the problem (|𝒙| = |𝐻𝑊 × 𝐶 |) increases.
Since the large-scale problem quickly becomes unsolvable, mainly due to the nonlinearity of the disease reproduction constraint,

we are interested in reducing the complexity of the underlying commute network. This step is necessary for real-world problems
such as the NYC case study. The commuter network in this study contains 288 census tract regions and 277 routes. Extrapolating
13
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Fig. 5. Sensitivity of optimal transit flow control policies with regard to the route choice probabilities. (a) The total transit flow is largely affected by the
randomized route choice; (b) The basic production number is insensitive to the randomized route choice.

Fig. 6. Optimization’s running time grows with the network size.

the running time in Fig. 6, computing the exact solution of the NYC network (|𝒙| ≈ 80, 000) by standard nonlinear programming
methods is impractical. For example, using the trust-region method (Byrd et al., 2000) to solve to optimally is expected to take
1015−1023 s on a standard computer (1.4 GHz Intel i5, 8 GB RAM).

Yashima and Sasaki (2016) identified that the spreading rate of infectious diseases in the transit network is closely related to
the complexity and the size of a commuter network. The former feature is usually measured by the maximum network degree. An
arising concern is that the degree of this network decreases when we aggregate regions into clusters because the current model
assumes a fully connected commute network throughout the analysis. For example, when dividing the area evenly into two regions,
the maximum degree of the network is 3, and so on. To handle such a large-scale network analysis in the NYC case study, we can
cluster regions in 𝐻𝑊 with similar demographic information.

Besides, we aggregate the inter-region commuting flows between these clusters. The question of optimality loss due to this vertex-
aggregation procedure naturally arises. In the following experiment, we keep the constant total expected population ‖𝑁‖1 = 100
when dividing the area of interest into finer and finer grids. As a result, the degree of commute network (i.e., the number of
connections it has to other regions) increases from 2 to 16.

When the maximum degree of the commute network increases, the objective value of Eq. (4) is stable, but the basic reproduction
number increases significantly. The main reason is that the impact of critical regions is strengthened as the degree of network
increases, and the basic reproduction number at optimality increases accordingly. This result supports the choice of relative measures
on basic or effective reproduction number 𝑅𝑡 over the absolute values in Eqs. (4) and (7), respectively. In summary, the network
throughput is unaffected by scaling the networks for computational efficiency, except that the control policies become less targeted
(see Fig. 7).

4.2.3. Test on epidemic model parameters
The accuracy of the epidemic model is highly dependent on the estimated parameters in Table 1. However, these parameters,

especially the contagion rate 𝛽𝑣 from the susceptible population 𝑺 𝑡 to the infected population 𝑰 𝑡, are affected by the anti-contagion
policies (Hsiang et al., 2020) and social responsiveness (Chowdhury et al., 2020). For example, the transmission rate 𝛽 reported in
literature varies from 0.17 to 0.8 (Yang et al., 2020; Prem et al., 2020; Lauer et al., 2020; Wang et al., 2021) because of inaccurate
14
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Fig. 7. Sensitivity of the optimal control and the basic reproduction number regarding the commute network’s degree; Bars at each data point are the empirical
variance from 𝑀 = 100 experiments.

Fig. 8. Sensitivity analysis of epidemic model parameters; Bars at each data point are the empirical variance from 𝑀 = 100 experiments.

data sources and the social distancing effect. We test the sensitivity of objective function in Eq. (4) and basic reproduction number
𝑅0 with varying parameters from the literature. The sensitivity test results are reported in Fig. 8.

We draw the following observations from this sensitivity test:

1. As the average contagion rate 𝛽 increases due to lack of prevention strategies such as social-distancing, the maximum public
transit flow decreases to control the transmission. On the other hand, the basic reproduction number increases substantially.
15
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Fig. 9. Effect of social-distancing policy on public transit; Bars at each data point are the empirical variance from 𝑀 = 100 experiments.

Fig. 10. Safety-and-mobility trade-off; Bars at each data point are the empirical variance from 𝑀 = 100 experiments.

2. As the quarantine ratio 𝛼 increases, the maximum public transit flow stays approximately the same while the basic
reproduction number decreases substantially. An example of this case is when the testing rate increases and the infected
population is identified more effectively.

3. As the length of the infection period 1∕𝛾 increases due to healthcare quality deterioration, the maximum public transit flow
decreases because of the significant increase in the basic reproduction number.

4. The latent period’s length 𝛿 has a negligible impact on the optimal control policy or the disease spreading speed.

4.2.4. Social-distancing strategy on public transit
The contagion rate 𝛽𝑤 is reduced for all 𝑤 ∈ 𝐶 when the public transit operator enforces stricter social-distancing policies

for public transit. Such a policy can assist the control of the disease, as shown in Fig. 9. To show the relative significance of
implementing a social-distancing policy in public transit, we vary the ratio of 𝛽𝑤∕𝛽. As a result, the basic disease reproduction
number is reduced. Since Eqs. (4) and (7) use relative disease reproduction constraints, the objective function is not much affected.
To this end, social-distancing in public transit helps the public health measures and does not affect the maximal throughput in
commute networks.

The value of 𝜅 in the disease reproduction constraint renders the safety-and-mobility trade-off. When 𝜅 increases from 0 to 1, the
system puts more weight on efficiency and less weight on safety. As shown in Fig. 10, the total throughput in commute networks
increases significantly with larger 𝜅. Note that the variation of the objective is considerable when 𝜅 is between 0.2−0.6. In the case
study of NYC, the same trade-off is presented in the subway operational plans.

4.3. Numerical results for flow control with monitoring feedback

We demonstrate the insights obtained by solving a two-stage flow policy in the same network. The computation of the dynamic
policy in Algorithm 1 allows to iteratively simulate the state 𝑺 𝑡 and 𝑰 𝑡 are dependent on 𝒙(𝜏), 𝜏 < 𝑡. On the other hand, the disease
reproduction constraints need to satisfied for all 𝜏 ∈ 𝑻 .
16
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Fig. 11. The optimal control when the health measures are relaxed over time; Bars at each data point are the empirical variance from 𝑀 = 20 experiments.

𝜅(𝜏) is a sequence of endogenous variables that mitigates the safety-and-mobility trade-off due to the evolving epidemic. As the
constraint 𝜅𝑅0(0),𝑅0(1)(𝑡) is dependent on the realized reproduction number at time 𝑡, the optimization automatically put more weights
on economics than health concerns as the severeness of the disease relieves. Suppose that we make an initial flow control policy
at 𝑡 = 0 and allow to adjust the policy at 𝑡′ ∈ (0, 𝑇 ] when 𝑅𝑡′ (1) hits a preset threshold. To demonstrate the strictness of health
measures associated with the basic reproduction number, we fix 𝜅(0) = 0.5 and resolve the optimization eq (7) with different values
of 𝜅𝑅𝑡′ (0),𝑅𝑡′ (1)

(𝑡′). Note that, as 𝜅𝑅𝑡′ (0),𝑅𝑡′ (1)
(𝑡′) increases, the second intervention is made earlier, and setting 𝜅(𝑡′) ≈ 1.0 is equivalent

to relaxing the disease reproduction constraint.
In Fig. 11, the maximum flow over the public transit network increases as 𝜅𝑅𝑡′ (0),𝑅𝑡′ (1)

(𝑡′) increases, because the health measures
are more critical for the disease control at the early stage. In other words, setting a large threshold for a sequential transit control
decision increase the total throughput; thus, the transit agency’s quick responsiveness to the disease outbreak is valuable for social
benefit. On each route and location, we also observe the inhomogeneous level of relieved flow in Fig. C.15 in Appendix C when 𝜅
decreases or increases because Eq. (7) automatically and effectively lifts the restrictions on transit traffic after the epidemic is under
control.

4.4. Safety-and-mobility trade-offs in NYC’s reopening decisions

Obtaining the control policy directly for complex urban infrastructure networks is computationally challenging. The sensitivity
tests show the small optimality gap above. Thus, optimizing a clustered commuter network does not influence the generality. The
census tracts in Manhattan, NYC, are aggregated to smaller regions based on population density and spatial adjacency. The spatial
aggregation implements the weighted k-means clustering algorithm such that the number of clusters is 15 and the weights are each
census tracts’ total population. This spatial clustering method can guarantee that the travel demand is nearly balanced between
each region. Qian and Ukkusuri (2021) used a similar clustering technique for modeling transit networks within pandemic. Given
that Manhattan is a relatively small area and a census tract contains only a few blocks, a transit control policy at the census tract
level is not necessary. This procedure aligns with the transit regulatory practice because more refined areas have less impact on the
line-based or area-based social-distancing and frequency-setting policies (Kamga and Eickemeyer, 2021). These areas are labeled
0–14 in Fig. 12a). Considering commuters’ transfers, the NYC subway system contains 277 combinations of subway lines, hence
|𝐶 | = 277 in the following analysis (transfers between subway lines can refer to Appendix C).

We focus on the fixed traffic flow control policy in this case study because the early interventions are more critical for safety
in Section 4.3. The worst case that no intervention on public transit (i.e., 𝒙 = 1) is conducted, the basic reproduction number is
𝑅0(1) = 1.794. The most extreme case is a total closure of public transit (i.e., 𝒙 = 0), the basic reproduction number is 𝑅0(0) = 1.670.
The optimal control policy shown in Fig. 12b obtains 88% (original network flow is 1.62 million) while reducing the gap of the
basic reproduction rate at 𝑅0 = 1.703.

Although the difference in the basic reproduction number seems small, the transit control strategy’s impact on mitigating
transmission is significant. As we can see in the epidemic dynamics in Fig. 13, the difference between the optimal control and
no-control scenarios reaches 50,000 for the susceptible population and 30,000 for the infected population in Manhattan borough
within the first 𝑇 = 100 days of the outbreak. This effectiveness of slowing down the spreading is significant, taking the short time
spent in transit per day into account compared to the time spent at home and in the workplace. These results emphasize the need
for controlling the disease transmission on the target region or public transit line during the reopening time, especially with the
recurrent waves of COVID-19 pandemic worldwide (Leung et al., 2020).

Regarding the route-level controls in Fig. 13b, we make two additional remarks on identifying the critical routes in transit traffic
17
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Fig. 12. Optimal public transit control policy in NYC case study.

Remark 3 (Critical Regions in Commute Networks). In fully connected commute networks, the disease reproduction constraint is
most sensitive to controls implemented on areas with largest outflow.

Remark 4 (Route-based Control). Limiting flow on a high-density route does not necessary control the spreading speed of the disease
most effectively.

Note that Remark 3 is consistent with the sensitivity analysis in Yashima and Sasaki (2016). The 𝑅0-centrality measure is defined
as − 𝜕𝜆0(𝐺) , which is equivalent to the sensitivity analysis on 𝑥 in the current work.
18
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Fig. 13. Dynamics of COVID-19 under different public transit control policies.

Finally, the numerical results of NYC case study provide several interesting policy implications that can be generalized to other
cities’ disease control plans:

1. The numerical results confirm the general rules derived in Section 3. For example, the optimal subway control policy is almost
uniform on each row (corresponding to a home-and-work vertex) in Fig. 12a. The most populated outflow vertex is curtailed
the most.

2. Shutting down public transit, as passengers may choose alternative modes, brings marginal benefit comparing to the targeted
traffic control policy in this work (Fig. 13).

5. Conclusion

This paper proposes a mathematical programming approach under disease reproduction constraints to resolve safety-and-mobility
trade-offs in epidemic response plans. An optimization-based analysis accommodates the essential demand for travel during the
epidemic period and follows strict infectious disease safety measures. Public transit continues to serve as a protected, low-emission,
and low-cost option for economic reopening by maximizing the transit flow restricted by the requirement of epidemic prevention
measures.

The first main limitation of this work is that, in extreme cases, the route-target public transit control policy has potential
accessibility and equity problems. In the case study, transit flows on high-risk lines are reduced between 40% and 90% due to
the relative demographic homogeneity in the studied area. By either proposing new lower bounds for controls 𝒙 or reformulating
the objective to a max–min problem, we can avoid this inequality issue. Second, the current algorithm for the flow control with
monitoring feedback is not scalable for large networks mainly because the coupling of the spatial SEIR model simulation and
flow optimization leads to a heavy computational burden. Developing more efficient algorithms such as simulation–optimization
algorithms is a critical research direction. Finally, compartmental models and their integration with transit networks are suitable for
modeling aggregate travel patterns. Various behavioral and environmental factors are not considered in the current setting. In order
to capture the system’s uncertainty, another promising research avenue is investigating more realistic models such as stochastic
epidemic models and heterogeneous behavior models.
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a

Table A.2
Summary of notation.

Notation Definition

Spatial SEIR model

𝐻𝑊 Home-and-work network consists of vertices (regions) 𝐻𝑊 and edges 𝐻𝑊
𝐶 Public transit network consists of vertices 𝐶 and edges 𝐶
 Commute network integrates 𝐻𝑊 and 𝐶
𝑁𝑣 Population in region 𝑣 ∈ 𝐻𝑊
 +(𝑣) A set of neighboring outflow regions and  +(𝑣) ⊂ 𝐻𝑊
 −(𝑣) A set of neighboring inflow regions and  −(𝑣) ⊂ 𝐻𝑊
+(𝑣) A set of neighboring outflow and +(𝑣) ⊂ 𝐶
−(𝑣) A set of neighboring inflow and −(𝑣) ⊂ 𝐶
𝑁𝑒

𝑣 (𝑡) Effective work–home population
𝐶𝑒
𝑣 (𝑡) Effective commuting population

𝜌𝑁 Daily home-to-work flow fraction matrix with entries 𝑟𝑢𝑣
𝜌𝐶 Transit flow fraction matrix with entries 𝑝𝑢𝑣
𝑺 𝑡 Vector of susceptible population
𝑬𝑡 Vector of exposed population
𝑰 𝑡 Vector of infectious population
𝑹𝑡 Vector of recovered population
𝛽𝑣 Contact rate at vertex 𝑣 ∈ 
𝛾 Recovering rate of the disease
1∕𝛿 Mean latent period of the disease
𝛼 Quarantine ratio
𝑝𝐻 , 𝑝𝑊 , 𝑝𝐶 Proportion of time during the day spent at home, work, and commute vertices, respectively
𝑅0 Basic reproduction number
𝐺0 Next generation matrix
𝑅𝑡 Effective reproduction number

Optimization model

𝒙 Decision variable for static transit flow control 𝑥𝑣𝑤 for all 𝑣 ∈ 𝐻𝑊 and 𝑤 ∈ 𝐶
𝜅 Tolerance for the disease reproduction constraint in the static control policy
𝜁, 𝜂 Left and right eigenvectors associated with 𝑅𝑡
𝜏 The time period flow controls are implemented
𝛥𝜏 Time duration each control is implemented
𝜅𝑅𝜏 (0),𝑅𝜏 (1)(𝜏) Tolerance for the disease reproduction constraint in the control policy

Appendix A. Summary of notation

See Table A.2.

Appendix B. Proof for the spatial compartmental model

While it is true that the basic reproduction number for a well mixed population cannot be changed, we are computing 𝑅0 with the
structure of the transport network taken into account. This is accomplished by computing the next-generation matrix and finding
its dominant eigenvalue. To compute the next generation matrix, we actually only care about the infected subsystem, the set of
populations that contain infected individual consisting of 𝐸𝑣(𝑡) and 𝐼𝑣(𝑡) for all regions 𝑣 ∈  .

To compute the Jacobian, we need to compute 𝜕
𝜕𝐸𝑣

(

𝑑𝐸𝑢
𝑑𝑡

)

, 𝜕
𝜕𝐼𝑣

(

𝑑𝐸𝑢
𝑑𝑡

)

, 𝜕
𝜕𝐸𝑣

(

𝑑𝐼𝑢
𝑑𝑡

)

, 𝜕
𝜕𝐼𝑣

(

𝑑𝐼𝑢
𝑑𝑡

)

, where each is evaluated at 𝑆𝑢 = 𝑁𝑢
nd 𝐼𝑢 = 1. We collect the terms as follows:

[𝐽 ]𝐸𝑣𝐸𝑣
= 𝜕

𝜕𝐸𝑣

(

𝑑𝐸𝑣
𝑑𝑡

)

= −1
𝛿

[𝐽 ]𝐸𝑢𝐸𝑣
= 𝜕

𝜕𝐸𝑣

(

𝑑𝐸𝑢
𝑑𝑡

)

= 0

[𝐽 ]𝐼𝑣𝐸𝑣
= 𝜕

𝜕𝐸𝑣

(

𝑑𝐼𝑣
𝑑𝑡

)

= 1
𝛿

[𝐽 ]𝐼𝑢𝐸𝑣
= 𝜕

𝜕𝐸𝑣

(

𝑑𝐼𝑢
𝑑𝑡

)

= 0

[𝐽 ]𝐼𝑣𝐼𝑣 = 𝜕
𝜕𝐼𝑣

(

𝑑𝐼𝑣
𝑑𝑡

)

= −𝛾

[𝐽 ]𝐼𝑢𝐼𝑣 = 𝜕
𝜕𝐼𝑣

(

𝑑𝐼𝑢
𝑑𝑡

)

= 0

[𝐽 ]𝐸 𝐼 = 𝜕
(

𝑑𝐸𝑣
)

= − 𝜕
(

𝑑𝑆𝑣
)
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= 𝑝𝐻𝛽𝑣(1 − 𝛼)
𝑆𝑣
𝑁𝑣

+ 𝑝𝑊
∑

𝑢∈+(𝑣)
𝑟2𝑣𝑢𝛽𝑢

(1 − 𝛼)𝑆𝑣[𝜌
⊺
𝑁𝑁]𝑢

([𝜌⊺𝑁𝑁]𝑢)2

+ 𝑝𝐶
∑

𝑤∈+(𝑣)
𝑥2𝑣𝑤𝑝

2
𝑣𝑤𝛽𝑤

(1 − 𝛼)𝑆𝑣[𝜌𝐶 (𝑥)⊺𝐶]𝑤
([𝜌𝐶 (𝑥)⊺𝐶]𝑤)2

[𝐽 ]𝐸𝑢𝐼𝑣 = 𝜕
𝜕𝐼𝑣

(

𝑑𝐸𝑢
𝑑𝑡

)

= − 𝜕
𝜕𝐼𝑣

(

𝑑𝑆𝑢
𝑑𝑡

)

= 𝑝𝑊
∑

𝑤∈+(𝑢)∩+(𝑣)
𝛽𝑤𝑟𝑢𝑤𝑟𝑣𝑤

(1 − 𝛼)𝑆𝑣[𝜌
⊺
𝑁𝑁]𝑤

([𝜌⊺𝑁𝑁]𝑤)2

+ 𝑝𝐶
∑

𝑤∈+(𝑢)∩+(𝑣)
𝛽𝑤𝑥𝑢𝑤𝑝𝑢𝑤𝑥𝑣𝑤𝑝𝑣𝑤

(1 − 𝛼)𝑆𝑣[𝜌𝐶 (𝑥)𝐶]𝑤
([𝜌𝐶 (𝑥)⊺𝐶]𝑤)2

Note there exists a disease-free equilibrium with 𝑆𝑣 = 𝑁𝑣 and 𝐼𝑣 = 0 for all 𝑣 ∈  . In the case of fixed control, we can directly
plug in these values to further simplify the computation. Note both 𝐹 and 𝑉 in dimension R2||×2|| and hence we can write the
NGM as:

𝐺 = 𝐹𝑉 −1
|>0 (B.1)

[𝐹 ]𝑢𝑣 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑝𝐻𝛽𝑣(1 − 𝛼) + 𝑝𝑊
∑

𝑢∈+(𝑣)
𝑟2𝑣𝑢𝛽𝑢

(1−𝛼)𝑁𝑣[𝜌
⊺
𝑁𝑁]𝑢

([𝜌⊺𝑁𝑁]𝑢)2
+

𝑝𝐶
∑

𝑤∈+(𝑣)
𝑥2𝑣𝑤𝑝

2
𝑣𝑤𝛽𝑤

(1−𝛼)𝑁𝑣[𝜌𝐶 (𝑥)⊺𝐶]𝑤
([𝜌𝐶 (𝑥)⊺𝐶]𝑤)2 , 𝑢 = 𝑣, 𝑢, 𝑣 ∈ 

𝑝𝑊
∑

𝑤∈+(𝑢)∩+(𝑣)
𝛽𝑤𝑟𝑢𝑤𝑟𝑣𝑤

(1−𝛼)𝑁𝑣[𝜌
⊺
𝑁𝑁]𝑤

([𝜌⊺𝑁𝑁]𝑤)2
+

𝑝𝐶
∑

𝑤∈+(𝑢)∩+(𝑣)
𝛽𝑤𝑥𝑢𝑤𝑝𝑢𝑤𝑥𝑣𝑤𝑝𝑣𝑤

(1−𝛼)𝑁𝑣[𝜌𝐶 (𝑥)𝐶]𝑤
([𝜌𝐶 (𝑥)⊺𝐶]𝑤)2

, 𝑢 ≠ 𝑣, 𝑢, 𝑣 ∈  ,

(B.2)

𝑉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝛿 ⋯ 0 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 ⋯ 1
𝛿 0 ⋯ 0

1
𝛿 ⋯ 0 𝛾 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 ⋯ 1
𝛿 0 ⋯ 𝛾

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (B.3)

If we compute the expanded 𝐺 from these expression for 𝐹 and 𝑉 −1 we get

𝐺 = 𝐹𝑉 −1
|>0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 ⋯ 0 1
𝛾 [𝐹 ]𝐸𝑣𝐼𝑣 ⋯ 1

𝛾 [𝐹 ]𝐸𝑢𝐼𝑣

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 ⋯ 0 1
𝛾 [𝐹 ]𝐸𝑢𝐼𝑣 ⋯ 1

𝛾 [𝐹 ]𝐸𝑣𝐼𝑣

0 ⋯ 0 0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 ⋯ 0 0 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

|>0 (B.4)

and here the nonzero submatrix is the NGM, 𝐺. We can see that:

[𝐺]𝑣𝑣 = 1
𝛾
[𝐹 ]𝐸𝑣𝐼𝑣 (B.5)

[𝐺]𝑣𝑢 =
1
𝛾
[𝐹 ]𝐸𝑢𝐼𝑣 (B.6)

Appendix C. Commute networks in NYC numerical experiments

In the sensitivity analysis, the simulations use the following commute network (|𝐻𝑊 | = 4, |𝐶 | = 6) with randomly generated
population (with expected total population of 100) and route choice. The flow between each pair of regions 𝑢, 𝑣 ∈  are sorted from
high to low by the home-and-work vertex index. The values are represented by the line opacity in Fig. C.14.

The route-based control policy for the flow control numerical experiments is shown in Fig. C.15. The underlying commute graph
is the same as in Fig. C.14. The epidemic model’s parameters follow the NYC cast study in Table 1. We evaluate the control policy
in this relatively small network, mainly because of the epidemic dynamic model’s computational limitation. Since we are interested
in the potential of the policy with monitoring feedback compared to the fixed policy in this experiment, the derived results are
21
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Fig. C.14. Commute network for control policy validation.

Fig. C.15. Optimal transit flow control 𝒙∗(𝑡) with different strictness of health measures.

The connectivity of the subway system is required for constructing the commute network in the NYC case study. Considering
only the individual physical transit lines are not an appropriate vertex representation in the commuter network. Infected passengers
may transfer between lines in a single trip and cause contagion on all visited lines. By limiting the number of transfers to one,
we can crawl the public transit data (NYC, 2020) to reconstruct the commute network transfer graph as in Fig. C.16. Each edge
connecting two subway lines are treated as a vertex 𝑤 ∈ 𝐶 .

Appendix D. Calibration of spatial SEIR model in the study area

We have calibrated the compartmental model using the newly collected data from NYC from April 10, 2020 to March 1,
2021 (NYC, 2021). Notice that the recovered population has been considered at the beginning of the fitting. In Fig. 1, the rates
of infectious population 𝐼(𝑡)∕𝑁 of different areas have similar patterns, and the disturbance is mainly because of the weekly This
validation considers the parameters of contagion rate 𝛽 and length of infectious period 1∕𝛾 may vary, so we estimate these parameters
across all areas of different zip codes. The value of 𝛾 is close to the previous parameter, while the contagion rate has large variations
in the past months. Therefore, we use new 𝛽 in this revision assuming that the length of latent and infectious periods are constant.
(see Fig. D.17).
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Fig. C.16. Connectivity of the MTA subway systems in NYC; Each edge in the graph is 𝑣 ∈ 𝐶 in the commute network.

Fig. D.17. Confirmed COVID-19 cases reported by zip code in New York City, NY from April 2020 to March 2021.
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