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MEAN-FIELD LINEAR-QUADRATIC STOCHASTIC DIFFERENTIAL
GAMES IN AN INFINITE HORIZON*

XuUN Li!, JINGTAO SHI>**® AND JIONGMIN YONG?

Abstract. This paper is concerned with two-person mean-field linear-quadratic non-zero sum stochas-
tic differential games in an infinite horizon. Both open-loop and closed-loop Nash equilibria are
introduced. The existence of an open-loop Nash equilibrium is characterized by the solvability of a
system of mean-field forward-backward stochastic differential equations in an infinite horizon and the
convexity of the cost functionals, and the closed-loop representation of an open-loop Nash equilibrium
is given through the solution to a system of two coupled non-symmetric algebraic Riccati equations.
The existence of a closed-loop Nash equilibrium is characterized by the solvability of a system of
two coupled symmetric algebraic Riccati equations. Two-person mean-field linear-quadratic zero-sum
stochastic differential games in an infinite horizon are also considered. Both the existence of open-loop
and closed-loop saddle points are characterized by the solvability of a system of two coupled general-
ized algebraic Riccati equations with static stabilizing solutions. Mean-field linear-quadratic stochastic
optimal control problems in an infinite horizon are discussed as well, for which it is proved that the
open-loop solvability and closed-loop solvability are equivalent.

Mathematics Subject Classification. 91A15, 91A16, 91A23, 93C05, 93E20, 49N10.

Received July 13, 2020. Accepted July 3, 2021.

1. INTRODUCTION

Let (Q,F,P,F) be a complete filtered probability space, on which a one-dimensional standard Brownian
motion W (-) is defined with F = {F;};>0 being its natural filtration augmented by all the P-null sets in F, and
E[-] denotes the expectation with respect to P. Throughout this paper, we let R"*™ and S” be the set of all
(n x m) (real) matrices and (n x n) symmetric (real) matrices. We denote R™ = R"*1. For a Euclidean space H,
say, H = R™, R™*™ let C([0,00); H) denote the space of H-valued continuous functions ¢ : [0, 00) — H, L?(H)
denote the space of H-valued functions ¢ : [0,00) — H with fooo lo(t)|?dt < oo, and LZ(H) denote the space of
F-progressively measurable processes ¢ : [0,00) x Q — H with E [ [¢(t)|?dt < cc.
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Consider the following controlled linear mean-field stochastic differential equation (MF-SDE, for short) on an
infinite horizon [0, 00):

E[ul(t)] + BQUQ(t) + BQE[UQ (t)] + b(t)}dt

dX(t) = {AX(t) + AE[X ()] + Biu1(t) + By
+C D1Efus (t)]4 Dous (t)+ DoElus(t)]+0(t) }JdW (t), t >0,  (1.1)

+{CX 1)+ CEIX(8)] + Dy (1)
X(0) = .

+
+

In the above, X (-) is the state process taking values in R™ with = being the initial state. For ¢ = 1,2, u;(+)
is the control process of Player i, taking values in R™:, respectively. The coefficients A, A,C,C € R™*",
By,B1,Dy,D; € R™™ By By, Dy, Dy € R"*™2 are given constant matrices, and the non-homogenous terms
b(+),o(-) € LA(R™). We introduce the following spaces:

2°00,T) = {X :[0,00) x 2 — R" | X (+) is F-adapted, t — X (¢,w) is continuous, and

E| sup |X(t)|? oop, forT >0,

Le[o%]' (] < 0o} >

Zinl0.00) = () 20,7 #l0vo0) = {X() € Ziuclo,) [ [ 1X(0Pd < o).
T>0 0

By a standard argument using contraction mapping theorem, one can show that for any initial state x € R"
and control pair (uj(-),us2(+)) € LE(R™) x LZ(R™2), state equation (1.1) admits a unique strong solution
X()=X(zur(e), ua(v)) € Zioel0,00). Next, for i = 1,2, we introduce the following cost functionals:

Ji(@;ui(-),u2(")) = ]E/ gi(t, X (1), ur (1), u2(t), E[X (t)], E[u1 ()], Eluz(¢)])dt, (1.2)
0
with
Qi SZ-Tl SiT2 T x qi (%) T
gi(t,ilf‘,ul,u2,!f,ﬂ1,ﬁ2)=< Sit Rinn Rie up |, | ur >+2< pir(t) |, | wm >
Si _Ri2] _Rz’22 g Us Us pi2(t) U (13)
Qi Sy Sh\ [z x
+< Sit R R | (), | W >:
Sia Rio1 Ry Ug U
where
Qi, Q; €™, Si1, Sip € R™MX 0 G Sip € RM2XM,

Ri1, Ritn €S™, Rysa, Risg €S™, Rja =R}, Rija =R}, € RmXmz,
ai(") € LE(R™), pi1(-) € LER™),  pia(-) € LE(R™2).
Note that for (x,ui(-),ua(-)) € R® x LA(R™ ) x LZ(R™2), the solution X (-) = X (-;z,u1(-),u2(+)) to (1.1) might

just be in Z7,.]0, 00) in general. Therefore, in order the cost functionals J;(x;uq(+), u2(+)), %2 = 1,2 to be defined,
the control pair (uy(-),us(-)) has to be restricted in the following set of admissible control pairs:

Una(w) = { (w1 (), u2() € BBR™) x LHR™) | X(-:2,m (), ua(1)) € 2[0,00)}, w€R™ (14)
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Note that %,q(x) depends on the initial state x. For any (ui(-),u2(-)) € %a(z), the corresponding X (-) =
X (s ur(+),uz(-)) is called an admissible state process for the initial state x. Then we can loosely formulate
the following problem.

Problem (MF-SDG). For any initial state z € R", Player i (i = 1,2) wants to find a control «}(-) so that
(ui(),u3(+)) € %a(x) such that the cost functionals ui(-) — Jy(z;u1(:),us(+)) and ua(-) — Ja(z;ui(), ua(-))
are minimized, for all (uq(-), u5(+)), (ui(:),u2(")) € Zua(x), subject to (1.1).

We refer to the above problem as a mean-field linear-quadratic (LQ, for short) two-person (non-zero sum)
stochastic differential game in an infinite horizon. In the special case where b(-),o(-), ¢i(-), pi;(-) are all zero,
we denote the corresponding problem and cost functionals by Problem (MF-SDG)Y and J?(x;u1(+), ua(-)),
respectively. On the other hand, when

Jr(zsur(4), ua(v)) + Ja(zsur(4), ue(-)) =0, Ve eR", V(ui(-),u2(")) € Za(x), (1.5)

the corresponding Problem (MF-SDG) is called a mean-field LQ two-person zero-sum stochastic differential
game in an infinite horizon and is denoted by Problem (MF-SDG)g. To guarantee (1.5), one usually lets

Q1+ Q2=0, Q1+ Q2 =0, () +q() =0,
S1; + S2; =0, S1j+ 825 =0, p1;(-) + p2;(-) =0, j=12, (1.6)
lek + R2jk =0, lek + R2jk =0, 5, k=1,2.

One may feel that cost functional (1.2) could be a little more general by including terms like (g;(s), E[X (s)]).
However, it is not hard to see that (as long as the integrals exist)

E /0 (@ (), E[X(5)])ds = E /0 (E[gi(s)], X (s))ds.

which can be absorbed by replacing ¢;(-) by ¢i(-) + E[@;(-)] in the cost functionals. Likewise, terms like
(pij(s),Elu;(s)]) are not necessarily included.

We will introduce proper stabilizability conditions for the system so that %,4(x) # @ for all x € R™. It is not
hard to see that without stabilizabity conditions, one might only has X (-;z,u1(-),u2(-)) € 270c[0,00) so that
Ji(z;u1(+), u2(-)) might not be well-defined. Then, instead of considering the cost functionals of form (1.2), one
might naturally consider the following ergodic type cost functionals:

T
Twsn()ua()) = Jim [ 00t X000 (0).0). ELX (). Elun (). Bfua(0)] . (L7)

T—o0

The above type cost functionals are normally used for the case that the running cost rate is bounded so that
the right-hand side of the above is always finite (see, for example, Cohen-Fedyashov [18]). However, if no
stabilizability conditions are assumed, the state process X (-) could be of exponential growth. In that case, the
above type cost functionals are still not useful. Therefore, instead of (1.7), we prefer to study our problems
under certain stabilizability condition with cost functionals of for (1.2) restricted on %,q(x).

The theory of MF-SDESs can be traced back to the work of Kac [25] in the middle of 1950s, where a stochastic
toy model for the Vlasov type kinetic equation of plasma was presented. Its rigorous study was initiated by
McKean [32] in 1966, which is now known as McKean-Vlasov stochastic differential equations. Since then, many
researchers have made contributions to the related topics and their applications; see, for example, Scheutzow
[40], Chan [17], Huang-Malhame—Caines [24], Buckdahn-Li-Peng [13], Carmona-Delarue [15], Bensoussan—
Yam-Zhang [9], Buckdahn-Li-Peng-Rainer [14], etc.

Optimal control and differential game problems of MF-SDEs have drawn enormous researchers’ attention
recently. See Ahmed-Ding [3], Lasry—Lions [26], Andersson-Djehiche [4], Buckdahn-Djehiche-Li [10], Li [27],



4 X.LI ET AL.

Meyer-Brandis-Oksendal-Zhou [33], Hosking [21], Bensoussan—Sung—Yam [7], Djehiche-Tembine-Tempone [20],
Bensoussan—Sung—Yam—Yung [8], Djehiche-Tembine [19], Huang-Li-Wang [22], Yong [54], Buckdahn-Li-Ma
[11, 12], Pham-Wei [37, 38], Li-Sun—Xiong [30], Miller—-Pham [34], Moon [35], and the references therein. Next,
let us mention a few recent pieces of literature related to our present paper. In Yong [53], an LQ optimal control
problem for MF-SDEs in a finite horizon was introduced and investigated. The optimality system of a linear
mean-field forward-backward stochastic differential equation (MF-FBSDE, for short) is derived, and two Riccati
differential equations are obtained to present the feedback representation of the optimal control. Huang—Li—
Yong [23] generalized the results in [53] to the infinite horizon case, and the feedback representation of the
optimal control is derived wvia two algebraic Riccati equations (AREs, for short). Note that in [23], some notions
of stabilizability for controlled MF-SDEs are introduced, which are interestingly different from the classical
ones, due to the presence of the terms E[X(-)] and E[u(-)]. Sun [41] continued to investigate the LQ optimal
control problem for MF-SDEs in the finite horizon with additional nonhomogeneous terms and concluded that
the uniform convexity of the cost functional is sufficient for the open-loop solvability of the L(Q optimal control
problems for MF-SDEs. Moreover, the uniform convexity of the cost functional is equivalent to the solvability
of two coupled differential Riccati equations, and the unique open-loop optimal control admits a state feedback
representation in the case that the cost functional is uniformly convex. Li-Sun—Yong [31] studied the closed-
loop solvability of the corresponding problem, which is characterized by the existence of a regular solution
to the coupled two generalized Riccati equations, together with some constraints on the adapted solution to
a linear backward stochastic differential equation (BSDE, for short) and a linear terminal value problem of
an ordinary differential equation (ODE, for short). Li-Li—Yu [28] analyzed the indefinite mean-field type LQ
stochastic optimal control problems, where they introduced a relaxed compensator to characterize the open-
loop solvability of the problem. Tian—Yu—Zhang [51] considered an LQ zero-sum stochastic differential game
with mean-field type, proposed the notions of explicit and implicit strategy laws, and established the closed-loop
formulation for saddle points in the mixed-strategy-law. Very recently, Sun—-Wang—Wu [44] studied a two-person
zero-sum mean-field LQ stochastic differential game over the finite horizon by a Hilbert space method introduced
by Mou—Yong [36]. It is shown that the associated two Riccati equations admit unique and strongly regular
solutions under the sufficient condition for the existence of an open-loop saddle point when the open-loop
saddle point can be represented as linear feedback of the current state. When only the necessary condition for
the existence of an open-loop saddle point is satisfied, we can construct an approximate sequence by solving
a family of Riccati equations and closed-loop systems. The approximate sequence’s convergence turns out to
be equivalent to the open-loop solvability of the game, and its limit exactly equals an open-loop saddle point,
provided that the game is open-loop solvable.

Ait Rami~Zhou [1] and Ait Rami-Zhou-Moore [2] considered stochastic LQ problems in an infinite horizon,
with indefinite control weighting matrices. They introduced a generalized ARE, involving a matrix pseudo-
inverse and two additional algebraic equality /inequality constraints, and proved that the problem’s attainability
is equivalent to the existence of a static stabilizing solution to the generalized ARE. In particular, the associated
AREs can be solved by linear matrix inequality and semidefinite programming techniques. In addition to the
statements in the previous paragraph about [23], the authors discussed the solvabilities of AREs, by linear
matrix inequalities. Sun—Yong [46] first found that both the open-loop and closed-loop solvabilities of the
stochastic LQ problems in the infinite horizon are equivalent to the existence of a static stabilizing solution to
the associated generalized ARE. We refer the readers to the recent monographs by Bensoussan—Frehse—Yam [6]
and by Sun—Yong [48, 49] for more details and references cited therein.

In this paper, we consider two-person mean-field LQ non-zero sum stochastic differential games in an infinite
horizon. Both open-loop and closed-loop Nash equilibria are introduced. The existence of an open-loop Nash
equilibrium is characterized by the solvability of a system of MF-FBSDEs in an infinite horizon and the convexity
of the cost functionals. The closed-loop representation of an open-loop Nash equilibrium is given through the
solution to a system of two coupled non-symmetric AREs. The existence of a closed-loop Nash equilibrium
is characterized by the solvability of a system of two coupled symmetric AREs. Two-person mean-field LQ
zero-sum stochastic differential games in an infinite horizon are also considered. The existence of open-loop and
closed-loop saddle points is characterized by the solvability of a system of two coupled generalized AREs with
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static stabilizing solutions. As special cases, mean-field L.Q stochastic optimal control problems in an infinite
horizon are discussed as well, for which it is proved that the open-loop solvability and closed-loop solvability
are equivalent. The results obtained in this paper enrich the theory of optimal control and differential games of
mean-field type.

Let us briefly highlight the major novelty of this paper:

(i) For MF-SDEs with quadratic performance indexes in an infinite-horizon, problems of two-person non-zero
sum differential games, two-person zero-sum differential games and optimal control (which is a single player
differential game) are treated in a unified framework. Among other results, the most significant one is the
discovery of the system of coupled algebraic Riccati equations (3.35) which is used to characterize the closed-
loop Nash equilibrium. From this point of view, the current paper can be regarded as a complementary or a
continuation of Sun—Yong [47].

(ii) For MF-SDE LQ optimal control problems in an infinite horizon, we have established the equivalence
among the solvability of a system of coupled algebraic Riccati equations, open-loop solvability, and closed-loop
solvability. This covers the relevant results found in Sun—Yong [46] where mean-field terms were absent.

(iii) For two-person zero-sum differential games of MF-SDEs with quadratic performance index in [0, 00), we
have proved that if an open-loop saddle point admits a closed-loop representation, and the closed-loop saddle
point exists, then the open-loop saddle point must be the outcome of the closed-loop saddle point. It is also
shown that such a property fails for non-zero sum differential games. From this angle, the current paper is an
extension of Sun—Yong—Zhang [50] where the mean-field terms did not appear.

The rest of the paper is organized as follows. In Section 2, we present some preliminary results about
mean-field LQ stochastic optimal control problems in an infinite horizon. Section 3 aims to give results on
mean-field LQ non-zero sum stochastic differential games, including open-loop Nash equilibria and their closed-
loop representation, and closed-loop Nash equilibria with algebraic Riccati equations. In Section 4, the open-loop
and closed-loop saddle points for mean-field LQ zero-sum stochastic differential games are investigated. Some
examples are presented in Section 5 illustrating the results developed in the earlier sections. Finally, some
concluding remarks are collected in Section 6.

2. PRELIMINARIES

Throughout this paper, besides the notation introduced in the previous section, we let I be the identity
matrix or operator with a suitable size. We will use (-, -) for inner products in possibly different Hilbert spaces,
and denote by | - | the norm induced by (-,-). Let M T and %2(M) be the transpose and range of a matrix M,
respectively. For M, N € S", we write M > N (respectively, M > N) for M — N being positive semi-definite
(respectively, positive definite). Let MT denote the pseudo-inverse of a matrix M € R™*" which is equal to the
inverse M ~! of M € R™" if it exists. See Penrose [39] or Anderson—Moore [5] for some basic properties of the
pseudo-inverse. We define the inner product in LZ(H) by (p, ¢) = Efooc<c,9(t), #(t))dt so that L2(H) is a Hilbert
space.

We now consider the following controlled linear MF-SDE over [0, c0):

dX(t) = {AX(t) + AE[X ()] + Bu(t) + BE[u(t)] + b(t) }dt
+{CX(t) + CE[X(t)] + Du(t) + DE[u(t)] + o (t) }dW (t), t >0, (2.1)
X(0) ==,

with quadratic cost functional

GGGy
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where A, A,C,C € R"*" B, B,D,D € R™™, Q,Q € S", 5,5 € R™*" R, R € S™ are given constant matrices,
and b(-),0(-),q(-) € LZ([R™), p(-) € LZ(R™) are stochastic processes. For any initial state z € R™ and control
u(-) € L3(R™), equation (2.1) admits a unique strong solution X () = X (-;z,u(-)) € Ziee[0,00). We define the
admissible control set as

Ua(x)= {u() = L%(Rm) { X()=X(;z,u(r)) € 200, oo)} (2.3)

In general, %,q4(x) depends on & € R™. Let us pose the following optimal control problem.
Problem (MF-SLQ). For any initial state 2 € R™, find a control u*(-) € %,q(x) such that the cost
functional J(z;u(-)) of (2.2) is minimized, subject to (2.1). That is to say,

T () = inf (@) = V(). (2.4)

Any u*(-) € %,q(x) satistying (2.4) is called an open-loop optimal control of Problem (MF-SLQ), and the
corresponding X*(-) = X (-;z,u*(+)) is called an open-loop optimal state process. The function V (+) is called the
value function of Problem (MF-SLQ). In the special case where b(-),o(-),q(-), p(-) are all zero, we denote the
corresponding problem by Problem (MF-SLQ)?, the cost functional by J°(z;u(-)) and the value function by
V9(x), respectively.

In order Problem (MF-SLQ) to be meaningful, we need to find conditions under which %,q(z) is non-
empty and admits an accessible characterization. For this target, let us first look at the following uncontrolled
non-homogeneous linear system on [0, 00):

{ dX(t) = {AX(t) + AE[X (t)] + b(t) }dt + {CX (t) + CE[X (t)] + o(t) }dW (), t >0, 25)
X(0) = . '

When b(:) = o(-) = 0, the system is said to be homogeneous and denoted by [A, A, C,C]. For simplicity, we
also denote [A,C] = [A,0,C,0] (the lincar SDE without mean-fields), and A = [A,0] = [A4,0,0,0] (the lincar
ordinary differential equation, ODE, for short). The following notions can be found in [23].

Definition 2.1. (i) System [A, A, C,C] is said to be L?-globally integrable, if for any x € R™, the solution
X() = X(-52) of (2.5) with b(-) = o(-) = 0 is in 27[0, 00).
(ii) System [A, A, C, C] is said to be L?-asymptotically stable, if for any x € R™, the solution X (-) = X(-;z) €
Zi0c[0, 00) of (2.5) with b(-) = o(") = 0 satisfies lim E|X(t)]* = 0.
—00
According to [23], and via a similar argument proving Theorem 3.3 of [50], we have the following result.

Proposition 2.2. For any x € R" and b(-),0(-) € LZ(R"), lincar MF-SDE (2.5) admits a unique solution
X(+) € Zioe|0,00). Further, if [A, A, C, C| is L?-asymptotically stable and system [A, C] is L?-globally integrable,
then X(-) € 27[0,00), with

B[ BxPar < K|lo 45 [ (0 +lo0P)r].
0 0
for some constant K > 0. On the other hand, for any ¢(-) € LZ(R"), the following linear MF-BSDE:

—dY(t) = {ATY(t)+ ATE[Y ()] + CTZ(t) + CTE[Z(t)] + o(t) }dt — Z(t)dW (t), t >0, (2.6)

admits a unique adapted solution (Y (-), Z(+)) € 2°[0,00) x L2(R™).
For general theory of MF-BSDEs and MF-FBSDE:s in a finite horizon, see [13, 15, 16].



MEAN-FIELD LINEAR-QUADRATIC STOCHASTIC DIFFERENTIAL GAMES 7

Now we return to (2.1). Similar to the above, when b(-) = o(-) = 0, the system is said to be homogeneous

and denote it by [A4, A, C,C; B, B, D, D].
Definition 2.3. (i) For any © = (0,0) € R™*?" and v(-) € LA(R™),

ut) =u®"() = O{x() - SO} + BELx (] + o = 0 (YO FEEON oy e

is called a feedback control. Under such a control, the state equation (2.1) becomes

dX(t) = {Ae X (t) + AeE[X ()] + Bu(t) + BE[v(t)] + b(t) }dt
+{Co X (t) + CoE[X(t)] + Du(t) + DE[v(t)] + o(t) }dW (¢), ¢ >0, (2.8)
X(0) = =,

where
Ao =A+BO, Aeg=A+BO+BO-0), Co=C+DO, Ce=C+DO+ DO -0). (2.9)

(ii) System [A, A, C,C; B, B, D, D] is said to be MF-L?2-stabilizable, if there exists a ® = (0,0) € R™*2"
such that system [Ag, Ae,Co,Ce] is L2-asymptotically stable and system [Ae, Co] is L-globally integrable. In
this case, ® = (O, 0) is called an MF-L2-stabilizer of [A, A, C,C; B, B, D, D]. The set of all MF-L2-stabilizers
Of[AACCBBDD]lsdenotedbyy[AACCBBDD]

(iii) Any pair (©,v(-)) € S[A, A,C,C; B, B, D, D] x LA(R™) is called a closed-loop strategy of Problem (MF-
SLQ). The solution X (-) = Xe’”(-) of (2.8) is called the closed-loop state process corresponding to (@, v(-)).
The control u(-) defined by (2.7) is called the outcome of (®,v(+)), or a closed-loop control for the initial state
xr € R™

Note that in the above, Ag and Cg only depend on O, and Ag and Cg depend on © = (6, ©). Also, one
sees that the corresponding coefficients B, B, D, D of the control process, as well as the nonhomogeneous terms
b(-),o(-) are unchanged under (2.7). See [23] for a relevant presentation.

We introduce the following assumption.

(H1) System [A, A, C,C; B, B, D, D] is MF-L?-stablizable, i.e., #[A, A,C,C; B,B,D, D] # &

We have the following result.

Proposition 2.4. Let (H1) hold. Then for any x € R", %,4(x) # @ and u(-) € %q(x) if and only if u(-)

u®v(-) given by (2.7) for some ® = (0,0) € .¥[A,A,C,C; B,B,D,D] and v(-) € L3(R™), where X(-) =
X®:v(.) is the solution to the closed-loop system (2.8).

Proof. Sufficiency. Let v(-) € LZ(R™) and X (-) be the solution to (2.8). Since system [Ag, Ae,Co,Ceo| is L*-
asymptotically stable and system [Ag, Co] is L?-globally integrable, by Proposition 2.2, the solution X () to
(2.8) is in 27[0,00). Hence, setting u(-) by (2.7), we see that u(-) € LZ(R™). By the uniqueness of the solutions,
one has that X (-) = X©+¢(.) also solves (2.1). Therefore, u(-) € %ad( ).

Necessity. Assume that u(-) € Zq(z). Let © = (@ @) € J]A A, C C B B, D, D] and the corresponding

X(-) € 27[0,00) be the solution to (2.1). Set v(-) £ u(-) — O{X (") } OE[X(-)] € LZ(R™). By the
uniqueness of the solutions again, X (-) coincides with the solution to (2.8). Thus, u() admits a representation
of the form (2.7). The proof is complete. O

From the above, we can easily show that under (H1), %,q(x) = LZ(R™) which is independent of z. Hence,
hereafter, once (H1) is assumed, we will denote %, q(z) = %.q4. Now, we introduce the following definitions
concerning Problem (MF-SLQ).

Definition 2.5. (i) Problem (MF-SLQ) is said to be finite at x € R™ if V() > —o0, and Problem (MF-SLQ)
is said to be finite if it is finite at every x € R™.
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(ii) An element u*(-) € %,a(x) is called an open-loop optimal control of Problem (MF-SLQ) for the initial
state x € R™ if

J(x;u™ (1) < J(z;ulr)), Yu(-) € Uga(z). (2.10)

If an open-loop optimal control (uniquely) exists for z € R™, Problem (MF-SLQ) is said to be (uniquely) open-
loop solvable at x. Problem (MF-SLQ) is said to be (uniquely) open-loop solvable if it is (uniquely) open-loop
solvable at all z € R™.

(iii) A pair (©*,v*(:)) € #[A, A,C,C; B, B, D, D] x L2(R™) is called a closed-loop optimal strategy if

J(@; 07 {X"() = E[X"()]} + O"E[X"()] +0"() < J(2; 0{X () = E[X ()]} + OE[X ()] +v(),
B,B

v (2.11)
V(@,uv(-) € Z[A, A, C,C; ,D, D] x LQ(R’”), r €R",

where X*(-) = X©"" () and X(-) = X®¥(-) are the closed-loop state processes corresponding to (z, ©*,v*(-))
and (z,©,v(+)), respectively. If an optimal closed-loop strategy (uniquely) exists, Problem (MF-SLQ) is said to
be (uniquely) closed-loop solvable.

(iv) An open-loop optimal controls u*(-;z) € Z,q of Problem (MF-SLQ), parameterized by = € R™, admits
a closed-loop representation, if there exists a pair (©*,v*(-)) € /[A, A,C,C; B, B, D, D] x LA(R™) such that
for any initial state x € R",

u'() = 0°{X"() —E[X"()]} + OE[X"()] +v"() (2.12)
where X*(-) = X© %" (-) € 27[0, 00) is the solution to the closed-loop system (2.8) corresponding to (@*,v*(-)).

Similar to Proposition 2.5 of [31], we have that (@*,v*(-)) € /[A, A,C,C; B, B, D, D] x LA(R™) is an optimal
closed-loop strategy, if and only if the following condition holds:

J(@; 0" X" () — EIX* ()]} + O"E[X* ()] + 0" (1)) < J (230 {X () — E[X()]} + O°EIX()] +v(), (2.13)

for any (z,v(-)) € R" x L2(R™), where X*(-) = X©"¥"(-) and X (-) = X®?(-) are the closed-loop state pro-
cesses corresponding to (x, ®@*,v*(+)) and (x,®*,v(+)), respectively. On the other hand, from Proposition 2.4,
we see that under (H1), (2.13) is equivalent to the following:

T (20 {X7() = E[X"()]} + O"E[X"()] +v"() < J(zu()), V(z,u() €R" X Uag- (2.14)

In general, an open-loop optimal control depends on the initial state x € R™, whereas a closed-loop strategy is
required to be independent of x. From (2.14), we see that the outcome u*(+) given by (2.12) for some closed-loop
strategy (©*,v*(-)) is an open-loop optimal control for the initial state X*(0). Hence, for Problem (MF-SLQ),
the closed-loop solvability implies the open-loop solvability. The converse is also true for stochastic LQ optimal
control problems in an infinite horizon without mean fields. That is to say, the open-loop and closed-loop
solvabilities are equivalent (see [46]).

It is natural for us to ask: Do we have such equivalence for Problem (MF-SLQ)? To answer this question,
we first present the result concerning the characterization of open-loop and closed-loop solvabilities of Problem
(MF-SLQ). To simplify notation, in what follows, we denote

— ~

A=A+A, B=B+B, C=C+C, D=D+D, Q=Q+Q, S=85+5 R=R+R (2.15)
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Note that for any ® = (0,0) € /[A4,A,C,C; B, B,D, D] and v(:) € LZ(R™), we have the closed-loop system
(2.8). The cost functional (2.2) becomes

(D& DEDEN "

where

— — -~

Se = S + RO, Se = S+ RO — RO, ( ) q(-) + 07 (p(-) —E[p(")]) + O E[p(")]. '

We see that Qg, Se depend on 0, Qe, Se, ge depend on ® = (0,0), and R(-), R(-), p(-) are unchanged. Similar
o (2.15), we will denote

Ao = Ao+ Ao, Co=Co+Co, Qo=Qo+Qe, Se==56+Se. (2.18)

In later investigations, we will encounter the comparison between two closed-loop strategies. Therefore, we
need the following definition.

Definition 2.6. Let (©,v(+)), (©',v'())) € #[A,A,C,C; B, B,D, D] x LZ([R").

(i) We say that (©,v(-)) and (@',v'(-)) are intrinsically different if for some z € R", X (- z,0,v(-)) #
X(;2,0 0 ().

(ii) We say that (®,v(-)) and (©’,v(:)) are intrinsically the same if for any z € R", X(- z,0,v(-)) =
X(-52,0",0'()).

Remark 2.7. The point that we would like to make here is that sometimes, (@, v(-)) # (©’,v'(-)). But they
could be intrinsically the same. Here is such a situation. Let (@, v(-)) # (©',v'(-)) and let X () and X'(-) be
the corresponding state processes. Then (note (2.9) and (2.15))

Ao — Ader =B(©-0'), Ag - Ae =B(O-0')—B© -0,
Co—Co =D(O©-0"), Co—-Ce =DO-06")—DO—-0).

Thus, if

A(O-0)C N (B)NAN(D), RO -6)CN(B)nAND) (2.19)

v(t) —v'(t) € ¥ (B)N AN (D), Efv(t) —v'(t)] € ¥ (B) N A (D), vt € [0, 0),

then the closed-loop systems under (@, v(+)) and (©’,v/(:)) are the same. By definition, this means that if
(©,v(+)),(©,0/(+)) are two closed-loop strategies such that (2.19) holds, then they are intrinsically the same.
If the above fails, then the two closed-loop strategies will be intrinsically different.

Note that there is another issue when we compare two closed-loop strategies, namely, the corresponding costs
could be different. But, we prefer to concentrate on the difference of the corresponding state processes, which
will be mainly used later.
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Definition 2.8. The following is called a system of generalized AREs:

PA+ATP4+CTPC+Q— (PB+C"PD+ST)Y(BTP+D"PC+8S) =0,
PA+ATP+C"PC+Q— (PB+CTPD+S8NSH(BTP+D"PC+5) =0,
Y=R+D'PD >0, =R+D"PD >0,

_ 2.20
S (2:20)
#B'P+DTPC+8)C (), #(B"P+D'PC+5)Cz(T),

with the unknown (P, ]3) € S™ x S™. A solution pair (P, ]3) to (2.20) is said to be static stabilizing if there exists
C,

a pair (6,0) € R™*?" such that ® = (0,0) € .¥[A, A,C,C; B, B, D, D], where

0=-st(B"P+D'PC+S)+(I-%%)8, 6=-SH(B'P+D'PC+8)+ (-8 (2.21)

We now state the following result, which is an extension of a result without mean-field terms in [46] and
will play an important role in the next section. We omit the proof here and refer the interested readers to
Li-Shi-Yong [29], an arxiv version of the current paper.

Theorem 2.9. Let (H1) hold. Then the following are equivalent:
(i) Problem (MF-SLQ) is open-loop solvable.
(ii) Problem (MF-SLQ) is closed-loop solvable.
(iii) The system (2.20) admits a static stabilizing solution pair (P, P) € S" x S"™, the BSDE on [0, c0):

—dn(t)={ATn@t)—(B"P+D'PC+S) 'S [BTn(t)+DT(¢C(t)+Pa(t))+p(t)]

+CT[C(t)+Po(t)]+ Pb(t) + q(t) dt — (AW (2), t >0, (2.22)
admits an adapted solution (n(-),((+)) € 27[0,00) x LA(R™) such that
BT [n(t) = E[n(t)]] + DT [C(t) —E[C(t)]] + DT P[o(t) —Elo(t)] + p(t) — iE[Ep([f))] 6)%’(2), (2.23)
and the ODE on [0, o0):
i(t) + ATi(t)— (BTP+ f)Tfé +S)TEHBTR(t) + DTE[C(t) + Po(t)] + E[p(1)]} (2.2
+CTE[¢(t) + Po(t)] + E[Pb(t) + q(t)] =0,
admits a solution 7j(-) € L?(R™) such that
BTi(t) + DTE[((t)] + DT PE[o(t)] + E[p(t)] € Z(%), a.e. t € [0,00). (2.25)
In the above case, the closed-loop optimal strategy (©*,v*(-)) = (©*,0* v*(-)) is given by
0" =-XI(B'"P+D"PC+8S)+(I-x%)0,
0" =-SHBTP+DTPC+8)+ (I —Si%) (2.26)

0_7
V() = () —Elp()] + () + (I = ET8) () — Ep()]) + (I = E'E)5(),
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with ©®* = (0*,0*) € .¥[A, A,C,C; B, B, D, D), for some 6,0 € R™*" v(-),p(-) € L*(R™), and

{99( é—E*{BT DT[C() + Po()] +p()}, 2.2
A T_ AT ’
?()2~EHB () + DE[C() + Po()] +Elp()]}.

Every open-loop optimal control u*(-) for the initial state x € R™ admits a closed-loop representation (2.12),

where X*(-) € 27(0,00) is the solution to the closed-loop system (2.8) under (©*,v*(-)). Further, the value
function is given by

V(z) = (Pz,z) + 2(ij(0) +IE/OOO <PJ (t)) + 2(n(t) Eb(t)]) + 2(7(t), E[b(t)])

(2.28)
+2(C(1),0(1)) — (S(p(t) — Elp(®)]), ¢(t) — Elp(®)]) — ( @(t)@(t»]dt-

3. MEAN-FIELD LQ NON-ZERO SUM STOCHASTIC DIFFERENTIAL GAMES
We now return to our Problem (MF-SDG).

3.1. Notions of Nash equilibria

To simplify the notation, we let m = my + mg and denote (for ¢ = 1,2)

B:(BlaBZ)y B:(B17§2)7 D:(D13D2>7 D

— (Dy
s=(5)- s=(5) m=(an &2)=() -
m= (i w)=(5)- 0= () w0= () 0= (20):

Then the state equation (1.1) becomes

dX (t) = {AX(¢) + AE[X (t)] + Bu(t) + BE[u(t)] + b(t) }d¢
+{CX(t) + CE[X(t)] + Du(t) + DE[u(t)] 4+ o(t) }dW (), t>0, (3.2)
X(0) ==,

which is of the same form as (2.1), and the cost functionals are, for i = 1,2,

~ S (XY (X() a(t)) (X
Ji(z;u(- :E/ [<(Qz ’)( , +2
et =E | I\s R L) Luto) o) Lutt
Qi ST\ (EX(M]\ (EXON],
S, &) \Efu®) )\ Elu)] '
In order the game to make sense, we make a convention that both players at least want to keep the state
X()=X(;z,ui(-),uz(-)) in Z[0,00) so that both cost functionals are well-defined. To guarantee this, similar
to Problem (MF-SLQ), we introduce the following assumption.
(H2) System [A, A, C,C; B, B, D, D] is MF-L2-stablizable, i.e., /[A, A,C,C; B, B, D, D] # @.

Although (H2) looks the same as (H1), the meaning is different. Hypothesis (H2) provides the possibility
for both players to make both cost functionals finite cooperatively. In fact, under (H2), for any = € R™, by

(3.3)
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Proposition 2.4, the following set of all admissible control pairs is non-empty:

Zaal) = {00) = () ua()) € LBR™) | X() = X(50,00) € 20, ) } (34)
Further, for any us(-) € L&(R™2), making use of Proposition 2.4 again, the following holds:

Uha(@) = {un() € LEAR™) | Bua() € LER™), (i), ua() € Zal2) } # 2. (3.5)
Likewise, for any u;(-) € L2(R™), one has

Z(w) = {us() € LAR™) | Tur() € LIR™), (wn(),us() € Zaala) } # 2. (36)

We now present the following definition.

Definition 3.1. A u*(-) = (ui(-),us(")) € Zua(z) is called an open-loop Nash equilibrium of Problem (MF-SDG)
for the initial state x € R"™ if

R (0, u30) < Alem()u3(), V() € %), o
Jo(zui (), us() < Ja(zui(-),ual),  Vua(-) € ay(x).
For ®; = (0;,0;) € R™:*2" j = 1,2, we denote ® = O = ©1 6, € R™*2" and let
O, O, O,

A COE {@1 e R>™*" | @ ¢ A, 4,C,C; B, B, D, D]
F2(0,)2 {@2 e R?™*" | @ ¢ #[A,A,C,C; B, B,D, D] }.

It is clear that if ® € .#[A,A,C,C; B, B, D, D], both #'(©,) and .#?(®;) are nonempty. Similar to
the optimal control problem case, any (©,v(-)) € .Z[A,A,C,C;B,B,D, D] x L3([R™) is called a closed-
loop strategy of Problem (MF-SDG). For any initial state x € R™ and closed-loop strategy (©,v(-)) €
SNA,A,C,C; B, B, D, D] x LA(R™), we consider the following linear MF-SDE on [0, c0) (recall (2.9)):

dX(t) = {Ae X (t) + AeE[X ()] + Bu(t) + BE[v(t)] + b(t) }dt
+{CoX(t) + CoE[X(t)]+Dv(t)+DE[v(t)]+o(t) }dW (), t>0, (3.8)
X(0) ==.
By Proposition 2.2, (3.8) admits a unique solution X (-) € Z7[0,00). If we denote
ui(-) = O {X () —E[X()]} + OEX ()] +wvi(-), i=1,2, (3.9)
then (3.8) coincides with the original state equation (3.2). We call (©;,v;(-)) a closed-loop strategy of Player i,
and call (3.8) the closed-loop system of the original system under closed-loop strategy (@, wv(-)). Also, we call
u(+) = (u1(+), uz(+)), with u;(-) defined by (3.9), the outcome of the closed-loop strategy (@, v(-)).
With the solution X () € £7[0,00) to (3.8), we denote, for i = 1,2,

Ji(2:©,0()) = Ji(2; ©1,01(); O2,02()) = Ji (z;0{X() —E[X ()]} + @I_E[X(')} +())
= Ji(z:01{X () —E[X()]} + O1E[X ()] + v1(-); 02{ X (") — E[X ()]} + O2E[X ()] +v2()).
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Similarly, we can define

Ji(SE;@hUl(-) 2 (- )) =

J; (3 @1{X —E[X(-)]} + 6:E
Ji(x;m() Oy, va(- )) =J, (:1: uy( 62{X —E[X()

1E
}}
We now introduce the following definition.

Definition 3.2. A closed-loop strategy (©*,v*(+)) € #[A, A,C,C; B, B, D, D] x LE(R™) is called a closed-
loop Nash equilibrium of Problem (MF-SDG) if for any ©; € .#1(03), ©®, € .#?(©7), v1(-) € LZ(R™) and
va (") € LE(R™2),

Jl(fﬁ;@1,’01(‘);637’11;(')), VICG]RTL,

3.10
JQ(CC;@’I,'UI(');QQ,’UQ(')), VI GRn. ( )

{Jl (z;©*,v*())

<
Jo (ZL‘; (S v*()) <

Note that on the left-hand sides of (3.10), the involved state is X(-) = X(-;z,®*,v*(:)), depending on
(©*,v"(-)). Whereas, on the right-hand sides of (3.10), the involved states are X (-) = X (-;2, @1, v1(-); ©3,v3(-))
and X () = X(- ; ©F, vi(+): O2,v2(+)) respectively, which are different in general. We emphasize that the open-
loop Nash equilibrium (uj(-), u5(-)) usually depends on the initial state z, whereas a closed-loop Nash equilibrium
(©*,v*(+)) is required to be independent of z. It is easy to see that (©*,v*(-)) is a closed-loop Nash equilibrium
of Problem (MF-SDG) if and only if one of the following hold:

(i) For any v1(-) € LE(R™) and vy(-) € LE(R™2),

Ji(:0, v () < J1 (0%, vi(-),05(),  Ja(2;0%,0*()) < Jo (23 0%, 07 (), v2(")); (3.11)
(i) For any u;(-) € L2(R™ ) and us(-) € L2(R™2),
Ji(z:©%,0°() < 12501 (1); ©3,03()), Ja(230%,0°() < o (w5 OF, 01 (1) ua()).- (3.12)
If we denote (comparing with (3.10))
=07 {X"() —EX"()I} + OJEX"()] +](), i=1,2, (3.13)
then (3.12) becomes

Ji(wsui ();u5 () < Ju(wsun (-); ©3{X 072 () = E[X "0 ()]} + OFE[X 02 ()] + 05(-)),

<
1O u5()) < Ja (20T { XV () — E[X 02 ()]} + OFE[X 2 ()] + 0f (); uz ().

3.14
Ja (9c;u1 ( )

—~

where X102 () = X(-;2,u1(1); O35, v5(+) and X1 () = X(-;2,07,vi(-);ua(-)). Clearly, neither of the
following holds in general:

() = O7{X () —E[X"T2 ()]} + OTE[X T2 ()] + 0] (),
uz() = O3 {X" "2 () — E[X*"*2 ()]} + OFE[X "2 ()] + 03 ().
Hence, comparing this with (3.7), we see that the outcome (uj(-),u3(-)) of the closed-loop Nash equilibrium

(©*,v*(+)) given by (3.25) is not necessarily an open-loop Nash equilibrium of Problem (MF-SDG) for X*(0) =
z.
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On the other hand, if ((-')*7 v*()) is a closed-loop Nash equilibrium of Problem (MF-SDG), we may consider
the following stabilized state equation (recall (2.9)):

dXU2 (1) = {Ae- X2 (t) + Ae-E[X "2 (t)] + Bu(t) + BE[v(t)] + b(t }dt
+{Ceo~X"""2(t) + Co-E[X"*2(t)] + Du(t) + DE[v(t)] + o(t) }dW (t), t >0, (3.15)
Xv2(0) =,

with cost functionals

T (1), 29) 2 i 05 (X" 2() — BIX" = ()]} + OIEIX"2()] 4 i) 16)
@;{le,w(,) _ ]E[Xm,vz(.)]} + @;E[le,vz(.)] + 1)2(.))7 i=1,2.

Then by (3.11), it is easy to see that (vi(-),v3(-)) is an open-loop Nash equilibrium of the corresponding
mean-field LQ two-person non-zero sum stochastic differential games.

From the above, we see that Problems (MF-SDG) and (MF-SLQ) are essentially different in a certain sense,
and we can only say that Problem (MF-SLQ) is formally a special case of Problem (MF-SDG).

3.2. Open-loop Nash equalibria and their closed-loop representation

In this section, we discuss the open-loop Nash equilibria for Problem (MF-SDG) in terms of MF-FBSDEs.
We first have the following result, whose proof is similar to that of Theorem 4.1 of [47]. Thus, we omit the proof
here and refer the interested readers to [29] for a detailed proof.

Theorem 3.3. Let (H2) hold, and x € R™. Then u*(:) = (uj(-),u3(-)) € %.qa(x) is an open-loop Nash
equilibrium of Problem (MF-SDG) for x if and only if the following two conditions hold:
(i) The adapted solution (X*(-),Y;*(-), Zf(+)) € 270, 00) x 27[0, 00) x LZ(R") to the following MF-FBSDE:

dX*(t) = {AX*(t) + AE[X*( )] + Bu*(t) + BE[u*(t)] + b(t) }dt
+{CX*(t) + CE[X*(t)] + Du*(t) + DE[u*(t)] + o(t) }dW (1)

—dY;(t) = {ATY () + ATEY ()] + CT Z7 (1) + CTE[Z] (1)) + Qi X (t) + Q:E[X*(1)] (3.17)
+STu* () + ST E[u* ()] + ¢;(t) ydt — Z;()dW (t),  t>0, i=1,2,

X*(0) ==,

satisfies the following stationarity condition:

BY[(t) + B E[Y; ()] + D] Z; (t) + D E[Z] ()] + S X" (t) + SuE[X"(t)]

+Riu* (t) + Ry E[u*(t)] + pis(t) =0, a.c. t € [0,00), a.s.,, i=1,2. (3.18)
(ii) The maps ui(-) — Jy(z;u1(+), ua(+)) and ua(:) — Ja(z;u1 (), u2(-)) are convex, i.e.,
E /'Oo [(QiX2(t), X0(8)) + 2(S: X0 (), ws(D) + (Risgua(), ui(t)) + (QE[XL (D], EIXL (1))
0 (3.19)

(SB[ (1), Efus(t)])+RaiB s (0)], Blua(O) |44 >0, Yu()= (1), wa(")) € Zta(w),
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where X?(+) € 2°]0,00) is the solution to the following homogeneous controlled MF-SDE:

dXy(t) = {AXD(t) + AE[X(t)] + Biu;(t) + B;E }dt
+{CX? (t) + CE[X?(t)] + Dyuy(t) + D O }AW (L), >0, (3.20)
X20)=0, i=1,2.
Note that (3.17) is a system of coupled MF-FBSDEs, with one forward equation and two backward equations
for which the coupling is through the relation (3.18). Our next task is to investigate the solvability of (3.17)-

(3.18). To this end, we introduce the following notation (recall (3.1)):

(A 0\ x (A0 _(C 0Y g (C 0 g,
A=(0 8)A=(0 5)- o= e)-o=(i &)=

s=(3 2).5=(3 1) 0= (8 ) 0=(2 s B
a-( ) a- (3 g)ewm 5=y D)oo (y Pem
O IR L R B

With the above notation, MF-FBSDEs (3.17) can be rewritten as

dX*(t) = {AX* + AE[X*] 4+ Bu* + BE[u*] + b}dt

+{CX* + CE[X*] + Du* + DE[u*] + o }dW (1),
—dY*(t) = {ATY*+ ATE[Y*] + CTZ* + CTE[Z*] + QL. X* + QI,E[X*] (3.22)
+S ' Lu* + STLLE[u*] + ¢}dt — Z*dW(t), t >0,
X7(0) =,
and the stationarity condition (3.18) can be written as
JYBTY+B E[Y*]+D'Z*+D E[Z*]+SL,X*+SL,E[X*]+RL,u" +RIL,E[u*]+p} = 0, (3.23)
a.e. t € [0,00), a.s., '
where
* _ Yl ( ) 2 * _ 2n _ Inxn 2nxn
Y()<Y2*()>63K[Ooo) Z () = € LZ(R I, = I SPIN ,
Iml Xmy 0 Iml Xmy Oml Xma (324)
_ Imxm 2mXxXm _ 0 0 _ Omzxml Omgxmg 2mxXm
Im N (Imxm> € R ’ J N O N 0m1 Xmq 0m1 XMmo e R '
0 I’mg Xmeo Omg Xmq I’"LQ Xmeo

Now, inspired by [47, 53], we may obtain a closed-loop representation of open-loop Nash equilibria, by which
we mean an open-loop Nash equilibrium «**(-) = (u7*(+),u3"(-)) admits a form (3.9) for some (©**,v**(-)) €
S[A,A,C.C; B, B, D, D] x LA(R™). We state the result here and put a detailed proof in [29].
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Theorem 3.4. Let (H2) hold. Then an open-loop Nash equilibria v**(-) = (ui*(-), u5*(+)) € %uaq(z) of Problem
(MF-SDQG) admits the following closed-loop representation

u () = 07 {X() —E[X()} + O EX()] +v*(), i=12 (3.25)

with @** = ei* = ei* @i* € ./[A A C,C;B,B,D, D] and v**(-) = vi*() € LZ(R™) if and only if
5 03" 03 03" ()
the following hold:
(i) The convexity condition (3.19) holds for i = 1,2.
(ii) The solution pair (P,P)2 ]};1 §1> € R2"%2n to the system of coupled AREs:
SR

PA+A"P+C'PC+Ql,— (PB+C'PD+S'L,)2 ' J"(B"P+D'PC +SI,) =0, (3.26)
PA+A'P+C'PC+QL, - (PB+C'PD+S'1,)E 137 (B"P+D"PC +SI,) =0, '

where A = A + A and 6, Q, S are defined similarly as (2.15) and
»2J7(RL, +D'PD), £2J7(RL,+D'PD)cR™™

sk )+
o1 o

are both invertible such that @** = (0**,0**) = (9** @**> € R™*2n defined by
2 2

A

0*2_2"J (B"P+D'PC+SL,), ©2-5"37(BTP+D'PC +5I,), (3.27)

stabilizes the system [A, A,C,C; B, B, D, D]. Also,

v () =-2"J{B (n—En)+D"((-E[()) + D"P(c — E[o]) + p — E[g] }

~ ~ ~ 3.28
-1 3BT+ D'E[(] + D"PE[0] + E[p]} € LF(R™), (328

where (n(~) = (Z;E;) NOE @8)) € 2'[0,00)? x LE(R?") is an adapted solution to BSDE:

~dn(1) = {ATn(t) = (PB+ CTPD +8TL)2 "3 {BTy(1) +-DT[C(1) + Po(n)] + (1)} (3.20)
+CT[¢(t) + Po(t)] + Pb(t) + q(t)}dt AW (),  t=0, '

A

and 7(-) <ﬁ1<)> € L?(R?") is a solution to ODE:

72()
ii+ AT+ CTE[¢ + Po] + PE[b] + E[q]

S St B _ (3.30)
~(PB+C'PD+S"1,)2 ' {BTij+ D'E[( + Po] +E[p]} =0,  t>0.

In such a case, the open-loop Nash equilibrium u**(-) admits a closed-loop representation (3.25) with
(©@**,v**(-)) given by the above.
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Note that by the definition of ©** and ©** in (3.27), we have
0" +J' (B'P+D'PC +SL,) =0, %6~ +J (B'P+D'PC +SI,) = 0; (3.31)

and we can rewrite (3.26) as

PA+A'P+C'PC+QI,+ (PB+C'PD+S'L,)0" =0, (3.52)
PA+A'P+C'PC+QL, + (PB+C'PD+S'L,)0" =0. '
We may further write (3.31) and (3.32) in the component forms:
PAA+ATP,+CTPC+Q;+ (PB+CTPD+S])o" =0, 1 (3.3
~ o~~~ ~ o~ ~ e~ o~ ~ 1=1,2, .
PA+ATP+CTPC+Qi+ (PB+CTPD+S;")0™ =0, /
Ry + DlTP1D1 Ri12 + DlTP1D2 0 + BlTPI + DlTplc’ + S -0
Ryo1 + DJ PyDy Ragoo + DJ PaDy By Py + DJ P,C + Say ’
(3.34)

Ry + ﬁf—ﬂﬁl Riio + ﬁlTplﬁQ o EIE + ]31"]31@ + 51 —0
Roo1 + Dy PaDy Raos + D PyDo BJ Py + DJ P,C + Sao

In the above, the coefficient matrices of the equations for ©** and ©** are not symmetric in general (even if
Py, Py, P, P> are all symmetric). Hence, the equations for P;, P;,i = 1,2 and for PiT, PZ»T,Z' = 1,2 are different.
Consequently, we do not expect P;, P;,i = 1,2 to be symmetric in general.

3.3. Closed-loop Nash equalibria and symmetric algebraic Riccati equations
We now look at closed-loop Nash equilibria for Problem (MF-SDG). First, we present the following result,
which is a consequence of Theorem 3.3 and its proof is similar to that of Proposition 5.1 in [47] (see also [29]).

Proposition 3.5. Let (H2) hold. If (©*,v*(-)) is a closed-loop Nash equilibrium of Problem (MF-SDG), then
(©*,0) is a closed-loop Nash equilibrium of Problem (MF-SDG)".

Now, we give a necessary condition for closed-loop Nash equilibria of Problem (MF-SDG).

Proposition 3.6. Let (H2) hold, and let (©*,v*(+)) be a closed-loop Nash equilibrium of Problem (MF-SDG).
Then for i = 1,2, the following system of coupled AREs admits a solution pair (P;, P;) € S™ x §":

PA+ATP +CTRC+Qi+(0%) (R + D' P,D)O"
+(PB+CTPD+ 810"+ (©)"(B"P,+ D'PC + ;) =0,

BA+A B +CTPC+Qi+ (6" (R, + D' P,D)6"
+(P.B+C"PD+810*+ (0T (B"P,+D"P,C+5,) =0,

(3.35)

and the following conditions are satisfied:

{BJR+DJPZC+sﬁ+zi<Rii+DIPiD)@* =0, (3.36)

E:ﬁz + ﬁ;rpza + §” + (ﬁi” + EIPZIA))C:)* =0,
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with

~

Rii + D] PD; > 0. (3.37)

IID

% & Rysy + D] PiD; >0,

Proof. Suppose that (©*,v*(+)) is a closed-loop Nash equilibrium of Problem (MF-SDG). Then by Proposition
3.5, (©*,0) is a closed-loop Nash equilibrium of Problem (MF-SDG)?. Denote

A2 A+ B0;, A 2A+ B0+ By(05-03), €120+ Dy0;,

C1 2 C + D265 + Dy (65 — 0%), Q1 2Q1 + 5505+ (83) 7 S1s + (03) T 12203,
0,2 Q1 + 515,05 + (83) " S1o + (85) " R12205 — S1,05 — (05) " S12 — (05) " R12205,
S2S+ R11203, S 25+ R11205 + R112(05 — ©3).

(3.38)

Then, for any u(-) € L2(R™), let us consider the state equation:

Xm {A1X1 +/_11E[X?(t)] +Blu1( ) +Bl ]}dt
H{CiXV(t) + CIE[XY(t)] + Dyua(t) + Dl O]} AW (t), t=0,
X7P(0) =0,

and cost functional:

Rain () = i (5 O3{X00) ~ B} + SEXI0) O
=[S an) G GO+ &) G- (Rl

It is easy to see that (©7F,0) is a closed-loop optimal strategy for the above mean-field LQ stochastic optimal
control problem. Thanks to Theorem 2.9, the following system of coupled AREs:

PiA + A PL+C PiCi + Q1 — (P1B1 +C P\D; + §]})% I(BIH + D] PiC;y + S11) =0, (3.39)
ﬁljl + Xrﬁ1 +51TP1€1 + @1 (PlBl + Cl PlDl + S11>i]{ (BlTﬁl + f)lTplél + §11) =0, .
admit a static stabilizing solution pair (P, ]31) € S" x §", satisfying
BlTP1 + D1TP101 + 811 + 2,07 =0, Y1 =R+ DlTplDl =0, (3.40)
B/ Pi+ D] PICi + 811 +$:07 =0, £, =R+ D] PD; >0, '

where .,21\1 =A+ A, 51 =C+C, @1 =0, + 9, and 3’11 = 811 + Si1. Similarly, for any us(-) € L]%(]R"”), we
can counsider the state equation:

dX2 {A2X2 + AQE[X2 (t)] + B2u2( ) -+ BQE }dt
+{Ca X3 (t) + CoE[XD(¢)] + Dous(t) + DQ]E O] W (t), t =0,
X3(0) =0,
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and cost functional:

J2(°”” uz(-)) = J3 (w;0 (XS(‘)O*E[X%(')])+@1‘]§:[Xg(._)l;uz(.>) O 0
LI ) CH-CE) (& 2) ). ]

where Ay, Ay, Co,Co and Q, Qs, S99, Soy are defined similar to (3.38). In the same spirit as above, we can see
that (©3,0) = (03,03,0) is a closed-loop optimal strategy for the above mean-field LQ stochastic optimal
control problem. Making use of Theorem 2.9 again, the following system of coupled AREs

PyAs + A;PQ + C;—PQCQ + Qs — (PQBQ + C;PQDQ + 822) ;(B;rpz + D;P2C2 + 822) =0 (3 41>
Py Ay + .A2 P, +C2 PyCa+ Qs — (PQBQ + CQ P,Ds + S22>i£(3;—ﬁ2 + ﬁ;PQé\Q + §22) =0, .
admit a static stabilizing solution pair (Ps, ]32) € S"™ x S", satisfying
0= By Py + Dy PoCo + Sag + $203, Y2 = Rogs + Dy PaDy > 0, (3.42)
0:§;ﬁ2+132TP252 +§22+§_32@§, 2251?32224—15;132152207 '

where ./21\2 = A, + AQ, é\g Cy + C_Q, QQ = Qs + QQ, and 3\22 = Soo + 522. By (340) and (3.42) and putting

0" = (0%,0%) = (8% 82> € R™*2" | we get (3.37) and

0= B P+ D] PiCi + 81 + %0} = B[ P, + D] P.C + Sy, + (Ry, + D] P,D)©*,
0= §1T131 + lA)lTP1CA1 +8 + .05 = Bﬁfﬁ + IA)IP16 —+ §11 + (Eu + ﬁlTPJA))(:)*-

Similarly,

0= By Py + Dy PoCs + Sap + $203 = By Pa + D) P5C + S22 + (Raz + Dy P2D)O*,
0= B\;—ﬁg + ﬁ;PQé\Q +§22 +Z_:2(:); = B\;—ﬁz + ﬁgpza-l- §22 + (§22 +ﬁ;P2ﬁ)(:)*7

which implies (3.36). By (3.36), (3.39) and (3.41), we have (by a straightforward calculation)

0=PiA + Al P +C PiCi + Qi — (P1By +C PLDy + 8;,)S1(B) P+ D{ P,Cy + S11)
=P A+ AP +CTPC+Qi+ (0" (R, + D" P, D)O*
+(PAB+C"PD+S,)0*+(0*)" (B"Pi+ D" P,C+ 5),
0=PA + AP +CPCi+ Q1 — (PLBy +C PDy + 8§1)SH(B] Py + D] P.Cy + 811)
—PA+ATP+CTPC+Q+(®")T (R + D" PD)6"
+(ﬁ1§ + éTP1ﬁ + §£|’>(:)* + (C:)*) (BTP1 =+ DTP1C + 51).
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In the same way, we have

0= PoAs + A Py +Cy PoCo+ Qo — (PoBa + Cy PoDsy + S3) S5 (By Pa + Dy PoCo + Saz)
=P A+ AP, +CTP,C+Qy+ (0%)"(Ry + D" P,D)O*
+(PaB+CTPD+5;)0" +(0°)T (BTP,+ DT R,C + Ss),
0= Py Ay + A) Py +Cy PoCo+ Qo — (ﬁ2§2 +Cy PyDy + 322)22 (§;ﬁ2 + Dj PGy + 322)
=P A+ AP+ CTPC+ Qs+ (0°) (R + D' P,D)6*
+(PB+CTPD+8])0" +(0°)T (BT Po+ DT P,C + 55).

This yields (3.35). The proof is complete. O
Now, we are ready to present the main result of this subsection, which characterizes the closed-loop Nash
equilibrium of Problem (MF-SDG).

Theorem 3.7. Let (H2) hold. Problem (MF-SDG) admits a closed-loop Nash equilibrium (©*,v*(+)) if and
only if the following statements hold: R

(i) The system (3.35) admits a solution pair (P;, P;) € S™ x S™ and (3.36)—(3.37) are satisfied.

(ii) For i = 1,2, the following BSDE:

dni(t) = —{Adami () +Co. [Gi(6)+ Pio ()] +Pib(t) +¢i(t) +(0%) T pi()}dt+G (AW (1), >0, (3.43)
admits a solution (n;(+), ¢ (+)) € 27[0,00) x L2(R™) such that

0= (Ru + D} P,D)(v*(t) — E[v*(1)]) + B} (n:(t) — E[na(1)]) + D;" (¢at) — E[¢:(1)])

+D] Pi(o(t) = E[o(1)]) + pu(t) — Elpis(1)], a.e. t € [0,00), a.s., i=1,2, (344)

and the following ODE admits a solution 7;(-) € L*(R"):

(1) + Ad.m(t) + Cg. (ElG(1)] + PE[o(1)]) + PED()] + Elg: (1) + (6°) TE[ps(1)] =0, ¢>0,  (3.45)
satisfying

(Ri; + D P,D)E[v*(t)] + B/ ;(t) + D] E[Ci(t)] + D] PE[o(t)] + E[pis(1)] =0, ae. t €[0,00).  (3.46)

Proof. Necessity. Suppose that (©* v*(+)) is a closed-loop Nash equilibrium of Problem (MF-SDG). Then by
Proposition 3.6, (i) holds.
For (ii), we first note that system (3.35) is equivalent to

(3.47)

PAe- + AL Pi+ C4.PiCo- + Qi + 8] ©" + (6) 'S, + (0*) 'R0 =0,
PAg. + A2, P+ C4.PiCo- + Q; + 5] 6" + (075, + (6*) " R,60* = 0.

Let (X*(\),Y (), Z¥(-)) € Z°[0,00) x Z7[0,00) x LZ(R™) be the solution to MF-FBSDE

dX*(t) = {Ae-X* + Ae-E[X*] + Bv* + BE[v*] 4 b}dt
+{Co- X" + Co-E[X"] + Dv* + DE[v*] + o }dW (¢),

—dY;(t) = {AL Y7 + AL EY | + Co. Z; + CO.E[Z;] + Q; X* + QJE[X ] (3.48)
H(S)) 0"+ (8 TE] + ¢f + (0% — ©%) TE[pi] }dt — Z7dW (1),  t >0,

X*(0) =z,
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for ¢ = 1,2. Proceeding as in the proof of Proposition 3.5, we see that (X*(-),Y;*(-). Z/(-)) satisfies

BY] + BIE[Y;] + D] Z + D] E[Z]] + §;;X" + S{E[X"] + Rijv" + RyE[v*] + pii = 0,

a.c. t € [0,00), a.s., (8.49)
where S} 2 Sii + R;;©0%, S 2 Sii + }Aﬁ-i(:)* — R;0* i =1,2. Now, we define
{ 0 2V B - R(X*-EIX)). 5 2EN] - PEX] 50
G227 — P,Co+(X* —E[X*)) — P,Co.E[X*] — P,D(v* — E[v*]) — Pio — B,DE[v*], i=1,2.
We want to show that
a;i(-) = mi() = E[n: ()], (3.51)

with 7;(-), G;(+), 7(+) satisfy (3.43)—(3.46), for ¢ = 1, 2. For this target, applying It6’s formula to a;(-) yields

dai(t) = —{Ad. (Y7 =E[Y;']) +Co-(Z~E[Z]]) + Qi(X "~ E[X"]) +Si (v*~E[v"]) +¢; — Elg;]}dt
+Z;dW (t)— P{ AL (X*~E[X*]) +B(v*~E[*]) + b — E[B] }dt — P,{Cd. (X"~E[X*])
+(C + DO*)E[X*] + D(v* — E[v*]) + DE[v*] + o }dW (t)
= —{Ad.a; + 0. (¢ —E[G)) + (P Ae- + Ay-Pi + C-PiCo- + Q) (X* — E[X7))

+[PB+CTPD+S] + (0" (R, + D" P,D)](v" — E[v*]) +Cd. P;(0c — E[o]) (852)
+Pi(b—E[b]) + ¢; — E[g:] + (©") " (pi — E[pi]) }dt + G:dW (1)
= —{Ad-ai + C. (¢; — E[G]) + CS-Pi(0 — E[o])

+(09) T (pi — Elpi]) + Pi(b —E[b]) + qi — Elg;] ydt + GdW (¢).

Since the solution (7;(+), (;(+)) to (3.43) satisfies
d(ni(t) — E[n:(t)]) = —{Ad- (n: — E[m]) + C&- (¢ — E[G]) + Co-Pi(o — E[o])
+(©%) " (pi — Elpi]) + Pi(b— E[b]) + ¢ — Elgi] }dt + GdW (), ¢ >0,

by the uniqueness of solutions, we obtain (3.51). Moreover, we get

—iii(t) = [A+ BO*] "E[Y;] + [C + DO"] "E[Z;] + QE[X"]
+SE[v*] + Elg] + P,[A + BO*]E[X*] + P,BE[v*] + PE[0]

— [A+ BO*] "0, + {P,(A+ BO*) + (A+ BO*)' B, + [C + DO*] ' B,[C + DO*] + Q; (3.53)
+576" + (078 + (0")TRO*JEX*| + {PB+C"PD+ S +(0")T[R, + D" P,D]}E[v*] '
+(©") " [DT(PE[0o] + E[¢i]) + E[pi]] + CT (PE[o] + E[¢]) + BED] + Elgi]

= (A+B6") '7;+(6")T [DT(PE[o] + E[G]) + Elpi]] + CT (PElo] +E[Gi]) + PE[b] + Elg],

which is (3.45). Further, from (3.49) we have

~

RyE[v*] + B E[Y;] + D] E[Z] + [Sii + Ri©*|E[X*] + E[pii] =0,  acte[0,00), i =1,2, (3.54)
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and

Rii(v* —E[v*))+B; (Y —E[Y;))+D; (Z; —E[Z]])+ (Sii+ Rii©*)(X* —E[X*]) + pii — E[pii] =0,

. (3.55)
a.e. t € [0,00), as., i =1,2.

Now, (3.36), (3.50) and (3.54) yields

0= ]:ZiiE[v*HéiT(ﬁi—irﬁi]E[X*})+1A?iT{E[Ci}+PZ»IE[ |+ P,CE[X*|+ P, DE[v*]} + [Sii+ Ri;©* | E[X *]+E[p;,]
= (R + D] P,D)EW*| + {B] P, + D] P,C + S;; + (Ri; + D] P,D)©* }E[X"]
+B[7; + D] (B[¢;] + PE[o]) + E[p]
= (Rii + D] P,D)E[v*] + B/ #j; + D (E[¢)] + PE[0]) + E[pss], a.e. t€[0,00), i=1,2.

Thus (3.46) holds. Furthermore, (3.36), (3.50) and (3.55) yields

0= Rii(v* = E[v*]) + B/ [a; + Bi(X* —E[X"])] + D {¢ — E[G] + PiCe- (X* — E[X™])
+P,D(v* —E[v*]) + Pi(c —Elo]) } + (Sis + Ri0*)(X* — E[X*]) + pii — E[psi]
= (Ryi + D P,D)(v* — E[v*]) + B a; + D] (& — E[¢&]) + D Pi(o — E[o])
+[B/ P, + D] P,C + Si; + (Rii + D] P,D)O*| (X* — E[X*]) + psi — E[py]
= (Rii + D] P,D)(v* — E[v*]) + B a; + D] (¢ — E[;]) + D] P;(0 — E[o]) + pis — Elpial,
a.e. t €[0,00), a.s., i =1,2.

(3.56)

Hence, by (3.56), we get (3.44).
Sufficiency. We choose any x € R™ and v(:) = <518> € LA(R™). Denote w(-) = (518) and let X% (-) =
o (- 5(-

X(5z,07,v1(:); O3, v35(-)) be the solution to the state equation
1 2, V2

+{Co-X" 4+ Co-E[X"] +Dw+D]E ]+ o} dW (t), t>0, (3.57)

dX“(t) = {Ae- X" + Ae-E[X"] + Bw + BE[w] + b}dt
X9(0) =,

corresponding to = and (07, v1(-), ®5,v3(-)). Also, we have
Ji (w07 (X () = B[X"()]) + O"E[X"(-)] + w("))
= E/ [((Ql + 80"+ (0%)'5 4 (0%) T Ri©*)(X™ — E[X"]), X* — E[X"“])

+2((S1 + R10*) T (w — E[w]), X* — E[X"]) + (R1(w — E[w]), w — E[w])

+2(q1 + (0%) T p1, X* — E[X"“]) + 2(p1,w — E[w])
Q1+ 5,76 + (6178, + (6" R0 E[X"),E[X"]) + (5 + R,16%) Elw], E[X"])
+(RyEfw], Elw]) + 2(Elqi] + (6*) TElpy], E[X™]) + 2(E[py), m}]df

Applying 1t6’s formula to

(PU(X*() = EIX" () +2m (), X*() = EIX()]) + (PEX ()] + 2 (), E[X“()]),
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we have

~(Pyz + 271 (0).2) =E /Ooo [((PlA@* + AL P+ CS.PiCe- ) (X™ —E[X™]), X* — E[X"])
—|—2<(PlB + C&PD)(w —E[w]), X" —E[X"]) + (D" P.D(w — E[w]). w — E[w])
—2{(©") " p1 +q1, X* —E[X"]) +2(B"m + D" ¢ + D' Pio,w — E[w])
+<(P1A6 +Ad P1 +Cq.PiCs. )E[X "], E[X"]) + 2((P. B + CJ. PLD)E[w], E[X*])
+(D" P,DE[u] > —2((0")"Elp1] + Elq]. E[X"]) + 2(B i1 + D (P,E[o] + E[¢1]), E[w])
+(Pyo,0) + 2<m, b—E[]) +2(C1,0) +2(in, E[e]) | at.

Combining the above two equalities, together with conditions (3.44) and (3.46), we obtain
Ji(z;0% (X (1) —E[X"()]) + O*E[X" ()] + w(-)) — <P1x + 2771 (0), z)
= IE/ [<(R1 + D" P D)(w — Ew]),w — E[w] )+ 2<BT771 +D"¢ 4+ D "Pio+ pr,w— E[w])
+([R1+ D" P,D]E[w], E[w]) + 2(B" i1 + DT (PE[0] + E[¢1]) + E[p1], E[w])
+(Pro,a) +2(m, b — Eb]) +2(¢1, o) + 2(7, B[p]) ] dt
= IE/OOO [<(R111 + D{ PiDy)(v1 — E[v1]), v, — E[1)1]> + 2<(R112 + D;I—Png)(v; —E[v3]), v — ]E[1)1]>
+((Ri22 + D3 P1D2) (v3 — E[v3]), v5 — E[v3])
+2(B] (m — 771]) + Dy (¢t —E[G1]) + Dy Pi(o0 — Elo]) + p11 — E[pn], v1 — Efvn])
+2(By (m — E[m]) + Dy (¢t —E[Gi]) + Dy Pi(0 —E[o]) + p12 — E[pua],v3 — E[v3])
+{((Ri1 + DTP1D1)E[1)1 [01]) + 2((Ru112 + D] P1Dy)E[v5], E[v:]
+{(Ri22 + D; PiD2)E[v3], Elv3]) + 2(B{ 71 + Dy (PiE[o] + E[G1]) + E[p11]. E[v1])
+2(By i + D3 (PE[0] + E[Q]) +E[p12], E[v3])
+(Pio,0) +2(m, b~ E[b]) + 2(Gr, o) + 2(in, E[B]) ] at

- E/Ooo [<(R111 + D1TP1D1) [’Ul —E[vy] — (v] — E[vi‘])],vl — Efvy] — (vf — E[”ﬂ»

~((Rin1 + D{ PiDy) (v} = E[vf]),v] — E[v;]) + ((Ri22 + D3 P1Ds)(vs — E[v3]),v5 — E[v3])
+2(By (m — E[m]) + D3 (¢ — E[G1])

+D; P1(oc —Efo ]) + p12 — E[p1a], v5 — E[v3])

+{[Rui11 + D] P.D1 | (Er] — E[v}]), E[v1] — E[vt]) — ([Riny + Dy PLDy|E[w}], Efv}])

+( [R122 + DZTPlDQ]]E[ ],E[v3]) + 2<§2T771 + DJ PE[o] + E[¢1]) + E[p12], E[v3])

+(Pyo, o) + 2(m. b — E[B]) + 2(¢1. o) + 2(7, ]E[bM a.

Consequently, one gets
Ty (2:0°{X" () — ELX" ()]} +O°ELX ()] + w() — Ji (a: 0 {X*(-) — E[X* ()] }+ O"ELX ()] +v()
E/O [((Bin + DT Py o0 — Elon] ~ (v — ERi])], 0 — Eloa] — (vf ~ Elvi))

+([Ru1 + DY PyDy)(Efvy] — Elv}]), Efvy] — E[U;M dt > 0,



24 X. LI ET AL.

since (3.37) holds with ¢ = 1.
Similarly, by (3.37) with i = 2, for any @(-) = (v;(+),v2(")) and X () = X (-; 2,07, vi(-); ©3,v2(-)), we can
prove that the following holds:

Jo(2;0{X”() —E[X“()]} + O EX?()] + () — Jo(2;0*{X*(-) = E[X*(")]} + O*E[X*(-)] + v*("))
= E/ [<(R222 + DQTPQDQ) [@2 —Efva] — (v5 — E[v;])] , 09 — Elug] — (v5 — E[77§])>

+< [§222 + ﬁ;—PQ_ﬁQ] (E[’Ug] — E[US]),E[’UQ] — E[U§]>:| dt 2 0.

By Definition 3.2, this proves the sufficiency. The proof is complete. O
To conclude this section, let us rewrite system (3.35) in a more compact form so that one can see an interesting

feature of it. We define
A(PL 0 ~A (P 0
P = P — fay .
( 0 P2> ’ < 0 P2>

Note that (3.36) is equivalent to (recalling the notation introduced in (3.21) and (3.24))

_ (B{ P+ D{PC+ S, Ry +D]PD\ .,  T/oT T .
0_<B;P2+D2TPQC+SQQ Ros + DI PyD ©*=J'(B'P+D'PC+8S)I, + X0*, (3.58)
and
ETﬁ + ﬁTPch'—i— §11 Ell + ﬁTPIE ~ ~T ~ ~ -~ = =
0= |21 1T X o)y [ 1110 =T (BTP+D'PC +9S)IL, + 6%, 3.59
(B;P2+D;PQC+522 R22+D;P2D ( * ) ( )
where

Ri1 +D1TP1D
R22+D;P2D

»2J(R+D'PD)I,, = <

— e~y A~ A » AT D
>, S2J"(R+D'PD)L, <R11+D1P1D> eR™™,

ﬁzz -H_A);Pgﬁ
If we assume both ¥ and X are invertible, then we have

0" =-3"J7(B"P+D'PC+S)I,, 6" =-5"1J"(B'P+D'PC+S)I, e R™*". (3.60)
On the other hand, (3.35) can be written as

PA+A'P+C'PC+Q+ (") (R+D'PD)®"
+(PB+C'PD+S")®* + (") (B'"P+D'PC+8) =0,

PA+A'P+C'PC+Q+(2") (R+D'PD)d"
+(PB+C'PD+S57)®* + ()" (B"P+D'PC +8S) =0,

(3.61)

with

«A (O 0 N A )
w2V o) =20 8)



MEAN-FIELD LINEAR-QUADRATIC STOCHASTIC DIFFERENTIAL GAMES 25

Clearly, both equations in (3.61) are symmetric with solutions P,f’ € S, Recall that system (3.26) (or
equivalently, (3.32)) for closed-loop representation of an open-loop Nash equilibrium are coupled, and are not
symmetric. Therefore, the closed-loop representation of open-loop Nash equilibria is different from the outcome
of closed-loop Nash equilibria, for Problem (MF-SDG), in general.

4. MEAN-FIELD LQ ZERO-SUM STOCHASTIC DIFFERENTIAL GAMES

In this section, we will look at the situation for mean-field LQ zero-sum stochastic differential games.
According to (1.6), let us simplify some notation:

Q=-0Q:2=Q, A =-02=Q, a()=-q()=q(),
_ (S _ (S _ SY & _ (S _ o1\ _ g _ (SY\ _ 5
Ri11 Ruiz Ro11 Roiz Ry Rio
Ry = =— =—-Ry,=R=
! <3121 R122) <R221 R222> 2 (R21 R22> ’ (4.1)
po= (B Buz) _ _ (Ban Ro2\ - _p _p_ (Bu B
TR Rix Rosi Roxo) =~ 2777 \Ru Ra)’
— pi(-) _ p21(+) — (= <P1(')> — (.
pi(-) = <p12( )) <p22(.) = —po() = pz(.) =p(
Then the cost functional will be the following:
Ji(zui (), uz() = —Ja(wsur (), ua () = J(z5ui (), uz(t) = J(zu(-))
(t

1l
=

PUE )G ) e ) (“)>
» \s & (t o)) \utt) (12)
n Q ST X(1)] E[X (t)]
S R [u(t ] ]E[u(f)]
Similar to Problem (MF-SDG), we assume that (H2) holds. Then, for any = € R™, we define %,q4(x) and % ,(x)
(i = 1,2) similar to (3.4)—(3.6). Let us state the following zero-sum problem.
Problem (MF-SDG),. For any initial state 2 € R™, Player 1 wants to find a control «j(-) to minimize
the cost functional J(z;ui(-),ua(-)), and Player 2 wants to find a control u3(-) to maximize J(z;uy(-),ua(-))

respectively, subject to (1.1) (or equivalently, (3.2)) such that (uj(-),u5(-)) € Uaa(z).
Next, we introduce the following definitions.

Definition 4.1. (i) A pair (uj(-),u5(-)) € Uaa(z) is called an open-loop saddle point of Problem (MF-SDG)g
for the initial state x € R™ if

J(@3u1 () u() < J(@30i(),uz() < J(@5ua(),uz(),  V(ua(), ua(t)) € Zaal)- (4.3)

(ii) A closed-strategy (©*,v*(+)) € [A,A,C,C; B, B ] x LA(R™) is called a closed-loop saddle point of
Problem (MF-SDG)jy if for any € R", ®; € .7} ;) 5”2(@)*) 1(+) € LE(R™) and va(-) € LA(R™2),

J(x; 07,07 (+); @2, v2(+)) <J (2 ©*,v* (1)) < J (2, O1,v1(-); O3, v5(+)). (4.4)

Similar as in Section 3, it is easy to see that (@7, v](-); ®3,v5(-)) is a closed-loop saddle point of Problem
(MF-SDG)j if and only if one of the following holds:
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(i) For any vy(-) € LE(R™ ) and vs(-) € LE(R™2),
J (307,01 (-); 03, v2()) <J (#:©7,07()) <J (5 OF, 1 (-); 03,15 ()). (4.5)
(ii) For any uy(-) € L2(R™) and us(-) € L2(R™2),
J (307,01 () us(4)) < J(@:07,07()) < J (w01(); 05, 03()). (4.6)

Definition 4.2. The following maps

Vﬂx)é inf sup J(x§u1(’)au2('))v
(V€U () up (YeU2, (x)
Vo@)2  sup inf  J(x;ui(-),ua(-)),

uz()EX2,(x) w1 ()EX, ()

are called the upper value function and the lower value function of Problem (MF-SDG)y, respectively. In the
case that

we call the map = — V(z) the value function of Problem (MF-SDG)p.

Now, let (©*,v*(-)) € R?™*" x L2(R™), and assume the open-loop saddle points of Problem (MF-SDG)q
admit the closed-loop representation. Then by (4.1), we see that (Py, P1) = (—Pa, —P) = (P, P) satisfy the
same equations (see (3.33))

PA+A'P+C"PC+Q+ (PB+C"PD+ST)0" =0, )
PA+ATP+C PC+Q+ (PB+C'PD+5T)0* =0, '
and (3.34) is equivalent to
Y0 +B"P+D'PC+5=0, X,=R+D'"PD, (45)
$,0*+B"P+D'PC+5=0, $,=R+D'PD. '
These equations (for ©* and ©*) are solvable if and only if
ZB'P+DTPC+S)C#(S,), © =-X{(B'P+D'PC+8S)+ (I-X%%,)0, (49)
Z(B"P+D"PC+S)C#E,), 0 =-SI(BTP+D'PC+8)+(I-5Si%,)4, '

for some 0,0 € R™*™ are chosen such that (0*,0%) € .#[A, A, C,C; B, B, D, D]. Putting (4.9) into (4.7), it
yields

{ PA+A"P+C"PC+Q~ (PB+C"PD+SS{(B"P+DTPC+8) =0, (410)

PAtATP 4O P +Q - (PB+OTPD+§)SI(BTP+ DTPC+§) =0,

which is a system of coupled AREs, and both of them are symmetric. Thus, we have P, Pesr. Next, by (4.1)
again, from the componentwise form of (3.29), it is easy to see that (91(-),(1(+)) = (—n2(+), —C2(+))



MEAN-FIELD LINEAR-QUADRATIC STOCHASTIC DIFFERENTIAL GAMES 27
= (0o(+), ¢ (1)) € 270, 00) x LZ(R™) satisfies

—dn,(t) = {ATnO(t) — (PB+C"PD+S")SI{B"n,(t) + D" [(u(t) + Po(t)] + p(t) } )
+CT[¢o(t) + Po(t)] + Pb(t) + q(t)}dt —CM)dW(t), t=0, '

with constraint
BT (1o —E[no]) + DT (¢ — E[¢o]) + DTP(0 — E[o]) + p — E[p] € R(X,), a.e., as. (4.12)

Likewise, by (4.1), from the componentwise form of (3.30), we see that 7;(-) = —72(-) = 7o(-) € L*(R™)
satisfy the following:

fo(t) + AT 7io(t) — (PB + CTPD + ST)SL(B 7,(t) + E[Co(t)] + PE[o(t)] + Elp(t)])
+CT(E[G(t)] + PE[o(t)]) +E[q(t)] + PE[b(t)] =0, >0,

with constraint
B i, + DTE[¢,] + DT PE[o] + E[p] € Z(S,), ae. (4.14)
Finally, from (3.9), it is direct that the closed-loop representation of an open-loop saddle point is given by

w()={-SI(B"P+DTPC+58)+ (I-%I%,)0}(X*(-) — E[X*(")])
+{-SH(BTP+DTPC+8) + (I - £I8.)0}ELX*()]
=SB (6(-) = E[no(-)]) + DT [Go() = ElGo(-)] + P(a(-) = E[o()])] + () — Elp()]} (4.15)
~SH{B"7,() + DT (PE[o()] + ElG,()]) +Elp()] + ()}
+(I = ZI%,) (v () = E[v()]) + (I - ZIZ,)p(),

where v(+),7(-) € L2(R™), and X*(-) € 27[0,c) is the solution to (3.8) corresponding to u*(-).
To summarize, we have the following result.

Theorem 4.3. Let (H2) hold and the initial state x € R™ be given. Then any open-loop saddle point u*(-) of
Problem (MF-SDG), admits a closed-loop representation if and only if the following hold:
(i) The following convexity-concavity condition holds: For i = 1,2,

B [ QX0 X)) + 2(SXul0) (1)) + (Russ (0, i(9) + (QELX. (0], ELX. (1)
0 (4.16)
FASEIXOL Bl + (Rl (0L Bl > 0, Ya() = (110)) € Zaata),

where X;(-) € Z°[0,00) is the solution to MF-SDE (3.20).

(i) System (4.10) admits a static stabilizing solution (P, P) € S" x S", such that the solution (1,(-),(.(-)) €

Z°0,00) x LA(R™) to (4.11) satisfies (4.12), and the solution 7j,(-) € L*(R™) to (4.13) satisfies (4.14).

In the above case, any open-loop saddle point admits the closed-loop representation (4.15).

The following result characterizes the closed-loop saddle points of Problem (MF-SDG)g.

Theorem 4.4. Problem (MF-SDG), admits a closed-loop saddle point (©*,©*, v*(-)) if and only if the following
statements hold:
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(i) The following system:

PA+ATP.+C"P.C+Q—-(P.B+C"P.D+S")YXI(B"P.+ D"P.C+S)=0,
PA+ATP,+C"'P.C+Q— (P.B+C™P.D+S)SI(BTP,+D"P.C+8)=0, (4.17)
Z(B"P.+D"P.C+8S)C#(2.), RB'P.+D'P.C+S5)CRE.),

admits a static stabilizing solution (P, ]30) € S™ x S” such that

Ry, + D/ P.D; >0, Ry + BIPCIA% =0, (4.18)
Ras 4+ D] P.Dy <0,  Ryy+ DJ P.Dy <0. '
(ii) The following BSDE on [0,00):
—dne(t) {A nc — (P.B+C"P.D+ ST)ZT [BTn.(t) + DT (Cc(t) + Peo(t)) + p(t)]
[(C(t) + P.o(t)] + Peb(t (t)}dt — C(t)dW (), t>0, (4.19)

B [ne(t) —E[nc(t)]] + DT [Ce(t) — E[G(t )]] DTPc[ (t) - E[ (O] + p(t) —Elp(t)] € 2(2.),

a.e. t € [0,00), a.s.,
admits a solution (n.(-),(.(+)) € Z70,00) x LZ(R™), and the following ODE:

fe(t) + AT 7.(t) — (PB+ CTP.D+ 8T)SI{B 7ic(t) + D (E[C(1)] + PElo(1)]) + E[a(1)]}
+C T (E[C(0)] + PE[o(t)]) + Elg(t)] + PED(),  t>0, (4.20)
a

BT.(t) + DTE[C.()] + DT PE[o(t)] + Elp(t)] € Z(£.), ae. t €[0,00),

admits a solution 7.(-) € L*>(R"). In the above case, the closed-loop saddle point is given by

©* =-X{(B"P.+ DTP.C +5)+ (I - £{%.)6, Lol
6" = —Si[BTIL + DTR.C+ ] + (I - SI%.)0, (4.21)
where 0,0 € R™*" are chosen such that (0*,0%) € .#[A, A,C,C; B, B, D, D], and
v () = =SH{BT (n.(-) = E[n.()]) + DT (¢c(-) = E[¢e()]) + DT P(o(-) = E[o(-)]) + p(-) — E[p(-)] }
~EH{B () + DT (PE[o(-)] + E[¢.()]) +Elp()]} (4.22)
(I*EIEc)( () —Ep(O)]) + (I - EIZ)w(),

for some v(-) € LA(R™), (-) € L*(R™).
(©

Proof. Let (©®*,v*(-)) be a closed-loop saddle point of Problem (MF-SDG),. System (3.35) for (P1,131) =
(=Py, —P3) = (P., P,) becomes

PA+ATP.+CTP.C+Q+(©") (R+D"P.D)O*
+(P.B+C ' P.D+S")0*+ (0" (B'"P.+ D'P.C +S) =0,

PA+ATR.+C"P.C+Q+ (0" (R+D'P.D)O*
+(P.B+CT"P.D+87)0" +(6")"(B"P.+D'P.C+8S) =

(4.23)
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Thus, (3.36) becomes

B'P.+D'P.C+S+%.0"=0,
B'P.+D'P.C+S+%.6%=0.

This system is solvable if and only if

{%’(BTP +D'P.C+S)C2(2), © =-S{(B'P.+D'P.C+S)+(I-3i%.)0, (424)

#BTP.+DTP.C+8)C#E.), ©'=-SH(BTP.+D"P.C+5)+ (I-5%(%.)0,

where 6,0 € R™*" are chosen such that (0*,0*) € .#[A, A, C,C; B, B, D, D). This proves (4.21). Putting (4.24)
into (4.23) yields that (4.17) admits a static stabilizing solution (P, ]3,;) € S™ x S™. (4.18) can be easily obtained
from (3.37) and (4.1). (4.19) and (4.20) can be similarly proved from (ii) of Theorem 3.7.

Finally, from (3.44) we have

v () B ()] = =ZH{BT (ne() —Ene()]) + D" (¢() — El¢e(1)]) + DT Pe(o () — Elo()])

4.25
+p0) =B} + (1 - 512 () ~ BB O, e
for some v(-) € LZ(R™). It follows from (3.46) that we get
E[v*()] = ~SH{Be(-) + DT (PE[o(-)] + El&.()]) +Elp()]} + (I - EI2.)o(), (4.26)
for some 7(-) € L?(R™). Combining the above two expressions leads to (4.22). The proof is complete. O

Comparing Theorems 4.3 and 4.4, we have the following result which might not be true for general non-zero
sum differential games (see [47]).

Theorem 4.5. If both the closed-loop representation of open-loop saddle points and the closed-loop saddle
points of Problem (MF-SDG)y exist, then the closed-loop representation coincides with the outcome of the
closed-loop saddle points. In the above case, the value function admits the following representation:

V(z) = <ﬁx, z) + 2(71.(0), z)
-HE/O [<P0(t), o(t)) +2(ne(t),b(t) — E[b)]) + 2(¢(t), 0(t)) + 2(7(t), E[b(£)])

(S BT e(t) — Elne(0)]) + DT [G(t) — BIC. (¢ n P(a(t) - E[o(t)])] + p(t) — Elp(0)]}
() {B (1) + DT (BC.(0)] + PElo(1)]) +Elp(0)]} '] .

(4.27)

~

where ¥ =%,=%.2R+D'PD=R+D'P.D,$=%,=5.2R+D'PD=R+D"P.D,P=D..

Proof. Let (©*,v*(-)) be a closed-loop saddle point of Problem (MF-SDG),. By (4.6), the outcome

u'(-) = 0" (X" () = E[X"()]) + O"E[X" ()] + v (),



30 X.LI ET AL.

of (©*,0*,v*(+)) is an open-loop saddle point of Problem (MF-SDG)o, where X*(:) € 270, 00) is the solution
to

dX*(t) = {Ae-X* + Ae-E[X*] + Bv* + BE[v +b}dt
+{Co- X" + Co-E[X*] + Dv* + DE[v*] + o }dW (t), t>0,
X*(0) = x.

Thus, similar to the proof of the sufficiency on Theorem 3.3, noting (4.25) and (4.26), we have

J(2; 07 (X*() —E[X"()]) + O°B[X* ()] + 07()) — (Pex +27.(0), z)
= E/O [<Ec(v* —E[v*]),v* —E[*]) + 2<BT77,; + D" (¢ + Poo) + p,v* — E[v*])
(S.E[o*], Elo*]) + 2(BT 7. + DT (EI¢] + PElo]) + Elgl, E[v])
+(P.o,0) + 20, b — E[B]) + 2(C, 0) + 2<ﬁc,]E[b]>} dt (4.28)
_E /O " [(Peo) + 2{ne,b— EB]) +2(C0) + 2(n, B
—|(EHH{BT (1 — Eln)) + DT (e — E[C.]) + DT Pl — Elo)) + p — Elp]}|*
~|(EDH{BTii. + DT (P.Elo] + E[C.]) + El]}[*] a,

where (Pc,ﬁc) satisfies (4.17), (nc(:),(c(+)) satisfies (4.19) and 7.(-) satisfies (4.20). By Theorem 4.4,
(©*,0%,v*(-)) is given by (4.21)—(4.22).

On the other hand, let (P, ﬁ) be the solution pair to (4.10), (17,(-), (s(-)) be the solution to (4.11), 7,(-) be
the solution to (4.13), and choose 6,6 € R™*" v(.),7(-) € L?(R™), such that the following

C ET(BTP+DTPC+S) +(I-3i%,)8, 6 =-SH(BTP+D"PC+5)+(I-5i%,)d,
v ) = =3B (n(-) = Elno(-)]) + D" (¢o() = ElG()]) + DT P(o() = E[o(-)]) + o(-) — Elp(-)]}
~SH{B (- +DT(P1E[U( NHEC () +EPO]} + (T-58%,) (v () ~Elv()]) + (I-E55,) 7(-),

satisfies (©**,0**) ¢ #[A, A,C,C; B, B, D, D]. For any initial state x, define u**(-) € %,4(z) as follows:
w” () = 07X () —E[X™()]} + O7E[X ()] + v (),
where X**(-) € £7[0,00) is the solution to

dX*(t) = {Ae=X*" + Ae-E[X**] + Bv*™* + BE[v**] + b}dt
+{Ce X" + CoE[X**] + Dv** + DE[v**] + o }dW (t), t >0,
X*(0) = .
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By Theorem 4.3, u**(-) is an open-loop saddle point of Problem (MF-SDG), for x. By the same argument as
(4.28), noting (4.12) and (4.14), we obtain
J(@; 07 (X™() — E[X™()]) + O ELX™ ()] + v**()) — (Pr + 205,(0), )
= E/ [(20(0** —E[v*™]),v™* —E[v™*]) +2(B" 1o+ D", + D" Po + p,v** — E[v**])
0
+(SE[v™], E[v**]) + 2(B "7}, + D" PE[o] + E[(,)) + E[p], E[v**])
+(Pa, o) 4 2(10,b = E[b]) + 2(Co, ) + 2(7o, ]E[b]ﬂ dt (4.29)

- E/OOO [<Pa7a> + 2<77o7 b— E[b]> + 2<§07 a> + 2<770,E[b]>

~|)*{BT (0 — E[no]) + DT (¢ — E[G)) + DT P(o — Elo]) + p — E[p]}|”
~|(EH)3{B 7, + DT (PElo] + E[¢,]) + El]}|*] at.

Since both u**(+) = (uj*(-), u3*(-)) and u*(-) = (ui(-), u3(-)) are open-loop saddle points of Problem (MF-SDG),
for x, we have

S un (), up () < J(@5ur™ (), up() < (™ (), ug” (1) < J(@ui(), up™() < J(@5ui(), uz()-

Therefore, J(x;u*(+)) = J(x;u**(-)) for all x, which, together with (4.28) and (4.29), yields

P, =P, ﬁc = ﬁa Uc(') = 770(')3 Cc() = Co(')a ﬁc() = "70(')'

Thus, the value function is given by (4.27). The proof is complete. O
Finally, we have the following corollary for Problem (MF-SLQ), since it is a special case of Problem (MF-
SDG)g when mqy = 0.

Corollary 4.6. For Problem (MF-SLQ), if the open-loop optimal control admits a closed-loop representation,
then each open-loop optimal control must be an outcome of a closed-loop optimal strategy.

5. EXAMPLES

In this section, we present several examples illustrating the results established in the previous sections.
We mainly concentrate the closed-loop representation of the open-loop Nash equilibria/saddle points and the
closed-loop Nash equilibria/saddle points.

The following example shows that for the mean-field LQ zero-sum stochastic differential game, it may happen
that the closed-loop saddle point uniquely exists, which coincides with the closed-loop representation of the open-
loop saddle point. Moreover, the system of generalized AREs admits static stabilizing solutions and the system
[A,A,C,C; B, B, D, D] is MF-L2-stabilizable.

Example 5.1. Consider the following two-dimensional state equation

dX(t) = {AX(t) + AE[X (¢)] + Bu(t) + BE[u(t)] }dt
+{CX(t) + CE[X (t)] + Du(t) + DE[u(t)] }dW (t), ¢ >0, (5.1)
X(0) =z,



32 X.LI ET AL.

with the cost functional

J(x;““')’“Q(')):E/?K(g i) (f(<§)>),(f(<j})>+<(§ SR) (IIEE%((;))]])@égfﬁ]mdt' (52)

Let
1 . 10 10 - (25 0
=0 5) A= ) m=Gon) 2= (5 0s)
. 0 —05 10 -~ (05 0
CZ( > _(05 0 > D:<O 1)’ D={" 0.5)’
0= (23070 0TTSLY 5 (56930 07219 o (0 0) g (00
0.7781 0.3123 —\0.7219 222317 o) 77 \0 o)
- (075 0
k= <0 —2)’ R‘(o —0.5)’

and from (2.15), we have

~ (-2 -1 ~ (35 0 ~ (10 =~ (15 0
A‘<—1 —23)’ B‘(o 1.5)’ C‘(o 1)’ D‘(o 1.5)’
/8 15 g_ (00 (275 0

15 225440)0 "7 \o 0o)0 T o0 -25)

First, we look at closed-loop representation of open-loop saddle point. According to (4.10), we have the
following coupled AREs:

Q)
=)

{PA+ATP+CTPC+Q (PB+C"PD+ST)E(BTP+D'PC+S) =0, 5:3)

PA+A"P+C"PC+Q—(PB+C"PD+SHSI(BTP+D"PC+8) =0,
where

Se=R+D'PD= <(2) _02> +P, $,=R+D'PD= <2'g5 _(2) 5> +2.25P.

Then, solving (5.3) yields

1 0 = 1 0
P= <0 ().1) ' P= (0 0.5) '
The above solutions satisfy (4.7) and (4.8). Further, since ¥, and ¥, are invertible, we have

Z(B"P+DTPC+S)CR(E,), RB'P+D'PC+S)CRE,),
—0.6667 —O.1667>

O*=-Y"YB'P+D"PC+28)=
o + +5) 0.0263  0.1053

«_ o1 ATPL ATpA Ly (1 0
0" =-S'(B'"P+D PC+S)—(0 0'3956)
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According to Proposition A.5 in [23], the system [A, A, C,C; B,B,D,_D] above is MF-L2-stabilizable, and
(0,0) e ¥[AA,C,C; B, B, D, D] if and only if there exist Py > 0 and Py > 0, such that

(A+ BO)Py + Py(A+ BO)' + (C + DO)Py(C + DO)" + (C + DO)Py(C + DO) "
— K_()l :;) +(—)} Py+ Py K_Ol :;) +®:|T + [ 0%5 Of) +(—)] Py [ 0%5 015) +(‘):|T
[ (5 Dl 2)ef <o
(A+ BO)Py + Py(A+ BO)T
= Kj —_213> + <365 1(.)5) é] Po+ Py K:? —_213> + (365 1?5) é]T <0.
Substituting the above ©* and ©* of (5.4) into (5.5), we have

po_ (05742 —0.0424 =0 5 _ (08185 —0.0377 -0
07 \=0.0424 0.4258 ' 0= \-0.0377 0.1815 ’

such that the negative definiteness conditions of (5.5) hold. Then (6%, ©*) above is an MF-L2-stabilizer of the
system [A4, A, C,C; B, B, D, D]. Now, we solve corresponding systems (4.11)—(4.14) to get (1,(+), (o (+)) and 7, (+).
From (4.15), the closed-loop representation of this open-loop saddle point can be given by

w ()= -2, (BTP+D"PC+ 8)(X*(-) ~EX*()]) -, (B"P+ D" PC + S)E[X*(-)]
~3, BT (1o() = Elno()]) + DT (Go() = ElG()]) } = £ {B () + DTE[¢ ()]},

where X*(:) € £7[0, ) is the solution to (5.1) corresponding to u*(-).
Next, we consider the closed-loop saddle point. Note that the corresponding system of generalized AREs
(4.17) reads

O A e il S
0=PA+A"P.+C"P.C+Q—(P.B+C'"P.D+S")S(B"P.+D"P.C+9),
with

Y. =R+D'P.D= (g _02> + P,

S.=R+D'"P.D= (2'55 _3_5> +2.25P..
Then, solving (5.7) yields

Fe= ((1) 0(.)1>’ P = ((1) 0(.)5>'
Thus,
{ Ri1+ D{P,D, =3 >0, }:zu + l:)IPcli)l =5>0, 58)
Ros + Dj P.Dy = —1.9<0, Ry + Dy P.Dy = —2.275 < 0.
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Also, the range condition
ZB'P,+DTP.C+S)CA,), RBP,+DP.C+8)CRE.)

holds automatically since ¥, and ¥, are invertible. We see that

. T T —0.6667 —0.1667
©"=-X'(B'P.+D PC+5)= )
0.0263  0.1053

A _ _s-1BTHE  dTpaLay - (1 0

which coincides with (5.4). Hence, by Theorem 4.4, the problem admits a closed-loop saddle point. Solving
corresponding backward systems (4.19)—(4.20), we can get (7.(:),(.(-)) and 7.(+), the closed-loop saddle point
is given by (5.9) and

v () = =BT (ne() = Elne()]) + DT (Ce() = EL()) } — S {BT0() + DTE[C()]}- (5.10)

Since P = P, and P = P, we get ¥ = X0, % = 5, and 17,(-) = 7.(-), Co(-) = Co(), To(-) = 7e(-). This implies
that the closed-loop representation of the open-loop saddle point coincides with the closed-loop saddle point.

The following example shows that for the mean-field LQ non-zero sum stochastic differential game, it may
happen that the closed-loop representations of open-loop Nash equilibria are different from the closed-loop Nash
equilibria. However, the solutions to the system of algebraic Riccati equations for the closed-loop representation
of open-loop Nash equilibrium are symmetric.

Example 5.2. Consider the following two-dimensional state equation

dX(t) = {AX(t) + AE[X (t)] + Bu(t) + BE[u(t)] }dt
+{CX(t) + CE[X(t)] + Du(t) + DE[u(t)] }dW (t), t >0, (5.11)
X(0) =z,

with the cost functional

EIIEE[@%)]]) ’ IIEE%(%)]]» 4
X

- ) _
(% %) (20D (R
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a=(y ) a=(008) m=(0 1) 5=V o)
¢ (015 010>’ C:<—8.5 _8.5>’ DZ(cl) (1)) D:<0(55 0(.)5)’
(285 ) Q2:<1.35 0.4 > Q1:<6.0324 0.6)7
2.475 04 2.5375 0.6 0.325

(710 28625) 51:S2Z<8 8) 51:52:(8 8)

= (0 1) RQ:((I) 1(.)5>’ Rl:((l) (1)> R2:<065 8)’

and from (2.15), we have
() () () (5 ) e (1)
e(7 2) 5o5(9) A=Y A-(2 )

To look at the closed-loop representation of open-loop Nash equilibria, we solve the corresponding (3.33)—(3.34)

to get
10 05 0 5 (10 = (10
P1<0 1)’ P2_<0 1>’ Pl_(o 0.5)’ P2(0 1)’

which are symmetric. Since

We let

&)

Ri11+ D] PiD1 Ri1o+ D] PDs _(2 0
Roo1 + Dy PaDy Rgoo + D PoDo 0 25

and

Rin+D{PiDy Rus+D{PDy\ (425 0
Roo1 + D) PaDy Raso + D3 PaDs 0 3.7

are invertible, it follows that

- -1 =025 ~ex _ [(—1.1765 0 .
0™ = (_0.2 —0.8) , O = ( 0 0.8)' (5.13)
Also, it follows from (3.29)—(3.30), we can get (7(-),((-)) and 7(-). Then, from (3.27), we have
v () = == I YBT (n()-EL())+D " (C()-EL()])} - =TT {B () + DE[L()]}- (5.14)

By Theorem 3.3, making use of (3.27)—(3.30), the problem admits an open-loop Nash equilibrium u*(-) for any
initial state x € R™. And it has the closed-loop representation (2.7) with (©0**,©** v**(+)) given by (5.13) and
(5.14).
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Next, we consider the closed-loop Nash equilibria. Accord_ing to Proposition A.5 in [23], system [4, 4, C, C;
B, B, D, D] above is MF-L2-stabilizable, and (©,0) € #[A, A,C,C; B, B, D, D] if and only if there exist Py > 0
and Py > 0, such that

(A+ BO)Py+ Py(A+ BO)T + (C + DO)Py(C + DO)T + (C + DO)YPy(C + D

[ D) ee]menl( ) ve] (o5 >+@}Po{< ) °

6 9+ B)elall 5 o] <o oy
(A+ BO)P, + Py(A+BO)"

B[ A PR i R AT

For i = 1,2, we solve the corresponding (3.35)—(3.37) to get

P o— 0.9949 —0.0168 P — 0.6255 —0.0104
1=\ -0.0168 0.9201 )’ 27 \-0.0104 1.01741 )"

1.0023  —0.0155
—0.0155 0.6472

B, _ (08919 0.0126
2710.0126 0.9964 ) °

)

1=

12 Ry + DI PDy = 1.9949, 52 Rygy + DJ PDy = 25174,
S12 Riyp + D P Dy =4.2386,  $92 Rygy + DJ PDy = 37891,

and

. [—0.9949 —0.2393 ~.  (—1.1798 0.0117
~ \—0.1979  —0.8072 -\ —0.0082 —0.7971

Substituting the above ©* and ©* of (5.16) into (5.15), we can get

po_ (0-3323  —0.0865) _ po_ (01196 —0.0327\ _ o
07\ —0.0865 0.3365 ' 0= \-0.0327 0.2115 :

such that the negative definiteness conditions of (5.15) hold. Then (©*, ©*) above is an MF-L2-stabilizer of the
system [A, A,C,C; B, B, D, D]. Hence, by Theorem 3.7, the problem admits a closed-loop Nash equilibrium.
Now, since

+  gwey _ (0.0051 0.0107
B(6"-6") = (0.0021 0.0072> 70

by Remark 2.7, we see that the closed-loop representation of the open-loop Nash equilibrium and the closed-loop
Nash equilibrium are intrinsically different.

From this example, we see that the solutions to system (3.33)—(3.34), which come from the open-loop Nash
equilibrium, may be symmetric, but they are different from the solution to the system of AREs (3.35)—(3.37),
which come from the closed-loop Nash equilibrium. It is obvious that the closed-loop representation of the
open-loop Nash equilibrium is different from the closed-loop Nash equilibrium.
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The following example shows that for the closed-loop representation of open-loop Nash equilibria of the
mean-field LQ non-zero sum stochastic differential game, it may happen that the solutions to the system of
AREs may be asymmetric when the system [A, A, C, C; B, B, D, D] is MF-L2-stabilizable. And, the closed-loop
representation of the open-loop Nash equilibrium is different from the closed-loop Nash equilibrium.

Example 5.3. Consider the two-dimensional state equation of form (5.11) with cost functionals (5.12), but we
let

[\o}

Il
7N
[NV
=l s
~_

on( ) a-( ) 5 () 50 )
1= 71 ) W2= 1|9 49 ), Pl = y P2 — ’
5 im 2 &2 2 0 0 /3

To look at the closed-representation of open-loop Nash equilibria, we solve the corresponding (3.33)—(3.34)

to get
1 -4 Lo N J = 10
— 2 — | 2 — 44 —
S O R G R S (O B B ()

We see that P; and f’l are not symmetric. Since

Rin+D{PiDi Ruz+D{PiD2\ _ (2 —
Roo1 4+ Dj PaDy Rogo + Dy PoDs 0

Nt
Nl=
\/

and

] [ [L)
N————

Elll + l?;ﬂél Enz + 1:71TP11:72 _ (6
Roo1 + Dy PaDy Raos + Dy PyDo 0
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are invertible, it follows that
o (0 —oass1\ /0 —0.0058
o= (0 —0.6325> » 07 = (0 02875) ' (5.17)

Then, similar to Example 5.2, making use of Theorem 3.3, we see that the problem admits an open-loop Nash
equilibrium for any initial state € R™. And it has the closed-loop representation of form (2.7).

Next, we consider the closed-loop Nash equilibria. According to Proposition A.5 in [23], the system [4, A, C, C;
B, B, D, D] above is MF-L2-stabilizable, and (0,0) ¢ .#[A, A,C,C; B, B, D, D] if and only if there exist Py > 0
and Py > 0, such that

(A+ BO)Py + Py(A+ BO) 4 (C + DO)Py(C + DO)" + (C+ DO)Py(C +

-
/-1 =1 -1 -1 T 2 0
—[(0 _1)+@} P()+P0[<O _1>+®] +0OP06 +(0 2)

S (o 1 o (=2 -1\
(A+ BO)Py + Py(A+ BO)' = o) o+ Po| _ <0.

"Ul

BON
(g 2) (5.18)
-1 1 -2

For i = 1,2, we solve corresponding (3.35)—(3.37) to get

P 1 —0.4955 p,— (05 0
L7\ —0.4955  1.7645 )~ 27\ 0 1.022)°
( 1.0647 0.1861> ( 1.0016 0.0032)

—0.1861  1.2327 Py = —0.0032 1.0111

1=

S12 R+ DI PDy =2, 32 Rysy + D] PyDy = 2.5226,
S12 R+ DI PiDy =6, 5,2 Rogy + DJ PDy = 5.5902.

and

. (0 —0.1553 . (0 —0.0934
o= (o 0.6268> 9= <0 —0.2828> ' (5.19)
Substituting the above ©* and ©* of (5.19) into (5.18), we can get

po— (0-3082  —0.0910\ _ p._ (01901 —0.0721 ~0
07 \=0.0910 0.3148 ' O~ \=0.0721 0.1870 :

such that the negative definiteness conditions of (5.18) hold. Then (©*,©*) above is an MF-L2-stabilizer of the
system [A, A,C,C; B, B, D, D]. Hence, by Theorem 3.7, the problem admits a closed-loop Nash equilibrium.

Finally, similar to Example 5.2, we easily check that the closed-loop representation of the optimal open-loop
strategy and the optimal closed-loop strategy are intrinsically different.

From this example, we see that the solutions to system (3.33)—(3.34), which come from the open-loop saddle
point, may be asymmetric, but the solutions to system (3.35)—(3.37), which come from the closed-loop saddle
point, are still symmetric. It is obvious that the closed-loop representation of the open-loop Nash equilibrium
is different from the closed-loop Nash equilibrium.
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6. CONCLUDING REMARKS

In this paper, we have presented a systematic theory for two-person non-zero sum differential games of mean-
field SDEs with quadratic performance indexes in [0,00). The case of two-person zero-sum, which is also new,
has been treated as a special case. Our results cover several existing ones in the literature for infinite horizon
problems, including LQ optimal control problems of mean-field type [23], two-person zero-sum L stochastic
differential games (without mean-field terms) [50], LQ optimal control problem (without mean-field terms), and
the equivalence between the open-loop solvability and the closed-loop solvability for stochastic LQ problem
in [0,00) [46]. Finally, we have to leave the following question open: Is the existence of the open-loop and
closed-loop saddle points equivalent for the mean-field LQ two-person zero-sum stochastic differential game in
an infinite horizon? Some related papers can be seen in Sun [42], Sun-Li-Yong [43], Sun-Yong [45], Yu [55], etc.
We will research this topic in the future.
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