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Abstract
Maximization and minimization problems of the principle eigenvalue for divergence form
second order elliptic operators with the Dirichlet boundary condition are considered. The
principal eigen map of such elliptic operators is introduced and some basic properties of this
map, including continuity, concavity, and differentiability with respect to the parameter in
the diffusibility matrix, are established. For maximization problem, the admissible control
set is convexified to get the existence of an optimal convexified relaxed solution. Whereas,
for minimization problem, the relaxation of the problem under H -convergence is introduced
to get an optimal H -relaxed solution for certain interesting special cases. Some necessary
optimality conditions are presented for both problems and a couple of illustrative examples
are presented as well.

Mathematics Subject Classification 35J15 · 35P05 · 47A75 · 49K20 · 49J20

1 Introduction

Consider a heat conduct problem in a bounded domain � ⊆ R
n . Suppose � is occupied

by a certain type of medium with (not necessarily isotropic) uniformly elliptic diffusibility
matrix a(·) ≡ (

ai j (·)
)
. Let y(t, x) be the temperature of the body at (t, x). Then, in the

case that there is neither source nor sink of the heat in the domain, and the temperature is
set to be a fixed level (say, 0, for simplicity) at the boundary ∂�, the (temperature) function
y(· , ·) ≡ y(· , · ; y0(·)) will be the weak solution to the following parabolic equation:
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⎧
⎨

⎩

yt (t, x) = ∇ · (a(x)∇ y(t, x)
)
, (t, x) ∈ [0,∞) × �,

y(t, x) = 0, (t, x) ∈ [0,∞) × ∂�,

y(0, x) = y0(x), x ∈ �.

(1.1)

Consequently,

d

dt
‖y(t, ·)‖22 =2

∫

�

y(t, x)∇ · (a(x)∇ y(t, x)
)
dx

= − 2
∫

�

〈 a(x)∇ y(t, x),∇ y(t, x) 〉 dx

≤ − 2λa(·)
∫

�

|y(t, x)|2dx ≡ −2λa(·)‖y(t, ·)‖22,

(1.2)

where ‖ · ‖2 = ‖ · ‖L2(�) is the usual L
2(�)-norm, and λa(·) > 0 is the smallest eigenvalue

(which is called the principal eigenvalue) of the differential operator La(·) defined by the
following:

La(·)ϕ(·) = −∇ · (a(·)∇ϕ(·)), ϕ(·) ∈ D
(La(·)

)
,

D
(La(·)

) =
{
ϕ(·) ∈ W 1,2

0 (�)
∣
∣ ∇ · (a(·)∇ϕ(·)) ∈ L2(�)

}
.

(1.3)

In the above,W 1,2
0 (�) is the usual Sobolev space which is the completion ofC∞

0 (�) (smooth
functions with compact supports in �) under the norm (see [1]):

‖ϕ(·)‖W 1,2
0 (�)

=
(
‖∇ϕ(·)‖22 + ‖ϕ(·)‖22

) 1
2

< ∞.

It is known that with such a λa(·) > 0, the following boundary value problem
{−∇ · (a(x)∇ y1(x)

) = λa(·)y1(x), in �,

y1
∣∣
∂�

= 0

admits a weak solution y1(·) ∈ W 1,2
0 (�) \ {0}, which is called a principal eigenfunction of

operator La(·). Moreover,

λa(·) ≡ inf
y(·)∈W 1,2

0 (�)\{0}

∫

�

〈 a(x)∇ y(x),∇ y(x) 〉 dx
‖y(·)‖22

. (1.4)

From [15], Theorem 8.38, we know that the multiplicity of λa(·) is 1, and y1(·) ≡ y1(· ; a(·))
can be taken the unique eigenfunction such that it is positive in � and normalized:

‖y1(·)‖22 =
∫

�

|y1(x)|2dx = 1.

We call such a y1(·) the normalized principal eigenfunction of La(·) and denote it by ya(·),
indicating the dependence on a(·). For convenience, we call (λa(·), ya(·)) the normalized
principal eigen-pair of the operator La(·). From (1.2), we see that with such a λa(·), one has

‖y(t, · ; y0(·))‖2 ≤ e−λa(·)t‖y0(·)‖2, t ≥ 0, ∀y0(·) ∈ L2(�)

and if the initial state y0(·) = ya(·), then one has the equality:

y(t, x; ya(·)) = e−λa(·)t ya(·)(x), (t, x) ∈ [0,∞) × R
n,
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which leads to

‖y(t, · ; ya(·))‖2 = e−λa(·)t‖ya(·)‖2 = e−λa(·)t , t ≥ 0.

Hence, one obtains the following representation:

λa(·) = inf
y0(·)∈W 1,2

0 (�)\{0}
lim
t→∞

1

t
log

‖y0(·)‖2
‖y(t, · ; y0(·))‖2 = −1

t
log ‖y(t, ·; ya(·))‖2, ∀t > 0.

Consequently, in some sense, λa(·) is the smallest (uniform) decay rate for the evolutionary
map y0(·) �→ y(t, · ; y0(·)) (uniform with respect to the initial state y0(·)).

On the other hand, since a(·) is assumed to be uniformly elliptic, the following Poincaré’s
inequality always holds:

‖y(·)‖22 ≤ C
∫

�

〈 a(x)∇ y(x),∇ y(x) 〉 dx, ∀y(·) ∈ W 1,2
0 (�) (1.5)

for some constant C > 0. Thus, the sharp constant C that makes the above true is given by
the following

sup
y(·)∈W 1,2

0 (�)\{0}

‖y(·)‖22∫

�

〈 a(x)∇ y(x),∇ y(x) 〉 dx
≡ 1

λa(·)
< ∞. (1.6)

Therefore, the sharp Poincaré’s inequality reads

‖y(·)‖22 ≤ 1

λa(·)

∫

�

〈 a(x)∇ y(x),∇ y(x) 〉 dx, ∀y(·) ∈ W 1,2
0 (�). (1.7)

If the diffusibility matrix a(·) can be chosen from a given setA , which amounts to saying
that the composite material/medium occupying� can be designed within a certain range (c.f.
[2,11,29,34]), then we may try to minimize λa(·) (preserving the temperature of the body in a
certain fashion), or to maximize λa(·) (cooling down the body as quick as possible, uniformly
in the initial temperature distribution). In terms of Poincaré’s inequality, the former means
that we are looking for the sharp constant uniform for a(·) ∈ A , and the latter means that
we are looking for the smallest possible sharp constant for some a(·) ∈ A .

Now, let 0 < μ0 ≤ μ1 < ∞ be given and let

M[μ0, μ1] =
{
A ∈ S

n
∣∣ μ0 I ≤ A ≤ μ1 I

}
, (1.8)

where S
n is the set of all (n × n) symmetric matrices. Define

M [μ0, μ1] =
{
a : � → M[μ0, μ1]

∣∣ a(·) is measurable
}

⊆ L∞(�; S
n). (1.9)

Clearly, M[μ0, μ1] is convex and compact in S
n . Consequently, M [μ0, μ1] is convex and

closed in L p(�; S
n) (for any p ∈ [1,∞]). From (1.4), we see that

λa(·) ≤ λā(·), ∀a(·), ā(·) ∈ M [μ0, μ1], a(·) ≤ ā(·), (1.10)

namely, the map a(·) �→ λa(·) is monotone non-decreasing. In particular,

μ0λI ≤ λa(·) ≤ μ1λI , ∀a(·) ∈ M [μ0, μ1], (1.11)

where λI is the principal eigenvalue of −� on �, with the homogeneous Dirichlet boundary
condition. Consequently,

sup
a(·)∈M [μ0,μ1]

λa(·) = μ1λI , inf
a(·)∈M [μ0,μ1]

λa(·) = μ0λI . (1.12)
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This shows that minimizing or maximizing λa(·) over M [μ0, μ1] is trivial. Now, we let A
be chosen with

∅ �= A � M [μ0, μ1], 0 < μ0 ≤ μ1 < ∞, (1.13)

and pose the following two problems.

Problem (�̄(A )). Find an ā(·) ∈ A such that

λā(·) = sup
a(·)∈A

λa(·). (1.14)

Problem Problem (�(A )). Find an a(·) ∈ A such that

λa(·) = inf
a(·)∈A λa(·). (1.15)

Some general results will be presented concerning the above two problems in the next
section.

Further, to obtain finer results, we will concentrate on a more specific case which we now
describe. Fix two different matrices A0, A1 ∈ M[μ0, μ1] with 0 < μ0 ≤ μ1 < ∞. We
define

A(r) = (1 − r)A0 + r A1, r ∈ [0, 1], (1.16)

and for some 0 ≤ α ≤ β ≤ 1, let

U [α, β] =
{
χ�1

(·) ∣∣ �1 ⊆ � is measurable, α|�| ≤ |�1| ≤ β|�|
}
, (1.17)

where χ�1
(·) is the characteristic function of �1 and |�1| is the Lebesgue measure of mea-

surable set �1. Then for any u(·) ≡ χ�1
(·) ∈ U [α, β], we have

A(u(·)) = [1 − χ�1
(·)]A0 + χ�1

(·)A1 = A0 + χ�1
(·)(A1 − A0).

Denote

A [α, β] = A
(
U [α, β])=

{
A0 + χ�1

(·)(A1 − A0)
∣∣ �1 measurable, α|�|≤|�1|≤β|�|

}
.

(1.18)
Note that the set A [α, β] is non-convex (unless A0 = A1 which is excluded). For the heat
conduct problem, with a(·) = A(u(·)) for some u(·) = χ�1

(·) ∈ U [α, β], it means that two
media occupy the domain, the one with conductivity matrix A1 occupies �1 and the other
with conductivity matrix A0 occupies � \ �1. The corresponding principal eigenvalue and
the corresponding (unique) normalized principal eigenfunction are denoted by

λu(·) ≡ λA0+u(·)(A1−A0), yu(·) ≡ yA0+u(·)(A1−A0),

and the following holds:
{
−∇ ·

([
A0 + u(x)(A1 − A0)

]∇ yu(·)(x)
)

= λu(·)yu(·)(x), x ∈ �,

yu(·)
∣∣
∂�

= 0.
(1.19)

Then we can pose the following problems.

Problem (�̄[α, β]). For given 0 ≤ α ≤ β ≤ 1, find a ū(·) ∈ U [α, β] such that
λū(·) = sup

u(·)∈U [α,β]
λu(·). (1.20)
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Problem (�[α, β]). For given 0 ≤ α ≤ β ≤ 1, find a u(·) ∈ U [α, β] such that
λu(·) = inf

u(·)∈U [α,β] λu(·). (1.21)

Any ū(·) ∈ U [α, β] (resp. u(·) ∈ U [α, β]) satisfying (1.20) (resp. (1.21)) is called an
optimal control of Problem (�̄[α, β]) (resp. Problem (�[α, β])).

Note that if 0 = α < β ≤ 1, and, say, A0 ≤ A1, due to a fact similar to (1.11)–(1.12),
one has

inf
u(·)∈U [0,β] λ(u(·)) = λA0 , (1.22)

making Problem (�[0, β]) trivial; and likewise, if 0 < α ≤ β = 1, and still let A0 ≤ A1,
then

sup
u(·)∈U [α,1]

λ(u(·)) = λA1 , (1.23)

making Problem (�̄[α, 1]) trivial. To avoid such situations, in what follows, we will assume
the following:

{
either 0 < α ≤ β < 1, no additional restrictions on A0, A1,

or α = 0, β = 1, and neither A0 ≤ A1, nor A1 ≤ A0 holds.
(1.24)

Note that when 0 < α ≤ β < 1, even if, say, A1 = 2A0 > A0, the location/shape of the
optimal �1 (if it exists, which is non-empty and not equal to �) is not obvious. On the other
hand, in the case that A0 and A1 are not comparable, one expects that neither u0(·) = 0 nor
u1(·) = 1 is optimal.

For either case in (1.24), U [α, β] is not convex. Hence, the existence of optimal controls
for Problems (�̄[α, β]) and (�[α, β]) is not guaranteed, in general. To study these problems,
we will introduce suitable relaxed problems for which the relaxed optimal controls will
exist. Some necessary conditions for relaxed optimal controls will then be established, and
illustrative examples will be presented as well.

It is possible to discuss the situation of more than two materials instead of just two. The
main idea will be the same and the abstract results will have similar looking. However, further
analysis on the optimal controls will be much more technical and complicated. Therefore,
for the sake of simplification in our presentation, we prefer not to pursue that.

Some studies on optimization of the principal eigenvalue for elliptic operators can be
found in the book by Henrot [18] (see also the references cited therein). The case studied
in [18] was isotropic, namely, the diffusion matrix a(x) = σ(x)I , for some scalar function
σ(·). Moreover, even for that case, only a maximization problem was considered. For other
relevant works, here is a partial list of references: [5,6,8,10,12–14,27].

The rest of this paper is organized as follows. Section 2 will be devoted to some general
considerations of the problems that we are interested in. In Sect. 3, a convexification of
maximization problem is investigated. In Sect. 4, a relaxation of minimization problem in
terms of the so-called H -convergence will be studied. A detailed example is worked out in
Sect. 5. Finally some remarks are collected in Sect. 6.

2 The principal Eigenmap and its properties

We fix a bounded Lipschitz domain � ⊂ R
n , i.e., � ⊆ R

n is a bounded domain with a
Lipschitz boundary ∂�, and constants 0 < μ0 ≤ μ1 < ∞. For any a(·) ∈ M [μ0, μ1],
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recall that La(·) is an elliptic operator defined by (1.3), and (λa(·), ya(·)) is the normalized
principal eigen-pair of La(·). Thus,

{−∇ · (a(x)∇ ya(·)(x)
) = λa(·)ya(·)(x), in �,

ya(·)
∣
∣
∂�

= 0,
(2.1)

with ya(·)(x) > 0 for x ∈ �, and ‖ya(·)(·)‖2 = 1. Further, it is known that

λa(·) = min
y(·)∈W 1,2

0 (�),‖y(·)‖2=1

∫

�

〈 a(x)∇ y(x),∇ y(x) 〉 dx =
∫

�

〈 a(x)∇ ya(·)(x),∇ ya(·)(x) 〉 dx .
(2.2)

Define � : M [μ0, μ1] → R × W 1,2
0 (�) by

�(a(·)) = (λa(·), ya(·)), ∀a(·) ∈ M [μ0, μ1] (2.3)

and call it the principal eigen map of the operator La(·). We first recall the following result
found in [19].

Proposition 2.1 Let a(·) ∈ M [μ0, μ1]. Then there exists a constant γ = γ (μ0, μ1;�) > 0
such that

λ − λa(·) ≥ γ, (2.4)

where λ is any eigenvalue of La(·) different from λa(·). Consequently, one has:
∫

�

〈 a(x)∇ y(x),∇ y(x) 〉 dx≥(
λa(·)+γ

) ‖y(·)‖22, ∀y(·)∈W 1,2
0 (�),

∫

�

y(x)ya(·)(x)dx = 0.

(2.5)

Next, we present the following simple result which will be useful below.

Proposition 2.2 The map a(·) �→ λa(·) is concave onM [μ0, μ1]. Consequently, this map is
Lipschitz on L∞(�; S

n), i.e., for some L > 0,

|λa(·) − λā(·)| ≤ L‖a(·) − ā(·)‖∞, ∀a(·), ā(·) ∈ L∞(�; S
n). (2.6)

Proof For any a0(·), a1(·) ∈ M [μ0, μ1] and any γ ∈ (0, 1),

λ(1−γ )a0(·)+ρa1(·)

= min
y(·)∈W 1,2

0 (�)

‖y(·)‖2=1

∫

�

〈[
(1 − γ )a0(x) + γ a1(x)

]∇ y(x),∇ y(x)
〉
dx

≥ (1 − γ ) min
y(·)∈W 1,2

0 (�)

‖y(·)‖2=1

∫

�

〈 a0(x)∇ y(x),∇ y(x) 〉 dx

+γ min
y(·)∈W 1,2

0 (�)

‖y(·)‖2=1

∫

�

〈 a1(x)∇ y(x),∇ y(x) 〉 dx

≥ (1 − γ )λa0(·) + γ λa1(·).

This proves the concavity of the map a(·) �→ λa(·). Then the Lipschitz continuity follows
from a standard argument (see, for example, [22], p.235, Lemma 2.8). ��

We will see that the map a(·) �→ λa(·) is not strictly convex.
The following theorem is due to Gallouet–Monier [16], which is an extension of a result

by Meyers [26].
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Theorem 2.3 Let � ⊆ R
n be a bounded Lipschitz domain and 0 < μ0 ≤ μ1. Then there

exists a p0 > 2, only depending on �, such that for any 2 < p < p0, a(·) ∈ M [μ0, μ1],
f(·) ∈ L p(�) and h(·) ∈ L

np
n+p (�), the following problem:

{
−∇ ·

(
a(x)∇ y(x)

)
= ∇ · f(x) + h(x), x ∈ �,

y
∣
∣
∂�

= 0

admits a unique weak solution y(·) ∈ W 1,p
0 (�), and the following estimate holds:

‖∇ y(·)‖p ≤ C
(
‖f(·)‖p + ‖h(·)‖ np

n+p

)
. (2.7)

Hereafter, C > 0 represents a generic constant which could be different from line to line.

Note that in the above result, p > 2, which will play a crucial role below. The following
result is concerned with the principal eigen map �.

Theorem 2.4 Let 0 < μ0 ≤ μ1 < ∞ and � ⊆ R
n be a Lipschitz domain. Then there exists

a p > 2 such that the principal eigen map � is Lipschitz continuous in the following sense:

|λa1(·) − λa2(·)| ≤ C‖a1(·) − a2(·)‖ p
p−2

, ∀a1(·), a2(·) ∈ M [μ0, μ1], (2.8)

and for any p̄ ∈ [2, p),
‖ya1(·) − ya2(·)‖W 1, p̄(�) ≤ C‖a1(·) − a2(·)‖ p p̄

p− p̄
, ∀a1(·), a2(·) ∈ M [μ0, μ1]. (2.9)

Note that (2.8) is an improvement of (2.6), thanks to the existence of a p > 2 so that (2.7)
holds.

Proof First of all, for any a(·) ∈ M [μ0, μ1], we recall that

μ0‖∇ ya(·)‖22 ≤
∫

�

〈 a(x)∇ ya(·)(x),∇ ya(·)(x) 〉 dx = λa(·) ≤ μ1λI

and by Sobolev embedding theorem ([1]), for any n ≥ 2, we have

W 1,2(�) ↪→ Lr (�), r <
2n

n − 2

with the convention that 2n
n−2 = ∞ when n = 2.

Now, let p0 > 0 be the number in Theorem 2.3 and chose 2 < p < min
(
p0,

2n
n−2

)
. We

have p(n − 2) < 2n, which leads to np
n+p < 2. Hence, by Theorem 2.3, regarding λa(·)ya(·)

as a nonhomogeneous term on the right-hand side of the equation (2.1), we have (noting
‖ya(·)‖2 = 1)

‖ya(·)‖W 1,p(�) ≤ Cpλa(·)‖ya(·)‖ np
n+p

≤ Cpλa(·)|�| 1n + 1
p − 1

2 = C̄ p. (2.10)

Here C̄ p is an absolute constant, uniform in a(·) ∈ M [μ0, μ1]. Let
Y p(μ0, μ1) = {

y(·) ∈ W 1,p
0 (�)

∣∣ ‖y(·)‖2 = 1, ‖y(·)‖W 1,p(�) ≤ C̄ p, y(x) ≥ 0, a.e.
}
.

Then ya(·) ∈ Y p(μ0, μ1) ⊆ W 1,2
0 (�). Consequently, for any a1(·), a2(·) ∈ M [μ0, μ1],

denote

λi = λai (·), yi (·) = yai (·)(·), i = 1, 2,
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and assume that λ1 ≥ λ2. We have

λ1 − λ2 = λ1 −
∫

�

〈 a2(x)∇ y2(x),∇ y2(x) 〉 dx

≤
∫

�

〈 a1(x)∇ y2(x),∇ y2(x) 〉 dx −
∫

�

〈 a2(x)∇ y2(x),∇ y2(x) 〉 dx
≤ ‖a1(·) − a2(·)‖ p

p−2
‖∇ y2(·)‖2p ≤ C̄2

p‖a1(·) − a2(·)‖ p
p−2

,

proving (2.8). Next, let

α =
∫

�

y1(ξ)y2(ξ)dξ,

y12(x) = y1(x) − αy2(x) y21(x) = y2(x) − αy1(x).

Then α ≥ 0, and
∫

�

y12(x)y2(x)dx =
∫

�

y21(x)y1(x)dx = 0, ‖y12(·)‖22 = ‖y21(·)‖22 = 1 − α2,

(1 + α)
(
y2(x) − y1(x)

) = y21(x) − y12(x).

Hence,

‖y2(·) − y1(·)‖22 ≤ ‖y21(·) − y12(·)‖2 ≤ 2‖y21(·)‖22 + 2‖y12(·)‖2 = 4(1 − α2). (2.11)

By (2.5) and noting that
∫

�

〈(a1(x) − a2(x))∇ y1(x),∇ y2(x)〉) = λ1

∫

�

y1y2 − λ2

∫

�

y1y2 = (λ1 − λ2)α,

one has

(λ1 + γ )(1 − α2)

≤
∫

�

〈 a1(x)∇ y21(x),∇ y21(x) 〉 dx

=
∫

�

〈 a1(x)∇ y2(x),∇ y2(x) 〉 dx − 2α
∫

�

〈 a1(x)∇ y1(x),∇ y2(x)
) 〉 dx

+α2
∫

�

〈 a1(x)∇ y1(x),∇ y1(x) 〉 dx

=
∫

�

〈(a1(x) − a2(x))∇ y2(x),∇ y2(x) 〉 dx

+λ2 − 2λ1α
∫

�

y1(x)y2(x)dx + α2λ1

=
∫

�

〈(a1(x) − a2(x))∇
(
y2(x) − y1(x)

)
,∇ y2(x) 〉 dx + (λ1 − λ2)α + λ2 − α2λ1

≤ ‖a1(·) − a2(·)‖ 2p
p−2

‖∇ y1(·) − ∇ y2(·)‖2‖∇ y2(·)‖p

+(1 − α)(λ2 − λ1) + (1 − α2)λ1.

Consequently, since α ≤ 1 and it is assumed that λ2 ≤ λ1,

(1 − α2)γ ≤ C‖a1(·) − a2(·)‖ 2p
p−2

‖∇ y1(·) − ∇ y2(·)‖2.
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Combining the above with (2.11), we have

‖y1(·) − y2(·)‖22 ≤ C‖a1(·) − a2(·)‖ 2p
p−2

‖∇ y1(·) − ∇ y2(·)‖2. (2.12)

On the other hand,
{−∇ · (a1(x)∇[y1(x) − y2(x)]

) = λ1y1 − λ2y2 + ∇ · ([a1(x) − a2(x)]∇ y2(x)
)
,(

y1 − y2
)∣∣

∂�
= 0.

It follows from Theorem 2.3 that (with 2 ≤ p̄ < p)

‖y1(·) − y2(·)‖W 1, p̄(�)

≤ C‖(a1(·) − a2(·))∇ y2‖ p̄ + C‖λ1y1(·) − λ2y2(·)‖ n p̄
n+ p̄

≤ C‖a1(·) − a2(·)‖ p p̄
p− p̄

‖∇ y2(·)‖p + C |�| 1n + 1
p̄ − 1

2 ‖λ1y1(·) − λ2y2(·)‖2
≤ CC̄p‖a1(·) − a2(·)‖ p p̄

p− p̄
+ C |�| 1n + 1

p̄ − 1
2

(
|λ1 − λ2| + μ1‖y1(·) − y2(·)‖2

)

≤ C
(
‖a1(·) − a2(·)‖ p p̄

p− p̄
+ ‖y1(·) − y2(·)‖2

)
.

(2.13)

Applying (2.12), we have

‖y1(·) − y2(·)‖W 1, p̄(�)

≤ C
(
‖a1(·) − a2(·)‖ p p̄

p− p̄
+ ‖a1(·) − a2(·)‖

1
2
2p
p−2

‖y1(·) − y2(·)‖
1
2
W 1,2(�)

)

≤ C
(
‖a1(·) − a2(·)‖ p p̄

p− p̄
+ ‖a1(·) − a2(·)‖

1
2
p p̄
p− p̄

‖y1(·) − y2(·)‖
1
2
W 1, p̄(�)

)

≤ C‖a1(·) − a2(·)‖ p p̄
p− p̄

+ 1

2
‖y1(·) − y2(·)‖W 1, p̄(�).

Then (2.9) follows. ��
We now look at the directional differentiability of the principal eigen map �.

Proposition 2.5 Let� be a bounded Lipschitz domain and a(·), ā(·) ∈ M [μ0, μ1]. Then the
directional derivative of the eigen map � at ā(·) in the direction of a(·) − ā(·) is given by

�′(ā(·); a(·)−ā(·))≡ lim
ε ↓ 0

�(ā(·) + ε[a(·) − ā(·)]) − �(ā(·))
ε

= (
λ′, y′(·)), in R×W 1,2

0 (�),

(2.14)
where λ′ is given by the following:

λ′ =
∫

�

〈[a(x) − ā(x)]∇ yā(·)(x),∇ yā(·)(x) 〉 dx, (2.15)

and y′(·) is the unique weak solution of
{−∇ · (ā(x)∇ y′(x)

) = λā(·)y′(x) + λ′ yā(·)(x) + ∇ · ([a(x) − ā(x)]∇ yā(·)(x)
)
,

y′∣∣
∂�

= 0
(2.16)

with the following additional condition:
∫

�

y′(x)yā(·)(x) dx = 0. (2.17)
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Proof Let ε ∈ (0, 1). Denote

aε(·) = ā(·) + ε[a(·) − ā(·)] ∈ M (μ0, μ1),

and

�(ā(·)) = (
λā(·), yā(·)

) ≡ (λ̄, ȳ(·)), �(aε(·)) = (λaε(·), yaε(·)) ≡ (λε, yε(·)).
Let

λ′
ε = λε − λ̄

ε
, y′

ε(·) = yε(·) − ȳ(·)
ε

.

Note that

aε(x)∇ yε(x) − ā(x)∇ ȳ(x)

ε
=

[
ā(x) + ε

(
a(x) − ā(x)

)]∇ yε(x) − ā(x)∇ ȳ(x)

ε

= ā(x)∇ y′
ε(x) + [

a(x) − ā(x)
]∇ yε(x),

and

λε yε(x) − λ̄ȳ(x)

ε
= λε[yε(x) − ȳ(x)] + (λε − λ̄)ȳ(x)

ε
= λε y

′
ε(x) + λ′

ε ȳ(x).

Hence, (λ′
ε, y

′
ε(·)) satisfies

{−∇ · (ā(x)∇ y′
ε(x)

) = λε y
′
ε(x) + λ′

ε ȳ(x) + ∇ · ([a(x) − ā(x)]∇ yε(x)
)
,

y′
ε

∣∣
∂�

= 0.
(2.18)

Since a(·) �→ λa(·) is Lipschitz, we have

|λ′
ε| = |λε − λ̄|

ε
≤ L‖a(·) − ā(·)‖∞.

From the Lipschitz continuity of the principal eigen map � (see Theorem 2.4), we have

|λ′
ε| + ‖y′

ε(·)‖W 1,2
0 (�)

≤ C, ∀ε > 0. (2.19)

Then along a sequence εk → 0+, it holds that

λ′
εk

→ λ′, and y′
εk

(·) → y′(·), weakly in W 1,2
0 (�).

Also, (2.19) leads to

λεk → λ̄, and yεk (·) → ȳ(·), strongly in W 1,2
0 (�).

Consequently, passing to the limit in (2.18), one gets
{−∇ · (ā(x)∇ y′(x)

) = λ̄y′(x) + λ′ ȳ(x) + ∇ · ([a(x) − ā(x)]∇ ȳ(x)
)
,

y′∣∣
∂�

= 0,
(2.20)

and

λ′ =λ′‖ȳ(·)‖22 =
∫

�

ȳ(x)
(

− ∇ · (ā(x)∇ y′(x)
) − λ̄y′(x) − ∇ · ([a(x) − ā(x)]∇ ȳ(x)

))
dx

=
∫

�

(
〈 ā(x)∇ ȳ(x),∇ y′(x) 〉 −λ̄ȳ(x)y′(x) + 〈 ∇ ȳ(x), [a(x) − ā(x)]∇ ȳ(x) 〉

)
dx

=
∫

�

〈 [a(x) − ā(x)]∇ ȳ(x),∇ ȳ(x) 〉 dx .
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This implies that λ′
ε → λ′ for the whole sequence ε → 0+.

On the other hand, we have

0 ≤ lim
k→∞

1

εk

∫

�

(
〈 ā(x)∇ yεk (x),∇ yεk (x) 〉 − 〈 ā(x)∇ ȳ(x),∇ ȳ(x) 〉

)
dx

= lim
k→∞

∫

�

〈 ā(x)∇ y′
εk

(x),∇ yεk (x) + ∇ ȳ(x) 〉 dx

= 2
∫

�

〈 ā(x)∇ y′(x),∇ ȳ(x) 〉 dx = 2λ̄
∫

�

y′(x)ȳ(x) dx .

Similarly,

0 ≥ lim
k→∞

1

εk

∫

�

(
〈 aεk (x)∇ yεk (x),∇ yεk (x) 〉 − 〈 aεk (x)∇ ȳ(x),∇ ȳ(x) 〉

)
dx

= lim
k→∞

∫

�

〈 aεk (x)∇ y′
εk

(x),∇ yεk (x) + ∇ ȳ(x) 〉 dx

= 2
∫

�

〈 ā(x)∇ y′(x),∇ ȳ(x) 〉 dx = 2λ̄
∫

�

y′(x)ȳ(x) dx .

Therefore, (2.17) holds. If ỹ′(·) satisfying (2.17) is also a solution of (2.16), then ỹ′(·)− y′(·)
is either zero or a principal eigenfunction of Lā(·). Thus ỹ′(·) − y′(·) = 0 since

∫
�

(
ỹ′(x) −

y′(x)
)
ȳ(x) dx = 0. That is, among those functions satisfying (2.17), (2.16) admits a unique

solution. Consequently, y′
ε(·) → y′(·) weakly inW 1,2

0 (�) for the whole sequence ε → 0+.
Finally, by (2.18) and (2.16),

lim
ε→0+

∫

�

〈 ā(x)∇ y′
ε(x),∇ y′

ε(x) 〉 dx

= lim
ε→0+

∫

�

(
λε|y′

ε(x)|2 + λ′
ε y

′
ε(x)ȳ(x) + 〈 ([a(x) − ā(x)]∇ yε(x)

)
,∇ y′

ε(x) 〉) dx

=
∫

�

(
λ̄|y′(x)|2 + λ′y′(x)ȳ(x) + 〈 ([a(x) − ā(x)]∇ ȳ(x)

)
,∇ y′(x) 〉) dx

=
∫

�

〈 ā(x)∇ y′(x),∇ y′(x) 〉 dx .

Combining the above with the weak convergence of y′
ε(·), we get that y′

ε(·) →
y′(·) strongly in W 1,2

0 (�) for the whole sequence ε → 0+. This complete the proof. ��
The following gives some general results of Problem (�̄(A )) and Problem (�(A )) asso-

ciated with any convex and closed set A ⊆ M [μ0, μ1], based on the above proposition.

Corollary 2.6 Let � be a bounded Lipschitz domain. Let 0 < μ0 ≤ μ1 < ∞, and A ⊆
M [μ0, μ1] be convex and closed in L1(�; S

n). Then the following conclusions are true:

(i) Problem (�̄(A )) admits an optimal solution. Further, ā(·) ∈ A is an optimal solution
to Problem (�̄(A )) if and only if

∫

�

〈[a(x) − ā(x)]∇ yā(·)(x),∇ yā(·)(x) 〉 dx ≤ 0, ∀a(·) ∈ A . (2.21)

(ii) If a(·) ∈ A is an optimal solution to Problem (�(A )). Then
∫

�

〈[a(x) − a(x)]∇ ya(·)(x),∇ ya(·)(x) 〉 dx ≥ 0, ∀a(·) ∈ A . (2.22)
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Proof (i) From Proposition 2.2 and Theorem 2.4, we know that a(·) �→ λa(·) is concave and
continuous fromA to R. Hence, a standard argument involving Mazur’s Theorem applies to
get the existence of an optimal solution to Problem (�̄(A )).

Next, if ā(·) ∈ A is a maximum of a(·) �→ λa(·), then for any a(·) ∈ A , making use of
the convexity of A , we have

0 ≥ lim
ε ↓ 0

λā(·)+ε[a(·)−ā(·)] − λā(·)
ε

= λ′ =
∫

�

〈[a(x) − ā(x)]∇ yā(·)(x),∇ yā(·)(x) 〉 dx .

This gives (2.21). Conversely, suppose (2.21) holds. Then by the concavity of a(·) �→ λa(·),
we see that for any a(·) ∈ A , ε �→ λā(·)+ε[a(·)−ā(·)] is concave as well. Thus, ε �→
d
dε

λā(·)+ε[a(·)−ā(·)] is non-increasing. Consequently,

λa(·) − λā(·) = 1

ε

[
(1 − ε)λā(·) + ελa(·) − λā(·)

]

≤ 1

ε

[
λā(·)+ε[a(·)−ā(·)] − λā(·)

]

≤
[ d

dε
λā(·)+ε[a(·)−ā(·)]

]∣∣
∣
ε=0

=
∫

�

〈[a(x) − ā(x)]∇ yā(·)(x),∇ yā(·)(x) 〉 dx ≤ 0.

Hence, ā(·) is a maximum of λa(·) over A .
(ii) From Proposition 2.5, we see that

λa(·)+ε[a(·)−a(·)] = λa(·) + ε

∫

�

〈[a(x) − a(x)]∇ ya(·)(x),∇ ya(·)(x) 〉 dx + o(ε).

Hence, if a(·) ∈ A is a solution to Problem (�(A )), then (2.22) holds. ��
We note that Corollary 2.6 part (i) gives the existence and characterization of an optimal

solutions to Problem (�̄(A )), thanks to the concavity of the map a(·) �→ λa(·). Whereas,
part (ii) of Corollary 2.6 only gives a necessary condition for a possible solution of Problem
(�(A )), and no existence of optimal solution is guaranteed.

3 A convexification of problem (3̄[˛,ˇ])
Let us return to Problem (�̄[α, β]). SinceU [α, β] is not convex, the existence of an optimal
solution is not guaranteed. In this section,we consider a convexification of Problem (�̄[α, β]).

For 0 ≤ α ≤ β ≤ 1, we introduce the following:

�[α, β] =
{
σ : � → [0, 1] ∣∣ σ(·) measurable, α|�| ≤

∫

�

σ(x)dx ≤ β|�|
}
, (3.1)

which is convex and closed in L1(�). Recalling U [α, β] defined by (1.17), one has

co{U [α, β]}L1(�;R) = �[α, β], (3.2)

where the left hand side of the above is the closed convex hull ofU [α, β] in L1(�; R). Now,
for given 0 ≤ α ≤ β ≤ 1, and A0, A1 ∈ M[μ0, μ1] with 0 < μ0 ≤ μ1 < ∞ such that
(1.24) holds, with A(·) defined by (1.16), one sees that

A
(
�[α, β]) =

{
A0 + σ(·)(A1 − A0)

∣∣ σ(·) ∈ �[α, β]
}
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is convex and closed in L1(�; R). For any σ(·) ∈ �[α, β], we consider the following state
equation {−∇ · (A(σ (x))∇ y(x)

) = λy(x), x ∈ �,

y
∣
∣
∂�

= 0,
(3.3)

where A(σ ) ≡ A0 + σ(A1 − A0). Denote the corresponding principal eigenvalue and nor-
malized principal eigenfunction by

λσ(·) ≡ λA0+σ(·)(A1−A0), yσ(·) = yA0+σ(·)(A1−A0)(·),
respectively. We pose the following convexified problem.

Problem (�̄c[α, β]). Let 0 ≤ α ≤ β ≤ 1, 0 < μ0 ≤ μ1 < ∞, and A0, A1 ∈ M[μ0, μ1]
satisfying (1.24). Find a σ̄ (·) ∈ �[α, β] such that

λσ̄ (·) = sup
σ(·)∈�[α,β]

λσ(·). (3.4)

Any σ̄ (·) ∈ �[α, β] satisfying (3.4) is called an optimal control of Problem (�̄c[α, β]),
which is also called an optimal convexified relaxed control of Problem (�̄[α, β]). The super-
script “c” in �̄c[α, β] indicates the “convexification”. Note that if σ̄ (·) is an optimal control
of Problem (�̄c[α, β]) and ∣∣(0 < σ̄(·) < 1

)∣∣ = 0, (3.5)

where
(
0 < σ̄(·) < 1

) = {
x ∈ �

∣∣ 0 < σ̄(x) < 1
}
,

then

ū(·) = χ�1(·), �1 = (σ̄ (·) = 1)

is an optimal control of Problem (�̄[α, β]). The following result gives the necessary condi-
tions when (3.5) fails.

Theorem 3.1 Problem (�̄c[α, β]) admits an optimal control σ̄ (·) ∈ �[α, β]. Suppose
|(0 < σ̄(·) < 1)| > 0, (3.6)

and ȳ(·) is the corresponding optimal state. Then
⎧
⎨

⎩

〈(A1 − A0)∇ ȳ(x),∇ ȳ(x) 〉 ≡ C, a.e.x ∈ (
0 < σ̄(·) < 1

)
,

〈(A1 − A0)∇ ȳ(x ′),∇ ȳ(x ′) 〉 ≤ 〈(A1 − A0)∇ ȳ(x),∇ ȳ(x) 〉 ≤ 〈(A1 − A0)∇ ȳ(x ′′),∇ y(x ′′) 〉,
a.e.x ′ ∈ (

σ̄ (·) = 0
)
, a.e.x ∈ (

0 < σ̄(·) < 1
)
, a.e.x ′′ ∈ (

σ̄ (·) = 1
)
.

(3.7)
Further, in the case ∫

�

σ̄ (x)dx < β|�|, (3.8)

the following holds:

〈(A1 − A0)∇ ȳ(x),∇ ȳ(x) 〉 ≤ 0, a.e.x ∈ (
0 ≤ σ̄ (·) < 1

); (3.9)

in the case ∫

�

σ̄ (x)dx > α|�|, (3.10)
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the following holds:

〈(A1 − A0)∇ ȳ(x),∇ ȳ(x) 〉 ≥ 0, a.e.x ∈ (
0 < σ̄(·) ≤ 1

); (3.11)

and in the case

α|�| <

∫

�

σ̄ (x)dx < β|�|, (3.12)

the following holds:

〈(A1 − A0)∇ ȳ(x),∇ ȳ(x) 〉 = 0, a.e.x ∈ (
0 < σ̄(·) < 1

)
. (3.13)

Proof Since A
(
�[α, β]) is convex and closed in L1(�; S

n), by Corollary 2.6 part (i), we
have that Problem (�̄c[α, β]) admits an optimal solution σ̄ (·) and the following is its char-
acterization:

0 ≥
∫

�

(
σ(x) − σ̄ (x)

) 〈(A1 − A0)∇ ȳ(x),∇ ȳ(x) 〉 dx, ∀σ(·) ∈ �[α, β]. (3.14)

We now look at further necessary conditions for (ȳ(·), σ̄ (·)).
Since (3.6) holds, for any v(·) ∈ V0 where

V0 ≡
{
v(·) ∈ L∞(�; R)

∣∣
∫

�

v(x)dx = 0
}
,

with

supp v(·) ⊆ (0 < σ̄(·) < 1),

one has σ(·) = σ̄ (·) ± εv(·) ∈ �[α, β] as long as ε > 0 is small enough. By taking such a
σ(·) in (3.14), we have

∫

�

v(x) 〈(A1 − A0)∇ ȳ(x),∇ ȳ(x) 〉 dx = 0, ∀v(·) ∈ V0. (3.15)

This leads to the first identity in (3.7).
Next, let the set (σ̄ (·) = 0) have a positive measure. Then take any v(·) ∈ L∞(�) with

v(x) ≥ 0, supported on (σ̄ (·) = 0), and any w(·) ∈ L∞(�) with w(x) ≥ 0, supported on
(0 < σ̄(·) ≤ 1) (which has a positive measure by (3.6)), and

∫

(0<σ̄(·)≤1)
w(x)dx =

∫

(σ̄ (·)=0)
v(x)dx . (3.16)

Then for ε > 0 small enough,

σ(·) = σ̄ (·) + εv(·) − εw(·) ∈ �[α, β].
Hence, using such a σ(·) in (3.14), one obtains the first inequality in the second conclusion
of (3.7). Likewise, we can obtain the second inequality in the second conclusion of (3.7).

Further, if (3.8) holds, we may take v(·) ∈ L∞(�) with v(·) ≥ 0, supported in (0 ≤
σ̄ (·) < 1). Then, for ε > 0 small, σ̄ (·) + εv(·) ∈ �[α, β]. Taking such a σ(·) in (3.14), we
obtain (3.9). Likewise we can obtain (3.11) under (3.10). Finally, combining the above two
cases, we obtain (3.13) under (3.12). This completes the proof. ��

We now present an interesting corollary.
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Corollary 3.2 Let 0 < α < β < 1, and A0 < A1. Then there exists an optimal control σ̄ (·)
of Problem (�̄c[α, β]) such that

∫

�

σ̄ (x)dx = β|�|. (3.17)

Further, if σ̄ (·) is a constant on �, then σ̄ (·) is not an optimal control of Problem (�̄c[α, β]).
Proof The first conclusion is obvious. It follows easily from themonotonicity of the principal
eigen map (see (1.10)).

Next, suppose σ̄ (x) ≡ σ0 ∈ [α, β] ⊂ (0, 1) (so that σ̄ (·) ∈ �[α, β]). If such a σ̄ (·) is
optimal, then by the first equation in (3.7), we have

〈(A1 − A0)∇ ȳ(x),∇ ȳ(x) 〉 ≡ C, a.e. x ∈ �. (3.18)

On the other hand, since A(σ̄ (x)) is a constant matrix, ȳ(·) ∈ C∞(�). Thus making use
of the fact that ȳ(·) is strictly positive in � and is zero on ∂�, one sees that ȳ(·) attains its
maximum on � at some point x0 ∈ �. This implies ∇ ȳ(x0) = 0 and therefore,

C = 〈(A1 − A0)∇ ȳ(x0),∇ ȳ(x0) 〉 = 0.

Since A1 − A0 is positive definite, C = 0 and (3.18) implies ȳ(·) ≡ 0. This is a contradiction
since ȳ(·) is positive in �. Hence, such a σ̄ (·) is not optimal. ��

Note that a constant σ̄ (·) ≡ σ0 is not an optimal control means that a perfect mixture of
two different materials does not gives the optimal solution to the problem.

To conclude this section, we present an illustrative example for the case α = 0, β = 1
with both A0 ≤ A1 and A0 ≥ A1 fail.

Example 3.3 Let� = [−1, 1]×[−1, 1]which is a bounded Lipschitz domain, α = 0, β = 1,
and

A0 =
( 1

2 0
0 3

2

)
, A1 =

(
1 0
0 1

)
.

Thus, both A0 ≤ A1 and A0 ≥ A1 fail. Let us consider the following problem:
{−(

ayx1x1 + byx2x2
) = λy, in �,

y
∣∣
∂�

= 0,

for any given a, b > 0. Then we can check directly that the principal eigen pair is given by
⎧
⎪⎨

⎪⎩

λ = (a + b)π2

4
,

y(x1, x2) = cos
πx1
2

cos
πx2
2

, (x1, x2) ∈ [−1, 1] × [−1, 1].
From this, we see that for any constant σ ∈ [0, 1], one has

A0 + σ(A1 − A0) =
( 1

2 + σ
2 0

0 3
2 − σ

2

)
,

and by the above calculation,

λA0+σ(A1−A0) = π2

2
= λA0 = λA1 , ∀σ ∈ [0, 1]. (3.19)
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This shows that the map a(·) �→ λa(·) is not strictly convex. If σ(x) ≡ σ ∈ (0, 1) is optimal,
then by Theorem 3.1, we should have

C ≡ 〈(A1 − A0)∇ y(x),∇ y(x) 〉 = π2

4
〈
( 1

2 0
0 − 1

2

)(
sin πx1

2 cos πx2
2

cos πx1
2 sin πx2

2

)
,

(
sin πx1

2 cos πx2
2

cos πx1
2 sin πx2

2

)
〉

= π2

8

[
sin2

πx1
2

cos2
πx2
2

− cos2
πx1
2

sin2
πx2
2

]
= π2

8
sin

π(x1 + x2)

2
sin

π(x1 − x2)

2
,

which is impossible.Hence,σ(x) ≡ σ ∈ (0, 1) is not an optimal solution to the corresponding
maximization problem. Due to (3.19), we see that both σ(·) = 0 and σ(·) = 1 are not optimal
either.By theway, the above also roughlymeans that in the current case, if A0 and A1 represent
the heat diffusibility of the two materials, then the uniform mixture of any ratio of these two
materials is not optimal for Problem (�̄c[0, 1]). It is not clear to us at the moment what is an
optimal control for this problem.

4 Relaxation of problem (3[˛,ˇ])
Mimicking Problem (�̄c[α, β]), we may pose the following problem.

Problem (�c[α, β]). Let 0 < μ0 ≤ μ1 < ∞, A0, A1 ∈ M[μ0, μ1] and 0 ≤ α ≤ β ≤ 1
satisfying (1.24). Find a σ(·) ∈ �[α, β] such that

λσ(·) = inf
σ(·)∈�[α,β] λσ(·). (4.1)

Note that although �[α, β] is convex and closed (in L1(�; R)), A(·) �→ λA(·) is concave
and not necessarily convex in general. Therefore, it is not clear if themap σ(·) �→ λσ(·) admits
a minimum on �[α, β]. In another word, the above Problem (�c[α, β]) might not admit a
minimum over �[α, β] in general. Hence, instead of Problem (�c[α, β]), we will introduce
another relaxation of Problem (�[α, β]), for which the existence of an optimal solution is
guaranteed. To this end, let us recall some results relevant to the so-called H -convergence,
which will play an essential role in the relaxation of Problem (�[α, β]).

4.1 H-convergence

We recall the following definition.

Definition 4.1 A sequence {aε(·)} ⊆ M [μ0, μ1] is said to be H -convergent to a∗(·) ∈
M [μ0, μ1] on �, denoted by aε(·) H−→ a∗(·), if for any f ∈ W−1,2(�), the weak solution
yε(·) of the following problem

{−∇ · (aε(x)∇ yε(x)
) = f , in �,

yε
∣∣
∂�

= 0
(4.2)

has the property that
yε(·) → y∗(·), weakly in W 1,2

0 (�) (4.3)

with y∗(·) being the weak solution to the following:
{−∇ · (a∗(x)∇ y∗(x)

) = f , in �,

y∗∣∣
∂�

= 0.
(4.4)
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In 1968, Spagnolo ([31]) introduced the above notion, called the G-convergence, for
symmetric operators (i.e., each aε(·) is symmetric matrix valued and so is a∗(·)). The notion
was generalized by Tartar for possibly non-symmetric operators ([32]), and is called the
H -convergence, for which the following additional condition is required:

aε(·)∇ yε(·) → a∗(·)∇ y∗(·), weakly in L2(�; R
n), (4.5)

which is automatically true when aε(·) is symmetric and is H -convergent. It is known that
for symmetric operators, the G-convergence is equivalent to the H -convergence ([3]). In
the problems that we are studying, all the involved second order differential operators are
symmetric. Hence, G-convergence will be enough. However, we prefer to use the name H -
convergence instead, just keep in mind that we are treating the case of symmetric operators.
For more words on H -convergence, see also [4,17,30].

Note that in the definition, the H -limit a∗(·) of aε(·) is independent of the choice of
f ∈ W−1,2(�), and the whole sequence (not just a subsequence) yε(·) is required to be
weakly convergent in W 1,2

0 (�).

For any X ⊆ M [μ0, μ1], we denote the H -closure of X by X
H
. Let us now list some

useful properties of H -convergence and H -closure, found in [3].

(i) Sequential compactness The set M [μ0, μ1] is sequentially compact under H -
convergence, i.e., for any sequence {ak(·)}k≥1 ⊆ M [μ0, μ1], there exists a subse-

quence {aki (·)}i≥1 and an a∗(·) ∈ M [μ0, μ1] such that aki (·) H−→ a∗(·).
(ii) Locality If aε(·) H−→ a∗(·) on �, then aε(·) H−→ a∗(·) on any subdomain ω ⊆ �.

(iii) Monotonicity and uniqueness If aε(·) H−→ a∗(·), bε(·) H−→ b∗(·) with aε(·) ≤ bε(·),
then a∗(·) ≤ b∗(·). In particular, if 0 < μ0 ≤ aε(x) ≤ μ1, then

μ0 ≤ a∗(x) ≤ μ1, x ∈ �.

Also, by taking bε(·) = aε(·), one has

aε(·) H−→ a∗(·)
aε(·) H−→ b∗(·)

}

⇒ a∗(·) = b∗(·).

That is, the H -limit of a sequence is unique.
(iv) Non-homogeneous boundary conditions Let

aε(·) H−→ a∗(·), ϕ ∈ W 1,2(�), f ∈ W−1,2(�),

and yε(·) and y∗(·) respectively be the solutions to the following:
{−∇ · (aε(x)∇ yε(x)

) = f , in �,

yε
∣∣
∂�

= ϕ,
(4.6)

{−∇ · (a∗(x)∇ y∗(x)
) = f , in �,

y∗∣∣
∂�

= ϕ.
(4.7)

Then

yε(·) → y∗(·), weakly in W 1,2(�).

(v) Metrizability Let {f�(·)}�≥1 ⊆ L2(�; R
n) such that {∇ · f�}�≥1 is dense in W−1,2(�).

For any a(·), b(·) ∈ M [μ0, μ1], let ya(·)
� (·) and yb(·)� (·) be the unique weak solutions
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to the following:
{

−∇ ·
(
a(x)∇ ya(·)

� (x)
)

= ∇ · f�, in �,

ya(·)
�

∣
∣
∂�

= 0,

and
{

−∇ ·
(
b(x)∇ yb(·)� (x)

)
= ∇ · f�, in �,

yb(·)�

∣
∣
∂�

= 0.

Define

ρ
(
a(·), b(·)) =

∑

�≥1

2−� ‖ya(·)
� (·) − yb(·)� (·)‖2 + ‖a(·)∇ ya(·)

� (·) − b(·)∇ yb(·)� (·)‖2
‖f�‖2 .

(4.8)
Then ρ(· , ·) is a metric on M [μ0, μ1] such that for any aε(·), a∗(·) ∈ M [μ0, μ1],

aε(·) H−→ a∗(·) ⇐⇒ ρ
(
aε(·), a∗(·)) → 0. (4.9)

(vi) Upper and lower bounds Let
{
aε(·) → ā(·), aε(·)−1 → a(·)−1, weak∗ in L∞(�; S

n),

aε(·) H−→ a∗(·).
Then

a(x) ≤ a∗(x) ≤ ā(x), a.e.x ∈ �. (4.10)

(vii) Commutativity with congruent transformation Let Q ∈ R
n×n be non-singular. Then

aε(·) H−→ a∗(·) ⇐⇒ Qaε(·)QT H−→ Qa∗(·)QT.

(viii) Pointwiseness Let G ⊆ M[μ0, μ1], denote
L∞(�;G) =

{
a(·) ∈ L∞(�; S

n)
∣∣ a(x) ∈ G, a.e.x ∈ �

}
,

and define

G
H =

{
A ∈ M[μ0, μ1]

∣∣ χ�(·)A ∈ L∞(�;G)
H
}
.

Then

L∞(�;G)
H = L∞(

�;GH ) ≡
{
a∗(·) ∈ M [μ0, μ1]

∣∣ a∗(x) ∈ G
H

, a.e.x ∈ �
}
. (4.11)

Namely, a∗(·) ∈ L∞(�;G)
H
if and only if for almost all x ∈ �, there exists a sequence

{ak(· ; x)}k≥1 ⊆ L∞(�;G) (depending on x) such that

ak(· ; x) H−→ χ�(·)a∗(x), k → ∞.

More generally, let Q ⊆ M [μ0, μ0] and define
Qx = {

q(x)
∣∣ q(·) ∈ Q}

, ∀x ∈ �.

Then, under some mild conditions (see Theorem 2.3 in [20])

Q H =
{
a∗(·) ∈ M [μ0, μ1]

∣∣ a∗(x) ∈ Q
H
x , a.e.x ∈ �

}
.
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Note that by taking ak(·) = χ�(·)A with A ∈ G, we see that

G ⊆ G
H

. (4.12)

We will see that G is a proper subset of G
H
below.

4.2 Lamination

In this subsection, we consider a special case involving two matrices, which will be useful
in our relaxation of Problem (�[α, β]). Let us first present the following result.

Theorem 4.2 Let 0 < μ0 ≤ μ1 < ∞ and A, B ∈ M[μ0, μ1] be fixed.
(i) For any θ ∈ (0, 1) and e ∈ Sn−1 ≡ {x ∈ R

n
∣
∣ |x | = 1}, define

Hε(A, B; θ, e) =

⎧
⎪⎨

⎪⎩

A,
{ 〈 x, e 〉

ε

}
∈ [θ, 1),

B,
{ 〈 x, e 〉

ε

}
∈ [0, θ),

x ∈ R
n, (4.13)

where {r} = r − [r ] is the decimal part of the real number r . Then, as ε → 0+,

Hε(A, B; θ, e)
H−→ H[A, B; θ, e]

≡ (1 − θ)A + θB − θ(1 − θ)(A − B)eeT(A − B)

eT
[
θ A + (1 − θ)B

]
e

= A − θ(A − B) − θ(1 − θ)(A − B)eeT(A − B)

eT
[
B + θ(A − B)

]
e

∈ {A, B} H ⊆ M[μ0, μ1].
(4.14)

(ii) For any m ≥ 1, let

�m(A, B) =
{
A∗ ∈ S

n
∣∣ (1 − θ)(A − B) = (A∗ − B)

[
I + θ

m∑

k=1

βk
ekeTk (A − B)

eTk Bek

]
,

for some θ ∈ [0, 1], ek ∈ Sn−1, βk ≥ 0,
m∑

k=1

βk = 1
}
,

(4.15)
and

�(A, B) =
∞⋃

m=1

�m(A, B) ⊆ {A, B} H . (4.16)

Then

�1(A, B) =
{
H[A, B; θ, e] ∣∣ θ ∈ [0, 1], e ∈ Sn−1

}
≡ H[

A, B; [0, 1], Sn−1], (4.17)

and
�1(�(A, B), B

) ⊆ �(A, B). (4.18)

(iii) For any θ ∈ [0, 1], H ∈ S
n with H ≥ 0 and tr (H) = 1, the matrix

I + θB− 1
2 HB− 1

2 (A − B)
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is non-singular, and

�(A, B) =
{
B + (1 − θ)(A − B)

[
I + θB− 1

2 HB− 1
2 (A − B)

]−1 ∣
∣

θ ∈ [0, 1], H ≥ 0, tr (H) = 1
}
.

(4.19)

Proof

(i) Relation (4.14) follows from [3], Corollary 1.3.34 (see [24] also).
(ii) This is a restatement of Lemma 2.2.3 of [3].
(iii) Let θ ∈ (0, 1) and H > 0, tr (H) = 1, we have I − H ≥ 0, and

det
[
I + θB− 1

2 HB− 1
2 (A − B)

]

= det(B
1
2 ) det

[
I + θB− 1

2 HB− 1
2 A − θB− 1

2 HB
1
2

]
det(B− 1

2 )

= det
[
I + θH(B− 1

2 AB− 1
2 − I )

]

= det(H− 1
2 ) det

[
I − H + (1 − θ)H + θHB− 1

2 AB− 1
2

]
det(H

1
2 )

= det
[
I − H + (1 − θ)H + θH

1
2 B− 1

2 AB− 1
2 H

1
2

]

≥ det
[
I − H + (1 − θ)H + θ

μ0

μ1
H

]
= det

[
I − θ

μ1 − μ0

μ1
H

]

= det
[θμ0 + (1 − θ)μ1

μ1
I + θ(μ1 − μ0)

μ1
(I − H)

]
≥

[θμ0 + (1 − θ)μ1

μ1

]n
.

By continuity, for any θ ∈ [0, 1], H ≥ 0 (instead of just H > 0), with tr H = 1, we have

det
[
I + θB− 1

2 HB− 1
2 (A−B)

]
≥

[θμ0 + (1 − θ)μ1

μ1

]n
> 0.

Therefore,
[
I + θB− 1

2 HB− 1
2 (A − B)

]
is non-singular.

On the other hand, if A∗ ∈ �(A, B), then

(1 − θ)(A − B) = (A∗ − B)
[
I + θ

m∑

k=1

βk
ekeTk (A − B)

eTk Bek

]
, (4.20)

for some θ ∈ [0, 1], βk ≥ 0,
m∑

k=1

βk = 1, and ek ∈ Sn−1. Note that

m∑

k=1

βk
ekeTk
eTk Bek

= B− 1
2

m∑

k=1

βk
(B

1
2 ek)

|B 1
2 ek |

( (B
1
2 ek)

|B 1
2 ek |

)T
B− 1

2 ≡ B− 1
2 HB− 1

2 ,

where

H =
m∑

k=1

βk
(B

1
2 ek)T

|B 1
2 ek |

( (B
1
2 ek)

|B 1
2 ek |

)T ≥ 0, tr (H) =
m∑

k=1

βk = 1.

Thus, (4.20) is equivalent to the following:

(1 − θ)(A − B) = (A∗ − B)
[
I + θB− 1

2 HB− 1
2 (A − B)

]
. (4.21)
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Then by the invertibility of
[
I + θB− 1

2 HB− 1
2 (A − B)

]
, we have

A∗ = B + (1 − θ)(A − B)
[
I + θB− 1

2 HB− 1
2 (A − B)

]−1
. (4.22)

Conversely, if (4.22) holds for some θ ∈ [0, 1], and H ≥ 0, tr (H) = 1, then (4.21) holds.
Moreover, it is easy to see that

H =
n∑

k=1

βkξkξ
T
k

with βk ≥ 0 (1 ≤ k ≤ n),
n∑

k=1

βk = 1 and ξk ∈ Sn−1 (1 ≤ k ≤ n). Thus

B− 1
2 HB− 1

2 =
n∑

k=1

βk
ξkξ

T
k

eTk Bek
,

where

ek = B− 1
2 ξk

|B− 1
2 ξk |

∈ Sn−1, 1 ≤ k ≤ n.

Hence,

(1 − θ)(A − B) = (A∗ − B)
[
I + θB− 1

2

n∑

k=1

βk
ξkξ

T
k

eTk Bek
B− 1

2 (A − B)
]

= (A∗ − B)
[
I + θ

n∑

k=1

βk
ekeTk
eTk Bek

(A − B)
]
,

which means A∗ ∈ �(A, B). This completes the proof. ��
In the above, any element in�(A, B) is called a lamination of Awith base B. From (4.19),

we see that A, B ∈ �(A, B) (by taking θ = 0, 1). Thus,

{A, B} � �(A, B) ⊆ {A, B}H .

Note also that for any θ ∈ (0, 1), H ≥ 0, tr (H) = 1 it holds that (see (4.10))

(
(1 − θ)A−1 + θB−1

)−1 ≤ B + (1 − θ)(A − B)
[
I + θB− 1

2 HB− 1
2 (A − B)

]−1

≤ (1 − θ)A + θB. (4.23)

This gives bounds for elements in �(A, B) ⊆ M[μ0, μ1]. Further, we should keep in mind
some facts about the set �(A, B):

• It is possible that �(A, B) �= �(B, A) (n ≥ 3)

• �(A, B) is not necessarily convex, and even {A, B} H might be non-convex.

• It is possible that {A, B} H �= �(A, B)
⋃

�(B, A).
• Even for A = λB with B being diagonal (n ≥ 2 and B �= γ I for any γ ∈ R, of course),

as long as λ �= 1, �(A, B) contains non-diagonal matrices.
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4.3 Relaxation problem

In this subsection, we fix 0 < μ0 ≤ μ1 < ∞, 0 ≤ α ≤ β ≤ 1, and G = {A0, A1} ⊆
M[μ0, μ1] satisfying (1.24). For a domain ω, denote

Aω[α, β] =
{
A0 + χ�1

(·)(A1 − A0)
∣
∣ �1 ⊆ ω measurable, α|ω|≤|�1|≤β|ω|

}
.

Recall (see (1.18)) that A [α, β] = A�[α, β]. We first present a simple result.

Proposition 4.3 Assume A0 �= A1. The following hold:

α = 0 ⇐⇒ χ�(·)A0 ∈ A [α, β] H , (4.24)

β = 1 ⇐⇒ χ�(·)A1 ∈ A [α, β] H . (4.25)

Proof We just prove (4.24). One can prove (4.25) similarly.
Suppose α = 0. Then

χ�(·)A0 ∈ A [0, β] ⊆ A [0, β] H .

Conversely, suppose χ�(·)A0 ∈ A [α, β] H . Then there exists a sequence
ak(·) = χ

�c
k
(·)A0 + χ�k

(·)A1 ∈ A [α, β], α|�| ≤ |�k | ≤ β|�|, k ≥ 1,

such that ak(·) H−→ χ�(·)A0. We may let

χ�k
(·) → g(·), weak∗ in L∞(�; S

n),

with

s ≡ 1

|�|
∫

�

g(x)dx = lim
k→∞

|�k |
|�| ∈ [α, β].

Then by (vi) of listed properties of H -convergence, we have

A0 ≤ [1 − g(·)]A0 + g(·)A1, A−1
0 ≤ [1 − g(·)]A−1

0 + g(·)A−1
1 .

Thus, integrating each side, one has

A0 ≤ (1 − s)A0 + s A1, A−1
0 ≤ (1 − s)A−1

0 + s A−1
1 .

Since A0 �= A1, the above hold only if s = 0. Hence, α = 0, proving the conclusion. ��
We now formulate the following problem which is called an H -relaxation of Problem

(�[α, β]), with H indicating that the relaxation is in the sense of H -convergence.

Problem (�H [α, β]). Find an a(·) ∈ A [α, β] H such that

λa(·) = inf
a(·)∈A [α,β] H

λa(·) (4.26)

Any a(·) satisfying (4.26) is called an optimal control of Problem (�H [α, β]), which is
also called an optimal H -relaxed control of Problem (�[α, β]). The superscript “H” indicates
the H -relaxation.

Problem (�H [α, β]) is a kind of relaxation for control problems in the coefficients, we
refer the readers the following works: [7,9,21,23,25,28,33].

We first have the following existence theorem.
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Theorem 4.4 Problem (�H [α, β]) admits an optimal control a(·) ∈ A [α, β] H .

Proof Let ak(·) ∈ A [α, β] H be a minimizing sequence of Problem (�H [α, β]) with
(λk, yk(·)) being the corresponding principal eigen-pair. Thus,

{−∇ · (ak(x)∇ yk(x)
) = λk yk(x), x ∈ �,

yk |∂� = 0,
(4.27)

yk(x) ≥ 0, x ∈ �,

∫

�

|yk(x)|2 dx = 1, (4.28)

and

lim
k→∞ λk = λ ≡ inf

a(·)∈A [α,β] H
λa(·).

Since yk(·) is uniformly bounded inW 1,2
0 (�), andM [μ0, μ1] is sequentially compact under

H -convergence (Property (i) of H -convergence listed in Sect. 4.1), we may assume that

yk(·) → y(·), weakly in W 1,2
0 (�), strongly in L2(�), (4.29)

and
ak(·) H−→ a(·), (4.30)

for some y(·) ∈ W 1,2
0 (�) and a(·) ∈ A [α, β] H . Clearly,

y(x) ≥ 0, x ∈ �,

∫

�

|y(x)|2dx = 1, (4.31)

and {−∇ · (a(x)∇ y(x)
) = λ y(x), x ∈ �,

y
∣∣
∂�

= 0,
(4.32)

Hence, λa(·) = λ and a(·) ∈ A [α, β] H is an optimal control. ��
Now, we state the following necessary conditions for an optimal control of Problem

(�H [α, β]).

Theorem 4.5 Let a(·) ∈ A [α, β] H be an optimal control of Problem (�H [α, β]) with
(λ, y(·)) ∈ [μ0, μ1] × W 1,2

0 (�) being the corresponding principal eigen pair. Then

λ =
∫

�

|a(x)
1
2 ∇ y(x)|2dx = sup

b(·)∈A [α,β] H

∫

�

|b(x)− 1
2 a(x)∇ y(x)|2dx

= sup
b(·)∈A [α,β]

∫

�

|b(x)− 1
2 a(x)∇ y(x)|2dx,

(4.33)

and
∫

�

〈[
a(x) − a(x)b(x)−1a(x)

]∇ y(x),∇ y(x)
〉
dx ≥ 0, ∀ b(·) ∈ A [α, β] H , (4.34)

Equivalently,
∫

�

〈[
a(x) − a(x)b(x)−1a(x)

]∇ y(x),∇ y(x)
〉
dx ≥ 0, ∀ b(·) ∈ A [α, β]. (4.35)
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When α = 0 and β = 1, the following also holds:

〈 a(x)∇ y(x),∇ y(x) 〉 ≥ 〈 B−1a(x)∇ y(x), a(x)∇ y(x) 〉, a.e.x ∈ �, B ∈ {A0, A1} H ,

(4.36)
which is equivalent to

〈 a(x)∇ y(x),∇ y(x) 〉 ≥ 〈 A−1
i a(x)∇ y(x), a(x)∇ y(x) 〉, a.e.x ∈ �, i = 0, 1. (4.37)

This is a kind of maximum principle for the optimal control of Problem (�H [α, β]). We
point out that when 0 < α or β < 1, one could not get (4.36). Also, it is clear that if (4.37)
holds, then by H -convergence,

〈 a(x)∇ y(x),∇ y(x) 〉 ≥ 〈 b(x)−1a(x)∇ y(x), a(x)∇ y(x) 〉, a.e.x ∈ �, ∀b(·) ∈ A [α, β] H .

(4.38)
In other words, in some sense, (4.36), (4.37) and (4.38) are mutually equivalent. To prove
this theorem, we need several lemmas.

Lemma 4.6 The metric ρ(· , ·) onM [μ0, μ1] defined by (4.8) is uniformly continuous in the
following sense: For any ε > 0, there exists a δ > 0 (only depending on ε > 0) such that

ρ(a(·), b(·)) < ε, ∀a(·), b(·) ∈ M [μ0, μ1], ‖a(·) − b(·)‖1 < δ. (4.39)

Consequently, if {ak(·)} and {bk(·)} are two sequences in M [μ0, μ1] such that

ak(·) H−→ a∗(·), ‖ak(·) − bk(·)‖1 → 0. (4.40)

Then bk(·) H−→ a∗(·).
Proof Since M [μ0, μ1] is sequentially compact under H -convergence, it suffices to show

that (4.40) implies bk(·) H−→ a∗(·).
Let f ∈ W−1,2(�). Consider

{−∇ · (ak(x)∇ yk(x)
) = f , in �,

yk
∣∣
∂�

= 0
(4.41)

and {−∇ · (bk(x)∇zk(x)
) = f , in �,

zk
∣∣
∂�

= 0.
(4.42)

Then

yk(·) → y∗(·), weakly inW 1,2
0 (�)

with
{−∇ · (a∗(x)∇ y∗(x)

) = f , in �,

y∗∣∣
∂�

= 0.

Then, thanks to Theorem 2.3, for some p > 2 and C = C f , the following holds:

‖∇ yk‖L p(�) ≤ C, ‖∇zk‖L p(�) ≤ C .

We note that (making use of the Dominated Convergence Theorem)

‖ak(·) − bk(·)‖ 2p
p−2

→ 0.
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It holds that

0 =
∫

�

ak(x)∇ yk(x) · ∇(
yk(x) − zk(x)

)
dx −

∫

�

bk(x)∇zk(x) · ∇(
yk(x) − zk(x)

)
dx

=
∫

�

ak(x)
(∇ yk(x) − ∇zk(x)

) · (∇ yk(x) − ∇zk(x)
)
dx

+
∫

�

(
ak(x) − bk(x)

)∇zk(x) · ∇(
yk(x) − zk(x)

))
dx

≥ μ0‖∇(yk(·) − zk(·)‖2 − ‖ak(·) − bk(·)‖ 2p
p−2

‖∇(zk(·)‖p
(‖∇(yk(·) − zk(·))‖p

)
.

Therefore,

zk(·) − yk(·) → 0, strongly inW 1,2
0 (�).

This implies

zk(·) → y∗(·), weakly inW 1,2
0 (�).

That is, bk(·) H−→ a∗(·). This completes the proof. ��
The above result shows that there exists a non-decreasing function h : [0,∞) → [0,∞)

with h(0) = h(0+) = 0 such that

ρ
(
a(·), b(·)) ≤ h

(‖a(·) − b(·)‖1
)
, ∀a(·), b(·) ∈ M [μ0, μ1]. (4.43)

Such a relation will be used below.

Lemma 4.7

(i) Let {�i } be a sequence of measurable subsets of � such that

|�i | → γ |�|
and

ai (·) = A0 + χ�i
(·)(A1 − A0)

H−→ a∗(·).

Then a∗(·) ∈ A [γ, γ ] H .
(ii) For any a∗(·) ∈ A [α, β] H , there is a γ ∈ [α, β] such that a∗(·) ∈ A [γ, γ ] H .
Proof (i) For any i , we can choose a measurable set �̃i ⊆ � such that |�̃i | = γ |�| and

∫

�

∣∣χ�i (x) − χ�̃i
(x)

∣∣dx =
∣∣∣|�i | − γ |�|

∣∣∣.

In fact, we can choose �̃i ⊆ �i if |�i | ≥ γ |�| and �̃i ⊃ �i if |�i | < γ |�|. Let
ãi (·) = A0 + χ

�̃i
(·)(A1 − A0) ∈ A [γ, γ ].

Then ‖̃ai (·) − ai (·)‖1 → 0. By Lemma 4.6, we get ãi (·) H−→ a∗(·) and consequently

a∗(·) ∈ A [γ, γ ] H .
(ii) The result follows directly from (i). ��
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Lemma 4.8 Let {�i ⊆ �
∣
∣ 1 ≤ i ≤ m} be a partition of�, i.e., it is a set of mutually disjoint

domain such that
∣
∣� \

m⋃

i=1

�i
∣
∣ = 0. (4.44)

(i) For i = 1, 2, . . . ,m, let aiε(·) ∈ M [μ0, μ1] be such that

aiε(·) H−→ ai0(·), 1 ≤ i ≤ m. (4.45)

Then
m∑

i=1

χ�i
(·)aiε(·) H−→

m∑

i=1

χ�i
(·)ai0(·). (4.46)

(ii) For i = 1, 2, . . . ,m, let ai (·)
∣
∣
�i

∈ A�i [0, 1] H . Then
m∑

i=1

χ�i
(·)ai (·) ∈ A [α, β] H (4.47)

if and only if for some γ1, γ2, . . . , γm ∈ [0, 1], one has ai (·)
∣∣
�i

∈ A�i [γi , γi ] H and

α|�| ≤
m∑

i=1

γi |�i | ≤ β|�|. (4.48)

Proof (i) By the locality of H -convergence (see Property (ii) in §4.1), we get aiε(·) H−→ ai0(·)
on �i for every i = 1, 2, . . .m.

On the other hand, by the compactness of H -convergence (see Property (i) in §4.1),

along a subsequence,
∑m

i=1
χ�i

(·)aiε(·) H−→ a∗(·) on � for some a∗(·) ∈ M [μ0, μ1].
Then by locality, aiε(·) H−→ a∗(·) on �i for every i = 1, 2, . . .m. By the uniqueness of H -
convergent limit (see Property (iii) in §4.1), a∗(·) = ai0(·) on �i (1 ≤ i ≤ m). Thus, a∗(·) =∑m

i=1
χ�i

(·)ai0(·) on �. Consequently, (4.46) holds, not only in the sense of subsequence.

(ii) Sufficiency. For i = 1, 2, . . . ,m, we have �k
i ⊂ �i such that |�k

i | = γi |�i | and

aki (·) = A0 + χ
�k
i
(·)(A1 − A0)

H−→ ai (·), on �i .

Thus, by (i),

m∑

i=1

χ�i
(·)aki (·) H−→

m∑

i=1

χ�i
(·)ai (·).

On the other hand,

1

|�|
∣∣∣

m⋃

i=1

�k
i

∣∣∣ = 1

|�|
m∑

i=1

γi |�i | ≡ γ ∈ [α, β].

Therefore,
m∑

i=1

χ�i
(·)ai (·) ∈ A [γ, γ ] H ⊆ A [α, β] H .
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Necessity. By Lemma 4.7, there is γ ∈ [α, β] such that
∑m

i=1
χ�i

(·)ai (·) ∈ A [γ, γ ] H .
Thus, there is a sequence {Ek} of measurable subsets of � such that |Ek | = γ |�| and

ak(·) = A0 + χEk
(·)(A1 − A0)

H−→
m∑

i=1

χ�i
(·)ai (·).

Then, by locality, ak(·) H−→ ai (·) on �i . On the other had, we can suppose that for every
i = 1, 2, . . . ,m, |Ek ∩ �i | convergence to γi |�i | for some γi ∈ [0, 1]. Thus ai (·)

∣
∣
�i

∈
A�i [γi , γi ] H and

m∑

i=1

γi |�i | = lim
k→+∞

m∑

i=1

|Ek ∩ �i | = lim
k→+∞ |Ek | = γ |�|.

We get the proof. ��
Remark 4.9 Wewould like tomention thatγ in Lemma4.7(ii)might be not unique. Therefore,

it is possible that although
∑m

i=1
χ�i

(·)ai (·) ∈ A [α, β] H and ai (·)
∣
∣
�i

∈ A�i [γi , γi ] H , but
1

|�|
∑m

i=1
γi |�i | /∈ [α, β].

The following result is an extension of Theorem 4.2 (i), replacing A and B by a(·) and
b(·), respectively.
Lemma 4.10 Let a(·), b(·) ∈ M [μ0, μ1], θ ∈ [0, 1] and e ∈ Sn−1. For any small ε > 0,
define

Hε[a(·), b(·); θ, e](x) =

⎧
⎪⎨

⎪⎩

a(x),
{ 〈 x, e 〉

ε

}
∈ [θ, 1),

b(x),
{ 〈 x, e 〉

ε

}
∈ [0, θ).

(4.49)

Then as ε → 0,

Hε[a(·), b(·); θ, e](·) H−→ H[a(·), b(·); θ, e](·)
≡ a(·) − θ [a(·) − b(·)] − θ(1 − θ)[a(·) − b(·)]eeT[a(·) − b(·)]

eT{b(·) + θ [a(·) − b(·)]}e .

(4.50)

The proof of the above lemma essentially follows from that of [24], Proposition 2.1. Based
on the above, we further have the following result.

Lemma 4.11 Let γi ∈ [0, 1], ai (·) ∈ A [γi , γi ] H (i = 1, 2). Then for any θ ∈ [0, 1] and
e ∈ Sn−1,

b(·) ≡ a1(·) − θ [a1(·) − a2(·)] − θ(1 − θ)[a1(·) − a2(·)]eeT[a1(·) − a2(·)]
eT

{
a2(·) + θ [a1(·) − a2(·)]

}
e

∈ A [γ, γ ] H ,

(4.51)
where γ = (1 − θ)γ1 + θγ2. Consequently,

H
[
A [α, β] H ,A [α, β] H ; [0, 1], Sn−1

]
⊆ A [α, β] H . (4.52)
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Proof We need only to consider the case θ ∈ (0, 1), which is fixed below. Take an e ∈ Sn−1.
For simplicity of notation, denote θ1 = 1 − θ , θ2 = θ . For any k ≥ 1, denote

Q1
k = {

x ∈ �
∣
∣ {

k 〈 x, e 〉} ∈ [θ, 1)
}
, Q2

k = {
x ∈ �

∣
∣ {

k 〈 x, e 〉} ∈ [0, θ)
}

(4.53)

and define
bk(·) = χQ1

k
(·)a1(·) + χQ2

k
(·)a2(·). (4.54)

Then
χQi

k
(·) → θiχ�(·), weakly in L2(�), i = 1, 2. (4.55)

Moreover, by Lemma 4.10, bk(·) H−→ b(·).
On the other hand, for i = 1, 2, there is a sequence {Ei

j } j≥1 of measurable subsets of �

such that |Ei
j | = γi |�|,

χEi
j
(·) → σi (·), weakly in L2(�), (4.56)

and
aij (·) = A0 + χ

Eij
(·)(A1 − A0)

H−→ ai (·). (4.57)

By (4.55),
2∑

i=1

∫

Qi
k

σi (x)dx →
2∑

i=1

∫

�

θiσi (x)dx = γ |�|, (4.58)

Thus, for m ≥ 1, we have km ≥ 1 such that (c.f. (4.8))

ρ
(
bkm (·), b(·)) ≤ 1

m
(4.59)

and
∣∣∣

2∑

i=1

∫

Qi
km

σi (x)dx − γ |�|
∣∣∣ ≤ 1

m
. (4.60)

By Lemma 4.7, as j → ∞,

2∑

i=1

χQi
km

(·)aij (·) H−→
2∑

i=1

χQi
km

(·)ai (·) = bkm (·). (4.61)

Then, by (4.61) and (4.56), we have jm ≥ 1 such that

ρ

(
2∑

i=1

χQi
km

(·)aijm (·), bkm (·)
)

≤ 1

m
(4.62)

and
2∑

i=1

∣∣∣
∫

Qi
km

(
χEi

jm
(x) − σi (x)

)
dx

∣∣∣ ≤ 1

m
. (4.63)

Denote

Bm(·) =
2∑

i=1

χQi
km

(·)aijm (·).
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Then

Bm(·) = A0 + χ�m (·)(A1 − A0), �m =
2⋃

i=1

(
Qi

km ∩ Ei
jm

)
.

By (4.59) and (4.62), Bm(·) H−→ b(·). By (4.61) and (4.63), �m → γ |�|. Thus, it follows
from Lemma 4.7(i) that b(·) ∈ A [γ, γ ] H , proving our claim. ��

We further extend the above result to the following (replacing e by ξ(·)).

Lemma 4.12 Assume a(·), b(·) ∈ A [α, β] H . Let �1,�2, . . . , �m be a partition of � and

ξ(x) =
m∑

i=1

χ�i
(x)ξi ,

with ξi ∈ Sn−1 (1 ≤ i ≤ m). Then for any θ ∈ [0, 1],

a(·) − θ [a(·) − b(·)] − θ(1 − θ)(a(·) − b(·))ξ(·)ξ(·)T(a(·) − b(·))
ξ(·)T

(
b(·) + θ [a(·) − b(·)]

)
ξ(·)

∈ A [α, β] H . (4.64)

Proof For m = 1, 2, . . . ,m, denote

bi (·) = a(·) − θ [a(·) − b(·)] − θ(1 − θ)[a(·) − b(·)]ξi ξTi [a(·) − b(·)]
ξTi

{
b(·) + θ [a(·) − b(·)]}ξi

.

Since a(·), b(·) ∈ A [α, β] H , by Lemma 4.8, for j = 1, 2, there exist γ j1, γ j2, . . . , γ jm ∈
[0, 1] such that a j (·)

∣∣
�i

∈ A�i [γ j i , γ j i ] H , and

α|�| ≤
m∑

i=1

γ j i |�i | ≤ β|�|, (4.65)

where we denote a1(·) = a(·), a2(·) = b(·) for notation simplicity. By Lemma 4.11,

bi (·)
∣∣
�i

∈ A�i [γi , γi ] H with γi = (1 − θ)γ1i + θγ2i (i = 1, 2, . . . ,m). Since 5

α|�| ≤
m∑

i=1

γi |�i | = (1 − θ)

m∑

i=1

γ1i |�i | + θ

m∑

i=1

γ2i |�i | ≤ β|�|,

we get from Lemma 4.8 that

m∑

i=1

χ�i (·)bi (·) ∈ A [α, β] H .

That is, (4.64) holds. ��
Now, we are ready to prove Theorem 4.5.

Proof of Theorem 4.5 Fix b(·) ∈ A [α, β] H . Let �1,�2, . . . , �m be a partition of � and

ξ(x) =
m∑

k=1

χ�k
(x)ξk, (4.66)
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with ξk ∈ Sn−1 (1 ≤ k ≤ m). Then, by Lemma 4.11, for any θ ∈ (0, 1),

aθ (·) ≡ a(·) − θ [a(·) − b(·)] − θ(1 − θ)[a(·) − b(·)]ξ(·)ξ(·)T[a(·) − b(·)]
ξ(·)T

(
b(·) + θ [a(·) − b(·)]

)
ξ(·)

∈ A [α, β] H .

(4.67)
By the optimality of a(·), we have

∫

�

〈 a(x)∇ y(x),∇ y(x) 〉 dx = λa(·) ≤ λaθ (·)

= inf
y(·)∈W 1,2

0 (�)

‖y(·)‖2=1

∫

�

〈 aθ (x)∇ y(x),∇ y(x) 〉 dx ≤
∫

�

〈 aθ (x)∇ y(x),∇ y(x) 〉 dx .

Therefore, by the minimality of a(·), one has

0 ≤ lim
θ→0+

∫

�

〈aθ (x) − a(x)

θ
∇ y(x),∇ y(x)

〉
dx

= −
∫

�

〈(
a(x) − b(x) + (a(x) − b(x))ξ(x)ξ(x)T(a(x) − b(x))

ξ(x)Tb(x)ξ(·)
)
∇ y(x),∇ y(x)

〉
dx .

That is,

∫

�

〈[
b(x) − a(x)

]∇ y(x),∇ y(x)
〉
dx ≥

∫

�

∣∣ξ(x)T
[
a(x) − b(x)

]∇ y(x)
∣∣2

|b(x) 1
2 ξ(x)|2

dx

≥
∫

�

〈

b(x)−
1
2
[
a(x) − b(x)

]∇ y(x),
b(x)

1
2 ξ(x)

|b(x) 1
2 ξ(x)|

〉2
dx .

The above is true for any ξ(·) of form (4.66). Then by approximation, we obtain
∫

�

〈 [
b(x) − a(x)

]∇ y(x),∇ y(x) 〉 dx ≥
∫

�

∣∣b(x)−
1
2 (a(x) − b(x))∇ y(x)

∣∣2 dx

=
∫

�

〈 [
a(x) − b(x)

]
b(x)−1[a(x) − b(x)

]∇ y(x),∇ y(x) 〉 dx

=
∫

�

〈 [
a(x)b(x)−1a(x) − 2a(x) + b(x))

]∇ y(x),∇ y(x) 〉 dx .

Therefore, (4.34) holds. Consequently, we have (4.35).
Now, we show that (4.35) also implies (4.34). Suppose that (4.35) holds. For any b(·) ∈

A [α, β] H , there is a sequence �k ⊆ � with

α|�| ≤ |�k | ≤ β|�|, k ≥ 1,

such that as k → +∞,

bk(·) ≡ χ
�c
k
(·)A0 + χ�k

(·)A1
H−→ b(·). (4.68)

We can assume that

χ�k
(·) → g(·), weakly in L2(�).

Then

bk(·)−1 = χ
�c
k
(·)A−1

0 + χ�k
(·)A−1

1 → [1 − g(·)]A−1
0 + g(·)A−1

1 , weakly in L2(�).
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From (4.10), we get that

b(·)−1 ≤ [1 − g(·)]A−1
0 + g(·)A−1

1 . (4.69)

Therefore,
∫

�

〈 a(x)b(x)−1a(x)∇ y(x),∇ y(x) 〉 dx

≤
∫

�

〈 a(x)
[
(1 − g(x))A−1

0 + g(x)A−1
1

]
a(x)∇ y(x),∇ y(x) 〉 dx

= lim
k→∞

∫

�

〈 a(x)
[
χ

�c
k
(x)A−1

0 + χ�k
(x)A−1

1

]
a(x)∇ y(x),∇ y(x) 〉 dx

≤
∫

�

〈 a(x)∇ y(x),∇ y(x) 〉 dx,

where the last inequality follows from (4.35). Hence, we get (4.34). Then it follows that

sup
b(·)∈A [α,β]

∫

�

〈 a(x)b(x)−1a(x)∇ y(x),∇ y(x) 〉 dx

= max
b(·)∈A [α,β] H

∫

�

〈 a(x)b(x)−1a(x)∇ y(x),∇ y(x) 〉 dx

=
∫

�

〈 a(x)∇ y(x),∇ y(x) 〉 dx = λ. (4.70)

Hence, (4.33) holds.
Next, in the case that α = 0 and β = 1, for any sub-domain �ε ⊆ � with |�ε| = ε, and

b(·) ∈ A [α, β] H , let (noting Lemma 4.8 (ii))

bε(·) = χ�ε
(·)b(·) + χ

�c
ε
(·)a(·) ∈ A [α, β] H .

Taking such a bε(·) in the above, we obtain
∫

�ε

〈 a(x)b(x)−1a(x)∇ y(x),∇ y(x) 〉 dx ≤
∫

�ε

〈 a(x)∇ y(x),∇ y(x) 〉 dx .

Then, using Lebesgue’s density theorem, we obtain (4.38). In paricular, (4.37) holds. More-
over, similar to that (4.34) and (4.35) are equivalent, (4.37) is equivalent to (4.36). ��

4.4 Optimality system

Let us now take a closer look at (4.34)/(4.70). Note that any b(·) ∈ A [α, β] has the following
form:

b(·) = χ
�c
1
(·)A0 + χ�1

(·)A1,

for some �1 ⊆ �, with α|�| ≤ |�1| ≤ β|�|. Then there is a sequence of �k ⊆ � such that
α|�| ≤ |�k | ≤ β|�|,

χ
�c
k
(·)A0 + χ�k

(·)A1
H−→ a(·)

and

χ� j
(·) → σ(·), weakly in L2(�; [0, 1]).

123



  139 Page 32 of 42 H. Lou, J. Yong

Then σ(·) ∈ �[α, β] (see (3.1) for the definition) and by property (vi) in Sect. 4.1,

a(·)−1 ≤ A−1
0 + σ(·)(A−1

1 − A−1
0 ), x ∈ �.

Consequently, (4.70) is equivalent to the following:
∫

�

〈(
A−1
0 + σ(x)(A−1

1 − A−1
0 )

)
a(x)∇ y(x), a(x)∇ y(x)

〉
dx ≥

∫

�

〈 a(x)∇ y(x),∇ y(x) 〉 dx

= sup
α|�|≤|�1|≤β|�|

∫

�

〈 a(x)
[
A−1
0 χ

�c
1
(x) + A−1

1 χ�1
(x)

]
a(x)∇ y(x),∇ y(x) 〉 dx

= sup
σ(·)∈�[α,β]

∫

�

〈(
A−1
0 + σ(x)(A−1

1 − A−1
0 )

)
a(x)∇ y(x), a(x)∇ y(x)

〉
dx .

Therefore,
∫

�

σ(x)
〈
(A−1

1 − A−1
0 )a(x)∇ y(x), a(x)∇ y(x)

〉
dx

= sup
σ(·)∈�[α,β]

∫

�

σ(x)
〈
(A−1

1 − A−1
0 )a(x)∇ y(x), a(x)∇ y(x)

〉
dx .

By denoting

h(x) =
〈
(A−1

0 − A−1
1 )a(x)∇ y(x), a(x)∇ y(x)

〉
,

one sees that the above becomes
∫

�

σ(x)h(x)dx = sup
σ(·)∈�[α,β]

∫

�

σ(x)h(s)dx . (4.71)

Thus,σ(·) ∈ �[α, β] solves amaximizationproblem.For this problem,wehave the following
proposition.

Proposition 4.13 Let σ(·) ∈ �[α, β] satisfy (4.71). Then there are two constants � and μ0

such that

μ0 ≤ 0, μ2
0 + �2 = 1,

( ∫

�

σ(x)dx − t
)
� ≤ 0, α|�| ≤ t ≤ β|�|.

and
(
μ0h(x) + �

)
σ(x) = max

0≤θ≤1

(
μ0h(x) + �

)
θ, a.e. x ∈ �.

Proof For any ε > 0, define

Fε(σ (·)) =
{[( ∫

�

[
σ(x) − σ(x)

]
h(x)dx + ε

)+]2 + φ
( ∫

�

σ(x)ds
)} 1

2
,

∀σ(·) ∈ �̂ = {
σ : � → [0, 1] ∣∣ σ(·) is measurable

}
,

where

φ(s) = min
α|�|≤t≤β|�| |s − t |2, s ∈ R.

We have
∣∣φ′(s)

∣∣ = 2
√

φ(s) and

(t − s)φ′(s) ≤ 0, α|�| ≤ t ≤ β|�|.
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Clearly,

Fε(·) > 0, ∀σ(·) ∈ �̂, Fε(σ (·)) = ε.

By Ekeland’s variational principle ([22]), there exists a σε(·) ∈ �̂ such that

‖σε(·) − σ(·)‖2 ≤ √
ε,

Fε(σ (·)) + √
ε‖σ(·) − σε(·)‖2 ≥ Fε(σε(·)), ∀σ(·) ∈ �̂.

Hence, for any δ ∈ (0, 1) and σ(·) ∈ �̂, one has

σ δ
ε (·) ≡ σε(·) + δ[σ(·) − σε(·)] ∈ �̂,

and thus

−√
ε ‖σ(·)‖2 ≤ Fε

(
σ δ

ε (·)) − Fε

(
σε(·)

)

δ
= Fε

(
σ δ

ε (·))2 − Fε

(
σε(·)

)2

δ
[
Fε

(
σ δ

ε (·)) + Fε

(
σε(·)

)]

= 1
[
Fε

(
σ δ

ε (·))+Fε

(
σε(·)

)]
δ

{[( ∫

�

[
σ δ

ε (x) − σ(x)
]
h(x)dx+ε

)+]2

−
[( ∫

�

[
σε(x) − σ(x)

]
h(x)dx+ε

)+]2

+φ
( ∫

�

σδ
ε (x)dx

)
− φ

( ∫

�

σε(x)dx
)}

→ 1

Fε(σε(·))
[( ∫

�

[σε(x) − σ(x)]h(x)dx + ε
)+ ∫

�

[σ(x) − σε(x)]h(x)dx

+1

2
φ′(

∫

�

σε(x)dx
) ∫

�

[σ(x) − σε(x)]dx

≡ −με
0

∫

�

[σ(x) − σε(x)]h(x)dx − �ε

∫

�

[σ(x) − σε(x)]dx,

with

(με
0)

2 + (�ε)2 = 1, με
0 ≤ 0,

( ∫

�

σε(x)dx − t
)
�ε ≤ 0, α|�| ≤ t ≤ β|�|.

Then along a subsequence, still denoted it by itself, we may let

(με
0, �

ε) → (μ0, �), μ2
0 + �2 = 1, μ0 ≤ 0,

( ∫

�

σ(x)dx − t
)
� ≤ 0, α|�| ≤ t ≤ β|�|,

and
∫

�

(
σ(x) − σ(x)

)(
μ0h(x) + �

)
dx ≤ 0.

Hence, a standard argument applies to get
(
μ0h(x) + �

)
σ(x) = max

0≤θ≤1

(
μ0h(x) + �

)
θ, a.e. x ∈ �.

We obtain our conclusions. ��

123



  139 Page 34 of 42 H. Lou, J. Yong

Now, we use the above result to make some further analysis on the optimal control σ(·)
of Problem (�H [α, β]).

If μ0 = 0, then � �= 0 and we have σ(·) ≡ 0 or σ(·) ≡ 1. That is a(x) ≡ A0 or
a(x) ≡ A1.

If μ0 �= 0, then we can suppose μ0 = −1 without loss of generality. Thus

σ(x) =
{
1, a.e. x ∈ (h(·) < �),

0, a.e. x ∈ (h(·) > �).

This implies that

|(h(·) ≤ �)| ≥
∫

�

σ(x)dx ≥ α|�|,

and

|(h(·) < �)| ≤
∫

�

σ(x)dx ≤ β|�|.

Moreover, (when α < β) we can see that
∫

�

σ(x)dx > α|�| ⇒ � ≤ 0;
∫

�

σ(x)dx < β|�| ⇒ � ≥ 0;

� > 0 ⇒
∫

�

σ(x)dx = α|�|;

� < 0 ⇒
∫

�

σ(x)dx = β|�|.

For any x ∈ (h(·) = �), though it is possible that σ(x) be any value of [0, 1], there are still
some information could be used to determine σ(x). For example, if |(h(·) ≥ �)| = α|�|,
then σ(x) = 0 a.e. (h(·) ≥ �).

On the other hand, when α|�| <
∫
�

σ(x)dx < β|�| (it will be the case if α = 0, β = 1
and neither χ�(·)A0 nor χ�(·)A1 is optimal), it should hold that � = 0. At this moment, on
the set (h(·) = �) ≡ (h(·) = 0),

〈
A−1
1 a(x)∇ y(x), a(x)∇ y(x)

〉
=

〈
A−1
0 a(x)∇ y(x), a(x)∇ y(x)

〉
. (4.72)

Hence, when h(x) = 0, one has
〈
A1∇ y(x),∇ y(x)

〉
�=

〈
A−1
0 A1∇ y(x), A1∇ y(x)

〉
⇒ σ(x) �= 1;

〈
A0∇ y(x),∇ y(x)

〉
=

〈
A−1
1 A0∇ y(x), A0∇ y(x)

〉
⇒ σ(x) �= 0.

4.5 Maximization problem

Similar to Problem (�H [α, β]), it is natural to pose the following H -relaxation of Problem
(�̄[α, β]).
Problem (�

H [α, β]). Find an ā(·) ∈ A [α, β] H such that

λā(·) = sup
a(·)∈A [α,β] H

λa(·) (4.73)
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Any ā(·) satisfying (4.73) is called an optimal control of Problem (�
H [α, β]), which is

also called an optimal H -relaxed control of Problem (�̄[α, β]). Due to the properties of

H -convergence, it is not hard to see that there are results for Problem (�
H [α, β]) parallel to

the minimization problem. Let us state them here.

Theorem 4.14

(i) Problem (�
H [α, β]) admits an optimal control ā(·) ∈ A [α, β] H .

(ii) Let ā(·) ∈ A [α, β] H be an optimal control of Problem (�
H [α, β]) with ȳ(·) ∈ W 1,2

0 (�)

being the corresponding normalized principal eigenfunction. Then

λ̄ =
∫

�

|ā(x)
1
2 ∇ ȳ(x)|2dx = inf

b(·)∈A [α,β] H

∫

�

|b(x)− 1
2 ā(x)∇ ȳ(x)|2dx

= inf
b(·)∈A [α,β]

∫

�

|b(x)− 1
2 ā(x)∇ ȳ(x)|2dx,

(4.74)

and
∫

�

〈[
ā(x) − ā(x)b(x)−1ā(x)

]∇ y(x),∇ y(x)
〉
dx ≤ 0, ∀ b(·) ∈ A [α, β] H . (4.75)

In paricular,
∫

�

〈[
ā(x) − ā(x)b(x)−1ā(x)

]∇ y(x),∇ y(x)
〉
dx ≤ 0, ∀ b(·) ∈ A [α, β]. (4.76)

When α = 0 and β = 1, it holds that:

〈 ā(x)∇ ȳ(x),∇ ȳ(x) 〉 ≤ 〈 B−1ā(x)∇ ȳ(x), ā(x)∇ ȳ(x) 〉, a.e.x ∈ �, B ∈ {A0, A1} H .

(4.77)
In paricular,

〈 ā(x)∇ ȳ(x),∇ ȳ(x) 〉 ≤ 〈 A−1
i ā(x)∇ ȳ(x), ā(x)∇ ȳ(x) 〉, a.e.x ∈ �, i = 0, 1. (4.78)

The proof is omitted here. Also, one could derive (at least formally) the optimality system
for the problem similar to the minimization problem.

5 A two-dimensional example

In this section, we present a two-dimensional example of Problem (�H [0, 1]); Namely,
α = 0, β = 1 and according to (1.24), we should assume that neither A0 ≤ A1 nor A0 ≥ A1

holds. Since both A0 and A1 are positive definite, making a change of variables if necessary,
without loss of generality, we may assume that

A0 =
(

μ0 0
0 μ1

)
, A1 = I , (5.1)

with 0 < μ0 < 1 < μ1. Recall that this example is comparable with Example 3.3. Let

a(·) ∈ A [0, 1] H be an optimal control of Problem (�H [0, 1]). Then the following holds:

〈 a(x)∇ y(x),∇ y(x) 〉 ≥ 〈 B−1a(x)∇ y(x), a(x)∇ y(x) 〉, B = A0, I , a.e. x ∈ �.

(5.2)
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To determine an optimal control a(·), let us make an observation. For given x ∈ R
n , if we

denote ξ = ∇ y(x) and Ā = a(x), then (5.2) reads

〈 Āξ, ξ 〉 ≥ 〈 B−1 Āξ, Āξ 〉, ∀B ∈ {A0, I }. (5.3)

Or, equivalently,

〈 Āξ, ξ 〉 ≥ 〈 A−1
0 Āξ, Āξ 〉, 〈 Āξ, ξ 〉 ≥ 〈 Āξ, Āξ 〉 . (5.4)

Hence, it is natural to consider the following problem.

Problem (Pξ ). For ξ ∈ R
2, find an Ā ∈ {A0, I } H such that (5.3) holds.

Here, we recall that

{A0, I } H =
{
A ∈ M[μ0, μ1]

∣
∣ χ�(·)A ∈ L∞(

�; {A0, I }
) H}

.

For the above problem, we have the following interesting proposition.

Proposition 5.1

(i) If Ā ∈ {A0, I } H is a solution to Problem (Pξ ), then

〈 Āξ, ξ 〉 ≥ 〈 B−1 Āξ, Āξ 〉, ∀ B ∈ {A0, I } H . (5.5)

(ii) If both Ā and B̄ are solutions of Problem (Pξ ), then Āξ = B̄ξ .

Proof (i) For any B ∈ {A0, I } H , we can find a sequence �k ⊆ � such that

χ
�c
k
(·)A0 + χ�k

(·)I H−→ χ�(·)B,
|�k |
|�| → θ,

for some θ ∈ [0, 1]. By Property (vi) in Sect. 4.1,

B−1 ≤ (1 − θ)A−1
0 + θ I .

Thus, (5.5) follows.
(ii) Note that

〈 Āξ, ξ 〉 ≥ 〈 B̄−1 Āξ, Āξ 〉, 〈 B̄ξ, ξ 〉 ≥ 〈 Ā−1 B̄ξ, B̄ξ 〉,
we have

〈( Ā−1 + B̄−1)( Ā − B̄)ξ, ( Ā − B̄)ξ 〉 = 〈 B̄−1 Āξ, Āξ 〉 − 〈 Āξ, ξ 〉 + 〈 Ā−1 B̄ξ, B̄ξ 〉 − 〈 B̄ξ, ξ 〉 ≤ 0.

Therefore, it must hold that Āξ = B̄ξ . ��
The above tells us that to meet the necessary conditions for optimal controls of Problem

(�H [0, 1]) on A [0, 1] H , it suffices to find, for almost each x ∈ �, an Ā ∈ {A0, I } H
satisfying

〈 Ā∇ y(x),∇ y(x) 〉 ≥ 〈 B−1 Ā∇ y(x), Ā∇ y(x) 〉, B = A0, I . (5.6)

Part (ii) of above proposition means that although Ā might not be unique, Āξ is unique.
Thus, if one can solve Problem (Pξ ) successfully for each ξ ∈ R

2, then we obtain a map
Ā : R

2 → S
2. Then

a(x) = Ā(∇ y(x)), x ∈ � (5.7)
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gives an optimal control, where y(·) is a solution to the closed-loop system:
{
−∇ ·

(
Ā
(∇ y(x)

)∇ y(x)
)

= λ y(x), x ∈ �,

y
∣
∣
∂�

= 0.
(5.8)

We will see later it is a nonlinear eigenvalue problem.
Now, for given ξ = (ξ1, ξ2)

T �= 0, we try to find a solution Ā of Problem (Pξ ).
Let us introduce the following partition of R

2:

EA0 =
{
(ξ1, ξ2)

T �= 0
∣
∣ ξ22 ≤ μ0(1 − μ0)

μ1(μ1 − 1)
ξ21

}
,

EI =
{
(ξ1, ξ2)

T �= 0
∣∣ ξ22 ≥ μ1(1 − μ0)

μ0(μ1 − 1)
ξ21

}
,

E+ =
{
(ξ1, ξ2)

T ∈ R
2

∣
∣ μ0(1 − μ0)

μ1(μ1 − 1)
ξ21 < ξ22 <

μ1(1 − μ0)

μ0(μ1 − 1)
ξ21 , ξ1ξ2 > 0

}
,

E− =
{
(ξ1, ξ2)

T ∈ R
2

∣
∣ μ0(1 − μ0)

μ1(μ1 − 1)
ξ21 < ξ22 <

μ1(1 − μ0)

μ0(μ1 − 1)
ξ21 , ξ1ξ2 < 0

}
.

(5.9)

These sets are illustrated in the following figure. Clearly, EA0 , EI , E+, E− are non-empty,
mutually disjoint and R

2 = EA0 ∪ EI ∪ E+ ∪ E− ∪ {0}. Note that EA0 ∪ {0} and EI ∪ {0}
are closed, and E± are open.

ξ2

ξ1

EIEI

EIEI

EA0

EA0

EA0

EA0

E+

E+
E−

E−

With a little calculation, one can see the following:

• A0 is a solution of Problem (Pξ ) if and only if 〈A0ξ, ξ 〉 ≥ 〈A0ξ, A0ξ 〉, i.e., ξ ∈ EA0 .
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• I is a solution of Problem (Pξ ) if and only of 〈ξ, ξ 〉 ≥
〈
A−1
0 ξ, ξ

〉
, i.e., ξ ∈ EI .

• Neither A0 nor I is a solution of Problem (Pξ ) if and only if ξ ∈ E+ ∪ E−, i.e.,

〈A0ξ, ξ 〉 < 〈A0ξ, A0ξ 〉 , 〈ξ, ξ 〉 <
〈
A−1
0 ξ, ξ

〉
. (5.10)

Now, let ξ = (ξ1, ξ2)
T ∈ E+ ∪ E−, by definition, ξ1, ξ2 �= 0. Let η = Āξ . Since

Ā ∈ {A0, I } H \ {A0, I }, by the proof of Proposition 5.1, (i), there exists a γ ∈ (0, 1) such
that

Ā−1 ≤ (1 − γ )A−1
0 + γ I . (5.11)

Then

〈 Ā−1η, η 〉 ≤ (1 − γ ) 〈 A−1
0 η, η 〉+γ 〈 η, η 〉 .

On the other hand, (5.4) implies

〈 Ā−1η, η 〉 ≥ 〈 A−1
0 η, η 〉, 〈 Ā−1η, η 〉 ≥ 〈 η, η 〉 .

Thus, it should hold that

〈 Ā−1η, η 〉 = 〈 A−1
0 η, η 〉 = 〈 η, η 〉, (5.12)

which coincides with (4.72). From the second equality in (5.12), a direct calculation shows

η = Cξ

(
ε
√
1 − s√
s

)
, (5.13)

with Cξ �= 0 and ε = ±1, where

s = (1 − μ0)μ1

μ1 − μ0
∈ (0, 1). (5.14)

Let us now determine Cξ , ε and γ . We have

C2
ξ = 〈η, η〉 = 〈

Ā−1η, η
〉 = 〈ξ, η〉 = Cξ

〈(
ε
√
1 − s√
s

)
, ξ

〉
.

Thus
Cξ = εξ1

√
1 − s + ξ2

√
s (5.15)

and

Āξ = η = Cξ

(
ε
√
1 − s√
s

)
=

(
ε
√
1 − s√
s

)(
ε
√
1 − s√
s

)T

ξ

=
(

1 − s ε
√
s(1 − s)

ε
√
s(1 − s) s

)
ξ ≡ Gξ.

(5.16)

On the other hand, by (5.11) and (5.12), we have

∣∣∣
(
(1 − γ )A−1

0 + γ I − Ā−1
) 1

2
η

∣∣∣
2 =

〈(
(1 − γ )A−1

0 + γ I − Ā−1
)
η, η

〉
= 0.

This implies (
(1 − γ )A−1

0 + γ I − Ā−1
)
η = 0. (5.17)
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Thus,

ξ = Ā−1η =
(
(1 − γ )A−1

0 + γ I
)
η = Cξ

⎛

⎝
ε
(
1−γ
μ0

+ γ
)√

1 − s
(
1−γ
μ1

+ γ
)√

s

⎞

⎠ . (5.18)

Hence, sgn (Cξ ) = sgn (ξ2), which can be obtained from (5.15) and x ∈ E+ ∪ E− too.
Consequently,

ε = sgn (ξ1ξ2). (5.19)

Moreover, it follows from ξ2 = Cξ

(1 − γ

μ1
+ γ

)√
s that

γ =
|ξ2|

√
μ1

1−μ0
− |ξ1|

√
μ0

μ1−1

|ξ1|√μ0(μ1 − 1) + |ξ2|√μ1(1 − μ0)
. (5.20)

One can verify that the above γ belonging to (0, 1) is equivalent to ξ ∈ E+ ∪ E−. Actually,
it is a one-to-one mapping from

{
(ξ1, ξ2)

T ∈ S1 ∩ (E+ ∪ E−)
∣
∣ξ1 > 0, ξ2 > 0

}
to (0, 1).

Next, by (ii) of Proposition 5.1, η ≡ Āξ only depends on ξ (independent of the solution

Ā). We now find an Ā ∈ {A0, I } H such that Āξ = η. To this end, we try to find an solution
in �(A0, I ). By careful calculation, we find such a solution Ā as the following:

Ā = I + (1 − γ )Q−1, Q = (A0 − I )−1 + γ (I − G). (5.21)

Denote H = I − G. Then H ∈ S
n with H ≥ 0 and tr (H) = 1. Thus Ā ∈ �(A0, I ).

Moreover, H2 = H . Let us verify Ā defined by (5.21) really satisfies Āξ = η. We have

(A0 − I )QH = H + γ (A0 − I )H .

Thus

A−1
0 (A0 − I )Q

(
Āξ − η

)

= A−1
0 (A0 − I )Q

(
H + (1 − γ )Q−1

)
ξ

= A−1
0

(
H + γ (A0 − I )H + (1 − γ )(A0 − I )

)
ξ

= A−1
0

(
A0 − (1 − γ )G − γ A0G

)
ξ = ξ − (1 − γ )A−1

0 η − γ η = 0.

Thus, along with G, γ, ε being given by (5.16), (5.19) and (5.20), (when ξ ∈ E+ ∪ E−) we
could get Ā by (5.21). Generally, we can choose

Ā(ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I , ξ = 0,
A0, ξ ∈ EA0 ,

I , ξ ∈ EI ,

I + (1 − γ )
(
(A0 − I )−1 + γ (I − G)

)−1
, ξ ∈ E+ ∪ E−.

(5.22)

Therefore (5.8) is a nonlinear eigenvalue problem. We now simplify it. Noting (5.16), we see
that

a(x)∇ y(x) = Ā(∇ y(x))∇ y(x) = F(∇ y(x)), a.e. x ∈ �, (5.23)
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where F : R
n → R

n is defined as

F(ξ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, ξ = 0,
A0ξ, ξ ∈ EA0 ,

ξ, ξ ∈ EI ,

G+ξ, ξ ∈ E+,

G−ξ, ξ ∈ E−,

(5.24)

with

G± =
(

1 − s ±√
s(1 − s)

±√
s(1 − s) s

)
. (5.25)

Since F(∇ y(x)) = a(x)∇ y(x), y(·) solves
{−∇ · (F(∇ y(x))

) = λy(x), in �,

y
∣
∣
∂�

= 0.
(5.26)

Although G± are singular (0 is an eigenvalue of G±), noting that F(ξ) = Ā(ξ)ξ , we still
have

μ0|ξ |2 ≤ 〈F(ξ), ξ 〉 ≤ μ1|ξ |2, ∀ ξ ∈ R
n . (5.27)

On the other hand, it is not difficult to verify that 〈F(·), ·〉 is convex in R
n and

∣∣F(ξ) − F(ξ̃ )
∣∣ ≤ μ1|ξ − ξ̃ |, ∀ ξ, ξ̃ ∈ R

n . (5.28)

Consequently, there is ỹ(·) ∈ W 1,2
0 (�) such that

λ̃ ≡
∫
�

〈F(∇ ỹ(x)),∇ ỹ(x)〉 dx
∫
�

‖ỹ(x)|2 dx = inf
y(·)∈W 1,2

0 (�)

y(·)�=0

∫
�

〈F(∇ y(x)),∇ y(x)〉 dx
∫
�

‖y(x)|2 dx .

We have
{−∇ · (F(∇ ỹ(x))

) = λ̃ỹ(x), in �,

ỹ
∣∣
∂�

= 0.

Moreover, let ã(·) = Ā(ỹ(·)). Then ã(·) ∈ A [0, 1] H and
{−∇ · (ã(x)∇ ỹ(x)

) = λ̃ỹ(x), in �,

ỹ
∣∣
∂�

= 0,

which implies λ ≤ λã(·) ≤ λ̃ ≤ λ. This implies

λ =
∫
�

〈
F(∇ y(x)),∇ y(x)

〉
dx

∫
�

‖y(x)|2 dx = inf
y(·)∈W 1,2

0 (�)

y(·)�=0

∫
�

〈F(∇ y(x)),∇ y(x)〉 dx
∫
�

‖y(x)|2 dx . (5.29)

Therefore, y(·) is an optimal state of Problem (�H [0, 1]) if and only if it is a minimizer of

F (y(·)) =
∫
�

〈F(∇ y(x)),∇ y(x)〉 dx
∫
�

‖y(x)|2 dx
over W 1,2

0 (�) \ {0}.
The results of this section can be summarized as follow: To get a solution of Problem

(�H [0, 1]), one can first find a nontrivial solution of (5.26) with the smallest positive
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number λ, or equivalently, find a minimizer of F (·) over W 1,2
0 (�) \ {0}. Then define

a(x) = Ā(∇ y(x)), getting a solution of Problem (�H [0, 1]).

6 Concluding remarks

We have investigated the maximization and minimization problems of the principal eigen-
value of elliptic operators with the Dirichlet boundary condition. The control appears in the
diffusion matrix (the leading coefficient). These problems are well-motivated by composite
material design to optimize the heat conduct property of the material (cooling down as quick
as possible, or preserving the temperature as long as possible). For maximization problem,
due to the concavity of the principle eigenvalue as a functional of the leading coefficient, as
long as the control set is convex, optimal control and its characterization can be obtained
easily. When the control set is not convex, we introduce the usual convexification to guar-
antee the existence of an optimal relaxed control. Then some necessary conditions can also
be obtained. From an example, we see that uniformly mixing two materials might not be
optimal in the maximization problem.

For minimization problem, the situation is much more complicated due to the concavity
of the principle eigenvalue as a functional of the control. We adopt the H -convergence so
that the existence of the H -relaxed optimal control could be guaranteed. Instead of looking
at the most general situation, we concentrate on the case of the lamination of two materials
whose diffusibility matrices are given. Some interesting necessary conditions are derived.
It is worthy of pointing out that even both two materials have their diagonal diffusibility
matrices, the optimal diffusibility matrix could be non-diagonal. Such a situation has been
exhibited through an illustrative example in Section 5.
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