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Abstract

Maximization and minimization problems of the principle eigenvalue for divergence form
second order elliptic operators with the Dirichlet boundary condition are considered. The
principal eigen map of such elliptic operators is introduced and some basic properties of this
map, including continuity, concavity, and differentiability with respect to the parameter in
the diffusibility matrix, are established. For maximization problem, the admissible control
set is convexified to get the existence of an optimal convexified relaxed solution. Whereas,
for minimization problem, the relaxation of the problem under H -convergence is introduced
to get an optimal H-relaxed solution for certain interesting special cases. Some necessary
optimality conditions are presented for both problems and a couple of illustrative examples
are presented as well.

Mathematics Subject Classification 35J15 - 35P05 - 47A75 - 49K20 - 49J20

1 Introduction

Consider a heat conduct problem in a bounded domain 2 C R”". Suppose 2 is occupied
by a certain type of medium with (not necessarily isotropic) uniformly elliptic diffusibility
matrix a(-) = (aij(-)). Let y(z, x) be the temperature of the body at (¢, x). Then, in the
case that there is neither source nor sink of the heat in the domain, and the temperature is
set to be a fixed level (say, 0, for simplicity) at the boundary 9€2, the (temperature) function
v(-,) = y(,-; yo(-)) will be the weak solution to the following parabolic equation:
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yi(t,x) =V (a(x)Vy(t,x)), (1,x)€[0,00) x Q,
y(t,x) =0, (t,x)€[0,00) x IR, (1.1
y(0,x) = yo(x), x €.

Consequently,
d 2
Syl =2 / Yt )Y - (a()Vy(t, x))dx
t Q
=—2/ (a(¥)Vy(t, x), Vy(t, x)) dx (1.2)
Q
< —2ka() /Q Iy (t, x)[2dx = —2ha0) (2, )13,

where || - l2 = || - | .2(g) is the usual L?(2)-norm, and Aa(y > 0is the smallest eigenvalue
(which is called the principal eigenvalue) of the differential operator £,(.) defined by the
following:

Laye() ==V - (a()Ve()), ¢() € Z(La)),

(1.3)
D(Laty) = {00) e W@ | V- (a()V0()) € L@}

In the above, Wol’2 (2) is the usual Sobolev space which is the completion of Cgo (£2) (smooth
functions with compact supports in €2) under the norm (see [1]):

1
10O 12 = (IVOIB + 00 13)* < oo,

It is known that with such a A4y > 0, the following boundary value problem

{—V (a@)Vy1(x)) = Aayy1(x), ing,

Vg =0

admits a weak solution y1(-) € W'*(2) \ {0}, which is called a principal eigenfunction of
operator L, (.. Moreover,

/Q(a(X)Vy(X), Vy(x))dx

Aoy = inf (1.4)

YOEW 2 (@)\(0) ly I3

From [15], Theorem 8.38, we know that the multiplicity of A4 is 1, and y1(-) = y1(-; a(-))
can be taken the unique eigenfunction such that it is positive in £ and normalized:

||y1<-)||%=/9|y1<x>|2dx=1.

We call such a yi (-) the normalized principal eigenfunction of L,y and denote it by y,(.),
indicating the dependence on a(-). For convenience, we call (Ay(.), ya()) the normalized
principal eigen-pair of the operator L,(.). From (1.2), we see that with such a A,(.), one has

Iy, -5 yo( D2 < e ™0 lyo( 2, =0, Vyo() € LX)
and if the initial state yo(-) = ya(.), then one has the equality:

Y(t, X5 Ya(y)) = € a0y, (x), (2, x) € [0, 00) x R,
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which leads to

1Y@, 5 Yao)llz = €0 yaeylla = e 70", 1 > 0.

Hence, one obtains the following representation:

. o 1001l |
hay= inf lim ~log —20 2~ og [y(t, 5 yue)ll2, Vi > 0.
yOew 2@y i—oo £ Iy, 5 yo ()2 t

Consequently, in some sense, A, (. is the smallest (uniform) decay rate for the evolutionary
map yo(-) — y(t, -; yo(-)) (uniform with respect to the initial state yo(-)).

On the other hand, since a(-) is assumed to be uniformly elliptic, the following Poincaré’s
inequality always holds:

IyOI3 < C/Q (a(x)Vy(x), Vy(x))dx, Vy() e Wy?(Q) (1.5)

for some constant C > 0. Thus, the sharp constant C that makes the above true is given by
the following

2
. 1
sup IyOllz = ; < 00. (1.6)
Y(EWy 2 ()\{0} f (a(x)Vy(x), Vy(x))dx "0
Q
Therefore, the sharp Poincaré’s inequality reads
IyOIZ < 5 ()/Szw(x)Vy(x),Vy(x>>dx, Vy() € Wyt (). (1.7)
at

If the diffusibility matrix a(-) can be chosen from a given set <7, which amounts to saying
that the composite material/medium occupying €2 can be designed within a certain range (c.f.
[2,11,29,34]), then we may try to minimize A,(.) (preserving the temperature of the body in a
certain fashion), or to maximize 4. (cooling down the body as quick as possible, uniformly
in the initial temperature distribution). In terms of Poincaré’s inequality, the former means
that we are looking for the sharp constant uniform for a(-) € 7, and the latter means that
we are looking for the smallest possible sharp constant for some a(-) € <.

Now, let 0 < pp < 1 < oo be given and let

Mipo, il = {A € 8" | ol = A < ul, (1)
where S” is the set of all (n x n) symmetric matrices. Define
Mo, n1] = {a 1 Q= M[uo, 1] | a(-)is measurable} C L®°(Q; SM). (1.9)

Clearly, M [, (1] is convex and compact in S". Consequently, .#[o, (£1] is convex and
closed in L?(2; S*) (for any p € [1, oo]). From (1.4), we see that

Aa(y < Aacy, Ya(),a() € Mpo, n1l, a(-) <a(), (1.10)
namely, the map a(-) — A4 is monotone non-decreasing. In particular,
MoAr < Mgy < pmirg, Ya()) € Ao, n1l, (I.11)

where A is the principal eigenvalue of —A on €2, with the homogeneous Dirichlet boundary
condition. Consequently,

sup Aa(y = M1Ag, inf Aa() = HOA]- (1.12)
a(yed (120,11 a()ed [no. 11
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This shows that minimizing or maximizing A4 over .# [, p1] is trivial. Now, we let &/
be chosen with
@ # o C Mo, u1], 0 < po < p1 <00, (1.13)

and pose the following two problems.

Problem (A (<)). Find an a(-) € « such that

Ag(.): sup )»a(.). (1.14)
a(-)ed

Problem Problem (A (&)). Find an a(-) € < such that

ha(y = inf Ag(. 1.15
a() = M Aa0) (1.15)

Some general results will be presented concerning the above two problems in the next
section.

Further, to obtain finer results, we will concentrate on a more specific case which we now
describe. Fix two different matrices Ag, A1 € M[uo, 1] with 0 < pug < pu; < oo. We
define

Ar) =10 —-r)Ag+rA;, rel0,1], (1.16)

and forsome 0 <o < B <1, let
Ula, B] = [XQI () | @1 C @ is measurable, |2 < || < ,3|sz|], (1.17)

where Xa, (+) is the characteristic function of €21 and |€2] is the Lebesgue measure of mea-
surable set 21. Then for any u(-) = Xe, (-) € Z[«, B], we have

A@()) = [1 = Xg, 140 + Xg, (VA1 = Ao + xg, (VA1 — Aog).
Denote

o, Bl = A%, B) = A + xa, V(A1 = Ao) | 21 measurable, o|2I < || <pI2].

(1.18)
Note that the set /[, 8] is non-convex (unless Ag = A which is excluded). For the heat
conduct problem, with a(-) = A(u(-)) for some u(-) = Xe, (-) € Z[«, B], it means that two
media occupy the domain, the one with conductivity matrix A; occupies 21 and the other
with conductivity matrix Ag occupies €2 \ €21. The corresponding principal eigenvalue and
the corresponding (unique) normalized principal eigenfunction are denoted by

Au() = MAg+u()(A1—Ag)s  Yu() = YAg+u(-)(A1—Ag)>

and the following holds:
i—v ([A0+ 1@ A1 = 40] V50 @) = by @, ¥ €L o
Yu) [y =0
Then we can pose the following problems.
Problem (Alc, Bl). Forgiven 0 <o < 8 < 1, find au(-) € Z [, ] such that
Ay = sup  Au(. (1.20)

u(- )% e, pl
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Problem (Afc«, 8]). Forgiven0 <o < g8 <1, find au(-) € Z[w, B] such that

() = M- (1.21)

inf
u()e e, pl

Any u(-) € Zlw, B] (resp. u(-) € %[, B]) satisfying (1.20) (resp. (1.21)) is called an
optimal control of Problem (Alw, A1) (resp. Problem (Al«, B])).

Note that if 0 = o < 8 < 1, and, say, A9 < Aj, due to a fact similar to (1.11)—(1.12),
one has

inf  Au(-)) = Aag, (1.22)
u(-)e# (0,81

making Problem (A[O, 8]) trivial; and likewise, if 0 < o« < 8 = 1, and still let Ag < Ay,
then

sup  A(u(-) = Aay, (1.23)
u(-e [a,1]

making Problem ([\[oz, 1)) trivial. To avoid such situations, in what follows, we will assume
the following:

(1.24)

either 0 < @ < 8 < 1, no additional restrictions on Ag, A1,
ora =0, =1, andneither Ag < Ay, nor A; < Ag holds.

Note that when 0 < ¢ < 8 < 1, even if, say, A; = 2A¢ > Ao, the location/shape of the
optimal 2 (if it exists, which is non-empty and not equal to €2) is not obvious. On the other
hand, in the case that Ag and A are not comparable, one expects that neither uo(-) = 0 nor
u1(-) = 1 is optimal.

For either case in (1.24), % [«, B] is not convex. Hence, the existence of optimal controls
for Problems (A, B1) and (A[«, B]) is not guaranteed, in general. To study these problems,
we will introduce suitable relaxed problems for which the relaxed optimal controls will
exist. Some necessary conditions for relaxed optimal controls will then be established, and
illustrative examples will be presented as well.

It is possible to discuss the situation of more than two materials instead of just two. The
main idea will be the same and the abstract results will have similar looking. However, further
analysis on the optimal controls will be much more technical and complicated. Therefore,
for the sake of simplification in our presentation, we prefer not to pursue that.

Some studies on optimization of the principal eigenvalue for elliptic operators can be
found in the book by Henrot [18] (see also the references cited therein). The case studied
in [18] was isotropic, namely, the diffusion matrix a(x) = o (x)I, for some scalar function
o (-). Moreover, even for that case, only a maximization problem was considered. For other
relevant works, here is a partial list of references: [5,6,8,10,12—14,27].

The rest of this paper is organized as follows. Section 2 will be devoted to some general
considerations of the problems that we are interested in. In Sect. 3, a convexification of
maximization problem is investigated. In Sect. 4, a relaxation of minimization problem in
terms of the so-called H-convergence will be studied. A detailed example is worked out in
Sect. 5. Finally some remarks are collected in Sect. 6.

2 The principal Eigen map and its properties

We fix a bounded Lipschitz domain 2 C R”, i.e., 2 € R”" is a bounded domain with a
Lipschitz boundary 92, and constants 0 < pug < pu; < oo. For any a(-) € #[wno, 1],
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recall that £, is an elliptic operator defined by (1.3), and (Ay(.), Ya(.)) is the normalized
principal eigen-pair of L,(.y. Thus,

-V (a(x)Vya(i)(x)) = Aa()Ya()(x), in £,
2.1
)’a(~)|asz =0,
with yg()(x) > 0 for x € Q, and ||y4()(-)ll2 = 1. Further, it is known that
Aa() = ]zmin / {(a(x)Vy(x), Vy(x))dx :/ (a(xX)Vyay(x), Vyae)(x) ) dx.
YOEW (Q),lly() =17 Q
2.2)

Define A : .#[, jt1] — R x Wy'2(Q) by

A@a()) = (Ra(y, Yay)» Ya() € Ao, w1l (2.3)
and call it the principal eigen map of the operator L,.). We first recall the following result

found in [19].

Proposition 2.1 Leta(-) € .# |10, it1]- Then there exists a constant y = y (Lo, iL1; 2) > 0
such that
A=Xa)y 2V, 24

where A is any eigenvalue of L, (. different from Ay(.). Consequently, one has:
fQ (a()Vy(x), Vy() ) dx > (hay+7) Iy OI3, Yy e Wy (), /Q YO Ya() ()dx = 0.
(2.5)
Next, we present the following simple result which will be useful below.

Proposition 2.2 The map a(-) + Mg is concave on M 1o, p1]. Consequently, this map is
Lipschitz on L*°(2; S"), i.e., for some L > 0,

[Aay = raey] < Llla() —a()lleo. Va(-),a(-) € L=(Q; S"). (2.6)
Proof For any ao(-), a1 (-) € .#[uo, £1] and any y € (0, 1),
A(l—y)ao()+pai ()

= min / ([ = ao) + yar (0] Vy@). Vy() dx
yoew 2@ Ja
[ly()ll2=1

(I—y) min /Q<ao(x)Vy(x),Vy(X)>dx

YOEW ()
Iy(la=1

+y min /(al(X)Vy(X),Vy(X))dx
yOeEW, (@) I
Iy()ll2=1

= (1= Y)rage) + Vra()-

This proves the concavity of the map a(-) + A4(). Then the Lipschitz continuity follows
from a standard argument (see, for example, [22], p.235, Lemma 2.8). O

v

We will see that the map a(-) = A4(.) is not strictly convex.
The following theorem is due to Gallouet—-Monier [16], which is an extension of a result
by Meyers [26].
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Theorem 2.3 Let Q@ C R” be a bounded Lipschitz domain and 0 < g < 1. Then there
exists a po > 2, only depending on 2, such that for any 2 < p < po, a(-) € Ao, 11,

f() e LP(Q) and h(-) € L% (), the following problem:

{—v : (a(x)Vy(x)) =V f(x) +h(x), x €,
y|asz =0

admits a unique weak solution y(-) € Wé’p(Q), and the following estimate holds:
1950l = C(IFO, + 1RO 22 ). @7
Hereafter, C > 0 represents a generic constant which could be different from line to line.

Note that in the above result, p > 2, which will play a crucial role below. The following
result is concerned with the principal eigen map A.

Theorem 2.4 Let 0 < g < u1 < 00 and 2 C R” be a Lipschitz domain. Then there exists
a p > 2 such that the principal eigen map A is Lipschitz continuous in the following sense:

Aay() = Aay(o| = Cllar () —ax (Ol 2, VYai(), aa() € Ao, p1l, 2.8)

p
p—2
and for any p € (2, p),
1ya10) = Yoy () llwriey < Cllar() — a2l ps , VYa1(), a2(-) € Alpo, t1l.  (2.9)
P—p

Note that (2.8) is an improvement of (2.6), thanks to the existence of a p > 2 so that (2.7)
holds.

Proof First of all, for any a(-) € .#[uo, (41], we recall that
B0V 13 = [ (@930 (00 3 (0 b = sy < s

and by Sobolev embedding theorem ([1]), for any n > 2, we have

2n
n—2

wWhA(Q) — L' (Q), r<

with the convention that nzf”z = oo whenn = 2.

Now, let pg > 0 be the number in Theorem 2.3 and chose 2 < p < min (po, n%’z) We
have p(n — 2) < 2n, which leads to n’_‘f < 2. Hence, by Theorem 2.3, regarding Aq(.) Ya(.)
as a nonhomogeneous term on the right-hand side of the equation (2.1), we have (noting

lYayllz2 = 1)

1,11 -
I1yao)lwir@) < Cpracyllyacy ||% < CpK¢;(<)|Q|”+” 2 =C,p. (2.10)
Here C_‘p is an absolute constant, uniform in a(-) € .#[uo, 1]. Let
1. _
PP (o, 1) = {y() € Wy" (@ | IyOllz = 1, IyOllwrrg) < Cp. y(x) =0, ae.}.

Then y,) € #P(no, 1) < Wol’2(§2)- Consequently, for any ai(-), a2(-) € #[uo, p1l,
denote

i =gy, Vi) = Va0 (), i=12,

@ Springer



139 Page 8 of 42 H.Lou, J. Yong

and assume that A1 > A,. We have
A=Ay =X — /Q (az(x)Vyz2(x), Vy2(x)) dx
< [ {@@0¥5Rw. VW) dr - [ (@@, nm) ds
< llar() = a0l IV320l5 = Cllar() = ax()l_z,.
proving (2.8). Next, let
o= /Q NENE)dE,

yi2(x) = y1(x) —ay2(x) y21(x) = y2(x) — ayi(x).
Then o > 0, and

/Q yi(@)y2(x)dx = /Q Y21 @) y1(x)dx =0, |lynOl3 = lyaOl3 =1-a?,
A+ a)(y2(0) = y1(x)) = y21(x) — y12(x).

Hence,

y2() = y1O13 < 1216 = Y127 < 20321 O3 + 2lyO)* = 4(1 —a?).  2.11)

By (2.5) and noting that

/Q((al(x) —a(x))Vy1(x), Vya(x))) = A /leyz —Az/leyz = (A — A)a,
one has
A+ 7)1 —a?)

< fQ (a1 (6 V321 (6), Vy1 () ) dx

= [ (@952, Va0 = 22 [ (193100, V320
+0? [ @@V, V() ds

- fﬂ (@1 (¥) — @ () V2 (0), Vya(x)) dx
+20 — 20 fQ Y1 () y2(x)dx + ®A

= /Q ((a1(x) — ax(x)V (y2(x) — y1(x)), Vyo2(x) ) dx + (A1 — Aa)e + Aa — o® A
<lai() = a2(~)||% IVy1() = Vy2 Oll2lVy2 ()l
+(1 = a)(a = A1) + (1 = )i
Consequently, since « < 1 and it is assumed that X, < Ap,

(1 =)y < Clai() — a2(~)||% IVy1() = Vy2()ll2.
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Combining the above with (2.11), we have
Iy1() = 2013 < Cllai () — az(-)llzip2 VY1) = Vy2 ()l (2.12)
=
On the other hand,

{—V (a1 () VIy1(x) = y2(0)1) = Aiy1 — Aay2 + V- ([a1(x) — a2(x)]Vy2 (x)),
(1 = 32) |5 =0.

It follows from Theorem 2.3 that (with2 < p < p)
lyi () — yz(')”Wl,ﬁ(Q)
< Cll(a1(-) —a2(:NVy2llp + Cllaiyi () — Azyz(-)llnT;z
n+p

1_

1yi_1
< Cllar() = ax()ll oz IVy20)llp + CIQI 772 2131 () = A2y2 ()2
p—r

(2.13)
- 1,11
< CCplar() = axO)ll o+ CIIT7 7 (121 = dal + mlln () = »20)1h)
< C(ln () = @0l gz + I310) = 20)l2)-
Applying (2.12), we have
Iy1() = y2O)llwii g
1 1
< C(la10) = @Ol g, +l1a10) = @Ol 110 = 2Ole)
1 1
= C(la1) =20l gz + la16) = @217 11O = 20 2150))
p=p p=>p
1
< Clai() = @0l g+ 31310 = 2Ol
Then (2.9) follows. O

We now look at the directional differentiability of the principal eigen map A.

Proposition 2.5 Let Q2 be a bounded Lipschitz domain and a(-), a(-) € # 1o, pt1]. Then the
directional derivative of the eigen map A at a(-) in the direction of a(-) — a(-) is given by

Ala() tela() —aO)h —A@() _ (

A (aC); a()—ac)) = lim Ay, in RxWy(R),

€
(2.14)
where ) is given by the following:
A= / (la(x) = a(x)1Vyac)(x), Vyac(x) ) dx, (2.15)
Q
and y'(+) is the unique weak solution of
{—V (@a@)Vy' () = rae)y @) + A yay () + V- ([a(x) — a(x)]1Vyae) (x)), 2.16)
/ .
Vs =0
with the following additional condition:
/ ¥ (*)yacy(x) dx = 0. 2.17)
Q
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Proof Let ¢ € (0, 1). Denote

as(-) = a() +ela() —a()] € A (no, 1),

and
A@O) = (hacys Yae) = 56, A@e() = Ga () Yao () = Orpy Yo ().
Let
Ae — A ’ e () — y(
. ’ ys(.):y() 0}
Note that
a: () Vye(x) = a@) Vi) _ [a(x) + e(alx) — ax))]Vye(x) — a(x)Vy(x)
& &
=a(x)Vy,(x) + [a(x) — a(x)]Vye(x),
and

heye(r) = A5 _ helye () = F0)1 + Ghe = DI (0)

= he Ve (X) + A3 (x).
P P

Hence, (A%, y.(-)) satisfies

{—v A(@)VYL)) = Aeyo () + L5 00) + V- ([alx) — a(0)]Vye(x),

2.18
Since a(-) — Aq(.) is Lipschitz, we have

|he — Al

Al = — =Llla®) = a0l
From the Lipschitz continuity of the principal eigen map A (see Theorem 2.4), we have

IAL] + ||yé(')||W01,2(m <C, Ve>0. (2.19)

Then along a sequence g — 0, it holds that

de, = A, and yp () — ¥'(), weakly in WOI’Z(Q).
Also, (2.19) leads to

Agp — X, and Ve, () = ¥(-), strongly in W&’Q(Q).
Consequently, passing to the limit in (2.18), one gets

[—V (@) Vy' @) = 2y'@) + 2500 + V- ([ax) = a(n)1Vi)),

o (2.20)

’
Y lag
and

X =2 5O = [Q 5@ (= V- (@@ ) = 2'() = V- ([a@) — a0IVF(x) )dx
= [ (16950, 95/} =250y )+ (V30 a(w) = GIV300)) )

:/Q (la(x) —a(x)]Vy(x), Vy(x)) dx.
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This implies that A/, — A’ for the whole sequence ¢ — 0.
On the other hand, we have

1
0= lim — /Q ((@E)Vye, (0, V3 (0) = (G50, V5()) ) dx

k—o00 &

= Jim | (@95, (0. Ve, () + V5 dx

= 2/9 (a(x)Vy'(x), Vi(x)) dx = ZX/SZy/(X)i(X)dX
Similarly,

1
02 lim — fQ ({6 () V30 (), V3 () = (0, (VI (), V3() ) ) dx

k—o00 &

= lim o (e, (V) Vyg, (x), Vye (x) + Vi(x)) dx

= 2/;2 (a(x)Vy'(x), Vy(x)) dx = 25»/;2y’(x)§(x) dx.

Therefore, (2.17) holds. If ¥/ (-) satisfying (2.17) is also a solution of (2.16), then 3'(-) — y'(-)
is either zero or a principal eigenfunction of Lz(.). Thus y'(-) — y'(-) = 0 since [, (i’(x) —
y (x)) y(x) dx = 0. That is, among those functions satisfying (2.17), (2.16) admits a unique

solution. Consequently, y.(-) — y'(-) weakly in W(} ’2(9) for the whole sequence ¢ — 0.
Finally, by (2.18) and (2.16),

lim (&(x)Vy;(x), Vy;(x))dx
+tJa

e—0

= lim, fQ (Rely @)+ A5 + (([al) = @01V Ye(), V¥ () dx

/;2 (ALY P + 1y @)3@) + (([ax) — a)1ViK)), Vy' () dx

Z/Q(fl(X)Vy/(X),Vy/(X))dx.

Combining the above with the weak convergence of y.(-), we get that y.() —
y'(-) strongly in WOI’Z(Q) for the whole sequence & — 0. This complete the proof. O

The following gives some general results of Problem (A (.«7)) and Problem (A (7)) asso-
ciated with any convex and closed set &7 C .# [0, [¢1], based on the above proposition.

Corollary 2.6 Let Q2 be a bounded Lipschitz domain. Let 0 < po < 1 < 0o, and o/
M0, w1 be convex and closed in L' (2; ™). Then the following conclusions are true:

(i) Problem ([\(fzf)) admits an optimal solution. Further, a(-) € </ is an optimal solution
to Problem (A (<)) if and only if

/Q([a(X) —a()Vya)(x), Vyaey(x) )dx <0, Va() e . (2.21)
(i) Ifa(-) € o is an optimal solution to Problem (A(<7)). Then

/Q ([a(x) —a(x)IVya)(x), Vya (x))dx =0, Va(-) € . (2.22)
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Proof (i) From Proposition 2.2 and Theorem 2.4, we know that a(-) > A4(. is concave and
continuous from <7 to R. Hence, a standard argument involving Mazur’s Theorem applies to
get the existence of an optimal solution to Problem (A («)).

Next, if a(-) € &/ is a maximum of a(-) — A4(.), then for any a(-) € 2/, making use of
the convexity of <7, we have

Aag S—a()] — Aac

0 > lim ~20FEe0=a0 7240 _ 51 / (la(x) = a®)IVyae) (%), Vyaey (x)) dx.
el 0 & Q

This gives (2.21). Conversely, suppose (2.21) holds. Then by the concavity of a(-) = A4,

we see that for any a(-) € &/, € — Ag()tela()—a()] 1 concave as well. Thus, ¢ +—

f—gké(.)+g[a(.)_é(.)] is non-increasing. Consequently,

1
€
1

&

Aa(y — Aa(y = [(1 —&)Aac) + EXa() — )\a(.):l

IA

[l&<->+s[a<->—&<-)l - M(-)]

IA

d
[%)\,}(.)H[a(')*ﬁ(')l] ‘e:o

= /Q (la(x) —a(x)]Vyac)(x), Vyac)(x) )dx < 0.

Hence, a(-) is a maximum of A, over &/
(ii) From Proposition 2.5, we see that

ra(tela()—a()] = ra() + 8/9 (la(x) — a(x)IVya)(x), VYa)(x) ) dx + o(e).

Hence, if a(-) € &/ is a solution to Problem (A (<)), then (2.22) holds. ]

We note that Corollary 2.6 part (i) gives the existence and characterization of an optimal
solutions to Problem (A (<)), thanks to the concavity of the map a(-) — A4(). Whereas,
part (ii) of Corollary 2.6 only gives a necessary condition for a possible solution of Problem
(A(#)), and no existence of optimal solution is guaranteed.

3 A convexification of problem (I_\[a, Bl

Let us return to Problem (A [, B1). Since % [«, B] is not convex, the existence of an optimal
solution is not guaranteed. In this section, we consider a convexification of Problem (A[«, S]).
For 0 <« < B < 1, we introduce the following:

Yla, Bl = {o Q2 — [0,1] | o (-) measurable, o|Q2] < / o(x)dx < ,8|§2|}, 3.1
Q

which is convex and closed in L! (). Recalling % [«, B] defined by (1.17), one has

co@Ta FT- F = Sla. p. (32)

where the left hand side of the above is the closed convex hull of % [«, ] in L! (2; R). Now,
for given 0 < o < B8 < 1, and Ag, A1 € M[po, 1] with 0 < po < p1 < oo such that
(1.24) holds, with A(-) defined by (1.16), one sees that

A(Sle. B) = { Ao+ 0 ()41 = 40) [ 0() € Slet, A1}
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is convex and closed in L!(§2; R). For any o (-) € X[a, ], we consider the following state
equation
{—V (A YY) =1y(x), x€Q,

3.3)
Yy =0,

where A(o) = Ag + 0 (A1 — Ap). Denote the corresponding principal eigenvalue and nor-
malized principal eigenfunction by

o) = Agto()(A1—40)s  Yo() = YAot+a () (A1—4p) ()

respectively. We pose the following convexified problem.

Problem (A[e, B]). Let0 < < B < 1,0 < p10 < 1 < 00, and Ag, A1 € M[po, 121]
satisfying (1.24). Find a6 (-) € X[w, B] such that

As() = SUp  Ag(). 34
o()eX[a,B]

Any o (-) € Z|a, B] satisfying (3.4) is called an optimal control of Problem (AL, BY),
which is also called an optimal convexified relaxed control of Problem (A[«, B]). The super-

[TPRL)

script “c” in 1:\"[0:, B] indicates the “convexification”. Note that if 6 (-) is an optimal control
of Problem (A¢[«, 8]) and
[(0<a() <1)|=0, (3.5)

where
0<e()<l)={xeQ|0<s@) <1},
then
u() =xo,(), Q2 =(@¢)=1

is an optimal control of Problem (A[a, 8]). The following result gives the necessary condi-
tions when (3.5) fails.

Theorem 3.1 Problem (A[w, B1) admits an optimal control 5 () € Z[a, B]. Suppose
[(0<a() <DI>0, (3.6)
and y(-) is the corresponding optimal state. Then

(A1 = A Vy(x), Vi(x)) =C, aexe(0<a()<l),
(A1 = A VI, VF()) < ((A1 — Ap)VF(x), VI(x)) < (A1 — Ag)VF(x"), Vy(x")),
aex € (6()=0), aexec(0<a()<1), aex"e(a()=1).

(3.7
Further, in the case
/ o(x)dx < B|2|, 3.8)
Q
the following holds:
((A] = Ap)Vy(x),Vy(x)) <0, aexe (0=<a()<1); (3.9
in the case
/ o(x)dx > a|L2], (3.10)
Q
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the following holds:
(A1 = AQ)Vy(x),Vy(x)) =0, aexe (0<a()=<1); @3.11)
and in the case
a|Q| < /Qé(x)dx < BIQ|, (3.12)
the following holds:
(A — Ap)Vy(x),Vy(x)) =0, aexe (0<a()<l). (3.13)

Proof Since A(X[e, B]) is convex and closed in L!(2; S"), by Corollary 2.6 part (i), we
have that Problem (A€[e, B1) admits an optimal solution o (-) and the following is its char-
acterization:

0= /Q (0(x) = G(0) (A1 — A VI(x), VI(x) ) dx, Yo() € Zla, Bl. (3.14)

We now look at further necessary conditions for (y(-), (-)).
Since (3.6) holds, for any v(-) € ¥y where

= {v(.) € L*(Q; R) | / v(x)dx = O},
Q
with
suppv(-) € (0 <o () < 1),

one has o(-) = o (-) £ ev(-) € X[, B] as long as ¢ > 0 is small enough. By taking such a
o () in (3.14), we have

/Qv(X) (A = A9)Vy(x), Vy(x) ) dx =0, Vu() € %. (3.15)

This leads to the first identity in (3.7).

Next, let the set (6 (-) = 0) have a positive measure. Then take any v(-) € L*°(2) with
v(x) > 0, supported on (6(-) = 0), and any w(-) € L*(R2) with w(x) > 0, supported on
(0 < 6 (-) < 1) (which has a positive measure by (3.6)), and

/ w(x)dx = / v(x)dx. (3.16)
0<o()=D) (0 (-)=0)

Then for & > 0 small enough,
o()=0()+ev() —ew() € X[a, B].

Hence, using such a o (-) in (3.14), one obtains the first inequality in the second conclusion
of (3.7). Likewise, we can obtain the second inequality in the second conclusion of (3.7).
Further, if (3.8) holds, we may take v(-) € L®°(2) with v(-) > 0, supported in (0 <
0 (-) < 1). Then, for ¢ > 0 small, 6(-) + ev(-) € X[w, B]. Taking such a o (-) in (3.14), we
obtain (3.9). Likewise we can obtain (3.11) under (3.10). Finally, combining the above two
cases, we obtain (3.13) under (3.12). This completes the proof. ]

We now present an interesting corollary.
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Corollary 3.2 LetO<a < B <], and Ag < Aj. Then there exists an optimal control & (-)
of Problem (A€« B]) such that

/ o(x)dx = B|2|. (3.17)
Q

Further, if 5 (-) is a constant on 2, then & (+) is not an optimal control of Problem (A, B]).

Proof The first conclusion is obvious. It follows easily from the monotonicity of the principal
eigen map (see (1.10)).

Next, suppose 6 (x) = o9 € [, B] C (0, 1) (so that 6(-) € X[, B]). If suchaa(:) is
optimal, then by the first equation in (3.7), we have

((A1 —Ap)Vy(x),Vy(x))=C, ae.x €Q. (3.18)

On the other hand, since A(o(x)) is a constant matrix, y(-) € C°(2). Thus making use
of the fact that y(-) is strictly positive in £2 and is zero on 9€2, one sees that y(-) attains its
maximum on 2 at some point xo € €2. This implies Vy(xp) = 0 and therefore,

C = ((A1 = A9)Vy(x0), V¥(x0)) = 0.

Since A| — Ag is positive definite, C = 0 and (3.18) implies y(-) = 0. This is a contradiction
since y(-) is positive in 2. Hence, such a & () is not optimal. ]

Note that a constant o (-) = oy is not an optimal control means that a perfect mixture of
two different materials does not gives the optimal solution to the problem.

To conclude this section, we present an illustrative example for the case « = 0, 8 = 1
with both Ag < Ay and Ag > A fail.

Example 3.3 Let Q2 = [—1, 1] x[—1, 1] which is a bounded Lipschitz domain,a = 0, 8 = 1,

and
1
50 10
_ (2 _

Thus, both Ag < Aj and Ag > A fail. Let us consider the following problem:

{_(ayxlxl +byx2x2) = }‘y7 in €,

y|39=0’

for any given a, b > 0. Then we can check directly that the principal eigen pair is given by

_ (a+b)r?
B 4 ’nxl TX)
y(x1, x2) = cos 5 C0s ==, (x1,x2) € [-1,1] x [-1, 1].

From this, we see that for any constant o € [0, 1], one has

1,0
A0+G(A1—A0)=<2+2 Og),
0 5

A

[\S][9%}

and by the above calculation,

2

T
Mg+o(A1—Ag) = 5~

> = Ay = Aa,, Yo €[0,1]. (3.19)
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This shows that the map a(-) = A4(.) is not strictly convex. If o (x) = o € (0, 1) is optimal,
then by Theorem 3.1, we should have

2 1 s TTX X s TTX X
b4 5 0 sin %51 cos 52 sin %51 cos 52
C = (A1 — A)Vy(x), Vy()) = | (2 ]) ( 2 2) , ( 2 2)>

, 4 0 -5 COSZT sin == COS =5~ SIN 5=
b1 [.znxl 5 X2 5 X .zmcz] 77 w4+ x2) . w(x —x2)
= —| sin® — c0s" —— — €c0s" —— sin” —— [ = — sin sin s
8 2 2 2 2 8 2 2

which is impossible. Hence, o (x) = o € (0, 1) is notan optimal solution to the corresponding
maximization problem. Due to (3.19), we see thatboth o (-) = O and ¢ (-) = 1 are not optimal
either. By the way, the above also roughly means that in the current case, if Ag and A represent
the heat diffusibility of the two materials, then the uniform mixture of any ratio of these two
materials is not optimal for Problem (A0, 1]). It is not clear to us at the moment what is an
optimal control for this problem.

4 Relaxation of problem (A[a, B])

Mimicking Problem (A°[a, 8]), we may pose the following problem.

Problem (A‘[a, B]). Let 0 < uo < p1 < 00, Ag, A1 € M[po, u1]and0 <o < B < 1
satisfying (1.24). Find a o (-) € X[w, B] such that

)»U(.) = inf )\0(~)- (4.1)
- o()eXla,p]

Note that although X[, 8] is convex and closed (in LY R)), A() — AA(, is concave
and not necessarily convex in general. Therefore, itis not clear if the map o (-) > A4 (.) admits
a minimum on X[, B]. In another word, the above Problem (A€[w, 8]) might not admit a
minimum over X[, 8] in general. Hence, instead of Problem (A¢[«, 8]), we will introduce
another relaxation of Problem (A[c, B]), for which the existence of an optimal solution is
guaranteed. To this end, let us recall some results relevant to the so-called H-convergence,
which will play an essential role in the relaxation of Problem (A[«, B]).

4.1 H-convergence

We recall the following definition.

Definition 4.1 A sequence {a.(-)} C .#[uo, 1] is said to be H-convergent to a*(-) €

M 110, ju1] on K2, denoted by a(-) — a*(-), if for any f € W—12(), the weak solution
ve (+) of the following problem

{—V (@) Vye(x)) = f, inQ, 42)
Vely =0
has the property that
Ye() = y*(), weakly in Wy*(R) (4.3)
with y*(-) being the weak solution to the following:
_ . * * — 3
{ v (a* ) Vy*(x) = f, inQ, 44
y |as2 =0.
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In 1968, Spagnolo ([31]) introduced the above notion, called the G-convergence, for
symmetric operators (i.e., each a. (-) is symmetric matrix valued and so is a*(-)). The notion
was generalized by Tartar for possibly non-symmetric operators ([32]), and is called the
H -convergence, for which the following additional condition is required:

as(Vy.(-) = a*()Vy* (), weakly in L*(S; RY), 4.5)

which is automatically true when a, (-) is symmetric and is H-convergent. It is known that
for symmetric operators, the G-convergence is equivalent to the H-convergence ([3]). In
the problems that we are studying, all the involved second order differential operators are
symmetric. Hence, G-convergence will be enough. However, we prefer to use the name H-
convergence instead, just keep in mind that we are treating the case of symmetric operators.
For more words on H-convergence, see also [4,17,30].

Note that in the definition, the H-limit a*(-) of a.(-) is independent of the choice of
f € W=12(Q), and the whole sequence (not just a subsequence) y.(-) is required to be
weakly convergent in WO1 2 (£2).

For any X C .#[no, 1], we denote the H-closure of X by YH. Let us now list some
useful properties of H-convergence and H-closure, found in [3].

(i) Sequential compactness The set .#[uo, t1] is sequentially compact under H-
convergence, i.e., for any sequence {ax(-)}x>1 € #[po, 1], there exists a subse-
quence {ax, ()}i=1 and an a*(-) € .#[ 0. 1] such that ay, (-) — a*(-).

(ii) Locality If a. (-) A, a*(-) on 2, then a.(-) A, a*(-) on any subdomain w C .

(iii) Monotonicity and uniqueness If a.(-) A, a*(+), be () A, b* () with ag(-) < be(),
then a*(-) < b™(-). In particular, if 0 < o < a.(x) < w1, then
mo < a*(x) <pi, xe€Q.

Also, by taking b, (-) = a(-), one has

a:() 2 a* ()

a.() =5 b*()

} = a*() =b*().

That is, the H-limit of a sequence is unique.
(iv) Non-homogeneous boundary conditions Let

ac() 25 a* (), 9 e WHAQ), few (@),

and y.(-) and y*(-) respectively be the solutions to the following:

{—V (@ () Vye(x)) = f, inQ, (4.6)
y£|ag =9,
{_*V (@' WVy ) = £, inQ, @.7)
Voo =0

Then
ye(-) = y*(-), weakly in W2(Q).
(V) Metrizability Let {f,(-)}¢>1 € L>(2; R") such that {V - f;},>1 is dense in W—12(Q).
For any a(-), b(-) € 4o, 11], let yZ(‘)(~) and yf(‘)() be the unique weak solutions
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to the following:

V- (avyw) =V £, i,

O] _
yZ !asz =0,
and
V. (b(x)Vyf(')(x)) —V.f, inQ,
b(-)
Ye ’asz =0.
Define

p(a(-) b()) _ Zz*l ”y?(')(,) _ )’f(')(')HZ + ||a(.)vyz(-)(,) _ b(')Vyf(')(~)||2

& I%ell>

(4.8)
Then p(-, -) is a metric on .# o, w1] such that for any a. (-), a*(-) € .#[uo, n1],

a:() > at() = pla.(),a* () = 0. 4.9)
(vi) Upper and lower bounds Let
as() = a), a;(-)7' = a7, weak*in L¥(Q; "),
as() =5 a* ().

Then
a(x) <a*(x) <a(x), aex € Q. (4.10)

(vii) Commutativity with congruent transformation Let Q € R"*" be non-singular. Then
H H

a:() —d"() = Qa:()Q" — Qa*(HQO".

(viii) Pointwiseness Let G € M[uq, (1], denote
L@ 6) = [a() € L¥(@:8") | a(x) € G, acx € 2,

and define

—H ——FH

G" ={4e Mol 104 e I¥@ G|,
Then

@6 =12(@G") = [0 () e Aluo, i) | (1) € G, aex e @) @11)

Namely, a*(-) € L®(Q2; G) " if and only if for almost all x € €, there exists a sequence
{ar (-5 X)}k=1 S L*°(2; G) (depending on x) such that

a3 x) 5> xa(Ha*(x), k- oc.
More generally, let Q € .# [0, (o] and define
0. ={q(x) | q() e Q}, VxeQ.

Then, under some mild conditions (see Theorem 2.3 in [20])

@H = {a*(.) € Mo, 1] ’ a*(x) € a;l, aex € Q]
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Note that by taking a; (-) = x,(-)A with A € G, we see that
Gca". 4.12)

We will see that G is a proper subset of 5H below.

4.2 Lamination

In this subsection, we consider a special case involving two matrices, which will be useful
in our relaxation of Problem (A[w, 8]). Let us first present the following result.

Theorem4.2 Let O < o < ) < oo and A, B € M[uo, j11] be fixed.
(i) Forany® e (0,1)ande € " ' = {x e R" | |x| = 1}, define

Ho(A, B: 0, ¢) = A, [<x;e>]€[0,1),
e\, D, UV, €)= B. {(X‘;e)]e[o’g)’

x e R", (4.13)

where {r} = r — [r] is the decimal part of the real number r. Then, as ¢ — 0%,

H.(A, B: 6, ¢) -5 H[A, B: 0, e]

(1 —6)(A — B)eeT(A — B)
eT[0A+ (1 —6)B]e

6(1 —6)(A — B)eeT(A — B)
e'[B+6(A—B)]e

=(1-0)A+6B—

=A—6(A—B)-— e{A,B}HEM[uo,m].

(4.14)
(ii) Foranym > 1, let
ekeZ(A — B)]

r (A,B):{A eS"|(1-0)(A-B)=(A —B)[1+9k§ﬂk T Bey

m

for some 6 € [0,1], ¢ € S"!, B >0, Zﬂk = 1},
k=1
(4.15)

and

r@A.B=|Jra B cas”. (4.16)

m=1

Then
U(A B) = {14, Bi6.e1 |0 €10,1], e € S| = H[A, B: 10,11, "], @4.17)

and
r'(T(A, B), B) S T'(A, B). (4.18)

(iii) Forany 0 € [0,1], H € S" with H > 0 and tr (H) = 1, the matrix

I +6B 2HB (A — B)
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is non-singular, and

T'(A, B) = IB +(1—0)A—B)[I+0B THB *(A—B)]"|

(4.19)
0e0,1], H>0, tr (H) = 1].

Proof

(i) Relation (4.14) follows from [3], Corollary 1.3.34 (see [24] also).
(i) This is a restatement of Lemma 2.2.3 of [3].
(iii) Let® € (0,1)and H > 0,tr (H) = 1, we have I — H > 0, and

det [1 +OB YHB (A - B)]
— det(B?) det [1 YOB THB 3 A— eB—%HB%] det(B~%)
— det [1 +OH(B ?AB™7 — 1)]
— det(H™7) det [1 “H+(-60)H+ eHB—%AB—%] det(H?)
— det [1 ~H+(-0)H +9HzB—zAB—2H5]

zdet[/-H+(1—9)H+9@H]:det[ B Yad Bl ]
1

0 1—-0 0 - 0 1-0 n
:det[ o + ( )ml+ (11 Mo)(]_H)]Z[Mo-I-( )MI:I.
M1 M1 M1
By continuity, for any 6 € [0, 1], H > 0 (instead of just H > 0), with tr H = 1, we have
Opo + (1 —0) ]”
w1

det[1+93—%HB—%(A—B)] z[ > 0.
Therefore, [I + GB_% HB_% (A — B)] is non-singular.
On the other hand, if A* € T'(A, B), then

exel (A — B)]

4.20
egBek ( )

(1—0)(A—B) = (A" — B)[I +65 B
k=1

m
for some 6 € [0, 1], B > O, Z,Bk = 1,and ¢; € $"!. Note that
k=1

Zﬁ ekek = éijﬁk(B%ek)((Bze")) B~*=B IHB I,

1 1
k=1 |BZex| “|BZel

where

m 1 T 1 m

(B2er)” ((BZex)\T

H=Y p—r—(=12) 20, v =) fi=1
k=1 |BZex| “|BZe| _

Thus, (4.20) is equivalent to the following:

(1 —9)(A—B):(A*—B)[1+93—%HB—%(A—B)]. 421
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Then by the invertibility of [I + 9B IHB"? (A - B)], we have

A*=B+(1—9)(A—B)[1+93—%HB—%(A—B)]_l. (4.22)

Conversely, if (4.22) holds for some 6 € [0, 1], and H > 0, tr (H) = 1, then (4.21) holds.
Moreover, it is easy to see that

H=Y Bkl

k=1

n
with B = 0 (1 <k <n), Y pr=1land& € "' (1 <k <n). Thus

k=1
n T
L1 Sk
a2y p i
- % Bey
where
1
B2
=28 g k<
|B™ 2|
Hence,
Lo, EEL 1
(1—6)(A—B) = (A* — B)[I +0B72 ) BB (A - B)]
— &% Bey,
" ekeT
:A*—B[1+9 k A—B],
( ) D B T 54D
k=1
which means A* € I'(A, B). This completes the proof. O

In the above, any element in I' (A, B) is called a lamination of A with base B. From (4.19),
we see that A, B € I'(A, B) (by taking & = 0, 1). Thus,
(A.B)CT(A,B) A, B

Note also that for any 6 € (0, 1), H > 0, tr (H) = 1 it holds that (see (4.10))

((1 —o)A~ 9B‘1>71 <B+(1-0)A- B)[I YOBPHB (A - B)]*1
<(1—-60)A+6B. (4.23)

This gives bounds for elements in I'(A, B) € M[uo, (¢1]. Further, we should keep in mind
some facts about the set I'(A, B):

e Itis possible that I'(A, B) # I'(B, A) (n > 3)

e I'(A, B) is not necessarily convex, and even {A, B} 1 might be non-convex.

o Itis possible that {4, B] © # ['(A, B)|JT'(B, A).

e Even for A = AB with B being diagonal (n > 2 and B # y I for any y € R, of course),
as long as A # 1, I'(A, B) contains non-diagonal matrices.
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4.3 Relaxation problem

In this subsection, we fix 0 < ug < u; < 00,0 <a < B < 1,and G = {Ag, A1} C
Mo, p1] satistfying (1.24). For a domain w, denote

Gpla, Bl = {Ao + Xq, V(A1 — Ao) | @1 € ® measurable, o|w|< IQ1|§/3|60|]-
Recall (see (1.18)) that o/ [«, B] = “qlw, B]. We first present a simple result.
Proposition 4.3 Assume Ao # Aj. The following hold:
@=0 <  x,()Aoe o B, (4.24)
B=1 <  xo0OAI €T pl" (425)

Proof We just prove (4.24). One can prove (4.25) similarly.
Suppose & = 0. Then

X0 (VAo € 10, B1 € /10, A1

Conversely, suppose x,(-)Ag € [, B] " Then there exists a sequence

ak () = Xge VA0 + Xo, VA1 € o, B, Q] = Q| = BI2I, k=1,

such that ay () i) xo(-)Ag. We may let
Ko () = g(). weak® in L(2; §"),
with
€2 |

1
§ = — gx)dx = lim — € [«, B].
12 Ja k—oo |2]

Then by (vi) of listed properties of H-convergence, we have
Ao <[1—gO)Ao+8(A1, Ag' <[1-gO1A;" +80)AT".
Thus, integrating each side, one has
Ao < (1= 9)Ag+sA1, Ay’ <1 —9)A;" +sA7"
Since Ay # A1, the above hold only if s = 0. Hence, @ = 0, proving the conclusion. O

We now formulate the following problem which is called an H-relaxation of Problem
(Alw, B]), with H indicating that the relaxation is in the sense of H-convergence.

Problem (A [«, B]). Find an a(-) € #[a, ] H such that

)\g(~) = inf )\a(A) (4.26)
a()ed [a.p]

Any a(-) satisfying (4.26) is called an optimal control of Problem (A [a, B]), which is
also called an optimal H -relaxed control of Problem (A[«, B]). The superscript “H” indicates
the H -relaxation.

Problem (A [a, B]) is a kind of relaxation for control problems in the coefficients, we
refer the readers the following works: [7,9,21,23,25,28,33].

We first have the following existence theorem.
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Theorem 4.4 Problem (A [«, Bl) admits an optimal control a(-) € o [a, B] "

Proof Let ay(-) € ,Q%[a,,B]H be a minimizing sequence of Problem (Af o, B]) with
(A&, yx(+)) being the corresponding principal eigen-pair. Thus,

{—V () V() = My (x), x € Q, 4.27)
Yklag =0,
yi(x) =0, xeQ, / Iy () *dx = 1, (4.28)
Q
and
lim Ay = A= inf Aa()-
k=00 a() e Bl

Since y (+) is uniformly bounded in WO1 2 (2), and .#[ o, (£1] is sequentially compact under
H -convergence (Property (i) of H-convergence listed in Sect. 4.1), we may assume that

() = y(-),  weakly in Wy (€2), strongly in L*(2), (4.29)

and
a() =5 a(), (4.30)

for some y(-) € WOI’Z(Q) and a(-) € oa, B] H. Clearly,

y(x) >0, xeg, / ly(x)|?dx = 1, (4.31)
Y Q%
and
v = Q
L a(x) YX) =ry(x), xeQ, 4.32)
‘E)Q
Hence, Ay() =Aanda(:) € ola, Bl ,8] is an optimal control. O

Now, we state the following necessary conditions for an optimal control of Problem

A e, BD).

Theorem 4.5 Let a(-) € |«, ,B]H be an optimal control of Problem (A [a, Bl with
(&, y()) € [po, p11 % WOI’Z(Q) being the corresponding principal eigen pair. Then

A 2/ la(x) Vy (o) Pdx = f Ib(X)ffa(X)Vy(X)l dx
o b

be )e"’ 1" (4.33)

= sup / Ib(x)"2a(x)Vy(x)|*dx,
b(ed [a,f]/Q -

and

/ (la) — abn) ™ a@]Vy@), Vy) dx = 0, Vb() e o 17, @434)
9 R Ra
Equivalently,

/ (la) = ap'a@]Vy), Vy@) dx = 0, Vb() € e Bl (439)
i y(). Vy
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When oo = 0 and B = 1, the following also holds:

(a()Vy(x), Vy(0) = (B~'a(@)Vy(x), a()Vy(x)), aexeQ, Be (A, Al
(4.36)

which is equivalent to

(a(x)Vy(x), Vy(x)) = (Ai_lg(x)VX(x),g(x)VX(x) ), aexeQ,i=0,1. (437

This is a kind of maximum principle for the optimal control of Problem @H [e, B]). We
point out that when 0 < « or 8 < 1, one could not get (4.36). Also, it is clear that if (4.37)
holds, then by H-convergence,

_ ———H

(a(x)Vy(x), Vy(x)) = (b(x) IQ(X)VX(X),Q(X)VX(X)), aex €Q, Vb()eda, p] .

(4.38)

In other words, in some sense, (4.36), (4.37) and (4.38) are mutually equivalent. To prove
this theorem, we need several lemmas.

Lemma 4.6 The metric p(-, ) on M [Lg, 1] defined by (4.8) is uniformly continuous in the
following sense: For any € > 0, there exists a § > 0 (only depending on ¢ > 0) such that

pa(),b()) <&, Va(),b() € Alpo, n1l, lla:) — bl < 6. (4.39)
Consequently, if {ax(-)} and {b(-)} are two sequences in . 1L, |41] such that
ai () N a*(-), llak(:) = b1 — 0. (4.40)
Then by (+) A, a*().

Proof Since . [0, (41] is sequentially compact under H -convergence, it suffices to show

that (4.40) implies bx(-) —> a*(-).
Let f € W~12(Q). Consider

{—V (@) Vye(x)) = f, inQ, (4.41)
y’<|asz =0
and
{—V (b () V() = £, in Q, (4.42)
Zk|aQ =0.
Then
() = y*(-), weakly in WOI’Z(Q)
with

{—V-(a*(x)Vy*(x)) =f, inQ,
y*|asz =0.

Then, thanks to Theorem 2.3, for some p > 2 and C = Cy, the following holds:
IVyillr@) < C, IVzrllLr) < C.
We note that (making use of the Dominated Convergence Theorem)

llak () — be()|| 2 — O.
P2
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It holds that
0= /Qak(x)Vyk(x) - V(yr(x) — 2 (x)) dx —/Qbk(x)VZk(x) - V(yr(x) — 2z (x)) dx
= [ (93 = ae) - (T340) = V) d

[ (@) = ) V) V() = ) )

= ol V() — zk(ll2 = llax () — bk(')”% IV @Ol (1Y GrC) = 2l p)-

Therefore,
2k () — yk(-) = 0, strongly in W(}’Z(Q).
This implies
() = y*(), weakly in Wy ().
That is, by () i> a*(-). This completes the proof. ]

The above result shows that there exists a non-decreasing function 4 : [0, co) — [0, c0)
with 2(0) = h(0+) = 0 such that

p(a(),bO) < h(lla() =bOI1), Va(), b() € Mo, m1. (4.43)
Such a relation will be used below.
Lemma 4.7
(1) Let {2;} be a sequence of measurable subsets of Q2 such that
1] — v
and
ai() = Ao+ Xg, V(A1 — Ag) —> a*(-).

Then a*(-) € Ay, v] H.
(ii) Forany a*(:) € o/|«, B] H, thereis ay € [a, B] such that a*(-) € [y, y] 7

Proof (i) For any i, we can choose a measurable set Qi C Q such that |§i| = y|2| and
| xe00 = g, 0 lax = 121 - 12
Q
In fact, we can choose 2; € ; if || > y|Q| and ©; D ; if || < y|<|. Let

ai() = Ao + x5, (VA1 — Ag) € &1y, v1.

Then ||@;(-) — a;()]l1 — 0. By Lemma 4.6, we get a;(-) R a*(-) and consequently

a*(-) e dly, vyl
(ii) The result follows directly from (i). m}
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Lemma4.8 Let{Q2; C Q| 1 <i < m}beapartition of Q, i.e., it is a set of mutually disjoint
domain such that

|2\ =0 (4.44)
i=1

G) Fori=1,2,...,m, let aé(-) € M 1o, 1] be such that

al() I ah), 1<i<m. (4.45)

Then . .
3 o, O0alO) =5 3 g, ()ah(o). (4.46)

i=1 i=1

(i) Fori=1,2,....m, letai()|, € S [0,11". Then

m
——H
D xo, (Vi () € e, B (4.47)
i=1
if and only if for some y1, y2, ..., Ym € [0, 1], one has ai(-)|9. € do;vi, vil " and
m
@l <) vl < BIQ. (4.48)

i=1

Proof (i) By the locality of H-convergence (see Property (ii) in §4.1), we get aé ) i) aé(')
on ; foreveryi =1,2,...m.
On the other hand, by the compactness of H-convergence (see Property (i) in §4.1),

along a subsequence, Zm . XQ,(-)aé(J i) a*(-) on Q for some a*(-) € #[uno, 1]
i= i

Then by locality, aé(-) R a*(-) on ; for every i =1,2,...m. By the uniqueness of H-
convergent limit (see Property (iii) in §4.1), a*(-) = af(-) on ©; (1 < i < m). Thus, a*(-) =
an | Xe, (-)a6(~) on 2. Consequently, (4.46) holds, not only in the sense of subsequence.
i= i
(ii) Sufficiency. For i = 1,2, ..., m, we have Q¥ C Q; such that |Q¥| = ;|| and

ak () = Ao+ x_, (VA1 = Ag) =5 a;(), on .
Thus, by (i),
3 e OO 3 ke, Qai ).
i=1 i=1

On the other hand,

1" 1 <
@‘Uﬂf = @ZVHQH =y €la, pl.
i=I i=I

Therefore, Y | xo (Vai(-) € ly.y1" € . f1".
i=1
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Necessity. By Lemma 4.7, there is y € [«, 8] such that Zm . X, (Dai () € Ay, y] H.
= i
Thus, there is a sequence { Ex} of measurable subsets of €2 such that |Ex| = y|<2| and

ar () = Ao + x5, V(A1 — A0) =5 3 1, ai ().

i=1

Then, by locality, ai(-) LN a; (-) on ;. On the other had, we can suppose that for every
i =1,2,...,m, |Er N Q;| convergence to y;|2;| for some y; € [0, 1]. Thus ai(-)|Q, €

H
1

o, lvi,vi]  and

m m
(1 = 1 E,NQ|= 1 Er| = yI|R2|.
D_vilil= lim Y ENQil= lim |E=y|®

i=1 i=1

We get the proof. O

Remark 4.9 We would like to mention that y in Lemma 4.7(ii) might be not unique. Therefore,

- . m ———H ——H
it is possible that although Zi:l Xe, ()a;(-) € Ao, B]  and a,'(-)|Qi € o9, [vi, vi] ,but

1 m
1] Zai=t il ¢ [a, B

The following result is an extension of Theorem 4.2 (i), replacing A and B by a(-) and
b(-), respectively.

Lemma4.10 Let a(-), b(-) € #[po, 1], 0 € [0,1] and e € S"~!. For any small ¢ > 0,
define

[<x,e>

£
(x,e

] e[, 1),
} € [0,6).

a(x),

Hela(-),b(-); 0, el(x) = (4.49)
b, |

~

&

Then as ¢ — 0,

Hela(), b(); 6, € (-) —> Hla(), b(-); 6, el(-) i
— (N N ey 04 =0)a() —b()]ee [a(-) — b()]
= a() —6la() — b()] T oty o

(4.50)

The proof of the above lemma essentially follows from that of [24], Proposition 2.1. Based
on the above, we further have the following result.

Lemma4.11 Let y; € [0, 1], a;(-) € [y, yi]H (i = 1,2). Then for any 6 € [0, 1] and
e e Snfl’

0(1 = 0)[ai() —ar()lee’[a1(-) — ar ()]

—H
T
() 10l —aolle <20V

(4.51)

b() =ai() —Olai() —ax()] -

where y = (1 — 0)y1 + 0y». Consequently,

H[d[a, Bl e B1™: 10,11, S"’l] < oo, g1 (4.52)
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Proof We need only to consider the case 8 € (0, 1), which is fixed below. Take an ¢ € sl
For simplicity of notation, denote 61 = 1 — 6, 6, = 6. For any k > 1, denote

Or={xeQ|{k(x,e)}elo, D}, Oi={xeQ|lk(x,e)}el0,0)] 453

and define
bi() = X1 (a1 () + xg2(Naz (). (4.54)

Then
Xoi ) = bixa(), weakly in L2(Q), i=1,2. (4.55)

Moreover, by Lemma 4.10, by (+) i) b(-). .
On the other hand, for i = 1, 2, there is a sequence {E ;.} j>1 of measurable subsets of 2

such that |E§.| =¥,
Xgi () = 0i(-), weakly in L*(), (4.56)
J

and A "
a'() = Ao + x,; (VA1 = Ag) — ai (). (4.57)

By (4.55),

2 2
Z/ oi(x)dx — Z/ O;i0i(x)dx = y ||, (4.58)
i=17Ck i=1 7%

Thus, for m > 1, we have k,,, > 1 such that (c.f. (4.8))

1
p(bi, (), b()) < - (4.59)
and
2 1
‘Z/ oindx — 19| = —. (4.60)
i=1 7 Chy m
By Lemma 4.7, as j — oo,
2 ' y 2
D xop Qa6 = xgr Oai() = by, (). (4.61)
i=1 i=1
Then, by (4.61) and (4.56), we have j,, > 1 such that
2 A !
P (Z Xoi ()aj, (), by, (')) =— (4.62)
i=1
and
2 1
Z‘/ (xgi () _Ui(x))dx‘ =—. (4.63)
i—=1 Q}{m Jm m
Denote

2
Bu() =) xg, ()i, ().
i=1

@ Springer



Optimization of the principal eigenvalue... Page290of42 139

Then
2 . .
Bu(-) = Ao + xg, ()(A1 — Ag), Qm =] (0, NEY).

i=1

By (4.59) and (4.62), B, (+) i) b(-). By (4.61) and (4.63), Q,;, — y|2|. Thus, it follows
from Lemma 4.7(i) that b(-) € /[y, y] H, proving our claim. ]

We further extend the above result to the following (replacing e by £(-)).

Lemma 4.12 Assume a(-), b(-) € o[a, B] H. Let Q1, Q0, ..., Qy be a partition of Q and
m
E() =) Xo ()&,
i=1

with & € 8"V (1 <i < m). Then for any 6 < [0, 1],
0(1 = 6)(a(-) = b(-NEOEOT@() = b()
§OT(bC) +6laC) = bO)EC)

a(-) —0la(-) — b(-)] — e 7o, B, (4.64)

Proof Form =1, 2, ..., m, denote

6(1 —0)la(-) —b()1&E a(-) —b()]

bi(-) = a() — Ola(-) — b(-)] —
() =at)=0lat)=bO)] ET{b() + 0la() — bO)I)&

Since a(-), b(-) € A|a, B] H, by Lemma 4.8, for j = 1, 2, there exist yj1, ¥j2, ..., Vjm €

[0, 1] such that a; (')‘Q. € o lvji, vjil H, and
m
alQl < yjilul < BlQl, (4.65)
i=1
where we denote aj(-) = a(-), ax(-) = b(-) for notation simplicity. By Lemma 4.11,

——H . . .
bi()|g, € F,lvi, vl withy; = (1 = 0)y1; + 0y (i = 1,2,....m). Since 5

m m m
alQ) <D yilQil =1 —0) ) yilQul+0 ) yall < BIL,

i=1 i=1 i=1

we get from Lemma 4.8 that

3 xe, (Obi() € T, B17.

i=1

That is, (4.64) holds. O

Now, we are ready to prove Theorem 4.5.

Proof of Theorem 4.5 Fix b(-) € </[a, B] H. Let @21, Q, ..., 2, be a partition of € and

E() =) Xo, (D&, (4.66)
k=1
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with & € §"~! (1 < k < m). Then, by Lemma 4.11, for any 8 € (0, 1),
01 —0)a() — b()IEOEC [a) — b()]

e 7T, 1.
§OT(b() +0laC) = b())EC)

ag(-) = a(’) —0la() —b()] —

(4.67)
By the optimality of a(-), we have

/Q (a(0)Vy(x), Vy(x)) dx = haty < Aoyt

= inf, /(ae(X)Vy(x),Vy(deXS/ (ap(x)Vy(x), Vy(x)) dx.
YOW (@) /@ Q
IyOll2=1

Therefore, by the minimality of a(-), one has

. ag(x) —a(x)
0< 91_1>rg+/9(fVX(x), Vy(x))dx

(a(x) — b(x)EX)E ) (a(x) — b(x))
_/ <(Q(X) —b(x) + EC)THOVEQ)

)VX(x), VX(x)>dx.
That is,
a() —b)]Vy@|?

; dx
Ib(x)2& (x) 2
b(x)%é(X) >2 "
Ib(x)2€(x)]

The above is true for any £(-) of form (4.66). Then by approximation, we obtain

T
/ (b — a9y, Vy() dx = / g
? a B Q

> /Q <b(x)‘5[a(x> — b()]Vy (),

/Q ([bx) — a)]Vy (), Vy(x)) dx > fQ b(x) "2 (a(x) — b)) Vy(x)| dx
- fQ ([a(x) — b)) ]p) [ax) — b@)]Vy (), Vy(x)) dx

- fQ ([at)b() ™ alx) = 2a(x) + b(x)]Vy (), Vy(x)) dx.

Therefore, (4.34) holds. Consequently, we have (4.35).
Now, we show that (4.35) also implies (4.34). Suppose that (4.35) holds. For any b(-) €

mh’, there is a sequence Q; C Q with
a|Q < Q] < BIR2I, k=1,
such that as k — 400,
br() = XQE(')AO + Xo, (VA1 RN b(). (4.68)
We can assume that
Xo, () = 8(-), weakly in L*(<).
Then
bi() ™! = Ko VA + 4o, OAT! = [1 = gO)IAG" +8()AT!,  weakly in L2(R).
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From (4.10), we get that
()TN <1 —gA + ()AL (4.69)

Therefore,
/Q (a()bx) " a(x)Vy (), Vy(@)) dx
< /Q (a()[(1 - g@AG" + g AT ]a() Vy(x), Vy(x)) dx
= Jim | {a()[xg A5 + 1o, AT Ja@Vy ), Vy(0) dx

< /Q (a()Vy(), V() dx,

where the last inequality follows from (4.35). Hence, we get (4.34). Then it follows that

sup / (@b a()Vy(x), Vy(x)) dx
i Y0, Vy

b(-)ed [a,B]

- max f (a(0)b(0) " a()Vy(x). Vy(x)) dx
b()ed[@pl I B B

_ / (a(X)Vy(x), Vy(x)) dx = 4. (4.70)
| (aVy@), vy

Hence, (4.33) holds.
Next, in the case that « = 0 and B = 1, for any sub-domain 2, C Q2 with || = ¢, and

b(-) € a, B] H, let (noting Lemma 4.8 (ii)) -
be() = Ko, (IBC) + 2o (Na() € T, B

Taking such a b, (-) in the above, we obtain

/ (a()b(x) a0 Vy(x), Vy(x)) dx < / (a(0)Vy(x), Vy(x)) dx.

£ $2
Then, using Lebesgue’s density theorem, we obtain (4.38). In paricular, (4.37) holds. More-
over, similar to that (4.34) and (4.35) are equivalent, (4.37) is equivalent to (4.36). ]

4.4 Optimality system

Let us now take a closer look at (4.34)/(4.70). Note that any b(-) € </[a, 8] has the following
form:

b() = xge (VA0 + Xo, AL

for some 1 € Q, with «|Q2| < |Q21| < B|R2|. Then there is a sequence of 2; C €2 such that
o] Q] < [S%] < B2,

H
Xoe (VA0 + xq, (VAL —> a()
and

Xa, () = a(), weakly in L2(Q; [0, 1]).
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Then o () € X[, B] (see (3.1) for the definition) and by property (vi) in Sect. 4.1,
a7 = A7 oA - A, xeq.

Consequently, (4.70) is equivalent to the following:
/Q (45" + e @ AT = 471)a) V(). a(0) Vy @) dx = /Q (a(x)Vy(x), Vy(x)) dx

= sup f (a(@)[AG Xge () + AT Xg, ()]a(0)Vy(x), Vy(x)) dx
a|QU<|Q2<BIR2] SR !

= swp /<(A51—|—U(x)(Al_1—Aal))g(x)VX(x),g(x)VX(x)>dx.
c(ezlwpl /0

Therefore,
/Q o @ (A7 = 47Da@Vy (), a)Vy () dx

=  sup /0(x)<(Al_1—Aal)g(x)VX(x),g(x)VX(x)>dx.
o(-)eX[e, ]/

By denoting
h(x) = ((Aal — AT Da(x)Vy ), g(x)vzoo),

one sees that the above becomes

/g(x)h(x)dx: sup /a(x)h(s)dx. 4.71)
Q o()eX[a,f1/Q

Thus, o () € X[a, B]solves amaximization problem. For this problem, we have the following
proposition.

Proposition 4.13 Let o (1) € X[«, B] satisfy (4.71). Then there are two constants ¥ and (o
such that

1o <0, pj+w?=1,
(f o(0dx —1)¥ 0, a|Q| =1 < Bl
Q
and

(oh(x) + W)a (x) = [max, (oh(x) + W)0, ae.x € Q.

Proof For any ¢ > 0, define

Fu(o()) = {[(/ o) —o@wdx+¢) | + ¢(/ o(x)ds)}%,
Vo()es = {o:Q—10,11|0()is measurable )

where

: 2
s) = min s—t|°, selkR.
() Q\Q\Stsﬁ\m' |

We have |¢/(s)| = 2,/¢(s) and
(t—9)9'(s) <0, «a|Q <1=<pIQ|

@ Springer



Optimization of the principal eigenvalue... Page330f42 139

Clearly,
Fo() >0, YVo() e, Foa() =e.
By Ekeland’s variational principle ([22]), there exists a 0. (-) €  such that

lo:() — Ol < Ve, ~
Fo@() +Velo () = 00l = Feloe(), Vo () € 5.

Hence, forany § € (0, 1) and o (-) € f, one has

0l()=0.() +68[0() —0:()] € T,

and thus
Fo(02() = Fe(0:())  Fe(02())” = Fe(0:())’
elloOlla < : W ACOESACE)
_ 1 s _ +72
[Fe(02() +Fe(0:())]8 {K/Q [o? () — a(]hdr+e) |
+72
_[(/ [0 (6) — o (@) ]a()dx+2) |
Q
-I-(Z)(/ a‘s(x)dx> —¢(/ Gg(x)dx)}
m [( [ tort0) = ehear +e)" [ 1o - autmiheoras
4530/ ( [ autoar) [l - ou(nlas
2 Q Q
= —u /Q [0 (x) — 0 (0)]h(x)dx — W? /Q [0 (x) — e (x)]dx
with

(p)> + (W =1, uf=0,

(/Qag(x)dx - r)\lﬁ <0, a|Q <t<BlQl
Then along a subsequence, still denoted it by itself, we may let

(15, ¥) = (o, W), g +W? =1, po <0,

([ etar—1)w <o, alar<: < pial,
and

[ (00 = 2@) (uohx) + w)ax <.
Hence, a standard argument applies to get
(oh(x) + W)a (x) = [max (,u,oh(x) +W)f, ae. xeQ.

‘We obtain our conclusions. O

@ Springer



139 Page 34 0f 42 H.Lou, J. Yong

Now, we use the above result to make some further analysis on the optimal control o (-)
of Problem (A [a, B]).

If uo = 0, then ¥ # 0 and we have o(-) = O or o(-) = 1. Thatis a(x) = Ap or
a(x) = Aq.

If o # 0O, then we can suppose o = —1 without loss of generality. Thus

1, ae.x e (h() < W),
o) = {0, ae. x € (h(-) > V).

This implies that

[(h() = W)| = /QQ(X)dx > al€2],
and

k) <931 = [ atar < i
Moreover, (when o < ) we can see that

/ ox)dx > a|2] = v <0
Q
/ ox)dx < BIR] = v > 0;
Q
v>0 = / ox)dx = a|2;
Q

V<0 = /g(x)dx:,BlQL
Q

For any x € (h(-) = W), though it is possible that o (x) be any value of [0, 1], there are still
some information could be used to determine o (x). For example, if [(h(-) > V)| = ||,
theno(x) =0 a.e. (h(-) = ).

On the other hand, when «|Q2| < fQ o(x)dx < || (it will be the case if« = 0,8 =1
and neither xq(-)Ag nor xq(-)A is optimal), it should hold that & = 0. At this moment, on
the set (h(-) = V) = (h(-) = 0),

(472 Vy(), a0 Vy() = (45'a@ V), a0 Vy ). 4.72)
Hence, when h(x) = 0, one has
(419500, Vyw) £ (47 41 Vy @), AVy @) = a@) £ 1

<A0VX(x),VX(x)>:<A1_1A0VX(x),AoVX(x)> = o) #£0.

4.5 Maximization problem

Similar to Problem (A [a, B]), it is natural to pose the following H-relaxation of Problem

(Ale, BY).
Problem (A" [«, B]). Find an a(-) € /[, B] " such that

)»g,(.) = sup )\a(A) (4.73)
a)ed @ pl"
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Any a(-) satisfying (4.73) is called an optimal control of Problem (XH [a, B]), which is
also called an optimal H-relaxed control of Problem (A[w, B8]). Due to the properties of

H -convergence, it is not hard to see that there are results for Problem (A~ [«, 8]) parallel to
the minimization problem. Let us state them here.

Theorem 4.14

(i) Problem (KH [a, B]) admits an optimal control a(-) € o[« B] H.
(i) Leta(-) € /., B1' be an optimal control of Problem (A" [a, B1) with 3(-) € W2(R)
being the corresponding normalized principal eigenfunction. Then

X:/ la(x)2 Vi) 2dx =  inf H/ Ib(x)~2a(x)Vi(x)|2dx
1
= inf b(x)"2a(x)Vy(x)|>dx,
ot fg b a0V

and
/Q<[a(x) — Wb '] vy), VX(x)> dx <0, Vb()edla Bl7. (475
In paricular,
/Q([d(x) —ab)'a)]vy), Vz(x)> dx <0, Vb()edla,Bl. (4.76)
When o = 0 and B = 1, it holds that:

(a(x)Vy(x), Vy(x)) < (B_lc_t(x)V)_/(x),&(x)Vy(x)), a.e.x € Q, B e {Ay, Al}H.
4.77)
In paricular,

(@) Vi), Vi) < (A7'a(x) Vi), a()Vyx)), aexeQ, i=01. (4.78)

The proof is omitted here. Also, one could derive (at least formally) the optimality system
for the problem similar to the minimization problem.

5 A two-dimensional example

In this section, we present a two-dimensional example of Problem (A[0, 1]); Namely,
o =0, 8 = 1 and according to (1.24), we should assume that neither Ag < A| nor Ag > A;
holds. Since both Ag and A are positive definite, making a change of variables if necessary,
without loss of generality, we may assume that

_ (K0 0 _
A0—<0 m), A =1, (5.1

with 0 < up < 1 < . Recall that this example is comparable with Example 3.3. Let
a(-) € &[0, 1] " be an optimal control of Problem (A0, 1]). Then the following holds:

(a(x)Vy(x), Vy(x)) = (Bilg(x)VX(x),g(x)VX(x)), B=Ap, I, ae.xeQ.
(5.2)
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To determine an optimal_ control a(-), let us make an observation. For given x € R”, if we
denote § = Vy(x) and A = a(x), then (5.2) reads

(At &) = (BT'Ag AE), VB e (Ao, I). (5.3)
Or, equivalently,
(At &) = (Ay'AE Ag), (Ag.§)= (A5 Ag). (5.4)
Hence, it is natural to consider the following problem.
Problem (Pg). For & € R?, findan A € {Ao, I} " such that (5.3) holds.
Here, we recall that
- __H — H
A0 11" = {4 € Mo, 1| xa)A € L2(2: (40, 1) |.
For the above problem, we have the following interesting proposition.

Proposition 5.1

@) IfA € {Ag, [} " is a solution to Problem (Pg), then

(At &)= (B A&, AE), VBelAnll . (5.5)
(ii) Ifboth A and B are solutions of Problem (P¢), then AE = BE.

Proof (i) For any B € {Ag, I} H, we can find a sequence 2; € 2 such that

H 12|

for some 8 € [0, 1]. By Property (vi) in Sect. 4.1,
Bl <1 -0)A;" +01.

Thus, (5.5) follows.
(i1) Note that

(At &) > (B'At, AE), (BE &)= (A7'BE BE),

we have

(A" + B YA - B)E, (A—B)E) = (B~ AE, AE) — (A&, &)+ (A~'BE, BE) — (BE, &) < 0.
Therefore, it must hold that A& = BE. m]

The above tells us that to meet the necessary conditions for optimal controls of Problem

(A0, 1]) on /[0, l]H, it suffices to find, for almost each x € €, an A € {Ao, I}H
satisfying

(AVy(x), Vy(x)) = (BT'AVy(x), AVy(x)), B = Ao, 1. (5.6)

Part (ii) of above proposition means that although A might not be unique, A¢ is unique.
Thus, if one can solve Problem (Pg) successfully for each & € R?, then we obtain a map
A :R?> — S?. Then

a(x) = A(Vy(x)), xeQ (5.7
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gives an optimal control, where y(-) is a solution to the closed-loop system:

::V ' (A(VX(X))VX(’C)) =1y(x), xeqQ,
y|89 :0

(5.8)
We will see later it is a nonlinear eigenvalue problem. .
Now, for given & = (&1, SQ)T # 0, we try to find a solution A of Problem (Pg).
Let us introduce the following partition of R?:
o1 — o) 5
Ea={E 807 #0] 8 < 2 Fog2],
p1(l — o
E={E o) #0|8 = S —ERe],
mo(1 — uo u1(1 — o :
Ep =, 8)" eR? | ———Z¢f <& < ————2£], £5 > 04,
MEIIM - 1; Mogllu - 1%
ol — o 1= o
E-=GE.eTer? | B0 "H02 2 P ZRO2 fg <0
pi(py — 1) oy — 1)

These sets are illustrated in the following figure. Clearly, E4,, E;, E4, E_ are non-empty,

mutually disjoint and R? = EsyUE;UELUE_U{0}. Note that E4, U {0} and E; U {0}
are closed, and E_ are open.

&

E, E,

E 4, E4,

&
Ey, Ex,

E,; E;

With a little calculation, one can see the following:

e Ay is asolution of Problem (P;) if and only if (A¢&, &) > (Ao, Apé),1.e.,& € Eg,.
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e [ is a solution of Problem (P¢) if and only of (£, &) > <A61§, é§>, ie, & € Ej.
o Neither Ag nor I is a solution of Problem (P¢) if and only if § € EL U E_, i.e.,

(Aok. &) < (Aok, Ack) . (£.€) < (455.8). (5.10)

Now, let £ = (&1, Sz)T € E; U E_, by definition, &,& # 0. Let n = AE. Since

A € {Ay, I} " \ {Ao, I}, by the proof of Proposition 5.1, (i), there exists a y € (0, 1) such
that

A< —-pmAyt +yI (5.11)

Then
(A7) < (=) (Ag non)+y (n.n).
On the other hand, (5.4) implies

(A 'nomy = (A o), (A7'non) = (n,m).

Thus, it should hold that

(A" ) = (Ag"nom) = (), (5.12)
which coincides with (4.72). From the second equality in (5.12), a direct calculation shows
e/l —
nZCg( s v>, (5.13)
with C¢ # 0 and ¢ = %1, where
1 —
g= LT HOML oy (5.14)
M1 — Mo

Let us now determine Cg, ¢ and y. We have

C§=<n,n>=<fi—1n,n)=<s,n>=cg<<8 %‘S)s).

Thus
Ce = 611 — s+ &24/s (5.15)

and

esa () ) ()

(5.16)
_ 1—s e/s(l1 —5) £ =Gt
T \eds(1 =) s -
On the other hand, by (5.11) and (5.12), we have
_ L2 _
(@ =pagh+v1 = A7) | =((0 =45 +y1 = A7 )n.n)=0.
This implies
((1 — A" +y1—/§—1)n —0. (5.17)
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Thus,
8(1;—: + y)«/l —s
1—
( o J”’)‘/E

Hence, sgn (C¢) = sgn (§2), which can be obtained from (5.15) and x € E U E_ too.
Consequently,

E=Aly= ((1—)/)A61+)/I)77=C5 (5.18)

& = sgn (§182). (5.19)

1—
Moreover, it follows from & = Cg (J + y) /s that
©1

I N
re &1 1vro(er — D) + &)/ (T — o)

One can verify that the above y belonging to (0, 1) is equivalentto & € E U E_. Actually,
it is a one-to-one mapping from {(51, SZ)T es'n (Ex+ U E,)|z§1 >0,& > 0} to (0, 1).

Next, by (ii) of Proposition 5.1, n = A& only depends on & (independent of the solution
A). We now find an A € {Ag, I} such that A€ = 7. To this end, we try to find an solution
in I'(Ag, I). By careful calculation, we find such a solution A as the following:

(5.20)

A=I1+1-y0"", 0= -D""+yU-0G). (5.21)

Denote H = I — G. Then H € §" with H > 0 and tr (H) = 1. Thus A € T'(4p, D).
Moreover, H> = H. Let us verify A defined by (5.21) really satisfies A& = 5. We have

(Ao— 1)QH = H + y(Ag— DH.
Thus
Ayl (Ao — DO(Ag —n)
= 45" (Ao = DO(H +(1 - y)0~")s
= AEI(H +v(Ao—DH + (1 —y)(Ag - 1))5
= A(?](Ao (=G~ onG)§ =t—(1-yA;'n—yn=0.

Thus, along with G, y, ¢ being given by (5.16), (5.19) and (5.20), (when § € EL U E_) we
could get A by (5.21). Generally, we can choose

I, §=0,
_ Ag, & € Eg,,
AG)=11, & e Ey, (5.22)

I+(1— y)((Ao Dy - G))il, EecE,UE_.

Therefore (5.8) is a nonlinear eigenvalue problem. We now simplify it. Noting (5.16), we see
that
a(x)Vy(x) = A(VX(X))VX(X) =F(Vyx)), ae.xeQ, (5.23)
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where F : R” — R” is defined as

F(§) = (5.24)

QML
e
m
S

with

. 1—s +/s(1 —5)
G*_(:I:\/m s . (5.25)

Since F(Vy(x)) = a(x)Vy(x), y(-) solves
L—V (F(Vy(x))) = Ay(x), inQ, (5.26)
y|asz 0

Although G4 are singular (0 is an eigenvalue of G 1), noting that F(§) = A(E)E, we still
have

nol€)> < (F(€), &) < g, V& eR" (5.27)
On the other hand, it is not difficult to verify that (F(-), -) is convex in R” and

[FE&) —F&)| <mle—&l, VEEeR" (5.28)
Consequently, there is y(-) € WO1 ’2(52) such that

P Jo (F(VF(x)), VI(x)) dx - i Jo (F(Vy(x)), Vy(x)) dx
Jo I7(0)|? dx YOWA(®) Jo lly()|?dx
y()#0

We have

{;v ((F(V3(x) = 4y(x), inQ,
5[y =0.
Moreover, let a(-) = A(fz(-)). Then a(-) € [0, 1] " and

{—v (@) Vi) = Aj(x), inQ,
5] Plo e 0,

which implies A < Az() < A < A. This implies

. Jo [FOV3(0)), V() dx o eFOO.y@yar
- Jo lly@)|?dx YOEW (@) Jo lly()|?dx '
y()#0

Therefore, y(-) is an optimal state of Problem (A 10, 1]) if and only if it is a minimizer of

Jo (F(Vy(0)), Vy(x)) dx

over Wy 2(2) \ {0).
The results of this section can be summarized as follow: To get a solution of Problem
(A0, 1]), one can first find a nontrivial solution of (5.26) with the smallest positive
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number A, or equivalently, find a minimizer of .%(-) over WOI’Z(Q) \ {0}. Then define
a(x) = A(Vy(x)), getting a solution of Problem (Af[0, 17).

6 Concluding remarks

We have investigated the maximization and minimization problems of the principal eigen-
value of elliptic operators with the Dirichlet boundary condition. The control appears in the
diffusion matrix (the leading coefficient). These problems are well-motivated by composite
material design to optimize the heat conduct property of the material (cooling down as quick
as possible, or preserving the temperature as long as possible). For maximization problem,
due to the concavity of the principle eigenvalue as a functional of the leading coefficient, as
long as the control set is convex, optimal control and its characterization can be obtained
easily. When the control set is not convex, we introduce the usual convexification to guar-
antee the existence of an optimal relaxed control. Then some necessary conditions can also
be obtained. From an example, we see that uniformly mixing two materials might not be
optimal in the maximization problem.

For minimization problem, the situation is much more complicated due to the concavity
of the principle eigenvalue as a functional of the control. We adopt the H-convergence so
that the existence of the H-relaxed optimal control could be guaranteed. Instead of looking
at the most general situation, we concentrate on the case of the lamination of two materials
whose diffusibility matrices are given. Some interesting necessary conditions are derived.
It is worthy of pointing out that even both two materials have their diagonal diffusibility
matrices, the optimal diffusibility matrix could be non-diagonal. Such a situation has been
exhibited through an illustrative example in Section 5.
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