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Abstract. A linear control system with quadratic cost functional over infinite time horizon is
considered without assuming a controllability /stabilizability condition and the global integrability
condition for the nonhomogeneous term of the state equation and the weight functions in the linear
terms in the running cost rate function. Classical approaches do not apply for such problems.
Existence and nonexistence of overtaking optimal controls in various cases are established. Some
concrete examples are presented. These results show that the overtaking optimality approach can
be used to solve some of the above-mentioned problems and at the same time, the limitation of this
approach is also revealed.
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1. Introduction. Investigation of infinite time horizon optimal control problems
can be traced back to the work of Ramsey in 1928 on a mathematical theory of saving
[13]. There is a large number of follow-up works, for example, von Weizsécker [19], Ar-
row [2], Arrow and Kurtz [3], and Halkin [10], Brock and Haurie [7], to mention a few
for the period of 1960-1970s, and there were many more afterward. For general (non-
linear) continuous-time controlled dynamics with the performance (cost/payoff) func-
tional in infinite time horizons, to treat the situation that the performance functional
is possibly not well-defined over the infinite time horizon, von Weizsécker introduced
the so-called overtaking optimization approach in 1965 [19], which “approximately”
compares the values of the performance functional over every finite interval. See
[9, 14, 18] and references cited therein. We will make this precise later in the current
paper. There are some other relevant works on this class of problems, without using
overtaking optimality; see [4, 5, 8] and rich references cited therein. On the other
hand, the standard linear-quadratic optimal control problem (LQ problem, for short)
in infinite time horizouns is well-understood [1, 6, 11, 12, 15, 16, 17, 20, 21]. However,
we still find some interesting and challenging LQ problems relevant to the overtaking
optimality. To elaborate on that, let us begin with the following controlled linear
ordinary differential equation:

(1.1) X(s) = AX(s) + Bu(s) + b(s), s € [t,00),
’ X(t) =z,
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where A € R™*" and B € R"*™ are called the coefficients, b : [0,00) — R"™, a local
integrable over [0, 00), is called the nonhomogenecous term. Here, R™*™ is the set of
all (m x n) matrices, and R" = R"*!. Then for any initial pair (t,z) € [0,00) x R"
and any control u(-) € Ujpe[t, 00) with

T
Uppelt,00) = L2 (t,00;R™) := {u :[t,00) — R™ ‘ / lu(s)|?ds < 0o VT > t} ,
Jt

state equation (1.1) admits a unique solution X(-) = X(-:;¢,z,u(-)) which is called
the state trajectory. To measure the performance of the control u(-), we introduce the
following running cost rate function:

(1.2)  g(s,z,u) = (Q,z) + 2(Sz, u) + (Ru, u) + 2(q(s), z) + 2(p(s), v)

with (s,z,u) € [0,00) xR*xR™, Q € §*, S € R™*" and R € S™ being some constant
matrices (called quadratic weighting matrices) and ¢ : [0,00) — R™, p: [0,00) — R™
being some locally integrable functions (called linear weighting functions). Here, S™
is the set of all (n x n) symmetric matrices, and (-,-) is the inner product of R™
or R™. Unlike the classical situation, we do not assume the stabilizability of system
[A, B] and functions b(+), ¢(+), and p(-) are only assumed to be (square) integrable on
each finite interval [0,T]. Formally, the running cost over any infinite time interval
[t,00) reads J(t,z;u(")) = Jo(t,miul-)) = [ g(s,X(s),u(s))ds. Clearly, for any
(t, 2, u(-)) € [0,00) XR™ X U0 [0, 00), J(t, z;u(-)) might not be well-defined. Therefore,
we define

(1.3) UGt 00) = {u() € Upoelt, 00) | J(t, a5 u(-)) is Well—deﬁned}.

Then one can formulate the following LQ problem on [0, c0).
Problem(LQ). For any (¢,z) € [0,00) x R”, find a @(-) € UT[t, o) such that

(1.4) Hma()= | mf () = V(o)

If a(-) € U%[t, 00) satisfies (1.4), we call it an open-loop optimal control, and the
corresponding X (-) = X (-;¢,z,a(-)) and (X(-),a(-)) are called an open-loop optimal
trajectory and an open-loop optimal pair, respectively, for Problem (LQ)o.. Also,
Vool(+,+) is called the value function of the problem [17].

Note that for Problem (LQ)«, requiring the cost functional J(t,z;u(:)) to be fi-
nite, it roughly implies that the running cost rate g(s, X (s),u(s)) approaches to zero
as s — oo. In some applications, this might not be expected, for example, if there
exists a persistent part of running cost, by which we mean that g(s, X(s),u(s)) has a
positive lower bound. Such a situation happens if we consider the cost of some produc-
tion process, as time goes by, due to the demand-driven production level and possible
increase of the prices of raw material, cost of manpower, etc., one could not expect to
have a decreasing cost rate. Another possible situation is some kind of approximate
(not necessarily exact) seasonal impact leading to the fluctuation/near periodicity
of the running cost rate. Hence, we should allow the cost functional J(t,z;u(-)) to
be divergent. Mathematically, we should not assume the stabilizability condition for
system [A, B]. Likewise, the global integrability of b(-), ¢(-), and p(-) should not
be assumed, either. Consequently, although the running cost rate g(-, X (:),u(-)) is
integrable over any finite interval [t,T], it is not necessarily integrable over [t, o).
As a matter of fact, Ramsey’s original problem [13] already has such a feature. In
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the current paper, we are going to explore the LQ problem in infinite time horizons
without assuming the stabilizability of the system [A, B] and the global integrability
of b(-),q(+), p(-) by means of overtaking optimality. The meaning of such optimality
will be explained in detail in the next section. For convenience, we call the problem
without assuming the stabilizability of [A, B] and the global integrability of b(-), q(-),
p(+) Problem (LQ) (to distinguish it from Problem (LQ)).

Now, let us briefly highlight our main ideas and list the main contributions of the
current paper.

Let Hy = span{R(A*B) | k > 0} which is the controllable subspace of system
[A, B]. Let II : R® — Hj be the orthogonal projection and IT+ = I — II. Decompose
the state X (-) as follows:

X()=TX () + X () = Xn () + X ().

Then the control only affects Xp(-) and does not affect X1 (). Having such a de-
composition, we can summarize our main results:

(1) If the equation for Xr;(-) does not contain X+ (+), and in the running cost rate
function, (Xt(+),u(-)) and X1 (+) are separated; in addition, the LQ problem involv-
ing (X1(+),u(-)) admits an optimal control, then Problem (LQ) admits an overtaking
optimal control. Moreover, under some further conditions, the overtaking optimal
control will be unique.

(ii) If the conditions of (i) fail, then under some mild conditions, the general
Problem (LQ) can be reduced to the following special case: the system [A, B] is
controllable with A stable and b(-) = 0; in the running cost rate function, p(-) = 0
and ¢(-) might be just locally integrable. For such a special case, under various
conditions, we will show Problem (LQ) does not admit overtaking optimal control if
the control set is a lincar subspace of L?(t, 00; R™).

(iii) In the case that overtaking optimal control does not exist over the linear
space of controls, we will discuss the problem over some convex set of controls. Under
certain conditions, one can obtain the existence of overtaking optimal controls.

The above results give a general picture of overtaking optimality approach for the
infinite horizon LQ problems. They roughly show both the power and the limitation
of the approach.

The rest of the paper is organized as follows. In section 2, we present some
preliminary results, including mathematical motivation of introducing overtaking op-
timality and some standard results of LQ problems in infinite time horizons. Section
3 is devoted to a presentation of the best case for which the problem has overtaking
optimal controls. In section 4, we present some general results on overtaking optimal
controls for Problem (LQ) and introduce a further reduction. Then in section 5, we
carefully discuss the nonexistence of overtaking optimal controls for various situations.
This actually shows the limitation of overtaking optimality approach (at least) to the
LQ problems. A set of sufficient conditions for the existence of overtaking optimal
controls is presented in section 6. Finally, some concluding remarks are collected in
section 7.

2. Preliminary results. Fort € [0,00), p > 1, and Euclidean space H (say, R™,
R™*"etc.), we define L] (t,00;H) = {¢: [t,00) = H | ftT lo(t)|Pdt < 0o ¥V T > t},
LP(t,o0sH) = {p : [t,o0) — H | [ |e(t)|Pdt < oo}, C([t,00);H) = {¢ : [t,00) —
H | ¢(-) is continuous}. According to the above, we have Ujyc[t, 00) = L2, (t, 00; R™).
We denote (comparing with U3 [t, o0) defined in (1.3))

Uplt, 00) = L2(t, 00; R™), Uspy[t, 00) = {u(-) € Up[t, 00) | X (-;2,u(-)) € L*(t,00;R™)}.
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We may likewise define LP (¢, T; H) and C([t, T]; H). The following proposition collects
some standard results for Problem (LQ).. See [16] for details.

PROPOSITION 2.1. Let [A, B| be stabilizable, i.e., there exists a © € R™*" called
a stabilizer of the system, such that 0(A+ BO) CC~ ={a+if | a,f €R, a <0},
where o(A + BO) is the set of all eigenvalues of A+ BO. Also, the function b(-) €
LY(0,00;R™). Let Q € S*, S € R™*", and R € S™ satisfy

(2.1) R>0,Q—-S'R'S>0,
and let q(-) € L*(0,00; R™), p(-) € L?(0,00;R™). Then for each (t,z) € [0,o0) x R,
(22) @ 74‘ de[t, OC) - ug[t, OO) v (tvx) € [07 OO) X ]Rna

and Problem (LQ)oo admits a uniquely open-loop control a(-). Moreover, the algebraic
Riccati equation

(2.3) PA+A'™P-(B'"P+S)'R'B'P+S)+Q=0
admits a solution P > 0 such that 6(A— BR™*(B" P+ S)) C C™, and the equation

{ i(s) = —[A(PB+ ST)R'BT]n(s) + (PB+ ST)R ' p(s) —Pb(s) — q(s). s >t,
n(o0) =0,

admits a unique solution n(-) € L?(t,00;R™). The unique open-loop optimal control
u(-) admits the following closed-loop representation: w(s) = ©X(s) +9(s), s € [t,0),
where © = —R7™Y(S + BTP) and v(-) = —R™YB"n(-) + p(-)]. Moreover, the value
function is given by

o0

Voo(tvx):<P$a$>+2<77(t)a$>+/ [2(n(s), b(s)) —(R™'[Bn(s)+p(s)], B n(s)+p(s))]ds.

Jit

We now consider the case that [A, B] is not assumed to be stabilizable and the
following are not assumed: b(-),q(-) € L(0,00;R™), p(-) € L?(0,00; R™). Then (2.2)
could fail. For such cases, there are two possible approaches to deal with such a
situation. Let us briefly look at them.

Approach 1. Cesaro mean. Define

-~ 1

T
(2.4) T (z:u() = T/o g(s, X (s), u(s))ds, T > 0.

Then for each T' > 0, one poses the following problem.
Problem(LQ)?. For each z € R", find a u,(-) € Up[0,T] = L*(0,T;R™) such
that

~

(2 () = u()éBf[O,T] Jr(w5u() = I//\v'r (x).

It is a hope that as T' — oo, the value function XA/T (-) as well as the optimal control
4, (-) (assume it exists) are convergent. The following simple illustrative example tells
us that the above approach could fail.

Example 2.1. Consider the controlled system:

X(s) = AX(s) + Bu(s)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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with A = [} {], B = [1]. Note that AB = [{9][1] = [1] = B. Thus, [A, B] is not
controllable. We have

X(s) = e+ t e~ Bu(T)dr
I S+ J7 e Tu(r)dr =], 20

e my + e*my — eSwy + [ e Tu(r)dr $(xg — 1) + X1(8)

The running cost rate is given by the following: ¢(X (s),u(s)) = |X(s)|>+|u(s)|*. For
any T > 0, by 2ab < 3a® + 2b* with a = e*(z1 — x2), b = X1(s), one has

N T
B0z = 1 [ (KR + Xl + )i
> 1 [ (3 - e F] ds > (e -

Therefore, as long as x1 # xa, the limit of I7T() does not exist.

Approach 2. Abel mean. For any A > 0, define the following discounted cost
functional:

Maiu(+)) = CX)e_)‘s s s),u(s))ds.
Pasu)) = [ el X(0),uo)d

Note that for the zero control ug(-) = 0, if we let Ay = maxRec(A) > 0, then for
any € > 0, sup,s (e=(Pate)s| X (s;2,u0(+))||) < oo. Hence, for A > 2X4, one has
JM(z;u0(+)) < 0o, which implies that

UN0,00) = {u(-) € Upoe[0,00) | JMz;u(-)) exists} # 0.

a

Now, one may take A small and still keep U2,[0,00) # (. For example, if [A, B] is
stabilizable, then U?,[0,00) # 0. In any case, for A > 0 large enough, we could pose
the following problem.

Problem(LQ)*. For cach z € R, find a @*(-) € U,[0, 00) such that

TNt () = inf JMzyu()) = V).
u(‘)EZ/lgd[O,oo)

Again, it is a hope that as A — 0, the value function 17>‘() as well as the optimal
control @ (+) (if it exists) are convergent. However, let us look at Example 2.1 again.
One has

(X () + uls)?) 2 e [Se? (- wa)? + fuls)?| 2

5 (2 )\)s(xl 7 x2)2'

1
2°
Hence, as long as x1 # 22, even the optimal value V*(x) is not finite (if 0 < A < 2).
Note that in [8], both Cesaro and Abel means were considered for a more general
class of nonlinear stochastic problems and the convergence of VT() and ‘7)‘() were
obtained, under the condition that the state X (s) = X (s;x,u(+)) stays in a bounded
set (depending on z). Our example does not satisfy such a condition. Also, in [5], for
a more general nonlinear problem, the value function is allowed to be infinite and the
theory was established on the set on which the value function is finite. However, for
our example, the value function (without discount) is finite only on the set x; = x5
and on which the value function is equal to zero. Hence, the results of [5] are useless
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for such an example. From the above observations, we see that for the case that
J(z;u(+)) is not well-defined (over infinite time horizons), we might want to take some
other (possibly better) approaches. This naturally leads to the following definition
for Problem (LQ) (see [9]).

DEFINITION 2.2. For the control system (1.1), let

T
Tt x;u(t)) :/t g(s, X (s),u(s))ds, (t,x) € [0,00) x R" u(-) € U[t,o0),

where U[t,00) is a nonempty subset of Ujpe[t, 00).
(i) Control u*(-) € U[t,00) is called a strong optimal control of Problem (LQ) at
the initial pair (t,x) € [0,00) x R™ over U[t,o00) if J(t, z;u*()) is finite and

(2.5) J(t,z;u () < It zul) YV u() € Ut 00).

(ii) Control u*(-) € Ut,00) is called an overtaking optimal control of Problem
(LQ) at the initial pair (t,x) € [0,00) x R™ over U[t, c0) if

(2.6) limsup[J,. (¢, z;u* () — Jp (L, z;u(-)] <0V u(-) € U[t, 00).
T—o0
(i) Control u*(-) € U[t, 00) is called a weakly overtaking optimal control of Prob-
lem (LQ) at the initial pair (t,x) € [0,00) x R™ over Ult,c0) if
(2.7) liqlgninf[JT (t,x;u () — T (t,z5u(-)] <0V u() € Ut,0).
— 00
Let us now explain the meaning of overtaking optimality defined above. Suppose
u*(+) is an overtaking optimal control of the problem over U[t,00). Then for any
control u(-) € U[t, o), and any € > 0, there exists a T (u(-)) > t such that

Jr(t,zut(4) < Jr(t,z;u(s) +e VT > Te(u(s)).

This means that although one could not claim that «*(-) is better that any other u(-),
the performance of u*(-) over [t,T] will be eventually overtaking (exceeding) that of
u(+) as time T is getting large. The weakly overtaking optimality can be explained as
follows: For any other control u(-), there is a sequence T*(u(-)) — oo (as k — co) such
that the performance of u*(-) on [t,T*(u(-))] is getting better and will be eventually
overtaking (exceeding) that of u(-).

Note that for the notions of (weakly) overtaking optimal control, the functional
J(t,z;u*(+)) is not required to be well-defined, since we only need .J,, (¢, z;u*(+)) to be
finite. It is clear that in the above definition, we have the following implications: (i)
= (ii) = (iii). The overtaking optimal control problem is by no means trivial, both
the existence and nonexistence of overtaking optimal controls are very subtle. Note
that in the above definition, U[t, c0) is any nonempty subset of U, [t, 00) which does
not have to be a linear space.

3. An ideal case. In this section, we are going to present an ideal case for which
one could obtain the existence of overtaking optimal controls. First, we present the
following simple result which shows an interesting power of overtaking optimality.

PROPOSITION 3.1. Let Problem (LQ) admit an open-loop overtaking optimal con-
trol u*(-) € U[t,00) at initial pair (t,x) € [0,00) xR™. Let p(-) € L}, .(t,00;R). Define

loc

T T
Ttz u()) = J, (b () + / o(s)ds = / lg(s, X (5), u(s)) + p(s)] ds.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/17/21 to 218.76.29.160. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

1318 JIANPING HUANG, JIONGMIN YONG, AND HUA-CHENG ZHOU

Then the LQ problem with the running cost rate function g(s, X,u) + ¢(s) admits the
same overtaking optimal control.

Proof. If u*(-) € U[t, 00) is an overtaking optimal control of the original problem,
then for any u(-) € U[t, c0), it holds that

limsuplJ¥ (z;u™(+)) = JZ (5 u())] = limsup[J. (250" (-)) = Jp (25 0(-))] < 0.

T—o0 T—o00

This proves our conclusion. 0

It is clear that a similar result holds true for weakly overtaking optimal controls.
According to the above result, we see that one can drop or add any (locally integrable)
terms independent of the state and control in the running cost rate function without
changing the existence/nonexistence of (weakly) overtaking optimal controls.

Since we do not assume either controllability or stabilizability of system [A, B], the
decomposition of the system mentioned in the introduction is useful. Let us now make
it more precise. Let Hy = span{R(A*B) | k > 0} which is the controllability space
of system [A, B]. We assume that dimHy = £. Let II : R™ — Hj be the orthogonal
projection. Then I+ = I —I1: R"® — (Hj)" is also an orthogonal projection. For any
initial pair (¢,z) € [0,00) x R”, and u(-) € Ujpe[t, 00), let X (-) be the corresponding
state process. Denote X, (s) =T1X(s), X _, (s) = I+ X(s), s > t. Then

(3.1) Xy (8) = Ay Xy () + Byu(s) + by (s),

where A, = IIAIl, B, = B, b,(s) = HAHJ-XHL (s) + IIb(s). Clearly, system
[A,, B,] is controllable on Hy. On the other hand, it is ready to see that

R(AI),R(B) C R(II) =H, = I+AIl =0, I*B =0.
Thus,
(3.2) XHl (s)=A_ X  (s)+0b_ (s),
where A | = TIFATIH, b, (s) = TI+b(s). From this, we sce that X | (-) is not
affected by the control u(-). By the controllability of [A,, B,|, we may take a stabilizer

© : Hy — R™ of this subsystem such that o(A, + B,©) C C~. By taking the control
of the form u(s) = ©X(s) + v(s), s > t, and by (3.1), we have

(33) Xn(s) = (An +Bn®)Xn(5)+BnU(S)+bn(s)'
We now look at the running cost rate:

g(s, X (s), u(s))
= (Q@X(s), X(s)) +2(5X(5), uls)) + (Ru(s), u(s)) + 2{q(s), X (s)) + 2<p( ); u(s))
< [ n(s) + X ( n(

< (5)7®Xn (S) + v($)>
= (Qn Xy (5‘)7Xn
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where

QP =T(Q+S'0+0'S+0"ROI, 59 =SII+ RO,
Gy (3) = 1q(s) + I(Q + © " S)IHX | (5) + O p(s). py(s) = pls) + SIX_, (s).
P (s) = QX (s), X (s)) +2(q(s), X, (3))-

By Proposition 3.1, it is seen that if we consider the LQ problem with the state equa-
tion (3.3) and running cost rate function g9 (s, X, (s),v(s)). call it Problem (LQ)f,
then it admits a (weakly) overtaking optimal control if and only if so does the original
Problem (LQ). Note that we do not claim the equivalence of strong optimality between
Problems (LQ) and (LQ)§ as that requires the original cost functional J(t,z;u*(-))
to be finite, which we might not have.

We now look at the most ideal case of Problem (LQ) for which it admits overtaking
optimal controls. Consider an LQ problem with the state equation

s) =
s) =

(3.4) { X, (s) = Ay X, () + Byu(s) + by(s), s>t
X, @) =1z =z,

and with the running cost rate function (® = 0 and the superscript O is omitted
below)

gl'[(s? XlT?u) = <QHXH’XH> + 2<SHXH?U> + <Ru7 U) + 2<qH(S)’XH> + 2<pH(S)7u>'

We let

JWWMM%=AW%GXA%MW%V@%JHQ@xHo

and let
U [t,00) = {u(-) € Upoelt,00) | JU(t, z;u(-)) is well-defined }.
Then we may pose the following LQ problem.
Problem(LQ),. For any initial pair (¢,z) € [0, 00) xHy, find a @, (-) € Uy [t, c0)
such that
Jt s, () = inf Jt ().
(hasig() =m0 u)
We have the following result.

THEOREM 3.2. Suppose
(35) bn(')7qn(') € L1(07OO;H0)7 pn() € LQ(OaOO;Rm)'

Suppose u(-) + JU(-,0;u(:)) is uniformly convex on U, [t,00) which is true if (2.1)
holds. Then U [t,00) = Uplt,o0) ¥ t > 0, and for any initial pair (t,z) € [0,00) x R™,
by letting x; = Iz, Problem (LQ), admits a unique optimal control i, () € Up[t, 00)
at (t,zy ). This a,(-) must be an overtaking optimal control of Problem (LQ) at (t, z)
over Up[t, o). Furthermore, i, (-) can be obtained through the solution to an algebraic
Riccati equation and an ODE on [t,o0). Moreover, if (2.1) holds, then overtaking
optimal control of Problem (LQ) at (t,x) over Uylt,00) is unique.

Proof. First of all, by the controllability of [A,, By], it is not hard to show
U, [t,0) = Up[t, o). Next, according to Proposition 2.1, for any (¢,z) € [0,00) x R™
with z, = Iz, Problem (LQ)r admits a unique optimal control 4, (-) € Uplt, 00). We
let X(-) = X(-;t,2,4,(-)) and X, (-) = X, (-;t,2,,%,(-)). Then by the optimality of
4y, (+), we have that for any u(-) € U, [t, 00),
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T T
Trttaiig () = [ oo X0 an()ds = [ (s Xa(o). 0 (6) + 0u(s))ds
s Xy a (st [ pn(s)ds
T

< Stagiu() - [ " g (5, Ko (5), 0, (3))ds + / on(3)ds

— It g () - [

T

— Jr(taia() + (s, X (5), u(s))ds — /T (5, Ko (5), 1y (5))ds.

T

Note that since u(-),d, (-) € Up[t, 00), we have g, (-, X, (-),u(:)) and g, (-, X, (-), Ty (+))
are integrable on [t,00). Thus, the last two terms on the right-hand side go to 0 as
T — oo. As a result, one has limsupyp . [/, (¢, 238, (-)) — J, (£, 2;u(-))] < 0. This
means that @, (-) is an overtaking optimal control in U, [t,c0). By Proposition 2.1,
Uy (+) can be obtained through the solution to an algebraic Riccati equation and an
ODE on [t, 00).

Next, we show that under (2.1), overtaking optimal control of Problem (LQ) at
(t,x) over Up[t, 00) is unique. To this end, we follow the following steps.

Step 1. Suppose that there are two overtaking optimal controls uy, us € Uplt, 00)
and w1 # us; then we claim that
(36) i (7 (21 ()) — T, (825 n ()] = .
Actually, by Definition 2.2 both uy,us € Up[t,o0) are overtaking optimal controls.
Thus, we have

limsup[JT(t,:z",;1L1(-))—.]T(t,x;u2(~))] <0, limsup[JT(t,x;u2(-))—JT(t,x;u1(-))] <0,

T—o0 T—o0

which implies that (3.6).

Step 2. We claim that if uy # us, then (3.6) could not be true. To show this, we
define an operator £ : L(t, T;R™) — L?(t,T;R") by (Lu)(s) := [ e~ Bu(r)dr.
Then its adjoint operator £* : L?(t, T;R") — L%(t,T;R™) is given by

T T
(L*u)(s) :== / BTeA =Dy(r)dr.
A simple computation shows
Jo(tasu() = (L*QL+ SL+ L*ST + R)u,u) + 2((L*Q + S) f,u) + (Qf. f)
+2(Lq+ p,u) +2(q, f)
= (Mou. u) +2((L*Q + S)f,u) +(Qf, f) + 2{L7q + p,u) +2(q, f),

where (-,-) is the inner product of L2(t,T;R™) or L?(t,T;R"), and My = L*QL +
SL+L*ST+ R, f(s) = e Dz + [7eAC=p(r)dr. By (2.1), we see that M is a
positive-definite operator on L?(t,T; R™). Note that u; # uy implies that there exists
a T7 > t such that

[(ug # ua) N (t,T1)| = |{s : u1(s) # ua(s)} N (¢, T1)| > 0,

where || stands for the Lebesgue measure of the set §2. Then, for A € (0,1), one has
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/ ((Mo(Auy 4 (1 — XNu2))(s), Aug(s) + (1 — Nuz(s))ds
(u1#u2)N(t,T1)
< )\/ ((Moul)(s)7ul(s)>ds—|—(1—)\)/ ((Mous)(s),ua(s))ds
(u1#u2)N(t,Th) (u1#u2)N(t,T1)

which gives
/ g(s, X(8), Mui(s) + (1 — Nua(s))ds
(w17#u2)N(t,T1)

</ g, X(5),ur(s))ds + (1 =) [ 905, X (), ua(s))ds.
B (ulgéuz)ﬁ(t,Tl) B (ulgéuz)ﬂ(t,Tl)

Hence, there exists an h7, > 0 such that
hr, + / g(s, X(s), \ui(s) + (1 — Nua(s))ds
(u1 7£UQ)ﬁ(t,T1)
= /\/ g(s, X (s),u1(s))ds + (1 —A) / g(s, X(8),ua(s))ds.
(u1#u2)N(t,T1) (u1#u2)N(t,11)

On the other hand, for T" > T7,

T
/ (s, X (s), Aug(s) + (1 — Nua(+))ds
n T T

<A g(s,X(s),u1(s))ds + (1 — )\)/ g(s, X(s),ua(s))ds.

T T

This yields that for T' > T,
hay + Jp (8 25 dun () + (1= Muz (1) < A (250 () + (1= A) T, (8 25 u2(:)).
From this and by (3.6), it follows that

ho, + 1i;nsup[JT (t, z; Aup (1) + (1= Nua()) — T (E, 25 ur (+))]
(3.7) <(1-A) li;HSHP[JT (t,z3u2()) — Jp(t 23w ()] = 0.

— 00

Since u; is an overtaking optimal control, one has

lim sup[Jy (t, 23 w1 () — T (5 s () + (1 = Nua ()] < 0.

T—o0

Hence, (3.7) implies that

0<hp < —lijlﬂn_?up[JT (t, z; Aug (1) + (L= Nua(r) — . (¢, 25 u1(+))]

= timinf[7, (730 ()) — Ty (6, dea () + (1= Mua(-))]
< limsup[JT (tvx;ul(’)) - JT (t,.’E; Aul() + (1 - A)“Q())} <0,

T—o0

which is a contradiction. Therefore, under (2.1), overtaking optimal control of Prob-
lem (LQ) must be unique. 0
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We note that condition (3.5) gives some kind of compatibility among b(-), ¢(-), p(-),
and X_, (). In particular, if

(38) 1_1621_[L =0, SHL =0, Hb()7HQ() € Ll(O,OO;H0)7 p() € L2(0700;Rm)7

then (3.5) holds. This amounts to saying that the LQ problem restricted on the space
Hy is solvable and the restrictions of the system as well as the cost functional on
Hy and (Hp)* are decoupled. We emphasize here that no controllability condition is
assumed for the original system [A, B].

In the rest of this section, let us look at Example 2.1 again. As we already pointed
out, [4, B] is not controllable; therefore, we may let

Ho = span{R(B),R(AB)} = {A[}1] | A€ R} = Span{el +e2}’

V2
where e; = [}], ea = [9]. Clearly, (Ho)t = {\[ 4] | A € R} = span{%}. In this

case, we have

znnw<w’e1+e2>e1+e2 :(x1+w2)el+e2 = [1/21/2}LV¢€R2

V2 V2 9 1/2 1/2
and 2, =Ttz = (z, 95e2) 2282 = (zy — zp) 5% = [ 7, )P]aV @ € R? Then

Ko (5) = Ap X () + By()u(s) + by(s)
= [ 191 (13 V3] Xl + [ 13 1/3] 1T uls) = Xa(s) + [T uls),
X ()= [ R 0 [ 18 8] X (9) = X, (s).
The running cost rate is
905, X(),u(5)) = X, (8) + X, () + [u(s)]? = [ X, (8) P + X, (9 + (o).

Hence, the overtaking optimal control can be obtained by solving the following one-

dimensional LQ problem (in Hy) whose state equation is (denoting e = %)
X, (s) = X, (s) + V2u(s)e with the cost functional J(t,z,,;u( = [ X, (s)]* +
|u(s)|?)ds. More precisely, the corresponding Riccati equatlon 1eads 2P+1 2P2 =0,
whose positive solution is given by P = %3 Thus, u(s) = —%(XH (s),e), s > t.
Solving the closed loop system, we can obtain

a(s) = ef\/gs(xn,@ = weﬂ/gs, € [t,00).

V2

According to the above result, this @(-) is an overtaking optimal control for the cor-
responding LQ problem at (¢, x) over Uplt, o0).

4. Some general considerations. We now would like to consider general cases
for which compatibility conditions (3.5) (or something like (3.8)) are not assumed. In
this section, we present some technical results which pave a road for the presentation
of the following sections. To begin, let us present the following result showing that
it is not very restrictive by imposing some additional conditions for the running cost
rate function.
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PROPOSITION 4.1. Let Problem (LQ) admit an overtaking optimal control u*(-) €
U[t,0) at some initial pair (t,z) € [0,00) X R™ over Up[t,o0). Then, for any T > t,

o~

there exists an interval [S,T] with T < S < T < oo such that the LQ problem posed
on [S,T), called Problem (LQ)(s,1), must be finite, i.e., for any (t,z) € [S,T] x R,

T
ol T (Sau)= it /S 9(s, X(s), u(s))ds > —cc.

Consequently, the map u(-) — J. (S, z;u(-)) must be conver.

Proof. Suppose otherwise. Then there exists a strictly increasing sequence Ty, —
oc such that Problem (LQ)(r, 7,,,] is not finite, i.e.,

(4.1) inf

J T, x;u(-)) = —o0.
et ross Ty 23 u()) 00

Now, suppose Problem (LQ) admits an overtaking optimal pair (X*(-),u*(:)). Then
the following holds:

limsup[J, (z;u*(-)) — T (x;u(-)] <0 Vu(-) € U[t, 00).

T—o0

By (4.1), we can find a ug(-) € U[Tp, T1] such that
I, (Lo, w5 u0(0)) < Iy (To, z3u"(+)) — 1.
Next, we find uy(-) € U[Ty, Ts] such that
Ty, (T1, X(T1);ua () < T, (T1, X*(T1);u" () — 1.
By induction, we can find uy(-) € U[T}, Tx+1] such that
T Ty X(Tho)s un () < Ty, (Tiey X¥(Th)3 0" (+)) — 1.

We patch uy(-) together to get a u(-) € Ut, 00) and we have

k k
Iy (5u(-) = Z Jr (Tie1, X(Tio1);ui-1(0)) < Z Jp, (Tie1, X (Tioa);u™ (1) — K
=T, @t () — -

This leads to

limsuplJ,. (z;u™ (1)) — Jp(z;u()] > lim [J,, (z;07(-) = J,, (z;3u(-))] = oo,

T—o0 k—oo

a contradiction. Finally, by the finiteness of the LQ problem on [S, T and the assump-
tion that the quadratic weighting matrices of the running cost rate and the coefficients
of the system are constants, we must have the convexity of u(-) — J,. (S, z;u(-)) (see
[17]). 0

The above result tells us that for overtaking optimal control problems, it is not
extremely restrictive to assume that for any T > 0, the map u(-) — J,.(t,x;u(-)) is
convex on U[t, T, or even assume (2.1). It is known that under the above conditions,
on any [S,T], the corresponding LQ problem is closed-loop solvable [17].
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We now consider state equation (1.1) and running cost rate (1.2) with [A, B] being
controllable; no global integrability condition is assumed for b(-),q(-), p(-). In what
follows, (2.1) will be assumed. We now would like to make a further reduction. Let
us first look at the following (suppressing s in X (s) and u(s)):

g9(s, X, u) = (QX, X) + 2(SX,u) + (Ru,u) + 2{q, X) + 2{p, u)
= (QX,X) +2(q, X) + |R*u+ R™2(SX + p)|2 — [R"2(SX + p)[2

Denote & = Rz [u+ R (SX + p)]. Then u = R~ 21 — R~ '(SX + p), and the state
equation (1.1) becomes
X =AX + B[R 30—~ R (SX +p)] +b=(A—- BR'S)X + BR™ 3 +b— BR 'p.

Next, we decompose the state X (-) in the following manner: X(-) = X(-) + Xo(+),
where X (+) is the solution to

Xo(s) = (A= BR'S)Xy(s) + b(s) — BR 'p(s), s>t
(42) { Xo(t) =0, ’

which only depends on the nonhomogeneous term b(-) — BR™p(-), independent of
the control %(-) and the initial state z, and X (-) is the solution to the equation

X(s) = [A+BR™(O© — §)|X(s) + BR }a(s), s>t,
X(t) ==,

Then
g(s, X,u)
= (Q(X+ Xo), X+ Xo) + 2(q, X + Xo) + |[R20X +1|*~ |[R"2(SX + 5X, + p)|°
= (QX, X) + 2(QXo, X) + (QX0, Xo) + 2(q, X) + 2(¢q. Xo) + (OTR™'OX, X)
+2(R720X,0) + |u> — (STRT'SX, X) — 2(STR™(SXo + p), X)
—|R™%(SXo + p)|?
= (QX(s), X(s)) +2(SX(s),u(s)) + [l” +2(q(s), X (5)) + 3(5)
= G(s, X(5),u(s)) + 3(s).
where Q = Q+0TR'O-STR™1S, 5§ =R 20, §(s) = q(s)+(Q—STR15) X (s)—

STR™p(s), and 3(s) = (QXo(s), Xo(s)) +2{a(s), Xo(s)) = |[R™2[SXo(s) + p(s)]|. If
we let A=A+ BRY(© —S) and B = BR" 2, then the state equation becomes

X(s) = AX(s) + Bu(s), s>t
X(t) ==.

Since @(+) is independent of (X (), u(-)), by Proposition 3.1, we may drop it and take

the running cost rate function g(s, X, ). Note that under (2.1),

Q-5TS=Q-STR'S >0.
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The nonhomogeneous term b(-) appears in ¢(-) through Xg(-). Also, Xo(-) depends
not only on b(-) but also on p(-).
The above reduction tells us that without loss of generality, we may consider the
state equation

(4.3) { X(s) = AX(s) + Bu(s), s € [t,00),

X(t) =,
with the running cost rate
(4.4) g(s,a,u) = (Qu.x) +2(Sa,u) + [uf? + 2q(s), 2),

where we introduce the following hypothesis.
(H) [A, B] is controllable, A is stable with

(4.5) e < Me™ ¥V 5>0
for some M > 1 and p > 0, and
(4.6) Q-S7S>0, q() € L},.(0,00;R™) \ L*(0, o0; R™).

Note that under (H), we have Hy = R"™ and [Ap, Bu] = [A, B]. Due to the fact
that q(-) ¢ L'(0,00;R™), (3.5) fails. In the rest of the paper, we concentrate on the
problem associated with state equation (4.3) and running cost rate function (4.4),
which will still be simply referred to as Problem (LQ). For such a problem, we have
the following technical result which will be useful later.

THEOREM 4.2. Let (H) hold. Then for each (t,z) € [0,00) x R™ and u(-) €
Z/{O [t, OO),

Fy(s)x = Sett g +/ BTeAT(T*S)QeA(T*t)xdT,

S

(4.7) Fy[u(-)](s) = SXo(s) + /OO BTeA (m-9) [QXO(T) + STu(T)}dT, s € [t,00),

S

exist satisfying

> BIM2|Q[\* |/
Fy(s)z|?ds < Mo
[ s < (siar + LG R,

- 31BI2M? ([BI2M2QIR *
48) [ IRnO)eRas < DAL (LT gy ) [ pugeyzas,

where Xo(+) = Xo(-; ¢, u(*)) is given by the following:
(4.9) Xo(s) = / A=) Bu(r)dr, s € [t,0).
¢

Further, let U[t,00) C Up[t,00) be convex. Then
(i) a(-) € U[t,o0) is an overtaking optimal control of Problem LQ at (t,x) €
[0,00) x R™ over U[t,00) if and only if V u(-) € U[t, 00),

(4.10)

T/ T .
0< liTHLigéf ) </ BTeA T=9q(r)dr + Fy(s)z + a(s) + Fi[a(-)](s), u(s) — ﬂ(s)> ds.

S
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(ii) a(-) € U[t,00) is a weakly overtaking optimal control of Problem LQ at (t,z)
over U[t,o0) if and only if ¥ u(-) € U[t, x),
(4.11)

T/ T
0 < lim sup/t </ BTeAT(Tfs)q(T)dT + Fo(s)z + a(s) + Fila(-)](s), u(s) — 77(9)> ds.

T— o0 S

Proof. First, for any u(-) € Uplt, ), by (4.5) and Young’s inequality, we have

00 0o 2
/ (HSMe_“’S + HB||M2||Q|| / e—u(r—s)e—/t(r—t)dT) dS‘:I}|2
t s
oo 2 2
_ ||SHM€7}LS+ HB”A[ HQ”efy.(sft) dé‘SLP
t 2

BllM?2 2.2 Bl M?2 22
(it o VBIMEIQIN [ _ (o IBIMEIQUY? o
2u 2 21 2u

Next, due to
2

/|X0(s)\2ds§M2|\B||2/ (/ eH<ST>|u(T)|dT> ds
Jt Jt Jt
00 2 oo 2 2 roo
M?2|B
< M?||B|]? (/ e’”dT> / |u(T)|?dr = —)le ”/ |u(T)|?dr,
t t t

2
ds

we have

-

00 00 67/,,(7—73) i i N ) 2 )
< [7([ 1ma IQUXo()] + [T utr)Jdr + ISl Xa(s) ) d

/ T BTeATE9) [QXo(7) + ST u(r)]dr + SXo(s)

S

00 2 5%
s3||B|2M2(/t d) QPR + 18 1Plus))ds

43I [ 1Xo(s)ds
t

2772 2072110112 -0
12 2 t
As a result, Fo(s)z and Fi[u(-)](s) are well-defined and estimates (4.8) hold.

Now, suppose U[t,c0) C Uplt, 00) is convex. Then 4(-) € U[t, c0) is an overtaking
optimal control of Problem (LQ) over U[t,00) if and only if for any u(-) € U[t, 00)
and v € [0, 1],

(4.12) lim sup[J,,. (¢, z; a(-)) — J, (¢, z; a(-) + vju(-) —a(-)])] < 0.

T—00

Let us calculate the following;:
(4.13)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/17/21 to 218.76.29.160. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

OVERTAKING OPTIMAL CONTROL PROBLEMS 1327

T
:*QV/t ({QX(s) + 8" (s), &(s)) + (SX(s) + a(s), u(s) — a(s)))ds

T T .
— 2u/t (q(s),&(s))ds — V2 Q- STS 2€(s)|? + |SE(s) + u(s) — a(s)|?)ds

(T)]dT = Xo(s;t,u(-)—u(-)), s € [t,00). Note that

)—

/tT <‘1<S>» / A Bu(r) - a<7>]dT> ds
./tT </T BTeAT (=5 (7 )dr, u(s) — a(s)> o
T

lim ((QX(s) +8Ta(s), £(s)) + (SX(s) + als), u(s) — a(s)>)ds

T— o0 t

= /too </OO BTeA (=) QX () + STa(r)|dr + SX(s) + u(s), u(s) — ﬂ(s)> ds

S

where £(s) = [} e~ Blu(r

T
/t (a(s), £(s))ds

and

/ " Fo(s)z + a(s) + B[] (s), u(s) — a(s))ds,

where Xo(-) = Xo(+;¢,%(-)). Consequently, (4.12) is equivalent to the following:

T T
0 < liminf |2v BTeA =g (r)dr
T—o0 ¢ s

+Fo(8)x+ﬂ(5)+F1[ﬂ(')](8)>U(S)ﬂ(8)>d8+v2 /too (I(Q ST9)2¢(s)?

(4.14) 4+ |SE(s) + u(s) — ﬁ(s)2> ds] YV u() € Uft,00), v € [0,1].

Here, similar to (4.13), we have the existence of the term following v2. Dividing 2v
and sending v — 0, we see that (4.10) holds. Conversely, if (4.10) holds then (4.14)
holds since the second term on the right-hand side is nonnegative. Hence, u(-) is
overtaking optimal.

(ii) The proof is the same, replacing liminf by lim sup in the above. 0

Let us make some comments on the above result. First of all, hypothesis (H) is
not restrictive. The decay rate p > 0 can be large enough due to the controllability of
[A, B]. Next, (4.10) and (4.11) are essentially restatements of the (weak) overtaking
optimality for our Problem (LQ). These will be relatively easier to use in the next
sections.

We have the following simple and useful corollary.

COROLLARY 4.3. Let (H) hold and U[t, 00) C Uypt,o0) be convex.
(i) If a(-) € U[t,00) is an overtaking optimal control of Problem (LQ) at (t,x) €
[0, 00) xR™ overU|[t,o0), then there exists a constant Cy > 0 such that Vu(-) € U[t, 00),

(4.15)

lim n [T</T BTeA =9 g(r)dr, u(s) — H(s)> ds > —Cp ([m lu(s) — a(s)|2ds>

[N
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(i) If a(-) € U[t,0) is a weakly overtaking optimal control of Problem (LQ)
at (t,x) € [0,00) x R™ over U[t,00), then there exists a constant Cy > 0 such that
V u(-) € Ult,00),

1

(4.16)

li;n:;p /tT</ST BTeAT(T_S)q(T)dT,u(s) — ﬂ(s)> ds > —Cy (/too lu(s) — ﬁ(s)|2ds> 2.

Proof. Note that

%0 3 2 T
([ e ot mtnopas). < (1suar o LPUGZIRL) S22

\/g BllM B 2M2 Q 2 %

([ 1atoeas)

By taking Cy = Cy(t, |z|,@(:)) to be the right-hand side of the above, we obtain our
conclusions. 0

+1

5. Nonexistence of overtaking optimal controls. In this section, we are
going to present some cases for which Problem (LQ) does not admit overtaking optimal
controls. Before stating and proving our results, let us first make an observation.
Suppose ¢(-) grows exponentially, say, satisfying

(5.1) 0 < go = liminfe™*|g(s)| < limsupe™**|g(s)| = q1 < o0,
§—00 5—+00

for some a > 0. Then when [A, B] is controllable, by making a state feedback first, we
may make the system exponentially stable with any prespecified decay rate. Hence,
for such a case, we may assume (4.5) holds with x4 > «. Then

T o0
/BTe‘4T<T_5)q(T)dT—> BTe_ATS/ CATT(](T)CZT = BTe_ATSEl\(s) as T — oo

S

with g(s) = [° e 7g(r)dr, s > 0. Also, since " [ e rTerTdr = :;a one ex-
pects that BTeA’ ‘g(-) ¢ L'(0,00;R™). On the other hand, it is possible that g(-)
grows faster than exponential functions, say, like ", In this case, one expects that
fooo |6ATTq(T)|dT = o0, regardless of condition (4.5). Clearly, the above two cases are
mutually exclusive. Now, let us present the following result.

THEOREM 5.1. Let (H) hold and q(-) € Li,.(0,00;R™) \ L'(0,00;R™) such that
for some 0y € S™ = {u € R™ | |u| =1},

<90 f B: iT(T Va(r)dr > >0, s€[0,00).
| [ BTeATC—9g(r)dr]

Let U[t, 00) C Up[t, 00) be a convex set and u(-) be an interior point of U[t,00). Then
a(-) must not be a weakly overtaking optimal control of Problem (LQ) if one of the
following holds:

(i) Let eA' q(-) € L*(0,00; R™), and

(5.2) lim inf

T—oo

BTeAT(T_S)q(T)dT ds = oc.

5.3 limsup — /
( ) T—o0 \/_

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/17/21 to 218.76.29.160. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

OVERTAKING OPTIMAL CONTROL PROBLEMS 1329

(ii) It holds that

T
/ BTeAT(T*S)q(T)dT ds =00V Ty >t.

To
(5.4) lim sup /
t To

T—oo .

Consequently, in one of the above cases, if U[t,o0) C Uy(t, o0) is a subspace, then Prob-
lem (LQ) does not admit a weakly overtaking optimal control at (t,z) over U[t, o).

Proof. Suppose u(-) is an interior point of U[t,00). Then, there exists a § > 0
such that

a(-)+n(-) eU[t,00) ¥V n(-) € U[t, 00) with /too In(s)|?ds < 62

If @(-) is a weakly overtaking optimal control of Problem (LQ) over U[t, 00), then

(5.5)
Jim sup /t T< / %TeAT<TS)q(T)dT,n(s)> ds > —C ( /t oon(s)ﬁd% TS o406 =0

T— o0 s

Now, by (5.2), we can find a large Ty > ¢ such that

" JT BTeAT (r=9)g(7)dr
/ ‘LT BTeAT(T*S)q(T)dT)

>>€>0-,T>TO'

Then we take 7(s) = fﬁ%l[t’%)(s), s > t. Clearly, [ |n(s)|*ds = 6 and

a(-) +n(-) € U[t,o0). In case (i), one has

T
[
To T
=— T5 t/ </ BTeAT(TS)q(T)dT,90>dS
00— t s

:\

T
BTeAT(T*S)q(T)dT, 17(5)> ds

< oe To OOBT AT (7—s) ( )d d To OCBT AT (7—5) ( )d d
< - e Sq(r)dr|ds — e Sq(T)dr|ds
mill | I
55 T() o0 - T[) T oo T
< — BTe?A =) g(r)dr|ds — | |Be ™™ *||[ |e? "q(r)|drds|.
T VIg—t /t /s t T
Hence,

T T
limsup/ </ BTe? (T_S)q(r)dr,n(s)> ds
T—o0 Jt s

/ BTeAT(Tfs)q(T)dT

< _ ds — —0,

de /TO
VIg—1J;

as Ty — oo, which contradicts (5.5).
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In case (ii), one has

/ ’ < / ’ BTt T g (r)dr, 7](3)> ds

¢ s
- \/% /tTO </T BT g(r)dr, 00> ds
<- Tfi / UtTO (< STU BTeA 9g(r)dr, 90> +e > ds}
< - T;S— - |:<€ /tTO /T BTe‘L‘T(Tﬂ)q(T)dT ds — /tTo ds] .

To
Hence, by (5.4), we see that the first term on the right-hand side of the above is
dominating and the second term stays finite as Ty fixed. Consequently,

T T
limsup/ </ BTEAT(TS)q(T)dT,n(S)> ds = —o0,
t Js

T—oo .

T T
BTe (T_S>q(7')d7'
To

To
/ BTeAT(Tfs)q(T)dT

s

~

which contradicts (5.5). 0

Condition (5.2) roughly means that for T large, the vector valued function
fST BTeA =9 g(r)dr/| be BTeA' (7=)g(7)dr| strictly stays in oneside of the plane
with normal direction #y. Such a condition is not hard to check and covers some
interesting cases. Here is a simple example. Let A = —1, B=1and Q@ =0, S =0,
q(s) = 1in (4.4). For this case, (H) holds and ¢(-) € L},.(0, 0o; R)\ L*(0, 0o; R). Since
St ={u e R | |u| =1}, taking g = 1, one can see that

T T .
BT A (1—5) d
liminf ( 6y, fsT c ar)dr = liminf(fy,1) > 0, s € [0, 0).
T— 00 |fs BTeAT(Tfs)q(T)d7-| T—00

Moreover eATSq(s) =e % € LY0,00;R), and

I I

lim sup — / ds = limsup — / ds = oo.
T—o00 \/T t T—o00 \/T t
Hence, condition (i) in Theorem 5.1 is satisfied. By Theorem 5.1, we know that if
4(-) is an interior point of U[t, 00), then @(-) must not be a weakly overtaking optimal
control of this problem. Moreover, if 4(-) is an overtaking optimal control for this
problem, @(-) must be the boundary point of U[t, c0).

Next, we would like to change the angle to look at the problem.

THEOREM 5.2. Let [A, B] be controllable and q(-) € L}, .(0,00; R™)\ L* (0, 0o; R™)
admit the polar decomposition

/ BTGAT(T*S)q(T)dT

(5.6) q(s) = la(s)|0(s) V s € [t, 00)

with 0 : [t,00) — S™ = {x € R" | |z| = 1}. Suppose there exists an n € R™ with
An € R(B), and € > 0 such that

(5.7) Hm (e/ lq(s)lds — |n| Iq(s)lds> = 00,
oo G.N[0,T] G<N[0,T]
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where G, = {s € [0,00) | (8(s),n) > e}. Further, for some p > 0,

(5.8) /foo e *q(s)|ds < o0.

Then Problem (LQ) does not have an overtaking optimal control over Uplt, o).

Proof. Suppose Problem (LQ) admits an overtaking optimal pair (X (-),a(-)). By
the controllability of [A, B], there exists a ©® € R™*" such that Ag = A+ BO is
stable with |e4es| < Me #* s > t, for some M > 1 and g > 0 (so that (5.8)

Bk ) 1 B > tond it ls) = O o) 1 oo 53 1w
T (b3 ()) = Ty (t s u()
—;KTBQX@LX@»+MSX@xeXK@+@@»+-eX@) o(s)[*+2(a(5), X(s))
~ ((QX(5), X(5))+2(SX (), OX (5)+u(s)) +|OX (s) +v(s)[+2(a(s). X (s)) ) | ds
ATWW&X@%ﬂ@)g@@X@%M@D@Jf@ﬁﬁﬁ>af@wwﬁh
where

(s, X.v) = (QeX. X) + 2(Se X, v) + |v|* + 2(q(s), X)
= ((Q+O0"7S+STO+070)X, X)+2((S+0)X, v)+|v|*+2(q(s), X).
Note that Qe — S&Se = @ — STS. Hence, (X(-),0(-)) is an overtaking optimal
control of Problem (LQ) with the system [A@., B] and the running cost rate function
g°(s,X,v). Next, for some 7y € R™, Ay = Bty. Let vy = ¥y + On which leads
to n = Ag'Bug. Thus, (A(s), Ag'Buo) = (6(s),n) > &, s € G.. Now, we take
u(T) = a(1) —volp,q(7), T € [t,00). Then u(-) € Up[t,00) and

&(s) = —/ e~ Byydr = —efe® {/ eA@TdT] Buyg
t t
= —efosfem Aot _ =405 A Byy = [T — e A  Buy, s € [t, T).
Consequently,

(a(),£(5)) = la(s)|(0(s), [T = e**CE7D1AG Buo) > |g(5)|(0(s). m) = Mnle™ 7D g(s)]-

Then, it follows that (making use of (5.7), and noting the integrals over [0, t] are finite)
T
[ ) etsns
! e}
> [ Jslds - o a()lds = Minlet” [ lg(s)lds - oc.
G.N[t,T) Genlt,T) t

Hence, by taking T > t large, we obtain that the right-hand side of the above is arbi-
trarily large, contradicting (4.12). Therefore, there is no overtaking optimal control
over Uplt, 00). O
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Note that for any n € R, either (0(s),n) > 0 or (6(s),n) < 0. Condition (5.7)
roughly means that either |g(s)| grows uniformly fast and the directions 6(s) are not
uniformly distributed, as s — oo, or although 6(s) are almost uniformly distributed,
but for the directions that (0(s),n) > 0, |g(s)| grows faster.

COROLLARY 5.3. Let [A, B] be controllable and q(-) € L}, .(0,00;R™) such that
(5.6) holds with limg_,, 6(s) = 0y, Aby € R(B). Suppose

(5.9) Awmgw—w_[ENM@@<w

for some p > 0. Then Problem (LQ) does not have an overtaking optimal control
over Up[t, 00).

Proof. 1t suffices to take n = 6y in the above theorem. 0

The above results show that R(B) plays an important role. The following gives
some further result relevant to this.

THEOREM 5.4. Let (H) hold. Let q(-) € L, .(0,00;R™) \ L' (0, 00; R™) admit the

loc
polar decomposition (5.6). Suppose 6(-) is differentiable such that for some ro > 0,

(5.10) 0(s) — Ab(s) € B(O(0,rg)), s € [0,00),

where O(0,19)) = {v € R™ | |v| < ro}. Further, there exists a § > 0 such that

T+06
d
(5.11) lim Jr " la(o)lds _ 0

Tooe [Tq(s)|ds

Then Problem (LQ) does not have an overtaking optimal control over Uy[t, 00).
Proof. Let v : [t,00) — R™ such that 0(s) — A0(s) = Bu(s), s > t. Define
u(-) =a(") +v() () + ()1 ris) (),

where
o(r) = —=BTet =W )1 o(T) — eATD0(t)]

and W(0) = f(f A=) BBT A" 6=7)dr. By the controllability of [A, B], we have the
invertibility of W (4). Then

€s) = /t A Bu(r)dr = /t T A7) — A0(r)]dr

= / e do(r) — A / AT dr = 6(s) — eACDO(), s € [t, T,
t t

and £(s) = eAC=TIE(T) — [ AT BBT AT (TH-TW (§)~1(T) — AT=00(t)]dr,
s € [T, T+56),&(s) =0, s € [T+6,00). Hence, for any T > T + 8, one has

[X«%«ww
/ T35

T
:A MWW%&%M+/ 14()|(6(s), £(s))ds

T
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T T+6
= [l = 0. 000 + [ lals)0s). 4 Ve ds

T

T4+6 "5 .
7./) |q(sﬂ<9(s%t/ A= BB T A (TH=T) W (§)~Le(T)dr)ds
T T

T T40
> /t Ja(s)|(1 — Me™C7D)ds — M/T la(s)[16(T) — e*T=06(t)|ds

T+5 T+
_/ la(s)] M?||B|2e =) = #(T+0-7) g
T T

< IW (@) 18(T) — A T=00(1)]ds.

Let k = ﬁln(4M). Then i— Me™#* =0, and s > t+ & if and only if i > Me #s—1),
Hence,

T
/ lg(s)|(1 — Me "7 ds
t
T t+K

:%L‘“ﬂ®+ﬂ%|“W(%’M(WHﬁd&ﬁ[imw(ifMEWHOm;
> %/}“T lq(s)|ds — (M - i) /:Jm lg(s)|ds > %/tT lq(s)|ds,

provided T is large. On the other hand,

T+6 T+06 A
/T (Iq(8> ; M2IIBIIQe_“(S_T)e_“(T”_T)dT) IW(8)7HI18(T) — AT =D6(t)|ds

T+6
+M / lg()8(T) — AT=00(1) ds
T

T+6
< [MP|BIPW(8)~HI(L + M)é + M(1+ M)] /T

T+5
lg(s)|ds = K(3) /T lq(s)ds.

Consequently,

T T T+96
[t enas = 5 [ latolas — K@) [ ate)ids

_Lr Jr ™ lats)lds |
=3 (/t |q(s)|ds> <1 — K(9) ftT 2(6)lds — 00 as T — co.

Hence, there exists a large enough T, > 0 such that
Jo(t @) — T (¢ s al) + vlu(-) —al)])

22 " la(s).e(e))ds — (1P + [ latopas)

(/too lu(s) — ﬂ(s)|2ds) :

[N

wm)>/2q$awm—0>ovf>%.

This is a contradiction. 0O
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Observe that condition (5.11) holds for functions of polynomial growth. For
example, if lim,_, o |¢(s)|/s* = qo, for some gy > 0, then for T > t large enough,

T+6 T+6 2q
[ s 200 [ stas = 2ogr oyt iy
2qo

= k+1[(k+1)6T’“+~-}§CT’“,

and

T T
q0 k do0 —(k+1)1pk+1
ds > — ds=——"—[1-2 5 .

/f, )it = 2/ SPCE |

Hence, (5.11) holds. However, if |g(s)| grows exponentially, (5.11) may fail. For
example, if |g(s)| = e®, then

Ji a(s)lds €T — T

5
—_ = — = e’ —=1>0.
T 500 ftT lq(s)|ds TS0 el —et

Let us now explore some other cases. Suppose our control is more powerful in the
system, by which we mean that B is invertible. For such a case, without loss of
generality, we assume that m =mn and B = I.

Note that the above proof also works for the case that C([t,T];R"™) is replaced
by Cy([t,00); R™) of bounded uniformly continuous functions. We now present the
following result.

THEOREM 5.5. Let (H) hold with B = I. Let q(-) € L}, .(0,00;R™) admit polar

loc
decomposition (5.6). Suppose 0(-) is uniformly continuous and

.
(5.13) hTHigéff/o lg(s)|ds = oo.

Then Problem (LQ) does not have an overtaking optimal control over Uplt, 00).

Proof. Suppose Problem (LQ) admits an overtaking optimal control %(-) over
Up[t, 00) with X () being the corresponding state trajectory. Since 6(-) is uniformly
continuous, for any £ > 0, there exists 6 = () > 0 such that

(5.14) |0(s) —0(s")| <eVs,s€lt,x), [s—s| <4
Denote t; =t +id, 1 > 0. Then we let

tit1 4
W((S) _ / + eA(tHl_T)eAT(tH'l_T)dT _ / eATeATTdT7
t; 0

which is invertible. Moreover, we note that
(oo}
A k. -k
e 1) < Y2 AT < japrelain < el s, 7 e (o,
k=1 ’
Hence, for any = € R™,
N AT, 2 ? 2 AT AT 2
(W (o), z) :/ leA T z[2dr :/ (|x\ +2((eA" = Dxyz) + (AT = Dal )dr
0 0

5
> [ (12t 1) - T 1 e

0

)
> (1—2/|Afel 4196 — |4 2214152 5o 2 = Dja?,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/17/21 to 218.76.29.160. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

OVERTAKING OPTIMAL CONTROL PROBLEMS 1335

provided ¢ > 0 is small. Then, by the symmetry of W (4), one has

(5.15) W)~ < 2/6.

Now, for any T' > t, let § > 0 be small and for some integer N, T'—t = NJ. We define
u(r) = a(r) + AT CTIW(E) () Lz 4 (7)

N-1
+ > e ETOWE) T O) — e0(ti )], 10)(7)
=2

- eAT(tN77)W((S)*leA(sﬁ(N_l)1[t1\,71’tN)(T), T € [ty, 00).
We let v(-) = u(-) — a(-) and &(s) = [ eAC~u(r)dr, s € [t,00). We claim that
(5.16) ) =0(tx)VE=1,2,...,N—1; £(s)=0, s €T, 0).
In fact, the claim for s € [T, 00) is clear. For s € [tg, ¢1], we have
S S
{(s) = / ATy ()dr = / AT AT T (§)710(t ) dr,
t(] tO
which leads to £(¢1) = 0(t1). Next, for s € [t1,t2], we have

5(3) _ 6AS€(t1) n /5 eA(S*T)v(T)d’T
ty

=e0(t) + / AT AT =D ()76 (ty) — eA00(t)]dr

t1

which leads to £(t2) = 0(t2). By induction, suppose £(tx) = 6(tg). Then for s €
[tk,tk+1], one has

E(s) = T (ty) + / e Bu(r)dr

ty
= A1) —|—/ eA(S_T)eAT(t’““_T)W(é)_l[9(tk+1) — eA0(t,)]dr,
tr
which yields &(¢g+1) = 0(tg4+1). This completes the induction. Consequently, for any
s € [t,T], suppose s € [tg,tr+1), and one has
(5.17)
10(s) — &(s)]

0(s) — eA(S_t"")H(tk)—/ eA(S_T)eAT(t’““_T)W(é)_l[H(tk_H) — eM0(ty)]dr

ty

< 10(s) = 0(tx)| + 1T — A7)

2M?2 (
Jr

5 / 6“(”)6“<“+”>d7> 0(tr1) — *0(11)|

ty
<10(s) — 0(tx)| + | Alle!1°6 + 2072 (HAHe”A““a +10(tkr1) — 9(tk)|)
< (14 2M?)(e + ||Al|el4195).

Consequently, for any s € [t,T], suppose s € [tg,lg+1), and one has

{a(s),€(5)) = la(s)[(0(s),0(s) +&(s) — 6(s))

= |q(s
(5.18) > Jq(s)|[L — (1 +2M7) (e + || AlelH1°6)] > |q(s)]/2,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/17/21 to 218.76.29.160. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

1336 JIANPING HUANG, JIONGMIN YONG, AND HUA-CHENG ZHOU
provided €, > 0 small enough. Note that
oI < e TIWE) T i) (7)
+Z e EIW (@) THZ10(6) — et )P,y a)(7)
+||€ Rl T)W(5)*1 A‘stl[tN 17tN)(7')

4M?
S 52 ( lto, tl) + Z |6 tifl)‘Zl[ti_hti)(T)

(5.19) + ||6A621[tN_17tN)(7')>, T € [t,00).

Thus, v(-) € U™ [t, 00) NUp[t,0) with (note N6 =T —t)

T 2
/ wu>%7<4M'(6+6§jw Mg, m2+ﬂw%ﬁ>
t

_ e (e + |\AH6“A“55)2(T - t)} .

=5

e SR

Then taking v = —1 in (4.13), we have

Jrlt s a() - Jr(ta:a) — [u() — )

> Q/t (q(s),£(s))ds — C <|9c|2 +/t |ﬂ(s)|2ds> <l Jr/t lu(s) — a(s)|2ds>
T T
> /t la(s)|ds — Cllz| + [|1u(-)||2] (1 +/t |U(5)|2d5>

2 [ lato)lds = K 0)(el + [aOI[+ (7 1)

(NI

Here, K(g,0) is a constant independent of T' > ¢. Thus, by our condition, for large
enough 7' > t, the above will be larger than 0, leading to a contradiction. 0

Note that in the case B = I, [A, B] is always controllable. Now, instead, if m < n,
and [A, B] is controllable, we do not have estimate (5.15). Consequently, (5.17) might
not be true, and (5.18) cannot be obtained this way. Therefore, we do not have the
conclusion of the theorem.

6. Existence of overtaking optimal controls. From the previous section, we
have seen that when ¢(-) € L}, (0, 00; R") \ L' (0, 00; R™), the corresponding Problem
(LQ) associated with (4.3)—(4.6) might not have overtaking optimal control over sub-
space U[t,00) of Uy[t,oc) in general. In this section, we present a situation that the
control set U[t, c0) is a convex and closed subset of Uplt, o), and Problem (LQ) has
an overtaking optimal control.

Let (4.5) hold and ¢(-) grow at most exponentially with a rate o € (0, ). Then

(6.1) /oo |eATTq(7')\dT < 0.

S
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For such a case, we may let

(6.2) p(s)=BTe4's / ed q(r)dr, s >t and / 1(s)|ds = oo.

s t

From Theorem 5.1, we see that if @(-) is an interior point of U[t, o0), most likely it
will not be overtaking optimal for our Problem (LQ). Now, for convex set U|t,c0) C
Up[t, 00), we denote its boundary by dU|t, o0). For any u(-) € dUt, 00), an extended
inner normal of U[t,00) at u(-) is an element v(-) € Ujoe[t, 00) such that

T—o0

(6.3) liminf/t (v(s),v(s) —u(s))ds >0V v(-) € U]t,0).

We emphasize the above v(-). We let N(u(-);U[t,00)) C Ujpe[t, o0) be the set of all
extended inner normals of U[t, 00) at u(-) € OU[t, 00). If v(-) € Up[t, 0o) satisfies (6.3),
then (6.3) can be written as

(6.4) /tm<v(s),u(s) —u(s))ds > 0 ¥ v(-) € U[t, 00).

Such a v(-) is called an inner normal of U[t,c0) at u(-). The set of all inner normals
of U[t,00) at u(-) € OU[t,00) is denoted by No(u(:);U[t,00)) which is a subset of
Up[t,00). Since in our LQ problem, g(-) € L}, (0, 00; R™) \ L1(0, 00; R™), it is easy for

loc
us to understand that (usual) inner normals are not enough and we need extended
ones. On the other hand, let us recall that
Ult, T) = {u()lpe.r) | ul) € Ult,00)},

which it is convex and closed in Uy [t, T. If u(-) € OUt, o0), one must have u(-)|;, 1) €
OU[t,T). For any T > ¢, by taking v(-) in such a way that it coincides with u(-) on
[T, 00), we see that

(6.5) /t (v(s),v(s) —u(s))ds > 0V v(-) € U]t,T).

Any v() € Up[t,T] satisfying (6.5) is called an inner normal of U[t,T] at u(-) €
OU[t, T]. We let N(u(-);U[t,T]) be the set of all inner normals of U[t, T| at u(-).
Clearly, for any u(-) € oU[t, c0),

N(u();ud]t, 00))lie.ry = {v()liery | v() € N(u(-);U[t,00))} = N(u(-); U[t, T)).

But
N(u(-);U[t, 00)) = UrsN(u(-);U[t, T]) # No(u(-); Ut, ).
Next, let us recall Fy(s)z and Fyu(-)](s) from (4.7). Note

Fifa(-)](s)

:S/ eA(S_T)Bﬂ(T>dT+/ BTeA (=) lQ/ eA(T_T)Ba(T>dT+ST’L_L(T) dr
t s t

:/ SeA(SfT)B'EL(T)quL/ / BTeAT(Tfs)QeA(TfT)B'EL(T)d’rdT
t t sVT

+ / BTcAT(Tfs)STﬂ(T)dT
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_ / [1[1:73] (T)SeA(s—T)B + 1[5,00)(T)BT6AT(T_S)ST
t

o
+ / BT AT 0=)QeA =) Bar | a(r)dr

VT

_ /t " (s, ya(r)dr

From (4.8), one has

r

ds = / By [a())(s)Pds

3B 2]\[2 B 2M2 Q 2 oo ~
t

/too O(s, T)u(r)dr

Thus, by choosing 1 > 0 in (4.5) large enough, we may assume that

3|B|*M2 (|| B]*M?Q|?
(6.6) h= 2 +2|S)1* ) € (0,1).

Hence, [ | [7 ®(s,7)u(r)dr*ds < & [ |u(s)|*ds V u(-) € Up[t, 00) for some K €
(0,1). This leads to that for any ¢(-) € Uy[t, 00), the Fredholm integral equation of
the second kind

o(s) +u(s) + /:O O(s, 7)u(r)dr =0

admits a unique solution u(-) € Up[t,00). We now state the main theorem of this
section.

THEOREM 6.1. Let (H), (6.1), and (6.6) hold. Let p(-) be defined by (6.2). Let
a(-) € OU[t,0) be the solution to the Fredholm integral equation of the second kind,

(6.7) po(s) + Fo(s)x + a(s) + /too O(s,T)u(r)dr =0, s € [t,00),

for some po(-) € Up[t,00) such that
(6.8) pi(-) = p(-) = po(-) € N(a(-);U]t, 00)).

Then u(-) is an overtaking optimal control of Problem (LQ) at (t,z) € [0,00) x R"
over U[t, 00).

Proof. By Theorem 4.2, we know that u(-) € U[t, o0) is overtaking optimal if and
only if for any u(-) € U[t, o0),
T 00
(6.9) 0 <liminf <f)(s) + Fo(s)x + a(s) —|—/ O (s, 7)u(r)dr, u(s) — ﬂ(<)> ds.
T—oo Jy t
From our condition, we have

T 0o T
/t<ﬁ(s)+Fo(s)z+ﬂ(s)+/t (I>(s,T)E(T)dﬂu(s)—ﬂ(s»ds:/t (p1(s), u(s)—u(s))ds.

Hence, (6.9) holds leading to that @(-) is overtaking optimal. 0
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It is not hard to see that the conditions assumed in the above theorem can be
replaced by the following: There exists a Ty > ¢ such that

610)  PLum) (o) + Folole -+ )+ [ B rjatr)dr =0, € [t

admits a unique solution @(-) € OU|[t, o), and
(6.11) p(s) € N(a(s);U[t,00)), s € [Tp,0).

Then 4(-) is an overtaking optimal control for Problem (LQ) at (¢,z) € [0,00) x R”
over U(t, o0).
Thus, we would like to have

T oo
0< hTHi}iO%f t (p(s) + Fo(s)x + u(s) +/t O (s, T)u(r)dr, u(s) —u(s))ds V u(-) € U[t, c0).

Let us now present an illustrative example for the above theorem.

Ezample 6.1. Consider controlled system in R?:

{ X(s) = —pX(s) + u(s),
X(t) ==,

with p¢ > 1. Then X(s) = e # g 4 [Te rEDy(r)dr. Let Q =1, S =0, U =
{u = (u1,uz2) | u1 > 0}, and ¢(s) = [e‘i] Then

. s [ _ur s [T [emtu-nr e /(p—1)
po) = [ ermamar e [ [y ar =[S0 ]
67/"’(871")
Js 2p

e
oC _ o0 T
Fia()](s) = / e HT=) X (7)dr = / e H(T=9) / e MG () drdr
s t
00 o—p|T—s|
:/ e—’L_L(’T)dT.
t 2

Let @(s) = (0,72(-)) = u2(-)e2 with @s(-) solve the following Fredholm integral equa-

Z,

Fy(s)x = / (T =S) =T g —

=8 e~ H(s—t) 00 o—pls—T]
= + o 1‘2+1_L2(8)+/t Tﬂ(r)deO, s € [t, ).

Then, under such a @(-), we have

lim inf /t ((s) + Fo(s)z + (s) + Fr[a()](s), u(s) — a(s))ds

T—0

T o e
= liminf/ <<ﬁ T 9:1> ,u(s) — fL(S)> ds
T—oo Jy 0

o T es ef;t(sft)
= thLlOIif/t <M — + o ,7:1) up(s)ds > 0.

This means that @(-) is an overtaking optimal control for Problem (LQ) at (¢, ) €
[0, 00) x R? over U[t,00) = {u: [t,00) = U | [~ |u(s)|?ds < oo}.
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7. Concluding remarks. We have studied LQ problems over infinite time hori-
zons for which no controllability /stabilizability condition is assumed for the homo-
geneous system [A, B], and no global integrability conditions are assumed for the
nonhomogeneous term b(+) in the state equation and the weighting functions ¢(-), p(+)
for the linear terms in the cost functional. For such problems, all the existing ap-
proaches do not apply. We have established existence of overtaking optimal controls
for the case that (X (-),u(-)) and X1 (-) are decoupled in the state equation and
separated in the cost functional, and for a convex control set case. More interestingly,
we also have proved the nonexistence of overtaking optimal control for several cases.
From these results, we see that the overtaking optimality approach can be used to
solve some problems for which the classical tools are not applicable. However, the
power of this approach is not unlimited.
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