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Abstract A new approach to modeling populations incorporating stochasticity, a random environment, and

individual behavior is illustrated with a specific example of two interacting populations: rabbits and grass.

The derivation of the system of stochastic partial differential equations (SPDEs) to show how the individual

mechanisms of both populations are included. This model also has an unusual feature of a nonlocal term. The

harvesting of the rabbit population is introduced as a control variable.
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1 Introduction

Managing pest or invasive species is an important ecological issue[5, 18, 21, 24]. The use of
agent-based models (ABMs) has been expanding especially in modeling complex biological
populations[6, 22], including pest species[23]. These models include stochasticity in individual
behavior and movement and sometimes in the environmental features. ABMs have been applied
to pest or invasive species, and there is a need to understand how to build effective controls for
managing such populations. Some ABMs have been approximated by using difference equa-
tions, differential equations or polynomial dynamical systems[3, 11, 16, 25]. To capture spatial
heterogeneity better, partial differential equations, interacting particle systems and mean-field
approximation have been used with some success[1, 4, 12, 20]. The small amount of work on op-
timal control of ABMs has shown the difficulty of generalization to broad class of ABMs; some
work has used aggregated models to approximate the ABMs and to get approximate optimal
controls from the aggregated models [3, 7], but spatial heterogeneity can lead to poor approx-
imations. It seems to us that alternative modeling approaches with features of stochasticity,
random environments and individual behavior may better represent some biosystems and have
a successful framework for handling optimal control of these systems.

Such an alternate modeling approach is introduced in this paper. We will illustrate the
approach by modeling a rabbit population in an environment with grass; the rabbits are viewed
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as the pest population to be controlled by harvesting. This particular biological system is
motivated by the Rabbits-Grass-Weeds ABM in Netlogo [26, 27], which is available in Netlogo’s
library of sample models. This version of the model (without weeds) has two populations: a
resource (grass) and a consumer pest (rabbits), similar to a predator-prey system. This model
with rabbits and grass has features of individual behavior that are common in simple ABMs.

The goal of this paper is to derive an aggregate model for the rabbit population and the
grass population. We will use specific mechanisms of the movement of individual rabbits. The
grass population represents a type of plant that disperses due to wind. The two interacting
population will be represented by the solution of a pair of controlled SPDEs with an unusual
nonlocal term. The optimal control problem for this pair of SPDEs is studied in our companion
paper[17] under a more general framework. This modeling approach and the corresponding
optimal control results are developed here for a simple biological scenario, but these tools have
the potential to be applied to more complex and realistic scenarios.

This paper serves as the main motivation of its companion[17]. Due to the length of the
combined paper and the interest in both features (modeling and control), we decided to separate
the modeling part (the current paper) from the optimal control part in [17]. The main contri-
bution and novelty of this paper include the following. First of all, we establish an aggregate
model from individual mechanisms directly from the applied problem. Secondly, the aggregate
model is a pair of coupled SPDEs with non-local term and one of the SPDE degenerates to a
PDE. To the best of our knowledge, such a type of SPDE pair is new in the literature. We
studied them using refined Sobolev space techniques.

The rest of this paper is organized as follows. The next section introduces the model
formulation with the assumptions on the rabbit population and the grass environment. A
smoothing technique is needed for technical reasons. In Section 3, we present some mathematical
results needed in the later proofs. In Section 4, we construct an aggregate model by taking
n, the initial number of rabbits, to infinity. Namely, we give the proof of our existence result
for the smoothed aggregate system, Theorem 2.1. Then we also let the smoothing constant δ
tend to 0; namely we present the proof of our existence result for the limiting aggregate system,
Theorem 2.2. Finally, we make some concluding remarks.

2 Model Formulation

Now, we proceed to introducing the dynamic model for a population of rabbits living on a
grassland. Suppose the grass occupies and grows on R2. Let n ≥ 1 be the initial number of
rabbits living on R2. Let ε > 0 and h > 0 be the discretizing parameters for the space and
the time variable, respectively. Denote εZ2 = {εi

∣∣ i ∈ Z2} and let Qε(xi) be the closed square
centered at xi ∈ R2 with side-length 2ε.

To model the movements of the rabbits, we adopt the following rule: The rabbit would
choose to move to a neighboring square with relatively more grass taking into consideration of
the grass level at the current location, and is also subject to random noise in the movement.
More precisely, the drift coefficients of the model for the movements of the rabbits should
depend (increasingly) on the gradient of a smooth version of the grass density field. Taking
into account the above rule, we suppose that the kth rabbit, k = 1, 2, · · · , moves in R2 during
its lifetime according to the following stochastic differential equation (SDE):

dXn,δ
k (t) = b

(
t,Xn,δ

k (t), ζn,δ(t,Xn,δ
k (t)),∇ζn,δ(t,Xn,δ

k (t))
)
dt+ dBk(t), (2.1)

where Xn,δ
k (t) is the location of the kth rabbit at time t. The rabbit has knowledge about the

grass level at nearby locations, represented by the term,

ζn,δ(t, x) =

∫
R2

pδ(x− x′)zn,δ(t, x′)dx′, (2.2)
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where

pδ(x− x′) =
1√
2πδ

e−
(x−x′)2

2δ ,

and zn,δ(t, x) is the density of the grass in the square centered at x. Here, δ is a smoothing
parameter which is needed due to a technical reason. As we shall see in (2.3) below, the
approximate grass density field zn,δ is not differentiable, and hence, we need its smoothed
version ζn,δ for the model (2.1) to make sense.

The proportion un(t, xi) of rabbits in the square Qε(xi) will be killed by the controller.
This control un will first enter into the ABM (4.7) for the rabbit population, and then its limit
will enter into the aggregated model (2.9) for the density of the rabbit population. Note that
the selection of u(t, x) is the objective of the companion paper [17]. Namely, it is the optimal
control of an optimization problem.

For simplicity, we assume that a rabbit will not die before being killed by the controller.
However, we do assume that a rabbit will give birth to a rabbit in exponential time of parameter
α(ζn,δ(t, x)) when a rabbit is at x at time t, namely,

lim
h→0+

h−1P(τk < t+ h|Ft, Xn,δ
k (t) = x) = α(ζn,δ(t, x)),

where τk is the first time after t that the kth rabbit give birth. The birth clock is reset after
each birth. This birth rate will enter into the aggregated model (2.9) for the density of the
rabbit population.

For the growth of the grass, we use the following model:

zn,δ(t+ h, xi)ε
2 =

(
1 + µ(t, xi)h+ ξn(t, xi)

√
h
)
zn,δ(t, xi)ε

2

−γ(xi, Y
n,δ(t))zn,δ(t, xi)ε

2h

+h
∑
j∼i

(
zn,δ(t+ h, xj)− zn,δ(t+ h, xi)

)
, (2.3)

where j ∼ i means that xj is in a neighboring square of xi, i.e.,

xj ∈ xi ± ε{(1, 0), (0, 1), (−1, 0), (0,−1)}.

On the right hand side of the equation above, the first term represents the growth of the grass
in Qϵ(xi) with a natural growth rate µ(t, xi), and with some random disturbance modeled by
the random field ξn(t, x) which may represent changes in features of the habitat. The second
term represents the grass in Qϵ(xi) consumed by the rabbits with the proportionality constant
γ(xi, Y

n,δ(t)) ∈ (0, 1), depending on the location and the nearby distribution of the rabbits,
where Y n,δ(t) is the empirical distribution of the rabbits in R2. i.e., for any f ∈ Cb(R

2), we
have ⟨

Y n,δ(t), f
⟩
=

1

n

∑
k

f(Xn,δ
k (t)),

where the sum is over all k such that the kth particle is alive at time t. Note that the harvest rate
un does not enter this definition explicitly. However, it affects the dynamic of the population
and enters into the dynamic model (4.7). A typical example of γ(x, ν) is as follows:

γ(x, ν) = F

(∫
R2

θ(x− x′)ν(dx′)

)
, ∀x ∈ R2, (2.4)

where θ(·) ∈ Cb(R2) is supported on a compact neighborhood of 0, and F : R → R is a suitable
increasing function. The third term on the right hand side of (2.3) models the dispersal of the
grass population by the wind or other environmental effects.
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To study the limit of zn,δ, we first consider that for its corresponding measure-valued process
Zn,δ defined as:

⟨Zn,δ(jh), f ⟩ =
∑
i≥1

f(xi)z
n,δ(jh, xi)ε

2, ∀ f(·) ∈ Cb(R2).

We also extend the definition by Zn,δ(t) = Zn,δ(jh) for jh ≤ t < (j + 1)h.
We assume that the random field ξn(kh, x), independent of the Brownian motions Bk(t), is

Gaussian with mean 0 and covariance structure

cov (ξn(kh, x), ξn(jh, x′)) ≡ E
([
ξn(kh, x)− Eξn(kh, x)

][
ξn(jh, x′)− Eξn(jh, x′)

])
= ρ(x, x′)1j=k =

∞∑
k=1

ϕk(x)ϕk(x′)1j=k, (2.5)

with ϕk(·) ∈ C1(R2), k ≥ 1, satisfying

∞∑
k=1

(
|ϕk(·)|+ |ϕk

x(·)|
)
∈ L1(R2) ∩ L∞(R2). (2.6)

Throughout this paper, we make the following Assumption (S) together with (2.6).

Assumption (S): The drift coefficient b(t, x, z, p) is bounded and Lipschitz continuous in
(x, z, p) uniformly in t. The birth rate α(z) is bounded and Lipschitz continuous.

Let R2 be the one-point compactification of R2. We regard Y n,δ and Zn,δ as two families
of stochastic processes taking values in MF (R2), the space of finite Borel measures on R2. Our
aim is to derive the aggregate model for the rabbit population on grassland by taking the initial
number n of rabbits to ∞.

Let D([0, T ],MF (R2)) be the space of càdlàg mappings from [0, T ] to MF (R2) endowed
with Skorohod topology. Denote by C0(R2) the collection of all continuous functions on R2

with 0 as limit at ∞, endowed with supremum norm. We now state our main results of this
paper. The first result gives the formulation of the aggregate model with smoothing and the
existence of its solution. The second result give the corresponding system and solution as the
smoothing parameter δ goes to 0.

Theorem 2.1. Let δ > 0 be fixed and let (ϵ, h) = (ϵn, hn) → 0 and ϵn/hn → 0. Suppose that un,
as a random sequence in L2([0, T ], C0(R2)), is tight. Then the sequence {(Y n,δ, Zn,δ)

∣∣ n ≥ 1} is

tight in D([0, T ], MF (R2))2. Let (Y δ, Zδ, u) be a limit point of (Y n,δ, Zn,δ, un). Then (Y δ, Zδ)
is a solution to the following SPDEs on MF (R2)2:

⟨Y δ(t), f ⟩ = ⟨Y (0), f ⟩+
∫ t

0

(
⟨Y δ(s), Ls,ζδ(s),∇ζδ(s)f ⟩

+ ⟨(α(ζδ(s))− u(t))Y δ(t), f ⟩
)
ds

(2.7)

and

⟨Zδ(t), f ⟩ = ⟨Z(0), f ⟩+
∫ t

0

⟨Zδ(s), µ(s)f+∆f − γ(· , Y δ(s))f ⟩ ds

+

∫ t

0

⟨Zδ(s), fW (· , ds) ⟩,
(2.8)
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where the Gaussian random measure W is white in time and colored in space with covariance
function ρ given in (2.5),

ζδ(s, x) =

∫
R2

pδ(x− x′)Zδ(s, dx′),

and the generator L is given by

Ls,p,qf(x) =
1

2
∆f(x) + b(s, x, p, q) · ∇f(x), ∀ f ∈ C2

b (R2).

Note that the smoothing constant δ is introduced in the individual grass model (2.2) for a
technical reason only. We now remove this extra smoothing by taking δ → 0. Denote by ∥ · ∥∞
and ∥ · ∥p the supremum and Lp norm, respectively.

Theorem 2.2. The family {(Y δ, Zδ)
∣∣ δ > 0} is tight in C([0, T ], MF (R2))2. Let (Y, Z) be a

limit point of the family (Y δ, Zδ) as δ → 0. Then it admits a random density field (y, z) and
the following holds

∂ty(t, x) =
1

2
∆y(t, x)−∇ ·

(
b(t, x, z(t, x),∇z(t, x))y(t, x)

)
+(α(z(t, x))− u(t, x)) y(t, x),

dz(t, x) =
(
∆z(t, x) +

[
µ(t, x)− γ(·, Y (t, ·))

]
z(t, x)

)
dt+ z(t, x)W (x, dt),

(t, x) ∈ [0, T ]× R2,

y(0, x) = y0(x), z(0, x) = z0(x), x ∈ R2.

(2.9)

Further, suppose that γ satisfies the following:

∥γ(·, Y1)− γ(·, Y2)∥∞ ≤ K∥y1 − y2∥2, ∀y1, y2 ∈ L2(R2), (2.10)

where Yi is the measure with density yi, i = 1, 2. Then system (2.9) has a unique solution.
Consequently, the family (Y δ, Zδ) has a limit (Y, Z) as δ → 0.

Remark 2.3. Note that if γ(· , ·) is of form (2.4) with F (·) being Lipschitz and θ(·) ∈ L1(R2),
then

∥γ(· , Y1(· , ·))− γ(· , Y2(· , ·))∥22

=
∥∥∥F( ∫

R2 θ(x− x′)y1(x
′)dx′

)
− F

( ∫
R2 θ(x− x′)y2(x

′)dx′
)∥∥∥2

2

≤ K
∥∥∥ ∫R2 θ(x− x′)[y1(x

′)− y2(x
′)]dx′

∥∥∥2
2

= K
∫
R2

∣∣∣ ∫R2 θ(x− x′)
[
y1(x

′)− y2(x
′)]dx′

∣∣∣2dx
≤ K∥θ(·)∥21∥y1(·)− y2(·)∥22,

where the last inequality follows from Cauchy-Schwarz inequality. Thus, (2.10) holds in such a
case.

3 Some Mathematical Preparations

In this section, we present some technical details needed later in our proofs of the two main
theorems. Firstly, we introduce two spaces Hn

p ((0, T ) × R2) and H2
p((0, T ) × R2). Secondly,

some properties of the Gaussian random measure W are introduced. Then, we consider a linear
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stochastic partial differential equation, and show this equation admits a unique solution in
H2

p((0, T ) × R2) under appropriate conditions. Finally, we define a Hilbert space L2
ε and the

discrete Laplacian operator ∆ε.

Note that for any ζ ≥ 1 and α ∈ (0, 1),∫ ∞

0

e−ζt − 1

t1+α
dt = −Γ(1− α)

α
ζα,

where Γ(·) is the standard Gamma function. Thus, for any z ≤ 0, taking ζ = 1−z in the above,
we obtain

(1− z)α = − α

Γ(1− α)

∫ ∞

0

e−tezt − 1

tα+1
dt. (3.1)

Now, let

Ttφ(x) =
1

4πt

∫
R2

φ(y)e−
|x−y|2

4t dy, ∀φ(·) ∈ C∞
0 (R2), (3.2)

which is the C0-semigroup defined on C∞
0 (R2) with the generator ∆. Inspired by (3.1), for any

α ∈ (0, 1), we define

(1−∆)αφ(x) = − α

Γ(1− α)

∫ ∞

0

e−tTtφ(x)− φ(x)

tα+1
dt, ∀φ(·)∈C∞

0 (R2).

Then, for any n ≥ 0, we introduce the following norm:

∥φ(·)∥n,p = ∥(1−∆)
n
2 φ(·)∥Lp(R2), ∀φ(·) ∈ C∞

0 (R2).

Let Hn
p (R2) be the completion of C∞

0 (R2) under the norm ∥ · ∥n,p, which coincides with the
usual Sobolev space Wn,p(R2). We denote ∥ · ∥p = ∥ · ∥0,p. Clearly, H0

p (R2) = Lp(R2) is the
usual Lp space. Next, we let

H1,2
p ((0, T )× R2) =

{
φ : [0, T ]× R2 → R

∣∣ ∫ T

0

(
∥φt(t, ·)∥pp + ∥φ(t, ·)∥p2,p

)
dt < ∞

}
.

With the given complete filtered probability space (Ω,F ,F,P), we let

Hn
p ((0, T )× R2) = Lp

F(0, T ;H
n
p (R2))

≡
{
φ : [0, T ] → Hn

p (R2)
∣∣ t 7→ φ(t) is F-adapted, ∥φ∥Hn

p
< ∞

}
,

where

∥φ∥Hn
p
=

(
E
∫ T

0

∥φ(t)∥pn,pdt
) 1

p

.

Denote by H2
p((0, T )× R2) the collection of all functions φ of the form

φ(t, x) = φ(0, x) +

∫ t

0

b(s, x)ds+

∫ t

0

∑
k≥1

σk(s, x)dBk(s),

such that φ, b, σ ∈ Hn
p ((0, T )× R2) for n = 0, 1, 2, respectively, and

∥φ∥H2
p
≡
{
E
∫ T

0

∫
R2

[
|φ|+|φx|+|φxx|+|b|+

( ∞∑
k=1

|σk|2
) 1

2

+
( ∞∑

k=1

|σk
x|2

) 1
2
]p
dxds

}1/p

<∞.
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Note that the Gaussian random measure W can be represented by a sequence of independent
Brownian motions as follows:

W (x, dt) ≡
∞∑
k=1

ϕk(x)dBk(t), x ∈ R2.

Also, we understand that for any predictable random fields fi : [0, T ] × R2 → R, i = 1, 2,
satisfying

E
∫ T

0

∫
R2

∫
R2

fi(s, x)fi(s, y)ρ(x, y)dxdyds < ∞, i = 1, 2,

we have ∫ t

0

f1(s, x)W (x, ds) =
∞∑
k=1

∫ t

0

f1(s, x)ϕ
k(x)dBk(s),

and

E
[( ∫ t

0

f1(s, x)W (x, ds)
)(∫ t

0

f2(s, x)W (x, ds)
)]

= E
∞∑
k=1

∫ t

0

f1(s, x)f2(s, x)ϕ
k(x)2ds

=
∞∑
k=1

ϕk(x)2E
∫ t

0

f1(s, x)f2(s, x)ds.

Further, we have the Burkholder-Davis-Gundy’s inequality: For any p > 0,

E
(

sup
t∈[0,T ]

∣∣∣ ∫ t

0

∫
R2

∞∑
k=1

f1(s, x)ϕ
k(x)dxdBk(s)

∣∣∣p )
≤ KE

∫ T

0

( ∞∑
k=1

∣∣∣ ∫
R2

f1(s, x)ϕ
k(x)dx

∣∣∣2) p
2

ds

≤ K
( ∞∑

k=1

∫
R2

|ϕk(x)|2dx
) p

2E
∫ T

0

(∫
R2

|f1(s, x)|2dx
) p

2

ds.

Throughout this paper, K > 0 will be a generic constant which can be different from line to
line. Note that under (2.6), one has

∞∑
k=1

(
|ϕk(·)|+ |ϕk

x(·)|
)
∈

∩
p≥1

Lp(R2).

Now, we consider the following linear stochastic partial differential equation:
dz(t, x) =

{
∆z(t, x) + f0(t, x)z(t, x) + f(t, x)

}
dt

+
∞∑
k=1

[
gk0 (t, x)z(t, x) + gk(t, x)

]
dBk(t), (t, x) ∈ [0, T ]× R2,

z(0, x) = z0(x), x ∈ R2.

(3.3)

We adopt the following definition (see [13]).

Definition 2.2. A function z(· , ·) ∈ H2
p((0, T ) × R2) is called a solution to (3.3) if for all

φ(·) ∈ C∞
0 (R2),∫

R2

z(t, x)φ(x)dx =

∫
R2

z0(x)φ(x)dx
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+

∫ t

0

∫
R2

([
∆z(s, x) + f0(s, x)z(s, x) + f(s, x)

]
φ(x)dx

+

∫ t

0

∫
R2

∞∑
k=1

[
gk0 (s, x)z(s, x) + gk(s, x)

]
φ(x)dxdBk(s).

The following result is a special case of Theorem 5.1 in [13] (p.207).

Proposition 2.3. Suppose that for p ≥ 2,
E
{∫ T

0

∫
R2

|f(t, x)|pdxds+
∫ T

0

[ ∫
R2

∞∑
k=1

(
|gk(t, x)|2 + |∇gk(t, x)|2

) p
2

dx
]
ds
}
< ∞,

|f0(t, x)|+
∞∑
k=1

(
|gk0 (t, x)|2 + |∇gk0 (t, x)|2

)
≤ K, (t, x) ∈ [0, T ]× R2.

(3.4)

Then for any z0(·) ∈ H
2−2/p
p (R2), (3.3) admits a unique solution z(· , ·) in H2

p((0, T )
× R2), and the following estimate holds:

∥z∥H2
p
≤ K

{
∥z0∥2−2/p,p +

(
E
∫ T

0

∫
R2

|f(t, x)|pdxdt
) 1

p

+
[
E
∫ T

0

∫
R2

( ∞∑
k=1

|gk(t, x)|2 + |∇gk(t, x)|2
) p

2

dxds
] 1

p
}
.

(3.5)

Let

L2
ε = {φ : εZ2 → R

∣∣ ∥φ∥2L2
ε
=

∑
xi∈εZ2

|φ(xi)|2 < ∞},

which is a Hilbert space. The definition of L∞
ε is similar. Define

∆εφ(xi) = ε−2
∑
j∼i

(
φ(xj)− φ(xi)

)
which is called the discrete Laplacian operator, recalling that the notation j∼ i means that j is
a neighbor of i.

Lemma 3.1. −∆ε is a positive definite self-adjoint operator on L2
ε and for any h > 0,

T ε
j = (I − h∆ε)

−j , j ≥ 0

is a discrete-time contraction semigroup on L2
ε.

Proof. It is easy to verify that for any φ ∈ L2
ε,

⟨∆εφ, γ⟩L2
ε
= −1

2
ε−2

∑
j∼i

(φ(xj)− φ(xi)) (γ(xj)− γ(xi)) .

Hence, −∆ε is a positive definite self-adjoint operator on L2
ε. The semigroup property and the

contraction of {T ε
j } are straightforward. �
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4 Tightness for Smoothed System (δ fixed and n → ∞)

In this section, we will prove the tightness of (Y n,δ, Zn,δ) in path space D([0, T ],MF (R2))2, as
n → ∞, and a limit (Y δ, Zδ) has a smooth density (yδ, zδ). For the simplicity of notation, we
drop the parameter δ > 0 below when there is no confusion by doing so. Let t = jh. Then,
equation of zn in (2.3) becomes

(I − h∆ε)z
n((j + 1)h) = (1 + hµ(jh)) zn(jh)− γ(·, Y n(jh))zn(jh)h+

√
hξn(jh)zn(jh)

= zn(jh) +
[
hµ(jh)− γ(· , Y n(jh))h+

√
hξn(jh)

]
zn(jh).

Hence,

zn(jh)= (I − h∆ε)
−jzn(0) +

j−1∑
k=0

h(I − h∆ε)
k−j (µ(kh)zn(kh))

−
j−1∑
k=0

h(I−h∆ε)
k−jγ(·, Y n(kh))zn(kh)

+
√
h

j−1∑
k=0

(I−h∆ε)
k−j (ξn(kh)zn(kh))

≡ I1j + I2j + I3j + I4j .

(4.1)

We have the following lemma.

Lemma 4.1. Suppose the following holds:

sup
n∈N,ε>0

∥zn(0)∥2L2
ε
+ sup

k∈N,ε>0
∥µ(kh)∥2L2

ε
≤ K < ∞. (4.2)

Then

sup
n∈N, t≤T, ε>0

E∥zn(t)∥2L2
ε
< ∞. (4.3)

Proof. Under condition (4.2), it is easy to show that (since T ε
j ≡ (I − h∆ε)

−j is a contraction

semi-group on L2
ε)

∥I1j ∥2L2
ε
= ∥T ε

j z
n(0)∥L2

ε
≤ ∥zn(0)∥L2

ε
≤ K,

and

∥I2j ∥L2
ε
+ ∥I3j ∥L2

ε
≤ h

j−1∑
k=0

∥T ε
k−j

[
µ(kh) + γ(· , Y n(kh))

]
zn(kh)∥L2

ε

≤ h

j−1∑
k=0

(
∥µ(kh)∥L∞

ε
+ ∥γ(· , Y n(kh))∥L∞

ε

)
∥zn(kh)∥L2

ε
≤ K1h

j−1∑
k=0

∥zn(kh)∥L2
ε
,

where K1 is a constant depending on K only, recalling that γ ∈ (0, 1) is the proportion of grass
consumed by rabbits. To estimate I4j , we note that

(I − h∆ε)
−jf(xi) =

∑
ℓ

p(j)(xi − xℓ)f(xℓ),
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where p(j) is the j-step transition function of the discrete Markov chain on εZ2 with semigroup
{(I − h∆ε)

−j : j ≥ 0}. Then,

I4j (xi) =
√
h

j−1∑
k=0

∑
ℓ

p(j−k)(xi − xℓ)z
n(kh, xℓ)ξ

n(kh, xℓ), xi ∈ εZ2.

Thus, for any z ∈ L2
ε, we have

⟨
I4j , z

⟩
L2
ε

=
√
h

j−1∑
k=0

∑
ℓ

⟨
p(j−k)(· − xℓ), z

⟩
L2

ε
zn(kh, xℓ)ξ

n(kh, xℓ).

The right hand side of the above can be regarded as a stochastic integral on discrete space
{0, 1, · · · , j} × εZ2 of the process

k 7→
∑
i

p(j−k)(xi − ·)z(xi)z
n(kh, ·)

with respect to the Gaussian random measure determined by the process k 7→ ξn(kh, ·). Then,

E
⟨
I4j , z

⟩2
L2
ε

= hE
j−1∑
k=0

∑
ℓ1,ℓ2

⟨
p(j−k)(· − xℓ1), z

⟩
L2
ε
zn(kh, xℓ1)

×
⟨
p(j−k)(· − xℓ2), z

⟩
L2
ε
zn(kh, xℓ2)ρ(xℓ1 , xℓ2).

Summing on z over a complete orthonormal system of L2
ε, we get

E∥I4j ∥2L2
ε
=hε2E

j−1∑
k=0

∑
ℓ1,ℓ2

p(2(j−k))(xℓ1−xℓ2)z
n(kh, xℓ1)z

n(kh, xℓ2)ρ(xℓ1 , xℓ2)

≤ Kh∥ρ∥∞ε2
j−1∑
k=0

E
∑
ℓ1,ℓ2

p(2(j−k))(xℓ1 − xℓ2)z
n(kh, xℓ1)

2

= K1h∥ρ∥∞
j−1∑
k=0

E∥zn(kh)∥2L2
ε
,

where the inequality follows from the property of the transition probability and the boundedness
of the covariance function ρ. The conclusion then follows from (4.1) and a discrete version of
the Gronwall inequality (cf. Xiong [29]). �

To prove the tightness of Zn in D([0, T ],MF (R2)), we need the following uniform estimate.

Lemma 4.2. For any f ∈ C∞
0 (R2), we have

sup
n

{
E
[
sup
t≤T

| ⟨Zn(t), f⟩ |2
]}

< ∞.
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Proof. We note that

⟨Zn(t+ h), f⟩ =
∑
i

zn(t+ h, xi)f(xi)ε
2

= ⟨Zn(t), f⟩+ ε2h
∑
i

µ(t, xi)z
n(t, xi)f(xi) + ε2

√
h
∑
i

ξn(t, xi)z
n(t, xi)f(xi)

− h ⟨Zn(t), γ(·, Y n(t))f⟩+ h
∑
i

∑
j∼i

(f(xj)− f(xi))z
n(t+ h, xi)

= ⟨Zn(t), f⟩+ h ⟨Zn(t), µ(t)f⟩ − h ⟨Zn(t), γ(·, Y n(t))f⟩

+ h ⟨Zn(t+ h),∆εf⟩+ ε2
√
h
∑
i

ξn(t, xi)z
n(t, xi)f(xi).

Summing up with respect to t = 0, h, 2h, · · · , (k − 1)h, we have

⟨Zn(t), f⟩ = ⟨Zn(0), f⟩+Mn,f (t)

+
k−1∑
i=0

(⟨Zn(ih), µ(ih)f − γ(·, Y n(ih))f⟩+ ⟨Zn((i+ 1)h),∆εf⟩)h

≡ ⟨Zn(0), f⟩+Mn,f (t) +An,f (t), (4.4)

where

An,f (t) =
k−1∑
i=0

(⟨Zn(ih), µ(ih)f − γ(·, Y n(ih))f⟩+ ⟨Zn((i+ 1)h),∆εf⟩)h, (4.5)

and

Mn,f (t) = ε2
√
h

k−1∑
i=0

∑
j

ξn(ih, xj)z
n(ih, xj)f(xj),

which is a martingale with conditional quadratic variation

⟨Mn,f ⟩(t)=ε4h
k−1∑
i=0

∑
j1,j2

ρ(xj1 , xj2)z
n(ih, xj1)z

n(ih, xj2)f(xj1)f(xj2)

= h
k−1∑
i=0

∑
j

⟨
Zn(ih), ϕjf

⟩2
.

(4.6)

Applying Hölder’s inequality to An,f and Doob’s inequality to Mn,f , we then get

E sup
s≤t

∥ ⟨Zn(s), f⟩ ∥2 ≤ 3 ⟨Zn(0), f⟩2 +K1(f)h

k−1∑
i=0

E∥zn(ih)∥22 +K2E ⟨Mn,f ⟩(t) ≤ K3 < ∞.

Then our conclusion follows. �
We need the following definition and the theorem about real-valued stochastic processes

taken from the book of Jacod and Shiryaev ([8], p.317, Corollary 3.33 and p.322, Theorem
4.13).

Definition 4.3. A sequence of probability measures {λn} on D([0, T ],R) is C-tight if it is tight
and all cluster points are supported on C([0, T ],R).
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Theorem 4.4. For each n, let λn be a probability measure on D([0, T ],R) induced by a real-
valued semimartingale ξn(0) +Mn(t) + An(t) on a stochastic basis (Ωn,Fn, Pn, (Fn

t )), where
ξn(0) is an Fn

0 -measurable random variable, Mn is a martingale and An is of finite variation.
If {ξn(0)} is tight in R, {⟨Mn⟩} and {An} are C-tight, then {λn} is tight.

Lemma 4.5. For each f ∈ C∞
0 (R2), the sequence {An,f} is C-tight in D([0, T ],R).

Proof. Note that

E
[

sup
0≤jh<kh≤T

|An,f (kh)−An,f (jh)|
(k − j)h

]
≤ E

(
sup

s∈[0,T ]

|⟨Zn(s), µ(s)f +∆εf − γ(·, Y n(s))f⟩|
)
≤ K1(f) < ∞.

The C-tightness then follows easily. �

Lemma 4.6. Zn is tight in D([0, T ],MF (R2)).

Proof. Similar to last lemma, we can prove the C-tightness of
⟨
Mn,f

⟩
. By the last theorem,

we get the tightness of {⟨Zn, f⟩}. By Jakubowski’s criterion (see [9], or Theorem 3.6.4 of [2]),
it is then well-known that Zn is tight in D([0, T ],MF (R2)). �

Next, we consider the tightness of Y n. Note that

⟨Y n(t+ h), f⟩ = 1

n

∑
k∼t

f(Xn
k (t+ h))(1 + 1τk<t+h)− ⟨Y n(t), un(t)f⟩h, (4.7)

where k ∼ t means that the rabbit k is alive at time t before harvest occurs.

Lemma 4.7. The estimate

sup
n≥0, t≤T

E ⟨Y n(t), 1⟩2 < ∞

holds.

Proof. Denote m(k) = ⟨Y n(kh), 1⟩. Then,

m(i+ 1) ≤ m(i) +
1

n

∑
k∼ih

(1τk<(i+1)h − α(ζn(ih))h) +
1

n

∑
k∼ih

α(ζn(ih))h

≡ m(i) + J1(i) + J2(i),

where the harvested rabbits are deleted in the first inequality above (and hence, an inequality).
Note that EJ1(i)2 ≤ Kh

n Em(i) and J2(i) ≤ Km(i)h. Thus,

m(i+ 1)− (1 +Kh)m(i) ≤ J1(i). (4.8)

By iteration, we get

m(i) ≤ (1 +Kh)im(0) +
i−1∑
k=0

J1(k)(1 +Kh)i−1−k.

Then,

Em(i) ≤ (1 +Kh)im(0) ≡ K1,
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and

Em(i)2 ≤ 2K2
1 +

i−1∑
k=0

Kh

n
Em(k)(1 +Kh)2(i−1−k) ≤ 2K2

1 +K2n
−1.

This concludes the proof of the lemma. �
Now, we are ready to present

Proof of Theorem 2.1. For any f ∈ C2
0 (R2), it is not difficult to show that

⟨Y n(t+ h), f⟩ = ⟨Y n(t), f⟩+
∫ t+h

t

⟨
Y n(s), Ls,ζn(s),∇ζn(s)f

⟩
ds

+
1

n

∑
k∼t

∫ t+h

t

bT∇f(Xn
k (s))dBk(s)

+In(t) + ⟨Y n(t), (α(ζn(t))− un(t)) f⟩h,

where

In(t) =
1

n

∑
i

∑
k∼t

(f(xi)− f(Xn
k (t+ h))) IQε(xi)(X

n
k (t+ h)).

Since f is Lipschitz continuous,

|In(t)| ≤ Kϵ ⟨Y n(t), 1⟩ .

Note that

E sup
t≤T

∣∣∣ 1
n

∑
k

∫ t

0

bT∇f((Xn
k (s))Ik∼sdBk(s)

∣∣∣2 ≤ 4

n2

∑
k

∫ t

0

|bT∇f((Xn
k (s))|2Ik∼sds

=
4

n

∫ t

0

⟨
Y n(s), (bT∇f)2

⟩
ds → 0,

and
[T/h]∑
j=0

|In(jh)| ≤ Kεh−1

∫ T

0

⟨Y n(t), 1⟩ dt → 0.

Similar to the case of Zn, we get the tightness of Y n.
Let (Y δ, Zδ) be a limit point. Then, Y δ solves the following PDE

d

dt

⟨
Y δ(t), f

⟩
=

⟨
Y δ(t), Lt,ζδ(t),∇ζδ(t)f

⟩
+
⟨
Y δ(t),

(
α(ζδ(t))− u(t)

)
f
⟩
.

Finally, we pass to limit on (4.4)

⟨Zδ(t), f ⟩ = ⟨Z(0), f⟩+M δ,f (t) +Aδ,f (t)

where

Aδ,f (t) =

∫ t

0

(
⟨Zδ(s), µ(s)f +∆f − γ(· , Y δ(s))f ⟩

)
ds

and M δ,f is a martingale with conditional quadratic variation

⟨M δ,f ⟩(t) =
∞∑
i=0

∫ t

0

⟨Zδ(s), fϕi ⟩ 2ds. (4.9)
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By martingale representation, we see that

M δ,f (t) =
∞∑
i=0

∫ t

0

⟨Zδ(s), fϕi ⟩ dBj(s) =

∫ t

0

∫
R
⟨Zδ(s), fW (· , ds) ⟩ .

Note that when the sum in (4.9) contains only finite many terms, the martingale representation
is standard. In the current case, it can be obtained by extending the finite dimensional case
using the same proof, or by taking limit from the finite dimensional result. We omit the detail
here. This completes the proof. �

The existence of density yδ for Y δ follows from convolution. In fact, yδ can be represented
in the following convolution form:

yδ(t, x) =

∫
R2

yδ(0, r)pt(x− x′)dx′

+

∫ t

0

∫
R2

(
α(ζδ(s, x′))− u(s, x′)

)
pt−s(x− x′)Y δ(s, dx′)ds

+

∫ t

0

∫
R2

∇pt−s(x− x′)b(s, x′, ζδ(s, x′),∇ζδ(s, x′))Y δ(s, dx′)ds. (4.10)

The existence of the density of zδ follows from Lemma 4.1 and Fatou’s lemma. The equations
for (yδ, zδ) can be written as

∂ty
δ(t, x) = 1

2∆yδ(t, x)−∇·
(
b(t, x, ζδ(t, x),∇ζδ(t, x))yδ(t, x)

)
+
(
α(ζδ(t, x))− u(t, x)

)
yδ(t, x),

dzδ(t, x) =
[
∆zδ(t, x) +

(
µ(t)− γ(· , Y δ(t))

)
zδ(t, x)

]
dt+ zδ(t, x)W (x, dt).

(4.11)

5 Limiting System as δ → 0

In this section, we study the tightness of (yδ, zδ). Namely, this section is devoted to the proof
of Theorem 2.2.

Note that

d ⟨Y δ(t), f ⟩ =
(
⟨Y δ(t),

1

2
∆f + b(t, ·, ζδ(t),∇ζδ(t))∇f ⟩+ ⟨Y δ(t),

(
α(ζδ(t))− u(t)

)
f ⟩

)
dt.

Similar to Lemma 4.5, it is easy to get the tightness of Y δ(t) in path space C([0, T ],MF (R2)).
Without loss of generality, we may and will assume that Y δ convergence to Y a.s. It then
follows from Theorem 5.7 of Krylov [13] with n = 0 that zδ converges to z a.s. in H2

p(R2) as

δ → 0, where z is a solution to the second equation in (2.9). Finally, we come back to yδ. Using
the convolution representation (4.10), we get a.s.,

yδ(t, x) →
∫
R2

y0(x
′)pt(x− x′)dx′ +

∫ t

0

∫
R2

(α(z(s, x′))− u(s, x′)) pt−s(x− x′)Y (s, dx′)ds

+

∫ t

0

∫
R2

∇pt−s(x− x′)b(s, x′, z(s, x′),∇z(s, x′))Y (s, dx′)ds

≡ y(t, x).

Thus, y(· , ·) is a solution to the first equation in (2.9).
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Finally, we prove the uniqueness of the solution. Let (y1, z1) and (y2, z2) be two solutions.
Denote ȳ = y1 − y2, and z̄ = z1 − z2. Then,

ȳ(t, x) =

∫ t

0

∫
R2

∇pt−s(x− x′)

×
(
b(s, x′, z1(s, x′),∇z1(s, x′))− b(s, x′, z2(s, x′),∇z2(s, x′))

)
y1(s, x′)dx′ds

+

∫ t

0

∫
R2

∇pt−s(x− x′)b(s, x′, z2(s, x′),∇z2(s, x′))ȳ(s, x′)dx′ds

+

∫ t

0

∫
R2

(
α(z1(s, x′))− α(z2(s, x′))

)
pt−s(x− x′)ȳ(s, x′)dx′ds.

Note that

∂x1pt−s(x− x′) ≤ K(t− s)−1/2qt−s(x− x′) (5.1)

where qt(x) = p2t(x). So,

|ȳ(t, x)| ≤ K1

∫ t

0

∫
R2

(t− s)−1/2qt−s(x− x′)|∇z̄(s, x′)||y1(s, x′)|dx′ds

+K2

∫ t

0

∫
R2

(t− s)−1/2qt−s(x− x′)|ȳ(s, x′)|dx′ds

+K3

∫ t

0

∫
R2

pt−s(x− x′)|z̄(s, x′)|ȳ(s, x′)dx′ds.

As y1(· , ·) is bounded, we have,

|ȳ(t, x)|2 ≤ K4

∫ t

0

∫
R2

(t− s)−1/2qt−s(x− x′)|∇z̄(s, x′)|2dx′ds

+K5

∫ t

0

∫
R2

(t− s)−1/2qt−s(x− x′)|ȳ(s, x′)|2dx′ds

+K6

∫ t

0

∫
R2

pt−s(x− x′)|z̄(s, x′)|2ȳ(s, x′)dx′ds.

Note that in the above, we have used the fact that∫ t

0

∫
R2

(t− s)−1/2qt−s(x− x′)dx′ds =

∫ t

0

(t− s)−1/2ds =
√
t ≤

√
T .

Therefore,

E∥ȳ(t)∥22 ≤ K7

∫ t

0

(t− s)−1/2E∥z̄(s)∥21,2ds+K5

∫ t

0

(t− s)−1/2E∥ȳ(s)∥22ds. (5.2)

Now, we estimate the partial derivative ∂x1 z̄(s, x) with respect to x1. Using the convolution
form, we get for i = 1, 2,

zi(t, x) = Ttz0(x) +

∫ t

0

∫
R2

pt−s(x− x′)γ(x′, Y i(s, ·))zi(s, x′)dx′ds

+

∫ t

0

∫
R2

pt−s(x− x′)zi(s, x′)W (x′, ds)dx′.
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So,

z̄(t, x) =

∫ t

0

∫
R2

pt−s(x− x′)
(
γ(x′, Y 1(s, ·))z1(s, x′)− γ(x′, Y 2(s, ·))z2(s, x′)

)
dx′ds

+

∫ t

0

∫
R2

pt−s(x− x′)z̄(s, x′)W (x′, ds)dx′.

Then,

∥∂x1 z̄(t)∥22 = I1(t) + I2(t)

where

I1(t) =
∥∥∥ ∫ t

0

∫
R2

∂x1pt−s(x− x′)Î(s, x′)dx′ds
∥∥∥2
2
,

I2(t) =
∥∥∥ ∫ t

0

∫
R2

∂x1pt−s(x− x′)z̄(s, x′)W (x′, ds)dx′
∥∥∥2
2
,

with

Î(s, x′) = γ(x′, Y 1(s, ·))z1(s, x′)− γ(x′, Y 2(s, ·))z2(s, x′).

The term I1(t) can be dealt with using argument similar to that for ȳ so we focus on I2(t).
Indeed,

I2(t) =
⟨∫ t

0

∫
R2

∂x1pt−s(x− x′)z̄(s, x′)W (x′, ds)dx′,∫ t

0

∫
R2

pt−s(x− x′)∂x1 z̄(s, x
′)W (x′, ds)dx′

⟩
2
.

We write

I2(t) = I21(t) + I22(t),

where

I21(t) = E
⟨ ∞∑

j=1

∫ t

0

∫
R2

∂x1pt−s(x− x′)z̄(s, x′)ϕj(x
′)dx′dBj(s),

∞∑
j=1

∫ t

0

∫
R2

pt−s(x− x′)∂x1 z̄(s, x
′)ϕj(x

′)dx′dBj(s)
⟩
2
,

and

I22(t) = E
⟨ ∞∑

j=1

∫ t

0

∫
R2

∂x1pt−s(x− x′)z̄(s, x′)ϕj(x
′)dx′dBj(s),

∞∑
j=1

∫ t

0

∫
R2

pt−s(x− x′)z̄(s, x′)∂x1ϕj(x
′)dx′dBj(s)

⟩
2
.

The term I22(t) can be dealt with similarly as that for Ȳ so we focus on I21(t).
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Making use of (5.1), we have

I21(t) ≤ KE
∞∑
j=1

∫
R2

dx

∫ t

0

(t− s)−1/2

∫
R2

qt−s(x− x′)z̄(s, x′)ϕj(x
′)dx′

×
∫
R2

pt−s(x− x′)∂x1 z̄(s, x
′)ϕj(x

′)dx′ds

≤ K

∫ t

0

(t− s)−1/2

∫
R2

( ∞∑
j=1

∫
R2

qt−s(x− x′)z̄(s, x′)2ϕj(x
′)2dx′

)1/2

·
( ∞∑

j=1

∫
R2

pt−s(x− x′) |∂x1 z̄(s, x
′)ϕj(x

′)|2 dx′
)1/2

dxds

≤ K

∫ t

0

(t− s)−1/2
(∫

R2

∫
R2

qt−s(x− x′)z̄(s, x′)2ρ(x′, x′)dx′dx
)1/2

·
( ∞∑

j=1

∫
R2

∫
R2

pt−s(x− x′) |∂x1 z̄(s, x
′)ϕj(x

′)|2 dx′dx
)1/2

ds

≤ K

∫ t

0

(t− s)−1/2∥z̄(s)∥2
( ∞∑

j=1

∥z̄(s)ϕj |21,2
)1/2

ds

≤ K

∫ t

0

(t− s)−1/2E∥z̄(s)∥2∥z̄(s)∥1,2ds

≤ K

∫ t

0

(t− s)−1/2E∥z̄(s)∥21,2ds.

To summarize, we get

E∥z̄(t)∥21,2 ≤ K

∫ t

0

(t− s)−1/2
(
E∥ȳ(s)∥22 + E∥z̄(s)∥21,2

)
ds.

Combining with (5.2), we obtain

E
(
∥ȳ(t)∥22 + ∥z̄(t)∥21,2

)
≤ K

∫ t

0

(t− s)−1/2
(
E∥ȳ(s)∥22 + E∥z̄(s)∥21,2

)
ds.

Iterating this inequality once, we get

E
(
∥ȳ(t)∥22 + ∥z̄(t)∥21,2

)
≤ K

∫ t

0

E
(
∥ȳ(s)∥22 + ∥z̄(s)∥21,2

)
ds.

Gronwall’s inequality implies (y1, z1) = (y2, z2). �

6 Numerical Example

In order to give an intuitive explanation for our model (2.9), we present a specific numerical
example in this section. Firstly, we restrict the space variable x = (x1, x2) to a limited domain
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Rx = [0, 1]× [0, 1]. Secondly, we choose the appropriate functions

b(t, x, z(t, x),∇z(t, x)) =

[
b1z(t, x) + b2zx1(t, x)

b3z(t, x) + b4zx2(t, x)

]
, b1, b2, b3, b4 ∈ R,

α(z(t, x)) = α1z(t, x), u(t, x) = u1
y(t, x)

y(t, x) + z(t, x)
,

µ(t, x) = µ1, γ(·, Y (t, ·)) = γ1

∫
Rx

θ(x− x′)y(t, x′)dx′,

θ(x− x′) =
1

50(x1 − x′
1)

2 + 50(x2 − x′
2)

2 + 1
, α1, u1, µ1, γ1 ∈ (0, 1),

W (x, dt) =

m∑
k=1

Φk(x)dBk(x), Φk(x) = ϕ1

√
x2
1 + x2

2

k2
, ϕ1 ∈ R.

(6.1)

Taking the coefficients b1 = b3 = 0.4, b2 = b4 = 0.6, α1 = 0.2, u1 = 0.8, µ1 = 0.3, γ1 =
0.2, ϕ1 = 0.2, and giving initial value y(0, x) = 10, z(0, x) = 4, we can obtain Figures 6.1-
6.3. Note that choosing the b2 and b4 positive makes advection in one direction for rabbits
(depending on the grass).
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Figure 6.1. Spatial distribution at the initial moment. Rabbits (left) and grass (right).
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Figure 6.2. Spatial distribution at t = 3. Rabbits (left) and grass (right).

Here, we assume that rabbits and grass are evenly distributed in the space domain at the
initial moment (see Figure 6.1). Over time, the distributions of rabbit and grass are no longer
uniform due to the advection movement of the rabbits (see Figures 6.2-6.3). In particular, we
can find that the rabbit movement is affected by the gradient of the grass. This phenomenon
is consistent with our model assumption in section 2. Figures 6.1-6.3 present the distributions
of rabbits and grass in space. Next, we consider the trajectorys of rabbits and grass over the
time.

Fixing all the original coefficients except the control coefficient u1, and taking u1 = 0.8, 0.2
in turn, we can obtain the time-varying trajectories of rabbits and grass at a small closed square.
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Without loss of generality, we choose the closed square centered at x = ( 5
16 ,

3
16 ). Figures 6.4 and

6.5 show that rabbits and grass grow alternately over the time. At the same time, the rabbit’s
reaction is slightly delayed. These two phenomena are consistent with our real experience. In
addition, we can find that the control coefficient can affect the cycle trajectories of rabbits and
grass from Figures 6.4 and 6.5.
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Figure 6.3. Spatial distribution at t = 6. Rabbits (left) and grass (right).
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Figure 6.4. Time plots of rabbits and grass at x = ( 5
16 ,

3
16 ). Rabbits (left) and grass (right).

Control coefficient u1 = 0.8.
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Figure 6.5. Time plots of rabbits and grass at x = ( 5
16 ,

3
16 ). Rabbits (left) and grass (right).

Control coefficient u1 = 0.2.

In addition to the control coefficient u1, we can also observe the effects of noise on rabbits
and grasses. Fixing all the original coefficients except the noise intensity coefficient ϕ1, and
taking ϕ1 = 0, 2 in turn, we can obtain Figures 6.6 and 6.7. Comparing Figure 6.4 with Figure
6.6, we can see that the time-varying trajectories of rabbits and grass are smoother and more
stable in the absence of noise. However, Figure 6.7 shows that the time-varying trajectories
will tend to zero when the noise intensity is large. This means that large noise (disaster) may
lead to the destruction of rabbits and grass.

Based on the above analysis, we can show that our model (2.9) is a good approach to
modeling populations incorporating individual behavior and stochasticity. Figures 6.1-6.3 show
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that our model is easy to observe the spatial distributions of populations and the individual’s
movement behavior. Figures 6.4, 6.6 and 6.7 show that our model can reflect well the influence
of noise on the evolution trajectories of populations. Finally, Figures 6.4 and 6.5 imply that we
can better manage the evolution of populations by adjusting the control coefficient.
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Figure 6.6. Time plots of rabbits and grass at x = ( 5
16 ,

3
16 ). Rabbits (left) and grass (right).

Noise intensity coefficient ϕ1 = 0.
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Figure 6.7. Time plots of rabbits and grass at x = ( 5
16 ,

3
16 ). Rabbits (left) and grass (right).

Noise intensity coefficient ϕ1 = 2.

7 Conclusions

We obtained a system of stochastic differential equations based on the movement of individual
rabbits and the dispersal and the growth of the grass. As the number of the rabbits becomes
large, we derived the limit model as a pair of stochastic partial differential equations representing
the interactions. The harvest rate is introduced as a control variable in our model. The existence
and uniqueness of the solution to this pair of controlled SPDEs were established. The optimal
control problem for this SPDE model has been presented in the companion paper [17].

This paper laid the foundation of this tool of deriving such a system of SPDEs from popula-
tion interaction and movement rules. This tool can be applied to model other populations with
different rules of interacting with each other and with the environment. A variety of features
of a random environment could be included.

There are interesting questions to investigate in the future. It might be interesting to
compare the aggregation from a PDE model with that from a SPDE model. Would the SPDE
model give some additional information beyond the PDE model? Also, one could consider
the possible asymptotic behavior of the solution to the SPDE model without control or with
constant control. Later, it would be interesting to investigate numerical simulations for specific
examples.
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