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Abstract

For backward stochastic Volterra integral equations (BSVIEs, for short), under some mild conditions, the
so-called adapted solutions or adapted M-solutions uniquely exist. However, satisfactory regularity of the
solutions is difficult to obtain in general. Inspired by the decoupling idea of forward–backward stochastic
differential equations, in this paper, for a class of BSVIEs, a representation of adapted M-solutions is
established by means of the so-called representation partial differential equations and (forward) stochastic
differential equations. Well-posedness of the representation partial differential equations are also proved in
certain sense.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Let (Ω ,F ,F,P) be a complete filtered probability space on which a standard d-dimensional
Brownian motion W (·) is defined, with F ≡ {Ft }t⩾0 being its natural filtration augmented by all
the P-null sets. We consider the following stochastic integral equation in Rm :

Y (t) = ψ(t)+
∫ T

t
g(t, s, Y (s), Z (t, s), Z (s, t))ds−

∫ T

t
Z (t, s)dW (s), t ∈ [0, T ]. (1.1)
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Such an equation is called a backward stochastic Volterra integral equation (BSVIE, for short).
In the above, ψ(·), called a free term, is an FT -measurable stochastic process (not necessarily
F-adapted) and g(·), called the generator of the above BSVIE, is a given map, deterministic or
random. The unknown that we are looking for is the pair (Y (·), Z (· , ·)) of processes. Let us look
at a special case of the above BSVIE. Suppose

g(t, s, y, z, ζ ) = g(s, y, z), ψ(t) = ξ, ∀(t, s, y, z, ζ ),

with ξ being an FT -measurable random variable, and g(·) being a proper map. Then the above
BSVIE is reduced to the following form:

Y (t) = ξ +

∫ T

t
g(s, Y (s), Z (t, s))ds −

∫ T

t
Z (t, s)dW (s), t ∈ [0, T ]. (1.2)

It is comparable with the integral form of backward stochastic differential equation (BSDE, for
short) which takes the following form:

Y (t) = ξ +

∫ T

t
g(s, Y (s), Z (s))ds −

∫ T

t
Z (s)dW (s), t ∈ [0, T ]. (1.3)

Now, if BSDE (1.3) admits a unique adapted solution (Y (·), Z (·)), by which we mean that this
pair is F-adapted and satisfies (1.3) in the usual Itô sense, then, this solution must also be an
adapted solution of BSVIE (1.2) with Z (t, s) ≡ Z (s). From this point of view, BSVIE can be
regarded as an extension of BSDE.

Linear BSDEs were firstly introduced by Bismut in 1973 [4] while he was studying stochastic
linear–quadratic optimal control problems. In 1990, Pardoux–Peng generalized Bismut’s linear
BSDEs to general nonlinear BSDEs [26]. Shortly after, BSDE theory was found to have
very interesting applications in mathematical finance (see for example, [9,11]), and many
other developments have been appearing thereafter, including nonlinear Feynman–Kac formula,
nonlinear expectations, dynamic risk measures, path-dependent partial differential equations,
etc., see for examples [10,28,29,33,44], and references cited therein. Relevant theory of BSDEs
can also be found in [5,6,15,30]. On the other hand, an extension of BSDE to the so-
called forward–backward stochastic differential equations (FBSDEs, for short) was initiated by
Antonelli in 1993 [1]. A general form of FBSDE takes the following form:⎧⎨⎩ d X (t) = b(t, X (t), Y (t), Z (t))dt + σ (t, X (t), Y (t), Z (t))dW (t), t ∈ [0, T ],

dY (t) = −g(t, X (t), Y (t), Z (t))dt + Z (t)dW (t), t ∈ [0, T ],
X (0) = x, Y (T ) = h(X (T )),

(1.4)

for some maps b, σ, g, h. General theories on FBSDEs were developed in the past two and
half decades, see [14,19,21,22,37], and references cited therein. A triple (X (·), Y (·), Z (·)) of
processes is called an adapted solution to (1.4) if it is F-adapted, and satisfies (1.4) in the
usual Itô’s sense. The following result is found from [19,22,37,40]. For simplicity, we omit the
technical conditions.

Proposition 1.1. Under proper conditions, FBSDE (1.4) admits a unique adapted solution
(X (·), Y (·), Z (·)), and the following estimate holds (for some p > 1):

E
{

sup
t∈[0,T ]

|X (t)|p
+ sup

t∈[0,T ]
|Y (t)|p

+

(∫ T

0
|Z (t)|2dt

) p
2
}
⩽ K

(
1 + |x |p), ∀x ∈ Rn. (1.5)
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Hereafter, K > 0 will stand for a generic constant which can be different from line to line.
Moreover, let all the involved functions be deterministic, and

σ (t, x, y, z) ≡ σ (t, x, y), ∀(t, x, y, z).

Let Θ(· , ·) be the classical solution to the following partial differential equation (PDE, for
short):⎧⎪⎪⎪⎨⎪⎪⎪⎩

Θt (t, x)+
1
2
σ
(
t, x,Θ(t, x)

)⊤
Θxx (t, x)σ

(
t, x,Θ(t, x)

)
+Θx (t, x)b

(
t, x,Θ(t, x),Θx (t, x)σ (t, x,Θ(t, x))

)
+g

(
t, x,Θ(t, x),Θx (t, x)σ (t, x,Θ(t, x))

)
= 0, (t, x) ∈ [0, T ] × Rn,

Θ(T, x) = h(x), x ∈ Rn,

(1.6)

where

σ (t, x, y)⊤Θxx (t, x)σ (t, x, y) =
d∑

k=1

⎛⎜⎜⎜⎝
σk(t, x, y)⊤Θ1

xx (t, x)σk(t, x, y)
σk(t, x, y)⊤Θ2

xx (t, x)σk(t, x, y)
...

σk(t, x, y)⊤Θm
xx (t, x)σk(t, x, y)

⎞⎟⎟⎟⎠ , (1.7)

with

σ (t, x, y) =
(
σ1(t, x, y), σ2(t, x, y), · · · , σd (t, x, y)

)
, Θ(t, x) =

⎛⎜⎜⎜⎝
Θ1(t, x)
Θ2(t, x)

...

Θm(t, x)

⎞⎟⎟⎟⎠ ,
and X (·) be the strong solution to the following:⎧⎨⎩ d X (t) = b

(
t, X (t),Θ(t, X (t)),Θx (t, X (t))σ (t, X (t),Θ(t, X (t)))

)
dt

+σ
(
t, X (t),Θ(t, X (t)),Θx (t, X (t))σ (t, X (t))

)
dW (t), t ∈ [0, T ],

X (0) = x .

(1.8)

Then the following representation holds:

Y (t) = Θ(t, X (t)), Z (t) = Θx (t, X (t))σ (t, X (t),Θ(t, X (t))), t ∈ [0, T ]. (1.9)

In the above, Θ(· , ·) is called a decoupling field of the FBSDE (1.4) [20], and (1.6) is
called the representation PDE since the solution Θ(· , ·) allows us to represent the backward
component (Y (·), Z (·)) in terms of the forward component X (·). The original version of the above
representation appeared in [19] (see [13,23] for extensions), which was essentially inspired by
the idea of the invariant embedding [2,3]. Note that from (1.5), we see that in general, Z (·) only
belongs to the following space:

L p
F(Ω; L2(0, T ;Rm×d )) =

{
Z : [0, T ] × Ω → Rm×d

⏐⏐t ↦→ Z (t) is F-adapted,

E
(∫ T

0
|Z (t)|2dt

) p
2
<∞

}
.

In particular, s ↦→ Z (s) is not necessarily continuous. Whereas, as long as all the involved
functions are nice enough (in a suitable sense), the above representation (1.9) provides useful
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regularity information on (Y (·), Z (·)), especially for the possible continuity of Z (·). This actually
has played some interesting roles in numerical aspects of BSDEs/FBSDEs [8,43].

Note that in the case that both b and σ are independent of (Y (·), Z (·)), for which the FBSDE
is decoupled, the representation PDE becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩

Θt (t, x) +
1
2
σ (t, x)⊤Θxx (t, x)σ (t, x) +Θx (t, x)b(t, x)

+g
(
t, x,Θ(t, x),Θx (t, x)σ (t, x)

)
= 0,

(t, x) ∈ [0, T ] × Rn,

Θ(T, x) = h(x), x ∈ Rn,

(1.10)

whose solvability conditions are much simpler than those for (1.6). In this case, (1.9) becomes

Y (t) = Θ(t, X (t)), Z (t) = Θx (t, X (t))σ (t, X (t)), t ∈ [0, T ], (1.11)

with X (·) being the solution of FSDE:{
d X (t) = b(t, X (t))dt + σ (t, X (t))dW (t), t ∈ [0, T ],
X (0) = x . (1.12)

Let us return to FBSDE (1.4). For any (s, x) ∈ [0, T ) × Rn , let (X (· ; s, x), Y (· ; s, x), Z
(· ; s, x)) be the (unique) adapted solution to (1.4) on [s, T ] with X (0) = x replaced by X (s) = x .
Then

Θ(s, x) = Y (s; s, x), (s, x) ∈ [0, T ) × Rn. (1.13)

Thus, the solution Θ(· , ·) to the PDE (1.6) admits a representation Y (· ; · , ·), a part of the adapted
solution to FBSDE (1.4). This is called a nonlinear Feynman–Kac formula (see [24,27]).

We now consider BSVIEs. In 2002, Lin firstly introduced a BSVIE [18] as an extension of
BSDEs, in which the term Z (s, t) did not appear and ψ(t) ≡ ξ is a fixed FT -measurable random
variable. The form (1.1), including the term Z (s, t) with general ψ(·), was firstly introduced by
the second author of the current paper in 2006 [38], motivated by optimal control of (forward)
stochastic Volterra integral equations (FSVIEs, for short). When Z (s, t) is absent, the BSVIE
(1.1) becomes:

Y (t) = ψ(t) +
∫ T

t
g(t, s, Y (s), Z (t, s)) ds −

∫ T

t
Z (t, s)dW (s), t ∈ [0, T ]. (1.14)

Hereafter, we call (1.14) and (1.1) Type-I and Type-II BSVIEs, respectively. Thus, Type-I BSVIE
is a special case of Type-II BSVIE.

Mimicking the case of BSDEs, a pair (Y (·), Z (· , ·)) is called an adapted solution to BSVIE
(1.1) if for each t ∈ [0, T ), the map s ↦→ (Y (s), Z (t, s)) is F-adapted on [t, T ], and
satisfies Eq. (1.1) in the usual Itô sense. For Type-I BSVIE (1.14), one needs only to determine
Z (t, s) for (t, s) ∈ ∆[0, T ], where

∆[0, T ] =
{

(t, s) ∈ [0, T ]2
⏐⏐0 ⩽ t ⩽ s ⩽ T

}
. (1.15)

Therefore, under proper conditions, a Type-I BSVIE admits a unique adapted solution. However,
for a Type-II BSVIE, due to the appearance of Z (s, t) in the equation, we need to determine
Z (t, s) for (t, s) ∈ [0, T ]2, and (1.1) alone does not give enough restrictions on Z (t, s).
Consequently, as pointed out in [39], the adapted solution to Type-II BSVIE (1.1) is not unique.
Inspired by the duality principle needed in the optimal control of FSVIEs, the so-called adapted
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M-solution was introduced in [39]: A pair (Y (·), Z (· , ·)) is called an adapted M-solution to (1.1)
if it is an adapted solution and moreover, the following holds:

Y (t) = E[Y (t)] +
∫ t

0
Z (t, s)dW (s), t ∈ [0, T ], a.s. (1.16)

It was proved in [39] that under certain conditions, Type-II BSVIE (1.1) admits a unique adapted
M-solution. Moreover, the following estimate holds:

E
(∫ T

0
|Y (t)|2ds +

∫ T

0

∫ T

0
|Z (t, s)|2dsdt

)
⩽ K

(∫ T

0

∫ T

t
|g(t, s, 0, 0, 0)|2dsdt + E

∫ T

0
|ψ(s)|2ds

)
.

(1.17)

For some relevant results on BSVIEs, the readers are further referred to [31,32,35].

From [39], we see that to get some further regularities beyond the above estimate (1.17)
for the process (Y (·), Z (· , ·)), many technical conditions have to be imposed, the proofs are
quite technical, and unfortunately, the regularity results were still not satisfactory. For example,
according to Theorem 4.2 in [39], the continuity of t ↦→ Y (t), t ↦→ Z (t, ·), and s ↦→ Z (t, s)
with s ⩽ t , only hold in the spaces L2(Ω;Rn), L2

F(0, T ;Rn), L2
Fs

(s, T ;Rn), respectively. As to
s ↦→ Z (t, s) with t ⩽ s, it is still unknown. In a nutshell, there are no pathwise continuity with
respect to Y , Z .

Inspired by the decoupling FBSDEs presented above, we naturally ask: Is it possible to get
representation of adapted solutions for Type-I BSVIEs and adapted M-solutions for Type-II
BSVIEs similar to (1.11) for BSDEs? More precisely, we will consider the following BSVIEs:

Y (t) = ψ(t, X (t), X (T )) +
∫ T

t
g(t, s, X (t), X (s), Y (s), Z (t, s))ds

−

∫ T

t
Z (t, s)dW (s), t ∈ [0, T ],

(1.18)

and

Y (t) = ψ(t, X (t), X (T )) +
∫ T

t
g(t, s, X (t), X (s), Y (s), Z (t, s), Z (s, t))ds

−

∫ T

t
Z (t, s)dW (s), t ∈ [0, T ],

(1.19)

with X (·) being the solution to the FSDE (1.12), and ψ, g being some deterministic maps. Note
that (1.18) and (1.19) are respectively Type-I and Type-II BSVIEs with random coefficients, for
which the randomness all comes from the solution X (·) of FSDE (1.12). Our goal is to establish
a representation of (Y (·), Z (· , ·)) in terms of X (·), via the solution to a suitable representation
PDE system. More precisely, we will establish the following result.

Theorem 1.2. Let some suitable conditions hold.

(i) For Type-I BSVIE (1.18), the following representation holds:{
Y (s) = Θ(s, s, X (s), X (s)), s ∈ [0, T ],
Z (t, s) = Θx (t, s, X (t), X (s))σ (s, X (s)), (t, s) ∈ ∆[0, T ], (1.20)
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with Θ(· , · , · , ·) being the solution to the following PDE system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θs(t, s, ξ, x) +

1
2
σ (s, x)⊤Θxx (t, s, ξ, x)σ (s, x) +Θx (t, s, ξ, x)b(s, x)

+g
(
t, s, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x)

)
= 0,

(t, s, ξ, x) ∈ ∆[0, T ] × Rn
× Rn,

Θ(t, T, ξ, x) = ψ(t, ξ, x), (t, ξ, x) ∈ [0, T ] × Rn
× Rn.

(1.21)

(ii) For Type-II BSVIE (1.19), the following representation holds:⎧⎪⎪⎨⎪⎪⎩
Y (s) = Θ(s, s, X (s), X (s)), s ∈ [0, T ],

Z (t, s) = Θx (t, s, X (t), X (s))σ (s, X (s)), 0 ⩽ t ⩽ s ⩽ T,

Z (t, s) = Γξ (t, s, X (s))σ (s, X (s)), 0 ⩽ s ⩽ t ⩽ T,

(1.22)

with (Γ ,Θ) being the solution to the following PDE system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γs(t, s, ξ ) +
1
2
σ (s, ξ )⊤Γξξ (t, s, ξ )σ (s, ξ ) + Γξ (t, s, ξ )b(s, ξ ) = 0,

0 ⩽ s ⩽ t ⩽ T, ξ ∈ Rn,

Θs(t, s, ξ, x) +
1
2
σ (s, x)⊤Θxx (t, s, ξ, x)σ (s, x) +Θx (t, s, ξ, x)b(s, x)

+g
(
t, s, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x),Γξ (s, t, ξ )σ (t, ξ )

)
= 0,

0 ⩽ t ⩽ s ⩽ T, x, ξ ∈ Rn,

Γ (t, t, x) = Θ(t, t, x, x), (t, x) ∈ [0, T ] × Rn,

Θ(t, T, ξ, x) = ψ(t, ξ, x), (t, ξ, x) ∈ [0, T ] × Rn
× Rn.

(1.23)

From the above representation theorems, one sees that when the representation PDEs (1.21)
and (1.23) have classical solutions, among others, we have that the map (t, s) ↦→ (Y (s), Z (t, s))
is continuous. Such kind of results could not be obtained by the techniques used in [39].

The idea of obtaining the representation is to find a proper approximation of the BSVIE
by BSDEs and then derive the correct form of the representation PDE system by the invariant
embedding/decoupling technique. Once the correct form of PDE system is obtained, a standard
application of Itô’s formula will lead to our representation. Partial results for Type-II BSVIEs of
this paper was announced in [42] without detailed proofs.

For some relevant results concerning BSVIEs, see [7,16]. The rest of the paper is organized
as follows. In Section 2, approximation of Type-I BSVIEs by means of BSDEs is estab-
lished. Section 3 is devoted to the derivation of representation for the adapted solutions of
Type-I BSVIEs. In Section 4, we establish a representation for the adapted M-solutions of
Type-II BSVIEs. The well-posedness of representation PDEs is established in Section 5. Some
concluding remarks are collected in Section 6.

2. Approximation of type-I BSVIEs

This section is devoted to an approximation of Type-I BSVIEs by a sequence of BSDEs.
On one hand, such an approximation will be helpful for us to derive the representation of the
adapted solutions to the Type-I BSVIEs. On the other hand, this will also be helpful for designing
numerical scheme for such kind of BSVIEs [34]. Before going further, let us first introduce the
following assumption concerning the FSDE (1.12).
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(H1) The maps b, σ : [0, T ] × Rn
→ Rn are continuous such that for some constant L > 0,

it holds

|b(t, x) − b(t, x ′)| + |σ (t, x) − σ (t, x ′)| ⩽ L|x − x ′
|, ∀t ∈ [0, T ], x, x ′

∈ Rn.

It is standard that for any fixed x ∈ Rn , FSDE (1.12) admits a unique strong solution
X (·) ≡ X (· ; t, x), and the following holds:

E|X (s) − X (t)|2 ⩽ K0|s − t |, ∀s, t ∈ [0, T ], (2.1)

for some constant K0 := C0(1 + |x |2) > 0. Here C0 is independent of s and t . Now, for such a
given X (·), we consider the following Type-I BSVIE:

Y (t) = ψ(t, X (t), X (T )) +
∫ T

t
g(t, s, X (t), X (s), Y (s), Z (t, s))ds

−

∫ T

t
Z (t, s)dW (s), t ∈ [0, T ]. (2.2)

We introduce the following assumption, recalling the definition of ∆[0, T ] (see (1.15)).

(H2) Functions ψ : [0, T ]×Rn
×Rn

→ Rm and g : ∆[0, T ]×Rn
×Rn

×Rm
×Rm×d

→ Rm

are continuous. There exists a constant L > 0 such that

|ψ(t, ξ, x) − ψ(t ′, ξ ′, x ′)| ⩽ L
(
|t − t ′|

1
2 + |ξ − ξ ′| + |x − x ′

|
)
,

∀(t, ξ, x), (t ′, ξ ′, x ′) ∈ [0, T ] × Rn
× Rn,

|g(t, s, ξ, x, y, z) − g(t ′, s, ξ ′, x ′, y′, z′)|

⩽ L
(
|t − t ′|

1
2 + |ξ − ξ ′| + |x − x ′

| + |y − y′| + |z − z′|
)
,

∀(t, s, ξ, x, y, z), (t ′, s, ξ ′, x ′, y′, z′)∈∆[0, T ] × Rn
× Rn

× Rm
× Rm×d .

Under (H2), for the given X (·) ≡ X (· ; 0, x), BSVIE (2.2) admits a unique adapted solution
(Y (·), Z (· , ·)) on [0, T ] (see [39], for example). Let P[0, T ] be the set of all partitions Π of
[0, T ] having the following form:

Π : 0 = t0 < t1 < t2 < · · · < tN−1 < tN = T, (2.3)

with some natural number N > 1. We define the mesh size ∥Π ∥ of Π by the following:

∥Π ∥ = max
1⩽i⩽N

(ti − ti−1).

For a partition Π as above, let us make an observation. Keep in mind that when we discuss
Type-I BSVIE (2.2), the process X (·) is given. Suppose Y (s) and Z (t, s) have been determined
for tk+1 ⩽ t ⩽ s ⩽ T (see the region marked 1⃝ in Fig. 1). Then for t ∈ [tk, tk+1), one has

Y (t) = ψ(t, X (t), X (T )) +
∫ T

t
g(t, s, X (t), X (s), Y (s), Z (t, s))ds −

∫ T

t
Z (t, s)dW (s)

= ψ(t, X (t), X (T )) +
∫ T

tk+1

g(t, s, X (t), X (s), Y (s), Z (t, s))ds

+

∫ tk+1

t
g(t, s, X (t), X (s), Y (s), Z (t, s))ds −

∫ T

t
Z (t, s)dW (s).

In the above, we see that Y (s), s ∈ [tk+1, T ], is known. But, at the moment, Z (t, s) has been
determined only for tk+1 ⩽ t ⩽ s ⩽ T , and it is still unknown for (t, s) ∈ [tk, tk+1) × [tk+1, T ]
(see the region marked 2⃝in Fig. 1). Also, both Y (s) and Z (t, s) are unknown for tk ⩽ t ⩽ s ⩽
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Fig. 1. Subdomains that (Y (s), Z (t, s)).

tk+1 (the region marked 3⃝ in Fig. 1). Therefore, we want to find (Y (s), Z (t, s)) for tk ⩽ t ⩽ tk+1

and t ⩽ s ⩽ T (the regions marked 2⃝ and 3⃝).
We now construct an approximation of BSVIE (2.2). On [tN−1, T ], we introduce the following

BSDE:⎧⎨⎩ dY N−1(s)= −g
(
tN−1, s, X (tN−1), X (s), Y N−1(s), Z N−1(s)

)
ds + Z N−1(s)dW (s),

s ∈ [tN−1, T ),
Y N−1(T ) = ψ

(
tN−1, X (tN−1), X (T )

)
.

(2.4)

Under (H2), the above BSDE admits a unique adapted solution (Y N−1(·), Z N−1(·)). Next, on
[tN−2, T ], (not just on [tN−2, tN−1]), we introduce the following BSDE:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dY N−2(s) = −g
(
tN−2, s, X (tN−2), X (s), Y N−1(s), Z N−2(s)

)
ds + Z N−2(s)dW (s),

s ∈ [tN−1, T ),

dY N−2(s) = −g
(
tN−2, s, X (tN−2), X (s), Y N−2(s), Z N−2(s)

)
ds + Z N−2(s)dW (s),

s∈ [tN−2, tN−1),

Y N−2(T ) = ψ
(
tN−2, X (tN−2), X (T )

)
, Y N−2(tN−1) = Y N−2(tN−1 + 0).

(2.5)

Note that in the above, Y N−1(s) is already determined by ((2.4)) on [tN−1, T ], which has to
stay unchanged. But, since tN−2 appears in g and ψ , (Y N−2(·), Z N−2(·)) and (Y N−1(·), Z N−1(·))
satisfy different BSDEs on [tN−1, T ]. Consequently, Z N−2(·) is possibly different from Z N−1(·)
on [tN−1, T ], and therefore, Y N−2(·) could be different from Y N−1(·) on [tN−1, T ]. Under our
conditions, the above BSDE admits a unique adapted solution on [tN−2, T ].
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In general, on [tk, T ], we have a unique adapted solution (Y k(·), Z k(·)) to the following
BSDE:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dY k(s) = −g
(
tk, s, X (tk), X (s), Y ℓ(s), Z k(s)

)
ds + Z k(s)dW (s),

s ∈ [tℓ, tℓ+1), k + 1 ⩽ ℓ ⩽ N − 1,

dY k(s) = −g
(
tk, s, X (tk), X (s), Y k(s), Z k(s)

)
ds + Z k(s)dW (s), s ∈ [tk, tk+1),

Y k(T ) = ψ
(
tk, X (tk), X (T )

)
, Y k(tℓ) = Y k(tℓ + 0), k + 1 ⩽ ℓ ⩽ N − 1.

(2.6)

Define⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
YΠ (s) =

N−2∑
k=0

Y k(s)I[tk ,tk+1)(s) + Y N−1(s)I[tN−1,T ](s), s ∈ [0, T ],

ZΠ (t, s) =
N−2∑
k=0

Z k(s)I[tk ,tk+1)(t) + Z N−1(s)I[tN−1,T ](t), 0 ⩽ t ⩽ s ⩽ T,

The above defined YΠ (·) possibly has discontinuity at tN−1, tN−2, · · · , t1. With the above
definition, we may rewrite (2.6) as{

dY k(s) = −g
(
tk, s, X (tk), X (s), YΠ (s), Z k(s)

)
ds + Z k(s)dW (s), s ∈ [tk, T ],

Y k(T ) = ψ
(
tk, X (tk), X (T )

)
, Y k(tℓ) = Y k(tℓ + 0), k + 1 ⩽ ℓ ⩽ N − 1.

(2.7)

Keep in mind that for each k = N , N −1, N −2, · · · , 2, 1, process Y k(·) is continuous, although
YΠ (·) is not necessarily continuous. Now, we introduce

τΠ (t) =
N−2∑
k=0

tk I[tk ,tk+1)(t) + tN−1 I[tN−1,T ](t), t ∈ [0, T ]. (2.8)

Then

0 ⩽ t − τΠ (t) ⩽ ∥Π ∥, t ∈ [0, T ]. (2.9)

Hence, for any t ∈ [0, T ), let t ∈ [tk, tk+1), we have the following:

YΠ (t) = Y k(t) = ψ
(
tk, X (tk), X (T )

)
+

∫ tk+1

t
g
(
tk, s, X (tk), X (s), Y k(s), Z k(s)

)
ds

+

N−1∑
ℓ=k+1

∫ tℓ+1

tℓ
g
(
tk, s, X (tk), X (s), Y ℓ(s), Z k(s)

)
ds −

∫ T

t
Z k(s)dW (s)

= ψ
(
τΠ (t), X (τΠ (t)), X (T )

)
+

∫ T

t
g
(
τΠ (t), s,

X (τΠ (t)), X (s), YΠ (s), ZΠ (t, s)
)
ds −

∫ T

t
ZΠ (t, s)dW (s).

Therefore, (YΠ (·), ZΠ (· , ·)) satisfies a BSDE on each (tk, tk+1), and satisfies a BSVIE on
[0, T ]. Note that since t ↦→ g(τΠ (t), s, X (t), x, y, z) has possible jumps at tk , the resulting
t ↦→ YΠ (t) may also have jumps at tk , regardless of its integral form. For the above constructed
(YΠ (·), ZΠ (· , ·)), we have the following proposition.
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Proposition 2.1. Suppose (H1)–(H2) hold, X (·) is the solution to the FSDE (1.12), and
(YΠ (·), ZΠ (· , ·)) is constructed as above. Then

E
∫ T

0
|YΠ (t) − Y (t)|

2
dt + E

∫ T

0

∫ T

t
|ZΠ (t, s) − Z (t, s)|

2
dsdt ⩽ Kred∥Π ∥, (2.10)

and

E
[

sup
s∈[tk+1,T ]

|Y k+1(s) − Y k(s)|
2
]
+ E

(∫ T

tk+1

|Z k+1(s) − Z k(s)|
2
ds

)
⩽ K∥Π ∥,

0 ⩽ k ⩽ N − 2. (2.11)

In particular,

E|YΠ (tk) − YΠ (tk − 0)| ⩽ K∥Π ∥
1
2 , 1 ⩽ k ⩽ N − 1. (2.12)

Proof. By the stability of adapted solutions to BSVIEs [39], we have (note (2.9))

E
∫ T

0
|YΠ (t) − Y (t)|

2
dt + E

∫ T

0

∫ T

t
|ZΠ (t, s) − Z (t, s)|

2
dsdt

⩽ KE
∫ T

0
|ψ

(
τΠ (t), X (t), X (T )

)
− ψ(t, X (t), X (T ))|

2
dt

+E
∫ T

0

∫ T

t
|g
(
τΠ (t), s, X (t), X (s), Y (s), Z (t, s)

)
−g

(
t, s, X (t), X (s), Y (s), Z (t, s)

)
|
2dsdt

⩽ KE
{∫ T

0
∥Π ∥dt +

∫ T

0

∫ T

t
∥Π ∥dsdt

}
⩽ K∥Π ∥.

This proves (2.10). Next, one has⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d
[
Y k+1(s) − Y k(s)

]
= −

[
g(tk+1, s, X (tk+1), X (s), Y k+1(s), Z k+1(s))

−g(tk, s, X (tk), X (s), Y k(s), Z k(s))
]
ds

+

[
Z k+1(s) − Z k(s)

]
dW (s), s ∈ [tk+1, T ],[

Y k+1(T ) − Y k(T )
]
= ψ(tk+1, X (tk+1), X (T )) − ψ(tk, X (tk), X (T )).

Hence,

E
[

sup
s∈[tk+1,T ]

|Y k+1(s) − Y k(s)|
2
]
+ E

(∫ T

tk+1

|Z k+1(s) − Z k(s)|
2
ds

)
⩽ KE

{
|ψ(tk+1, X (tk+1), X (T )) − ψ(tk, X (tk), X (T ))|2

+

( ∫ T

tk+1

|g(tk+1, s, X (tk+1), X (s), Y k(s), Z k(s))

−g(tk, s, X (tk), X (s), Y k(s), Z k(s))|ds
)

2
}

⩽ KE
{

(tk+1 − tk) + |X (tk+1) − X (tk)|2

+

{∫ T

tk+1

(
|tk+1 − tk |

1
2 + |X (tk+1) − X (tk)|

)
ds

}2}
⩽ K∥Π ∥.

This leads to our conclusion. □
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3. Representation of adapted solutions for type-I BSVIEs

In this section, we will represent the adapted solution (Y (·), Z (· , ·)) of Type-I BSVIE (2.2) in
terms of X (·), the solution to FSDE (1.12), and the solution to the corresponding representation
PDE.

Let X (·) be the solution of (1.12) and Π ∈ P[0, T ] be of form (2.3). Let (Y k(·), Z k(·))
(0 ⩽ k ⩽ N − 1) and (YΠ (·), ZΠ (· , ·)) be constructed as in Section 2.

If (YΠ (·), ZΠ (· , ·)) were represented by X (·), together with the solution to certain PDE, then
by sending ∥Π ∥ → 0, we would get what we want. However, there are some difficulties in doing
that directly (see below for some explanations). Therefore, instead, we construct a sequence of
processes (ȲΠ (·), Z̄Π (· , ·)) which is close to (YΠ (·), ZΠ (· , ·)) and which can be represented by
X (·), together with the solution of a certain PDE. Then by sending ∥Π ∥ → 0, we will obtain the
desired representation of (Y (·), Z (· , ·)).

Now, we carefully make this precise. First, let (Ȳ N−1(·), Z̄ N−1(·)) be the adapted solution to
the following BSDE:⎧⎨⎩

dȲ N−1(s) = −g
(
tN−1, s, X (tN−1), X (s), Ȳ N−1(s), Z̄ N−1(s)

)
ds

+Z̄ N−1(s)dW (s), s ∈ [tN−1, T ],
Ȳ N−1(T ) = ψ

(
tN−1, X (tN−1), X (T )

)
,

(3.1)

which coincides with BSDE (2.4). Thus, one has

(Ȳ N−1(s), Z̄ N−1(s)) = (Y N−1(s), Z N−1(s)), tN−1 ⩽ t ⩽ s ⩽ T . (3.2)

Although in (3.1), the map (s, x, y, z) ↦→
(
g(tN−1, s, X (tN−1), x, y, z), ψ(tN−1, X (tN−1), x)

)
is

merely FtN−1 -measurable, not necessarily deterministic, since we are considering the BSDE on
[tN−1, T ], the (decoupling) technique introduced in [19,22] will still work. In fact, we have the
following representation:{

Ȳ N−1(s) = Y N−1(s) = Θ N−1(s, X (tN−1), X (s)
)
,

Z̄ N−1(s) = Z N−1(s) = Θ N−1
x

(
s, X (tN−1), X (s)

)
σ (s, X (s)),

s ∈ [tN−1, T ], (3.3)

with (s, x) ↦→ Θ N−1(s, ξ, x) being the solution to the following representation PDE:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ N−1

s (s, ξ, x) +
1
2
σ (s, x)⊤Θ N−1

xx (s, ξ, x)σ (s, x) +Θ N−1
x (s, ξ, x)b(s, x)

+g
(
tN−1, s, ξ, x,Θ N−1(s, ξ, x),Θ N−1

x (s, ξ, x)σ (s, x)
)
= 0,

(s, x) ∈ [tN−1, T ] × Rn,

Θ N−1(T, ξ, x) = ψ(tN−1, ξ, x), x ∈ Rn.

(3.4)

In the above, ξ ∈ Rn is treated as a parameter. With the representation (3.3), we can rewrite (3.1)
as follows:⎧⎨⎩

dȲ N−1(s) = −g
(
tN−1, s, X (tN−1), X (s),Θ N−1(s, X (tN−1), X (s)), Z̄ N−1(s)

)
ds

+Z̄ N−1(s)dW (s), s ∈ [tN−1, T ),
Ȳ N−1(T ) = ψ

(
tN−1, X (tN−1), X (T )

)
.

(3.5)
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Next, we construct (Ȳ N−2(·), Z̄ N−2(·)) on [tN−2, T ]. On [tN−1, T ], we let (Ȳ N−2(·), Z̄ N−2(·))
be the adapted solution to the following BSDE:⎧⎨⎩

dȲ N−2(s) = −g
(
tN−2, s, X (tN−2), X (s),Θ N−1(s, X (s), X (s)), Z̄ N−2(s)

)
ds

+Z̄ N−2(s)dW (s), s ∈ [tN−1, T ],
Ȳ N−2(T ) = ψ

(
tN−2, X (tN−2), X (T )

)
.

(3.6)

Note that on [tN−1, T ], we have (3.2) and representation (3.3). Hence, by (2.5), we see that
(Y N−2(·), Z N−2(·)) satisfies the following BSDE:⎧⎨⎩

dY N−2(s) = −g
(
tN−2, s, X (tN−2), X (s),Θ N−1(s, X (tN−1), X (s)), Z N−2(s)

)
ds

+Z N−2(s)dW (s), s ∈ [tN−1, T ],
Y N−2(T ) = ψ

(
tN−2, X (tN−2), X (T )

)
.

(3.7)

Let us make two comparisons. First, (3.5) and (3.7) are different: (tN−1, X (tN−1)) in the former
is replaced by (tN−2, X (tN−2)) in the latter at two places. Second, (3.7) and (3.6) are different:
Θ N−1(s, X (tN−1), X (s)) in the former is replaced by Θ N−1(s, X (s), X (s)) in the latter. Note that
in (3.7), both X (tN−1) and X (tN−2) appear. This will cause some difficulties in passing to the
limit as ∥Π ∥ → 0 later on. This is exactly the difficulty that we will encounter if we use
(YΠ (·), ZΠ (·)) directly trying to get our representation. On the other hand, since ∥Π ∥ will
be small, X (tN−1) and X (s) will be close (in some sense), for s ∈ [tN−1, T ], it should be
harmless to replace Θ N−1

(
s, X (tN−1), X (s)

)
by Θ N−1

(
s, X (s), X (s)

)
in the drift of the equation

on [tN−1, T ]. Thus, if ∥Θ N−1
ξ ∥

2
∞
<∞, by the stability of adapted solutions to BSDEs, we have

E
[

sup
s∈[tN−1,T ]

|Ȳ N−2(s) − Y N−2(s)|
2
]
+ E

∫ T

tN−1

|Z̄ N−2(s) − Z N−2(s)|
2
ds

⩽ K1E
( ∫ T

tN−1

⏐⏐g(tN−2, s, X (tN−2), X (s),Θ N−1(s, X (tN−1), X (s)), Z N−2(s))

−g(tN−2, s, X (tN−2), X (s),Θ N−1(s, X (s), X (s)), Z N−2(s))
⏐⏐ds

)
2

⩽ K1L2E
(∫ T

tN−1

|Θ N−1(s, X (s), X (s)) −Θ N−1(s, X (tN−1), X (s))|ds
)2

⩽ K1L2
∥Θ N−1

ξ ∥
2
∞
E
(∫ T

tN−1

|X (s) − X (tN−1)|ds
)2

⩽ K1L2
∥Θ N−1

ξ ∥
2
∞

(T − tN−1)
∫ T

tN−1

E|X (s) − X (tN−1)|2ds

⩽ K1L2
∥Θ N−1

ξ ∥
2
∞

K0(T − tN−1)
∫ T

tN−1

(s − tN−1)ds

⩽
K0 K1L2

∥Θ N−1
ξ ∥

2
∞
∥Π ∥

2
(T − tN−1)2.

(3.8)

In the above, K0 is the constant appears in (2.1), and K1 is a constant appears in the stability
estimate for the adapted solution of BSDEs, which can be made independent of the partition Π ,
under (H2).

Similar to the previous step, for (3.6), we have the following representation:{
Ȳ N−2(s) = Θ N−2(s, X (tN−2), X (s)

)
,

Z̄ N−2(s) = Θ N−2
x

(
s, X (tN−2), X (s)

)
σ (s, X (s)),

s ∈ [tN−1, T ], (3.9)
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with (s, x) ↦→ Θ N−2(s, ξ, x) being the solution to the following representation PDE:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ N−2

s (s, ξ, x) +
1
2
σ (s, x)⊤Θ N−2

xx (s, ξ, x)σ (s, x) +Θ N−2
x (s, ξ, x)b(s, x)

+g
(
tN−2, s, ξ, x,Θ N−1(s, x, x),Θ N−2

x (s, ξ, x)σ (s, x)
)
= 0,

(s, x) ∈ [tN−1, T ] × Rn,

Θ N−2(T, ξ, x) = ψ(tN−2, ξ, x), x ∈ Rn.

(3.10)

Note that Eq. (3.10) is different from (3.4), not just because tN−1 is replaced by tN−2 in
g and ψ , but also because Θ N−1(s, ξ, x) is replaced by Θ N−1(s, x, x) in g. We expect that
Θ N−2(s, ξ, x)

⏐⏐
ξ=x is close to Θ N−1(s, ξ, x)

⏐⏐
ξ=x , for s ∈ [tN−1, T ], when tN−1 − tN−2 > 0 is

small.

So far, we have constructed (Ȳ N−2(·), Z̄ N−2(·) on [tN−1, T ]. To construct (Ȳ N−2(·), Z̄ N−2(·))
on [tN−2, tN−1), we introduce the following BSDE on [tN−2, tN−1):⎧⎨⎩ dȲ N−2(s) = −g(tN−2, s, X (tN−2), X (s), Ȳ N−2(s), Z̄ N−2(s))ds + Z̄ N−2(s)dW (s),

s ∈ [tN−2, tN−1),
Ȳ N−2(tN−1 − 0) = Θ N−2(tN−1, X (tN−2), X (tN−1)).

(3.11)

Now, on [tN−2, tN−1), we have the following representation:{
Ȳ N−2(s) = Θ N−2(s, X (tN−2), X (s)

)
,

Z̄ N−2(s) = Θ N−2
x (s, X

(
tN−2), X (s)

)
σ (s, X (s)),

s ∈ [tN−2, tN−1), (3.12)

with (s, x) ↦→ Θ N−2(s, ξ, x) being the solution to the following representation PDE:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ N−2

s (s, ξ, x) +
1
2
σ (s, x)⊤Θ N−2

xx (s, ξ, x)σ (s, x) +Θ N−2
x (s, ξ, x)b(s, x)

+g
(
tN−2, s, ξ, x,Θ N−2(s, ξ, x),Θ N−2

x (s, ξ, x)σ (s, x)
)
= 0,

(s, x) ∈ [tN−2, tN−1) × Rn,

Θ N−2(tN−1, ξ, x) = Θ N−2(tN−1 + 0, ξ, x), x ∈ Rn.

(3.13)

Note that unlike (3.10), in the above, Θ N−2(s, ξ, x) appears instead of Θ N−2(s, x, x) in g. Next,
since (Ȳ N−2(·), Z̄ N−2(·)) and (Y N−2(·), Z N−2(·)) satisfy the same equation on [tN−2, tN−1) with
different terminal conditions Ȳ N−2(tN−1) and Y N−2(tN−1), we must have, making use of (3.8),

E
[

sup
s∈[tN−2,tN−1)

|Ȳ N−2(s) − Y N−2(s)|
2
+

∫ tN−1

tN−2

|Z̄ N−2(s) − Z N−2(s)|
2
ds

]

⩽ K0E |Ȳ N−2(tN−1) − Y N−2(tN−1)|
2
⩽

K 2
0 K1L2

∥Θ N−1
ξ ∥

2
∞
∥Π ∥

2
(T − tN−1)2.

(3.14)

To summarize the above, we have{
Ȳ N−2(s) = Θ N−2(s, X (tN−2), X (s)

)
,

Z̄ N−2(s) = Θ N−2
x

(
s, X (tN−2), X (s)

)
σ (s, X (s)),

s ∈ [tN−2, T ], (3.15)
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with (s, x) ↦→ Θ N−2(s, ξ, x) being the solution to the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ N−2
s (s, ξ, x) +

1
2
σ (s, x)⊤Θ N−2

xx (s, ξ, x)σ (s, x) +Θ N−2
x (s, ξ, x)b(s, x)

+g
(
tN−2, s, ξ, x,Θ N−1(s, x, x),Θ N−2

x (s, ξ, x)σ (s, x)
)
= 0,

(s, x) ∈ [tN−1, T ] × Rn,

Θ N−2
s (s, ξ, x) +

1
2
σ (s, x)⊤Θ N−2

xx (s, ξ, x)σ (s, x) +Θ N−2
x (s, ξ, x)b(s, x)

+g
(
tN−2, s, ξ, x,Θ N−2(s, ξ, x),Θ N−2

x (s, ξ, x)σ (s, x)
)
= 0,

(s, x) ∈ [tN−2, tN−1) × Rn,

Θ N−2(T, ξ, x) = ψ(tN−2, ξ, x), Θ N−2(tN−1, ξ, x) = Θ N−2(tN−1 + 0, ξ, x),
x ∈ Rn.

(3.16)

Note that although s ↦→ Ȳ N−2(s) could be discontinuous at s = tN−1, the function s ↦→

Θ N−2(s, ξ, x) is continuous. Also, we point out that in the above system (3.16), the equations
on [tN−1, T ] and [tN−2, tN−1) are different: Θ N−1(s, x, x) appears in g for the former and
Θ N−2(s, ξ, x) appears in g for the latter.

The above discussion seems not enough to obtain an inductive statement. In particular, we
need to make sure that the estimate on the error between (Ȳ k(·), Z̄ k(·)) and (Y k(·), Z k(·)) will
not be unboundedly accumulated. Thus, let us construct (Ȳ N−3(·), Z̄ N−3(·)) on [tN−3, T ]. To this
end, we consider the following BSDE on [tN−2, T ]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dȲ N−3(s) = −g
(
tN−3, s, X (tN−3), X (s),Θ N−1(s, X (s), X (s)), Z̄ N−3(s)

)
ds

+Z̄ N−3(s)dW (s), s ∈ [tN−1, T ],
dȲ N−3(s) = −g

(
tN−3, s, X (tN−3), X (s),Θ N−2(s, X (s), X (s)), Z̄ N−3(s)

)
ds

+Z̄ N−3(s)dW (s), s ∈ [tN−2, tN−1),
Ȳ N−3(T ) = ψ

(
tN−3, X (tN−3), X (T )

)
,

Ȳ N−3(tN−1 − 0) = Θ N−3(tN−1, X (tN−3), X (tN−1)
)
,

(3.17)

where Θ N−3(· , · , ·) is the solution to the following PDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ N−3
s (s, ξ, x) +

1
2
σ (s, x)TΘ N−3

xx (s, ξ, x)σ (s, x) +Θ N−3
x (s, ξ, x)b(s, x)

+g
(
tN−3, s, ξ, x,Θ N−1(s, x, x),Θ N−3

x (s, ξ, x)σ (s, x)
)
= 0,

(s, x) ∈ [tN−1, T ] × Rn,

Θ N−3
s (s, ξ, x) +

1
2
σ (s, x)TΘ N−3

xx (s, ξ, x)σ (s, x) +Θ N−3
x (s, ξ, x)b(s, x)

+g
(
tN−3, s, ξ, x,Θ N−2(s, x, x),Θ N−3

x (s, ξ, x)σ (s, x)
)
= 0,

(s, x) ∈ [tN−2, tN−1) × Rn,

Θ N−3(T, ξ, x) = ψ(tN−3, ξ, x), Θ N−3(tN−1, ξ, x) = Θ N−3(tN−1 + 0, ξ, x),
x ∈ Rn.

(3.18)

Then we have the following representation:{
Ȳ N−3(s) = Θ N−3(s, X (tN−3), X (s)),
Z̄ N−3(s) = Θ N−3

x (s, X (tN−3), X (s))σ (s, X (s)),
s ∈ [tN−2, T ], (3.19)
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By (3.3) and (3.15), we see that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dY N−3(s) = −g

(
tN−3, s, X (tN−3), X (s),Θ N−1(s, X (tN−1), X (s)), Z N−3(s)

)
ds

+Z N−3(s)dW (s), s ∈ [tN−1, T ],
dY N−3(s) = −g

(
tN−3, s, X (tN−3), X (s),Θ N−2(s, X (tN−2), X (s)), Z N−3(s)

)
ds

+Z N−3(s)dW (s), s ∈ [tN−2, tN−1),
Y N−3(T ) = ψ(tN−3, X (tN−3), X (T )).

Thus, by the stability of adapted solutions to BSDEs, one has

E
[

sup
s∈[tN−2,T ]

|Ȳ N−3(s) − Y N−3(s)|
2
+

∫ T

tN−2

|Z̄ N−3(s) − Z N−3(s)|
2
ds

]
⩽ K1E

( ∫ T

tN−1

⏐⏐g(tN−3, s, X (tN−3),Θ N−1(s, X (s), X (s)), Z N−3(s)
)

−g
(
tN−3, s, X (tN−3),Θ N−1(s, X (tN−1), X (s)), Z N−3(s)

)⏐⏐ds

+

∫ tN−1

tN−2

⏐⏐g(tN−3, s, X (tN−3),Θ N−2(s, X (s), X (s)), Z N−3(s)
)

−g
(
tN−3, s, X (tN−3),Θ N−2(s, X (tN−2), X (s)), Z N−3(s)

)⏐⏐ds
)

2

⩽ K1L2E
( ∫ T

tN−1

⏐⏐Θ N−1(s, X (s), X (s)) −Θ N−1(s, X (tN−1), X (s))
⏐⏐ds

+

∫ tN−1

tN−2

⏐⏐Θ N−2(s, X (s), X (s)) −Θ N−2(s, X (tN−2), X (s))
⏐⏐ds

)
2

⩽ K1L2
∥Θξ∥

2
∞
E
(∫ T

tN−1

⏐⏐X (s) − X (tN−1)
⏐⏐ds +

∫ tN−1

tN−2

⏐⏐X (s) − X (tN−2)
⏐⏐ds

)2

⩽ K1L2
∥Θξ∥

2
∞

(T − tN−2)
( ∫ T

tN−1

E|X (s) − X (tN−1)|2ds

+

∫ tN−1

tN−2

E|X (s) − X (tN−2)|2ds
)

⩽ K1L2
∥Θξ∥

2
∞

(T − tN−2)K0

(∫ T

tN−1

(s − tN−1)ds +
∫ tN−1

tN−2

(s − tN−2)ds
)

⩽
K0 K1L2

∥Θξ∥
2
∞

2
(T − tN−2)

(
(T − tN−1)2

+ (tN−1 − tN−2)2
)

⩽
K0 K1L2

∥Θξ∥
2
∞

2
(T − tN−2)2

∥Π ∥,

where

∥Θξ∥∞ = ∥Θ N−1
ξ ∥∞ ∨ ∥Θ N−2

ξ ∥∞.

Next, on [tN−3, tN−2), (Ȳ N−3(·), Z̄ N−3(·)) and (Y N−3(·), Z N−3(·)) satisfy the same equation with
possibly different terminal conditions at t = tN−2. Hence, we have

E
[

sup
s∈[tN−3,tN−2)

|Ȳ N−3(s) − Y N−3(s)|
2
+

∫ tN−2

tN−3

|Z̄ N−3(s) − Z N−3(s)|
2
ds

]
⩽ K1E|Ȳ N−3(tN−2) − Y N−3(tN−2)|

2
⩽

K0 K 2
1 L2

∥Θξ∥
2
∞

2
(T − tN−2)2

∥Π ∥.

(3.20)
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Also, we have{
Ȳ N−3(s) = Θ N−3(s, X (tN−3), X (s)),
Z̄ N−3(s) = Θ N−3

x (s, X (tN−3), X (s))σ (s, X (s)),
s ∈ [tN−3, tN−2),

with Θ N−3(· , ·) satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ N−3

s (s, ξ, x) +
1
2
σ (s, x)⊤Θ N−3

xx (s, ξ, x)σ (s, x) +Θ N−3
x (s, ξ, x)b(s, x)

+g
(
tN−3, s, ξ, x,Θ N−3(s, ξ, x),Θ N−3

x (s, ξ, x)σ (s, x)
)
= 0,

(s, x) ∈ [tN−3, tN−2) × Rn,

Θ N−3(tN−2, ξ, x) = Θ N−3(tN−2 + 0, ξ, x), x ∈ Rn.

(3.21)

Now, we look at the general case. For each k = 0, 1, · · · , N − 1, on [tk, T ], we consider the
following BSDE:⎧⎪⎪⎨⎪⎪⎩

dȲ k(s) = −g
(
tk, s, X (tk), X (s),Θℓ(s, X (s), X (s)), Z̄ k(s)

)
ds + Z̄ k(s)dW (s),

s ∈ [tℓ, tℓ+1), k + 1 ⩽ ℓ ⩽ N − 1,
dȲ k(s) = −g

(
tk, s, X (tk), X (s), Ȳ k(s), Z̄ k(s)

)
ds + Z̄ k(s)dW (s), s ∈ [tk, tk+1),

Ȳ k(T ) = ψ
(
tk, X (tk), X (T )

)
.

(3.22)

Then the following representation holds:{
Ȳ k(s) = Θ k(s, X (tk), X (s)),

Z̄ k(s) = Θ k
x

(
s, X (tk), X (s)

)
σ (s, X (s)),

s ∈ [tk, T ], (3.23)

where (s, x) ↦→ Θ k(s, ξ, x) is the solution to the following PDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ k
s (s, ξ, x) +

1
2
σ (s, x)⊤Θ k

xx (s, ξ, x)σ (s, x) +Θ k
x (s, ξ, x)b(s, x)

+g
(
tk, s, ξ, x,Θℓ(s, x, x),Θ k

x (s, ξ, x)σ (s, x)
)
= 0,

(s, x) ∈ [tℓ, tℓ+1) × Rn, k + 1 ⩽ ℓ ⩽ N − 1,

Θ k
s (s, ξ, x) +

1
2
σ (s, x)⊤Θ k

xx (s, ξ, x)σ (s, x) +Θ k
x (s, ξ, x)b(s, x)

+g
(
tk, s, ξ, x,Θ k(s, ξ, x),Θ k

x (s, ξ, x)σ (s, x)
)
= 0, (s, x) ∈ [tk, tk+1]×Rn,

Θ k(T, ξ, x) = ψ(tk, ξ, x), Θ k(t j , ξ, x) = Θ k(t j + 0, ξ, x),

j = N − 1, . . . , k + 1, x ∈ Rn.

(3.24)

We recall the definition of τΠ (t) (see (2.8)), and define

τ̄Π (t) =
N−2∑
k=0

tk+1 I[tk ,tk+1)(t) + tN I[tN−1,T ](t), t ∈ [0, T ]. (3.25)

Then

0 ⩽ τ̄Π (t) − t ⩽ ∥Π ∥, ∀t ∈ [0, T ],

and

[τΠ (t), τ̄Π (t)) = [tk, tk+1), ∀t ∈ [tk, tk+1), 0 ⩽ k ⩽ N − 1.
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Let

ΘΠ (t, s, ξ, x) =
N−1∑
k=0

Θ k(s, ξ, x)I[tk ,tk+1)(t). 0 ⩽ t ⩽ s ⩽ T, x, ξ ∈ Rn.

For t ∈ [tk, tk+1), with k = 0, 1, · · · , N − 1, s ∈ [τΠ (t), T ] = [tk, T ],

Θ k(s, ξ, x) = ΘΠ (t, s, ξ, x), Θ k
s (s, ξ, x) = ΘΠ

s (t, s, ξ, x),
Θ k

x (s, ξ, x) = ΘΠ
x (t, s, ξ, x), Θ k

xx (s, ξ, x) = ΘΠ
xx (t, s, ξ, x),

and
N−1∑
ℓ=k+1

Θℓ(s, x, x)I[tℓ,tℓ+1)(s) = ΘΠ (s, s, x, x), s ∈ [tk+1, T ].

Then the above PDE (3.24) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΘΠ
s (t, s, ξ, x) +

1
2
σ (s, x)⊤ΘΠ

xx (t, s, ξ, x)σ (s, x) +ΘΠ
x (t, s, ξ, x)b(s, x)

+g
(
τΠ (t), s, ξ, x,ΘΠ (s, s, x, x),ΘΠ

x (t, s, ξ, x)σ (s, x)
)
= 0,

(s, ξ, x) ∈ [τ̄Π (t), T ] × Rn
× Rn,

ΘΠ
s (t, s, ξ, x) +

1
2
σ (s, x)⊤ΘΠ

xx (t, s, ξ, x)σ (s, x) +ΘΠ
x (t, s, ξ, x)b(s, x)

+g
(
τΠ (t), s, ξ, x,ΘΠ (s, s, ξ, x),ΘΠ

x (t, s, ξ, x)σ (s, x)
)
= 0,

(s, ξ, x) ∈ [τΠ (t), τ̄Π (t))×Rn
×Rn,

ΘΠ (t, T, ξ, x) = ψ(τΠ (t), ξ, x), (t, ξ, x) ∈ [tk, T ] × Rn
× Rn,

(3.26)

Also,

E
[

sup
s∈[tk+1,T ]

|Ȳ k(s) − Y k(s)|
2
+

∫ T

tk+1

|Z̄ k(s) − Z k(s)|
2
ds

]
⩽ K1E

( N−1∑
ℓ=k+1

∫ tℓ+1

tℓ

⏐⏐g(tk, s, X (tk),Θℓ(s, X (s), X (s)), Z k(s)
)

−g
(
tk, s, X (tk),Θℓ(s, X (tℓ), X (s)), Z k(s)

)⏐⏐ds
)

2

⩽ K1L2E
( N−1∑
ℓ=k+1

∫ tℓ+1

tℓ

⏐⏐Θℓ(s, X (s), X (s)) −Θℓ(s, X (tℓ), X (s))
⏐⏐ds

)2

⩽ K0L2
∥Θξ∥

2
∞
E
( N−1∑
ℓ=k+1

∫ tℓ+1

tℓ

⏐⏐X (s) − X (tℓ)
⏐⏐ds

)2

⩽ K1L2
∥Θξ∥

2
∞

(T − tk+1)
( N−1∑
ℓ=k+1

∫ tℓ+1

tℓ
E|X (s) − X (tℓ)|2ds

)
⩽ K1L2

∥Θξ∥
2
∞

(T − tk+1)K1

( N−1∑
ℓ=k+1

∫ tℓ+1

tℓ
(s − tℓ)ds

)
⩽

K0 K1L2
∥Θξ∥

2
∞

2
(T − tk+1)

N−1∑
ℓ=k+1

(tℓ+1 − tℓ)2 ⩽
K0 K1L2

∥Θξ∥
2
∞

2
(T − tk+1)2

∥Π ∥,
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where

∥Θξ∥∞ = max
k+1⩽ℓ⩽N

∥Θℓ
ξ ∥∞,

and

E
[

sup
s∈[tk ,tk+1)

|Ȳ k(s) − Y k(s)|
2
+

∫ tk+1

tk
|Z̄ k(s) − Z k(s)|

2
ds

]
⩽ K1E|Ȳ k(tk+1) − Y k(tk+1)|

2
⩽

K0 K 2
1 L2

∥Θξ∥
2
∞

2
(T − tk+1)2

∥Π ∥.

(3.27)

Now, let⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ȲΠ (s) =

N−1∑
k=0

Ȳ k(s)I[tk ,tk+1)(s), s ∈ [0, T ),

Z̄Π (t, s) =
N−1∑
k=0

Z̄ k(s)I[tk ,tk+1)(t), 0 ⩽ t ⩽ s ⩽ T .

Then ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ȲΠ (s) =
N−1∑
k=0

Θ k(s, X (tk), X (s))I[tk ,tk+1)(s) = ΘΠ
(
s, s, X (τΠ (s)), X (s)

)
,

Z̄Π (t, s) =
N−1∑
k=0

Θ k
x (s, X (tk), X (s))σ (s, X (s))I[tk ,tk+1)(t)

= ΘΠ
(
t, s, X (τΠ (t)), X (s)

)
σ (s, X (s)).

Consequently, for any s ∈ [0, T ), let s ∈ [tk, tk+1).

E|YΠ (s) −ΘΠ (s, s, X (s), X (s))|
2
⩽ 2E|YΠ (s) − ȲΠ (s)|

2
+ 2E|ȲΠ (s)

−ΘΠ (s, s, X (s), X (s))|2

= 2E|Y k(s) − Ȳ k(s)|
2
+ 2E|Θ k(s, X (tk), X (s)) −Θ k(s, X (s), X (s))|

2

⩽ K0 K 2
1 L2

∥Θξ∥
2
∞

(T − tk+1)2
∥Π ∥ + 2∥Θξ∥

2
∞
E|X (tk) − X (s)|2

⩽ K0 K 2
1 L2

∥Θξ∥
2
∞

T 2
∥Π ∥ + 2∥Θξ∥

2
∞

K0∥Π ∥ ⩽ K∥Π ∥.

Also,

E
∫ T

0

∫ T

t
|ZΠ (t, s) −ΘΠ

x (t, s, X (τΠ (t)), X (s))σ (s, X (s))|
2
ds

⩽
N−1∑
k=0

E
∫ tk+1

tk

∫ T

tk
|Z k(s) −Θ k

x (s, X (s), X (s))σ (s, X (s))|
2
dsdt

⩽
N−1∑
k=0

E
∫ tk+1

tk

∫ T

tk

(
|Z k(s) − Z̄ k(s)|

2
+ |Θ k

x (s, X (tk), X (s)) −Θ k
x (s, X (s), X (s))|

2
)

dsdt

⩽
N−1∑
k=0

2E
∫ tk+1

tk
K∥Π ∥dt +

N−1∑
k=0

2E
∫ tk+1

tk
K∥Π ∥dt ⩽ K∥Π ∥.

Hence, at the limit (as ∥Π ∥ → 0), we have the following representation:{
Y (s) = Θ(s, s, X (s), X (s)), s ∈ [0, T ],
Z (t, s) = Θx (t, s, X (t), X (s))σ (s, X (s)), (t, s) ∈ ∆[0, T ], (3.28)
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if Θ(· , · , · , ·) satisfies (1.21) which is rewritten here:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θs(t, s, ξ, x) +

1
2
σ (s, x)⊤Θxx (t, s, ξ, x)σ (s, x) +Θx (t, s, ξ, x)b(s, x)

+g
(
t, s, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x)

)
= 0,

(t, s, ξ, x) ∈ ∆[0, T ] × Rn
× Rn,

Θ(t, T, ξ, x) = ψ(t, ξ, x), (t, ξ, x) ∈ [0, T ] × Rn
× Rn.

(3.29)

The above derivation tells us that if everything is fine, (3.28)–(3.29) should give us the right
representation. This can actually be proved directly.

Theorem 3.1. Let (H1)–(H2) hold. Let Θ : ∆[0, T ] × Rn
× Rn

→ R be the unique classical
solution of the representation PDE (3.29). Let (Y (·), Z (· , ·)) be the adapted solution to the Type-I
BSVIE (1.18) with X (·) being the solution to SDE (1.12). Then representation (3.28) holds.

Proof. For fixed t ∈ [0, T ), applying Itô’s formula to s ↦→ Θ(t, s, X (t), X (s)) on [t, T ], we
have

dΘ(t, s, X (t), X (s)) =
(
Θs(t, s, X (t), X (s)) +Θx (t, s, X (t), X (s))b(s, X (s))

+
1
2
σ (s, X (s))⊤Θxx (t, s, X (t), X (s))σ (s, X (s))

)
ds

+Θx (t, s, X (t), X (s))σ (s, X (s))dW (s).

(3.30)

Since Θ(· , · , · , ·) satisfies PDE (3.29), one has

dΘ(t, s, X (t), X (s)) = −g
(
t, s, X (t), X (s),Θ(s, s, X (s), X (s)),

Θx (t, s, X (t), X (s)σ (s, X (s)))
)
ds

+Θx (t, s, X (t), X (s))σ (s, X (s))dW (s),
(3.31)

and

Θ(t, T, X (t), X (T )) = ψ(t, X (t), X (T )).

Now, we define

λ(t, s) := Θ(t, s, X (t), X (s)), Z (t, s) := Θx (t, s, X (t), X (s))σ (s, X (s)), s ⩾ t.

(3.32)

Then

λ(t, s) = ψ(t, X (t), X (T )) +
∫ T

s
g
(
t, r, X (t), X (r ), λ(r, r ), Z (t, r )

)
dr

−

∫ T

s
Z (t, r )dW (r ).

(3.33)

Let t = s and Y (s) := λ(s, s), we then see that (Y (·), Z (· , ·)) satisfies BSVIE (1.18) and desired
representation is obtained. □

4. Representation of adapted M-solutions for type-II BSVIEs

In this section, we are going to establish a representation of adapted M-solutions for Type-II
BSVIE (1.19), where both Z (t, s) and Z (s, t) appear in the drift. We still let X (·) be the solution
to FSDE (1.12). Let us first present the following result which is interesting itself.
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Proposition 4.1. Let Λ : [0, T ] × Rn
→ Rm be continuous. Let (H1) hold and the following

PDE system admit a classical solution Γ (· , · , ·):⎧⎪⎨⎪⎩
Γs(t, s, x) +

1
2
σ (s, x)⊤Γxx (t, s, x)σ (s, x) + Γx (t, s, x)b(s, x) = 0,

0 ⩽ s ⩽ t ⩽ T, x ∈ Rn,

Γ (t, t, x) = Λ(t, x), (t, x) ∈ [0, T ] × Rn,

(4.1)

where the meaning of σ (s, x)⊤Γxx (t, s, x)σ (s, x) is similar to (1.7). Then

Λ(t, X (t)) = EΛ(t, X (t)) +
∫ t

0
Γx (t, s, X (s))σ (s, X (s))dW (s), t ∈ [0, T ], (4.2)

Proof. We consider the following (decoupled) FBSDE on [0, t]:⎧⎨⎩ d X (s) = b(s, X (s))ds + σ (s, X (s))dW (s), s ∈ [0, t],
dη(t, s) = ζ (t, s)dW (s), s ∈ [0, t],
η(t, t) = Λ(t, X (t)),

(4.3)

where t ∈ [0, T ) is a parameter. Then the following representation holds:{
η(t, s) = Γ (t, s, X (s)),
ζ (t, s) = Γx (t, s, X (s))σ (s, X (s)), s ∈ [0, t], (4.4)

where Γ (t, · , ·) is the solution to (4.1). Consequently,

Λ(t, X (t)) = η(t, t) = η(t, 0) +
∫ t

0
ζ (t, s)dW (s).

Taking expectation, we have

EΛ(t, X (t)) = η(t, 0).

Therefore, (4.2) follows. □

From the above, we see that when (t, s) ↦→ Γx (t, s, x) and s ↦→ σ (s, x) are continuous, the
map (t, s) ↦→ ζ (t, s) is continuous (see (4.4)).

Now, we consider Type-II BSVIE (1.19). Let (Y (·), Z (· , ·)) be the adapted M-solution. Then
we have (1.16). Suppose

Y (t) = Λ(t, X (t)), t ∈ [0, T ],

for some undetermined continuous function Λ(· , ·). By Proposition 4.1, we have

Z (t, s) = Γx (t, s, X (s))σ (s, X (s)), 0 ⩽ s ⩽ t ⩽ T .

Thus, switching s and t , one has

Z (s, t) = Γx (s, t, X (t))σ (t, X (t)), 0 ⩽ t ⩽ s ⩽ T .

We consider the following Type-I BSVIE:

Y (t) = ψ(t, X (t), X (T )) +
∫ T

t
g
(
t, s, X (t), X (s), Y (s), Z (t, s),

Γx (s, t, X (t))σ (t, X (t))
)
ds

−

∫ T

t
Z (t, s)dW (s), t ∈ [0, T ].

(4.5)
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If we let

g̃(t, s, ξ, x, y, z) = g
(
t, s, ξ, x, y, z,Γx (s, t, ξ )σ (t, ξ )

)
,

then (4.5) becomes

Y (t) = ψ(t, X (t), X (T )) +
∫ T

t
g̃
(
t, s, X (t), X (s), Y (s), Z (t, s)

)
ds

−

∫ T

t
Z (t, s)dW (s), t ∈ [0, T ].

(4.6)

Now, from the result of the previous section, we have the following representation:⎧⎪⎨⎪⎩
Y (s) = Θ(s, s, X (s), X (s)), s ∈ [0, T ],
Z (t, s) = Θx (t, s, X (t), X (s))σ (s, X (s)), 0 ⩽ t ⩽ s ⩽ T,

Z (t, s) = Γξ (t, s, X (s))σ (s, X (s)), 0 ⩽ s ⩽ t ⩽ T,
(4.7)

with (Γ ,Θ) being the solution to (1.23) which is rewritten here⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γs(t, s, ξ ) +
1
2
σ (s, ξ )⊤Γξξ (t, s, ξ )σ (s, ξ ) + Γξ (t, s, ξ )b(s, ξ ) = 0,

0 ⩽ s ⩽ t ⩽ T, ξ ∈ Rn,

Θs(t, s, ξ, x) +
1
2
σ (s, x)⊤Θxx (t, s, ξ, x)σ (s, x) +Θx (t, s, ξ, x)b(s, x)

+g
(
t, s, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x),Γξ (s, t, ξ )σ (t, ξ )

)
= 0,

(t, s, ξ, x) ∈ ∆[0, T ] × Rn
× Rn,

Γ (t, t, x) = Θ(t, t, x, x), (t, x) ∈ [0, T ] × Rn,

Θ(t, T, ξ, x) = ψ(t, ξ, x), (t, ξ, x) ∈ [0, T ] × Rn
× Rn.

(4.8)

We now state the representation result as follows.

Theorem 4.2. Let (Θ,Γ ) be a classical solution of representation PDE (4.8). Let (Y (·), Z (· , ·))
be the adapted M-solution to Type-II BSVIE (1.19) with X (·) being the solution to SDE (1.12).
Then representation (4.7) holds.

Proof. For given t ∈ [0, T ), applying Itô’s formula to s ↦→ Θ(t, s, X (t), X (s)) on [t, T ], one
has

dΘ(t, s, X (t), X (s)) =
(
Θs(t, s, X (t), X (s)) +Θx (t, s, X (t), X (s))b(s, X (s))

+
1
2
σ (s, X (s))⊤Θxx (t, s, X (t), X (s))σ (s, X (s))

)
ds

+Θx (t, s, X (t), X (s))σ (s, X (s))dW (s).

(4.9)

Since Θ satisfies the second PDE of (4.8), one has

dΘ(t, s, X (t), X (s)) = Θx (t, s, X (t), X (s))σ (s, X (s))dW (s)
−g

(
t, s, X (t), X (s),Θ(s, s, X (s), X (s)),Θx (t, s, X (t), X (s)σ (s, X (s)),

Γξ (s, t, X (t))σ (t, X (t)))
)
ds,

(4.10)

and

Θ(t, T, X (t), X (T )) = ψ(t, X (t), X (T )).
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Set

λ(t, s) := Θ(t, s, X (t), X (s)), Z (t, s) := Θx (t, s, X (t), X (s))σ (s, X (s)), s ⩾ t.

(4.11)

Then

λ(t, s) = ψ(t, X (t), X (T )) +
∫ T

s
g
(
t, r, X (t), X (r ), λ(r, r ), Z (t, r ),

Γξ (r, t, X (t))σ (t, X (t))
)
dr −

∫ T

s
Z (t, r )dW (r ).

(4.12)

Let t = s and Y (s) := λ(s, s), we then obtain

Y (t) = ψ(t, X (t), X (T )) +
∫ T

t
g
(
t, r, X (t), X (r ), λ(r, r ), Z (t, r ),

Γξ (r, t, X (t))σ (t, X (t))
)
dr −

∫ T

t
Z (t, r )dW (r ).

(4.13)

Note that

Y (t) = Θ(t, t, X (t), X (t)) = Γ (t, t, X (t))

where Γ satisfies the first PDE in (4.8). By Proposition 4.1, we know that

Y (t) = EY (t) +
∫ t

0
Γξ (t, s, X (s))σ (s, X (s))dW (s), t ⩾ s.

Consequently, by defining Z (t, s) := Γξ (t, s, X (s))σ (s, X (s)) with t ⩾ s, we can rewrite above
BSVIE as

Y (t) = ψ(t, X (t), X (T )) +
∫ T

t
g
(
t, r, X (t), X (r ), λ(r, r ), Z (t, r ), Z (r, t)

)
dr

−

∫ T

t
Z (t, r )dW (r ).

(4.14)

The conclusion then follows easily. □

Remark 4.3. In Section 5.3, we will show that under proper conditions, there exists a unique
mild solution to (4.8). Although we believe that this PDE system should admit a unique classical
solution, we could not provide a complete proof at the moment. We hope that the problem will
be solved in the near future.

5. Well-posedness of the representation PDEs

In this section, we will establish the well-posedness of the representation PDEs (3.29) (which
is a copy of (1.21)) and (4.8) (which is a copy of (1.23)), in certain sense. Let us first look at the
representation PDE (3.29) for Type-I BSVIEs, which is recalled here, for convenience:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Θs(t, s, ξ, x) +
1
2
σ (s, x)⊤Θxx (t, s, ξ, x)σ (s, x) +Θx (t, s, ξ, x)b(s, x)

+g
(
t, s, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x)

)
= 0,

(t, s, ξ, x)∈∆[0, T ]×Rn
×Rn,

Θ(t, T, ξ, x) = ψ(t, ξ, x), (t, ξ, x) ∈ [0, T ] × Rn
× Rn.

(5.1)
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If we denote Θ = (Θ1, · · · ,Θm) and

1
2
σ (s, x)σ (s, x)⊤ = a(s, x) =

(
ai j (s, x)

)
, b(s, x) = (b1(s, x), · · · , bn(s, x))⊤,

then (5.1) can be rewritten as the following system (parameterized by (t, ξ ) ∈ [0, T ) × Rn):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Θ k
s (t, s, ξ, x) +

n∑
i, j=1

ai j (s, x)Θ k
xi x j

(t, s, ξ, x) +
n∑

i=1

bi (s, x)Θ k
xi

(t, s, ξ, x)

+gk(t, s, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x)
)
= 0,

(s, x) ∈ [t, T ] × Rn,

Θ k(t, T, ξ, x) = ψk(t, ξ, x), x ∈ Rn, 1 ⩽ k ⩽ m,

(5.2)

which is a quasilinear parabolic system for unknown functions Θ1, · · · ,Θm , with the same
leading part for each equation.

5.1. Linear parabolic PDEs

To study parabolic system (5.1) or its equivalent form (5.2), let us first adopt some notations
from [17] (Chapter 1, pp.7–8). For any suitable function ϕ : [S, T ] × Rn

→ R, with α ∈ (0, 1)
and S ∈ [0, T ), let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ϕ|(0)
= ∥ϕ∥L∞([S,T ]×Rn ), |ϕ|(1)

= |ϕ|(0)
+ |ϕx |

(0)
, |ϕ|(2)

= |ϕ|(1)
+ |ϕs |

(0)
+ |ϕxx |

(0),

⟨ϕ⟩
( α2 )
s = sup

s,s′∈[S,T ],x∈Rn
s ̸=s′

|ϕ(s, x) − ϕ(s ′, x)|

|s − s ′|
α
2

, ⟨ϕ⟩(α)
x = sup

s∈[S,T ],x,x ′∈Rn
0<|x−x ′|⩽1

|ϕ(s, x) − ϕ(s, x ′)|
|x − x ′|

α
,

⟨ϕ⟩(α)
= ⟨ϕ⟩

( α2 )
s + ⟨ϕ⟩(α)

x , |ϕ|(α)
= |ϕ|(0)

+ ⟨ϕ⟩(α),

|ϕ|(1+α)
= |ϕ|(1)

+ ⟨ϕx ⟩
(α)

+ ⟨ϕ⟩
( 1+α

2 )
s ,

|ϕ|(2+α)
= |ϕ|(2)

+ ⟨ϕs⟩
(α)

+ ⟨ϕxx ⟩
(α)

+ ⟨ϕx ⟩
( 1+α

2 )
s .

(5.3)

When [S, T ] × Rn needs to be emphasized, we use, say, |ϕ|(1)
[S,T ]×Rn , etc. We denote

C
α
2 ,α([S, T ] × Rn) =

{
ϕ : [S, T ] × Rn

→ R
⏐⏐|ϕ|(α)

[S,T ]×Rn <∞

}
.

Clearly, ϕ(· , ·) ∈ C
α
2 ,α([S, T ] × Rn) if and only if ϕ(· , ·) ∈ L∞([S, T ] × Rn) and

|ϕ(s, x) − ϕ(s ′, x ′)| ⩽ K
(
|s − s ′|

α
2 + |x − x ′

|
α
)
,

∀s, s ′ ∈ [S, T ], x, x ′
∈ Rn, |x − x ′

| ⩽ 1.

Also, we denote

C
1+α

2 ,1+α([S, T ] × Rn) =
{
ϕ : [S, T ] → Rn

⏐⏐|ϕ|(1+α)
[S,T ]×Rn <∞

}
,

C1+ α
2 ,2+α([S, T ] × Rn) =

{
ϕ : [S, T ] → Rn

⏐⏐|ϕ|(2+α)
[S,T ]×Rn <∞

}
.
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Let us consider the following Cauchy problem for linear equation:⎧⎪⎪⎪⎨⎪⎪⎪⎩
vs(t, s, ξ, x) +

n∑
i, j=1

ai j (s, x)vxi x j (s, x) +
n∑

i=1

bi (s, x)vxi (s, x) + f (s, x) = 0,

(s, x) ∈ [t, T ] × Rn,

v(T, x) = h(x), x ∈ Rn.

(5.4)

We introduce the following hypotheses:

(P1) Operator L is uniformly parabolic, i.e., there exist constants λ̄0 > 0 such that
n∑

i, j=1

ai j (s, x)ξiξ j ≡ ⟨a(s, x)ξ, ξ⟩ ⩾ λ̄0|ξ |
2, ∀ξ ∈ Rn, (s, x) ∈ [0, T ] × Rn.

(P2) Functions ai j (s, x), bi (s, x) are continuous and bounded, and for some α ∈ (0, 1),{
|ai j (s, x) − ai j (s ′, x ′)| ⩽ K

(
|s − s ′|

α
2 + |x − x ′

|
α)
,

|bi (s, x) − bi (s, x ′)| ⩽ K |x − x ′
|
α
,

(s, x), (s ′, x ′) ∈ [0, T ] × Rn.

By [17] (Chapter IV, Sections 13–14) (see also [12], Chapter 1, Section 7) we have the
following result.

Proposition 5.1. Let (P1)–(P2) hold. Assume that

f (· , ·) ∈ C
α
2 ,α([0, T ] × Rn), h(·) ∈ C2+α(Rn),

for some α ∈ (0, 1). Then Cauchy problem (5.4) admits a unique classical solution v(· , ·) ∈

C1+ α
2 ,2+α([0, T ] × Rn). Moreover, v(· , ·) is represented as follows:

v(s, x) =
∫
Rn

G(s, x; T, η)h(η)dη +
∫ T

s

∫
Rn

G(s, x; τ, η) f (τ, η)dηdτ,

(s, x) ∈ [0, T ] × Rn.

Here G(s, x; τ, η) is called the fundamental solution of the parabolic operator L, which satisfies
the following: There exists a λ > 0 such that for any x, η ∈ Rn ,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

|G(s, x; τ, η)| ⩽
K

(τ − s)
n
2

e−λ
|η−x |2
τ−s ,

|Gx (s, x; τ, η)| ⩽
K

(τ − s)
n+1

2
e
−λ|η−x |2
τ−s ,

|Gs(s, x; τ, η)| + |Gxx (s, x; τ, η)| ⩽
K

(τ − s)
n+2

2
e
−λ|η−x |2
τ−s ,

0 ⩽ s < τ ⩽ T .

(5.5)

Moreover,

|v|
(2+α)
[0,T ]×Rn ⩽ K

(
| f |(α)

[0,T ]×Rn + |h|(2+α)
Rn

)
, (5.6)

and for any S ∈ [0, T ),

|v|
(1+α)
[S,T ]×Rn ⩽ |h|(1+α)

Rn + K (T − S)
α
2
(
| f |(α)

[S,T ]×Rn + |h|(2+α)
Rn

)
. (5.7)



4950 T. Wang and J. Yong / Stochastic Processes and their Applications 129 (2019) 4926–4964

Proof. The proof up to (5.6) is standard (see [12,17]). Let us look at (5.7) which will play a
crucial role below.

Note that by defining

ṽ(s, x) = v(s, x) − h(x),

f̃ (s, x) = f (s, x) +
1
2
σ (s, x)⊤hxx (x) + hx (x)b(s, x), (s, x) ∈ [0, T ] × Rn,

we see that ṽ(· , ·) is the solution to the following:⎧⎪⎨⎪⎩
ṽs(s, x) +

1
2
σ (s, x)⊤ṽxx (s, x)σ (s, x) + ṽx (s, x)b(s, x) + f̃ (s, x) = 0,

(s, x) ∈ [0, T ] × Rn,

ṽ(T, x) = 0, x ∈ Rn.

(5.8)

Thus, the following representation holds:

ṽ(s, x) =
∫ T

s

∫
Rn

G(s, x; τ, η) f̃ (τ, η)dηdτ, (s, x) ∈ [0, T ] × Rn. (5.9)

Following the steps of proving the inequality (5.6) in [17] (Chapter IV, Section 14), we have the
following useful estimates:⎧⎪⎪⎪⎨⎪⎪⎪⎩

|̃v|
(0)
[S,T ]×Rn ⩽ K (T − S)| f̃ |

(α)
[S,T ]×Rn ,

|̃vx |
(0)
[S,T ]×Rn ⩽ K (T − S)

1+α
2 | f̃ |

(α)
[S,T ]×Rn ,

|̃vs |
(0)
[S,T ]×Rn + |̃vxx |

(0)
[S,T ]×Rn ⩽ K (T − S)

α
2 | f̃ |

(α)
[S,T ]×Rn .

(5.10)

Also, for any s, s ′ ∈ [S, T ], x, x ′
∈ Rn ,{

|̃vx (s, x) − ṽx (s ′, x)| ⩽ K |s − s ′|
1+α

2 | f̃ |
(α)
[S,T ]×Rn ,

|̃vxx (s, x) − ṽxx (s ′, x)| ⩽ K |s − s ′|
α
2 | f̃ |

(α)
[S,T ]×Rn ,

(s, x), (s ′, x) ∈ [S, T ] × Rn.

(5.11)

Now, from (5.10), for any s, s ′ ∈ [S, T ], x, x ′
∈ Rn , |x − x ′

| ⩽ 1, we further have

|̃v(s, x) − ṽ(s ′, x)| ⩽
∫ 1

0
|̃vs(s ′ + µ(s − s ′), x)|dµ |s − s ′|

⩽ K (T − S)
α
2 | f̃ |

(α)
[S,T ]×Rn |s − s ′|

⩽ K | f̃ |
(α)
[S,T ]×Rn

[
(T − S)|s − s ′|

α
2
]
∧

[
(T − S)

1
2 |s − s ′|

1+α
2
]
,

|̃v(s, x) − ṽ(s, x ′)| ⩽
∫ 1

0
|̃vx (s, x ′

+ µ(x − x ′))|dµ |x − x ′
|

⩽ K (T − S)
1+α

2 | f̃ |
(α)
[S,T ]×Rn |x − x ′

|

⩽ K (T − S)
1+α

2 | f̃ |
(α)
[S,T ]×Rn |x − x ′

|
α
,

which leads to

⟨̃v⟩
(α)
[S,T ]×Rn ≡ ⟨̃v⟩

( α2 )
s,[S,T ]×Rn + ⟨̃v⟩

(α)
x,[S,T ]×Rn ⩽ K (T − S)

1+α
2 | f̃ |

(α)
[S,T ]×Rn . (5.12)

Next, the first inequality in (5.11) implies that

|̃vx (s, x) − ṽx (s ′, x)| ⩽ K | f̃ |
(α)
[S,T ]×Rn |s − s ′|

1+α
2 ⩽ K (T − S)

1
2 | f̃ |

(α)
[S,T ]×Rn |s − s ′|

α
2 .
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Similar to the above, for any s ∈ [S, T ], x, x ′
∈ Rn , |x − x ′

| ⩽ 1, making use of the third
inequality in (5.10), we have

|̃vx (s, x) − ṽx (s, x ′)| ⩽
∫ 1

0
|v̄xx (s, x ′

+ µ(x − x ′))dµ| |x − x ′
|

⩽ K (T − S)
α
2 | f̃ |

(α)
[S,T ]×Rn |x − x ′

|,

which leads to

⟨̃vx ⟩
(α)
[S,T ]×Rn ⩽ K (T − S)

α
2 | f̃ |

(α)
[S,T ]×Rn . (5.13)

Hence, combining the above, we end up with

|̃v|
(1+α)
[S,T ]×Rn ≡ |̃v|

(0)
[S,T ]×Rn + |̃vx |

(0)
[S,T ]×Rn + ⟨̃v⟩

( 1+α
2 )

s,[S,T ]×Rn + ⟨̃vx ⟩
(α)
[S,T ]×Rn

⩽ K (T − S)
α
2 | f̃ |

(α)
[S,T ]×Rn .

(5.14)

This implies (5.7). □

5.2. The first representation PDE

Now, let us return to the first representation PDE (5.1). We impose the following further
assumption.

(H3) The maps b(s, x), σ (s, x),ψ(t, ξ, x), and g(t, s, ξ, x, y, z) are bounded, have all required
differentiability with bounded derivatives. Moreover, there exists a constant σ̄ > 0 such that

|σ (s, x)ξ | ⩾ σ̄ |ξ |2, ∀(s, x, ξ ) ∈ [0, T ] × Rn
× Rn. (5.15)

The above assumption is much more than enough. However, in this paper, we prefer not to get
into the most generality in this aspect, to reduce the complexity of presentation. Also, we will
extend (t, s) ↦→ g(t, s, ξ, x, y, z) from ∆[0, T ] to [0, T ] by letting

g(t, s, ξ, x, y, z) = g(s, t, ξ, x, y, z), ∀t, s ∈ [0, T ].

We now state the following theorem.

Theorem 5.2. Let (H3) hold. Then for any (t, ξ ) ∈ [0, T ) × Rn , system (5.1) admits a unique
classical solution Θ(t, · , ξ, ·) ∈ C1+ α

2 ,2+α([t, T ] × Rn), and the following holds

sup
(t,ξ )∈[0,T ]×Rn

⏐⏐Θ(t, · , ξ, ·)
⏐⏐(2+α)
[t,T ]×Rn ⩽ K

(
1 + sup

(t,ξ )∈[0,T ]×Rn
|ψ(t, ξ, ·)|(2+α)

Rn

)
. (5.16)

Moreover, if Θ̂(t, · , ξ, ·) is the solution to the system (5.1) with the pair (ψ, g) replaced by (ψ̂, ĝ)
that also satisfies (H3), then the following stability estimate holds:

sup
(t,ξ )∈[0,T ]×Rn

⏐⏐Θ(t, · , ξ, ·) − Θ̂(t, · , ξ, ·)
⏐⏐(2+α)
[t,T ]×Rn

⩽ K sup
(t,ξ )∈[0,T ]×Rn

(
|ψ(t, ξ, ·) − ψ̂(t, ξ, ·)|(2+α)

Rn + |g(t, · , ξ, ·) − ĝ(t, · , ξ, ·)|(α)
[t,T ]×Rn

)
,

∀(t, ξ ) ∈ [0, T ) × Rn,

(5.17)
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Fig. 2. Domains ∆̂[S, T ] and ∆̂[S′, S].

where

g(t, s, ξ, x) = g
(
t, s, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x)

)
,

ĝ(t, s, ξ, x) = ĝ
(
t, x, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x)

)
,

(t, s, ξ, x) ∈ ∆[0, T ] × Rn
× Rn. (5.18)

Proof. We split the proof into several steps.

Step 1. A reduction. First, we let

Θ̃(t, s, ξ, x) = Θ(t, s, ξ, x) − ψ(t, ξ, x), (t, s) ∈ ∆[0, T ], x, ξ ∈ Rn.

Then Θ(· , · , · , ·) is a solution of (5.1) if and only if Θ̃(· , · , · , ·) is a solution to the following:⎧⎪⎪⎨⎪⎪⎩
Θ̃s(t, s, ξ, x) +

1
2
σ (s, x)⊤Θ̃xx (t, s, ξ, x)σ (s, x) + Θ̃x (t, s, ξ, x)b(s, x)

+g̃
(
t, s, ξ, x, Θ̃(s, s, x, x), Θ̃x (t, s, ξ, x)σ (s, x)

)
= 0, (s, x) ∈ [t, T ] × Rn,

Θ̃(t, T, ξ, x) = 0, x ∈ Rn,

(5.19)

where

g̃(t, s, ξ, x, y, z) = g
(
t, s, ξ, x, y + ψ(t, ξ, x), ψx (t, ξ, x)σ (s, x) + zσ (s, x)

)
+

1
2
σ (s, x)⊤ψxx (t, ξ, x)σ (s, x) + ψx (t, ξ, x)b(s, x) = 0, (s, x) ∈ [t, T ] × Rn,

Hence, without loss of generality, we may consider (5.1) with ψ(t, ξ, x) ≡ 0.

Step 2. The solution map of a parabolic PDE. Let

∆̂[S, T ] =
(

[0, S]× [S, T ]
)⋃

∆[S, T ] ≡
{

(t, s) ∈ [0, T ]2
⏐⏐0 ⩽ t ∨ S ⩽ s ⩽ T

}
. (5.20)

See the Fig. 2 for illustration.
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Let X [S, T ] be the set of all measurable functions θ : ∆̂[S, T ] × R2n
→ Rm such that

∥θ∥X [S,T ] ≡ sup
(t,ξ )∈[0,T ]×Rn

(
|θ (t, · , ξ, ·)|(1+α)

[t∨S,T ]×Rn + |θt (t, · , ξ, ·)|
(0)
[t∨S,T ]×Rn

+|θξ (t, · , ξ, ·)|
(0)
[t∨S,T ]×Rn

+|θxt (t, · , ξ, ·)|
(0)
[t∨S,T ]×Rn + |θxξ (t, · , ξ, ·)|

(0)
[t∨S,T ]×Rn

)
≡ sup

(t,ξ )∈[0,T ]×Rn

(
|θ (t, · , ξ, ·)|(0)

[t∨S,T ]×Rn + |θη(t, · , ξ, ·)|
(0)
[t∨S,T ]×Rn

+⟨θη(t, · , ξ, ·)⟩
(α)
[t∨S,T ]×Rn

+⟨θ (t, · , ξ, ·)⟩
( 1+α

2 )
s,[t∨S,T ]×Rn + |θt (t, · , ξ, ·)|

(0)
[t∨S,T ]×Rn + |θξ (t, · , ξ, ·)|

(0)
[t∨S,T ]×Rn

+|θxt (t, · , ξ, ·)|
(0)
[t∨S,T ]×Rn + |θxξ (t, · , ξ, ·)|

(0)
[t∨S,T ]×Rn

)
<∞.

(5.21)

Clearly, ∥ · ∥X [S,T ] is a norm under which X [S, T ] is a Banach space.

Let S ∈ [0, T ) be fixed. For any θ (· , · , · , ·) ∈ X [S, T ], denote

g(t, τ, ξ, η) = g
(
t, τ, ξ, η, θ(τ, τ, η, η), θη(t, τ, ξ, η)σ (τ, η)

)
. (5.22)

We claim that

|g(t, · , ξ, ·)|(α)
[t∨S,T ]×Rn ⩽ K

(
1 + ∥θ∥X [S,T ]

)
, ∀(t, ξ ) ∈ [S, T ] × Rn. (5.23)

Let us prove this. By boundedness of g, one has⏐⏐g(t, τ, ξ, η, θ(τ, τ, η, η), θη(t, τ, ξ, η)σ (τ, η)
)⏐⏐ ⩽ K . (5.24)

Next, for τ, τ ′ ∈ [t ∨ S, T ] and ξ, η ∈ Rn ,⏐⏐g(t, τ, ξ, η, θ(τ, τ, η, η), θη(t, τ, ξ, η)σ (τ, η))
−g(t, τ ′, ξ, η, θ(τ ′, τ ′, η, η), θη(t, τ ′, ξ, η)σ (τ ′, η))

⏐⏐
⩽ K

(
|τ − τ ′| + |θ (τ, τ, η, η) − θ (τ ′, τ ′, η, η)| + |θη(t, τ, ξ, η)σ (τ, η)

−θη(t, τ ′, ξ, η)σ (τ ′, η)|
)

⩽ K
(
|τ − τ ′| + sup

(t̄,ξ̄ )∈[t∨S,T ]×Rn
|θt (t̄, · , ξ̄ , ·)|

(0)
[t∨S,T ]×Rn |τ − τ

′
|

+ sup
(t̄,ξ̄ )∈[t∨S,T ]×Rn

⟨θ (t̄, · , ξ̄ , ·)⟩
( α2 )
τ,[t∨S,T ]×Rn |τ − τ

′
|
α
2

+|θη(t, · , ξ, ·)|
(0)
[t∨S,T ]×Rn |τ − τ

′
| + ⟨θη(t, · , ξ, ·)⟩

( α2 )
τ,[t∨S,T ]×Rn |τ − τ

′
|
α
2
)

⩽ K
(

1 + ∥θ∥X [S,T ]

)
|τ − τ ′|

α
2 .

(5.25)
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Likewise, for τ ∈ [t ∨ S, T ] and ξ, η, η′ ∈ Rn ,

|g(t, τ, ξ, η, θ(τ, τ, η, η), θη(t, τ, ξ, η)σ (τ, η))
−g(t, τ, ξ, η′, θ(τ, τ, η′, η′), θη(t, τ, ξ, η′)σ (τ, η′))|

⩽ K
(
|η − η′| + |θ (τ, τ, η, η) − θ (τ, τ, η′, η′)| + |θη(t, τ, ξ, η)σ (τ, η)

−θη(t, τ, ξ, η′)σ (τ, η′)|
)

⩽ K
(
|η − η′| + sup

(t̄,ξ̄ )∈[t∨S,T ]×Rn
|θξ (t̄, · , ξ̄ , ·)|

(0)
[t∨S,T ]×Rn |η − η

′
|

+ sup
(t̄,ξ̄ )∈[t∨S,T ]×Rn

⟨θ (t̄, · , ξ̄ , ·)⟩(α)
[t∨S,T ]×Rn |η − η

′
|
α

+|θη(t, · , ξ, ·)|
(0)
[t∨S,T ]×Rn |η − η

′
| + ⟨θη(t, · , ξ, ·)⟩

(α)
η,[t∨S,T ]×Rn |η − η

′
|
α
)

⩽ K
(

1 + ∥θ∥X [S,T ]

)
|η − η′|

α
.

(5.26)

Combining (5.24)–(5.26), we obtain (5.23). Now, for any θ (· , · , · , ·) ∈ X [S, T ], consider the

following linear parabolic system, parameterized by (t, ξ ) ∈ [0, T ) × Rn:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Θs(t, s, ξ, x) +

1
2
σ (s, x)⊤Θxx (t, s, ξ, x)σ (s, x) +Θx (t, s, ξ, x)b(s, x)

+g
(
t, s, ξ, x, θ(s, s, x, x), θx (t, s, ξ, x)σ (s, x)

)
= 0,

(s, x) ∈ [t ∨ S, T ] × Rn,

Θ(t, T, ξ, x) = 0, x ∈ Rn.

(5.27)

Then the corresponding solution Θ(t, · , ξ, ·) uniquely exists and the following holds:

Θ(t, s, ξ, x) =
∫ T

s

∫
Rn

G(s, x; τ, η)g
(
t, τ, ξ, η, θ(τ, τ, η, η), θη(t, τ, ξ, η)σ (τ, η)

)
dηdτ.

(5.28)

Due to (5.23), we have Θ(t, · , ξ, ·) ∈ C2+α([t ∨ S, T ] × Rn). On the other hand, by (5.7) and

(5.23), we have

|Θ(t, · , ξ, ·)|(1+α)
[t∨S,T ]×Rn ⩽ K (T − S)

α
2 |g(t, · , ξ, ·)|(α)

[t∨S,T ]×Rn

⩽ K (T − S)
α
2 (1 + ∥θ∥X [S,T ]).

(5.29)

Next,

Θt (t, s, ξ, x) =
∫ T

s

∫
Rn

G(s, x; τ, η)gt
(
t, τ, ξ, η, θ(τ, τ, η, η), θη(t, τ, ξ, η)σ (τ, η)

)
dηdτ

+

∫ T

s

∫
Rn

G(s, x; τ, η)gz
(
t, τ, ξ, η, θ(τ, τ, η, η),

θη(t, τ, ξ, η)σ (τ, η)
)
θηt (t, τ, ξ, η)σ (τ, η)dηdτ,

and
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Θxt (t, s, ξ, x) =
∫ T

s

∫
Rn

Gx (s, x; τ, η)gt
(
t, τ, ξ, η, θ(τ, τ, η, η),

θη(t, τ, ξ, η)σ (τ, η)
)
dηdτ

+

∫ T

s

∫
Rn

Gx (s, x; τ, η)gz
(
t, τ, ξ, η, θ(τ, τ, η, η),

θη(t, τ, ξ, η)σ (τ, η)
)
θηt (t, τ, ξ, η)σ (τ, η)dηdτ.

Using (5.5), one has

|Θxt (t, s, ξ, x)| ⩽ K
∫ T

s

∫
Rn

|Gx (s, x; τ, η)|dηdτ

+K
∫ T

s

∫
Rn

|Gx (s, x; τ, η)| |θηt (t, τ ; ξ, η)|dηdτ

⩽ K
∫ T

s

∫
Rn

1

(τ − s)
n+1

2
e
−λ|η−x |2
τ−s dηdτ

+K |θxt |
(0)
∆̂[S,T ]×R2n

∫ T

s

∫
Rn

1

(τ − s)
n+1

2
e
−λ|η−x |2
τ−s dηdτ

⩽ K (T − S)
1
2 + K (T − s)

1
2 |θxt |

(0)
∆̂[S,T ]×R2n ,

where

|θxt |
(0)
∆̂[S,T ]×R2n = sup

(t,s)∈∆̂[S,T ],ξ,x∈Rn
|θxt (t, s, ξ, x)|.

Similarly,

|Θt (t, s, ξ, x)| ⩽ K
∫ T

s

∫
Rn

|G(s, x; τ, η)|dηdτ

+K
∫ T

s

∫
Rn

|G(s, x; τ, η)| |θηt (t, τ ; ξ, η)|dηdτ

⩽ K
∫ T

s

∫
Rn

1

(τ − s)
n
2

e
−λ|η−x |2
τ−s dηdτ + K |θxt |

(0)
∆̂[S,T ]×R2n

∫ T

s

∫
Rn

1

(τ − s)
n
2

e
−λ|η−x |2
τ−s dηdτ

⩽ K (T − s) + K (T − s)|θxt |
(0)
∆̂[S,T ]×R2n ,

Consequently, it holds that

|Θt |
(0)
∆̂[S,T ]×R2n + |Θxt |

(0)
∆̂[S,T ]×R2n ⩽ K (T − S)

1
2

(
1 + |θxt |

(0)
∆̂[S,T ]×R2n

)
. (5.30)

Likewise, we have

|Θξ |
(0)
∆̂[S,T ]×R2n + |Θxξ |

(0)
∆̂[S,T ]×R2n ⩽ K (T − S)

1
2

(
1 + |θxξ |

(0)
∆̂[S,T ]×R2n

)
. (5.31)

Then combining (5.29) with (5.30)–(5.31), one obtains
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∥Θ∥X [S,T ] ⩽ K (T − S)
α
2
(
1 + ∥θ∥X [S,T ]

)
, (5.32)

with K > 0 being an absolute constant. Hence, we have defined a map S : X [S, T ] → X [S, T ]
by

S[θ (· , · , · , ·)] = Θ(· , · , · , ·), ∀θ (· , · , · , ·) ∈ X [S, T ].

Moreover, we shrink T − S > 0 (if necessary) so that K (T − S)
α
2 ⩽ 1

2 . Then for any M ⩾ 1,

∥Θ∥X [S,T ] ⩽
1
2

(
1 + ∥θ∥X [S,T ]

)
⩽ M, ∀∥θ∥X [S,T ] ⩽ M.

Thus, S maps a ball in X [S, T ], centered at 0 with radius M to itself.

Step 3. Contraction of the solution map. Let θ, θ̂ ∈ X [S, T ] such that

∥θ∥X [S,T ], ∥θ̂∥X [S,T ] ⩽ M,

with S ∈ [0, T ) and M > 0 obtained as above. Let

Θ(t, s, ξ, x) = S[θ ](t, s, ξ, x), Θ̂(t, s, ξ, x) = S[θ̂ ](t, s, ξ, x),
v(t, s, ξ, x) = Θ(t, s, ξ, x) − Θ̂(t, s, ξ, x).

Then v(t, · , ξ, ·) satisfies the following:⎧⎪⎪⎪⎨⎪⎪⎪⎩
vs(t, s, ξ, x) +

1
2
σ (s, x)⊤vxx (t, s, ξ, x)σ (s, x)

+vx (t, s, ξ, x)b(s, x) + f (t, s, ξ, x) = 0,
(s, x) ∈ [t ∨ S, T ] × Rn,

v(t, T, ξ, x) = 0, x ∈ Rn,

(5.33)

with

f (t, s, ξ, x) = g(t, s, ξ, x, θ(s, s, x, x), θx (t, s, ξ, x)σ (s, x))

− g(t, s, ξ, x, θ̂ (s, s, x, x), θ̂x (t, s, ξ, x)σ (s, x)).

Consequently,

v(t, s, ξ, x) =
∫ T

s

∫
Rn

G(s, x; τ, η) f (t, τ, ξ, η)dηdτ. (5.34)

Similar to the proof of (5.23), we can show that

| f (t, · , ξ, ·)|(α)
[t∨S,T ]×Rn ⩽ K∥θ − θ̂∥X [S,T ], ∀(t, ξ ) ∈ [S, T ] × Rn. (5.35)

Then one has

∥Θ − Θ̂∥X [S,T ] ⩽ K (T − S)
α
2 ∥θ − θ̂∥X [S,T ], (5.36)

for some absolute constant K > 0. Hence, by choosing δ = T − S > 0 small, we obtain a
contraction mapping S on X [T − δ, T ]. Consequently, S has a unique fixed point which is the
solution Θ(· , · , · , ·) on ∆̂[T − δ, T ] × Rn

× Rn , which is rewritten here:
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Θs(t, s, ξ, x) +

1
2
σ (s, x)⊤Θxx (t, s, ξ, x)σ (s, x) +Θx (t, s, ξ, x)b(s, x)

+g
(
t, s, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x)

)
= 0,

(t, s) ∈ ∆̂[S, T ] × Rn
× Rn,

Θ(t, T, ξ, x) = 0, (t, ξ, x) ∈ [0, T ] × Rn
× Rn.

(5.37)

Note that (t, ξ ) ↦→ g(t, s, ξ, x, y, z) is assumed to be continuously differentiable with bounded
derivatives. Therefore, by a standard argument, we know that

|Θt (t, · , ξ, ·)|
(2+α)
[t∨(T−δ),T ]×Rn + |Θξ (t, · , ξ, ·)|

(2+α)
[t∨(T−δ),T ]×Rn <∞.

Now, we denote

ψ̄(t, ξ, x) = Θ(t, T − δ, ξ, x), (t, ξ, x) ∈ [0, T − δ] × Rn
× Rn,

and consider the following equation:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Θs(t, s, ξ, x) +

1
2
σ (s, x)⊤Θxx (t, s, ξ, x)σ (s, x) +Θx (t, s, ξ, x)b(s, x)

+g
(
t, s, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x)

)
= 0,

(s, x) ∈ [t, T − δ] × Rn,

Θ(t, T − δ, ξ, x) = ψ̄(t, ξ, x), x ∈ Rn.

(5.38)

Then, we may repeat the above procedure, to get a unique solution Θ(t, · , ξ, ·) on ∆̂[T −2δ, T −

δ] × Rn
× Rn . By continuing such a procedure, we obtain the existence and unique solution

Θ(t, · , ξ, ·) to the representation PDE (5.1), and (5.16) holds.

Step 4. Stability estimates. Let (ψ̂, ĝ) be another pair of maps such that, together with b and
σ , satisfy (H3) as well. Let Θ̂ be the corresponding solution. Let

v(t, s, ξ, x) = Θ(t, s, ξ, x) − Θ̂(t, s, ξ, x).

Then v(t, · , ξ, ·) satisfies the following:⎧⎪⎪⎪⎨⎪⎪⎪⎩
vs(t, s, ξ, x) +

1
2
σ (s, x)⊤vxx (t, s, ξ, x)σ (s, x) + vx (t, s, ξ, x)b(s, x)

+ f (t, s, ξ, x) + f̂ (t, s, ξ, x) = 0,
(s, x) ∈ [t, T ] × Rn,

v(t, T, ξ, x) = ϕ(t, ξ, x), x ∈ Rn,

(5.39)

with

f (t, s, ξ, x) = ĝ(t, s, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x))
−ĝ(t, s, ξ, x, Θ̂(s, s, x, x), Θ̂x (t, s, ξ, x)σ (s, x)),

f̄ (t, s, ξ, x) = g(t, s, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x))
−ĝ(t, s, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x)),

ϕ(t, ξ, x) = ψ(t, ξ, x) − ψ̂(t, ξ, x).

Then
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v(t, s, ξ, x) =
∫
Rn

G(s, x; T, η)ϕ(t, ξ, η)dη +
∫ T

s

∫
Rn

G(s, x; τ, η) f̄ (t, τ, ξ, η)dηdτ

+

∫ T

s

∫
Rn

G(s, x; τ, η) f (t, τ, ξ, η)dηdτ.

(5.40)

From (5.7), one has⏐⏐⏐ ∫
Rn

G(· , · ; T, η)ϕ(t, ξ, η)dη +
∫ T

t

∫
Rn

G(· , · ; τ, η) f̄ (t, τ, ξ, η)dηdτ
⏐⏐⏐(2+α)

[t,T ]×Rn

⩽ K
(
|ϕ(t, ξ, ·)|(2+α)

Rn + | f̄ (t, · , ξ, ·)|
(α)
[t,T ]×Rn

)
.

Also, by Step 3 above, we have ∫ T

·

∫
Rn

G(· , ·; τ, η) f (· , τ, · , η)dηdτ


X [S,T ]
⩽ K (1 + M)(T − S)

α
2 ∥v∥X [S,T ].

Hence, for T − S > 0 small, we obtain

∥v∥X [S,T ] ⩽ K sup
(t,ξ )∈[S,T ]×Rn

(
|ϕ(t, ξ, ·)|(2+α)

Rn + | f̄ (t, · , ξ, ·)|
(α)
[t,T ]×Rn

)
.

Repeating the same argument, we obtain

∥v∥X [0,T ] ⩽ K sup
(t,ξ )∈[0,T ]×Rn

(
|ϕ(t, ξ, ·)|(2+α)

Rn + | f̄ (t, · , ξ, ·)|
(α)
[0,T ]×Rn

)
.

Then (5.36) follows. □

5.3. The second representation PDE

We now look at the second representation PDE. Similar to the previous subsection, without
loss of generality, we again assume that ψ(t, ξ, x) = 0. Thus, we consider the following family
of parabolic systems (parameterized by (t, ξ ) ∈ (S, T ) × Rn):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γs(t, s, ξ ) +
1
2
σ (s, ξ )⊤Γξξ (t, s, ξ )σ (s, ξ ) + Γξ (t, s, ξ )b(s, ξ ) = 0,

(s, ξ ) ∈ [0, t] × Rn,

Θs(t, s, ξ, x) +
1
2
σ (s, x)⊤Θxx (t, s, ξ, x)σ (s, x) +Θx (t, s, ξ, x)b(s, x)

+g
(
t, s, ξ, x,Θ(s, s, x, x),Θx (t, s, ξ, x)σ (s, x),Γξ (s, t, ξ )σ (t, ξ )

)
= 0,

(s, x) ∈ [t, T ] × Rn,

Γ (t, t, x) = Θ(t, t, x, x), x ∈ Rn,

Θ(t, T, ξ, x) = 0, x ∈ Rn.

(5.41)

Note that for any given (t, ξ ) ∈ (0, T ) × Rn , the equation for Γ (t, · , ·) is to be solved on [0, t]
and the equation for Θ(t, · , ξ, ·) is to be solved on [t, T ]. The coupling appears at two places:
Γξ (s, t, ξ ) (with 0 ⩽ t ⩽ s) appears in the equation for Θ(t, · , ξ, ·) and Θ(t, t, x, x) appears as
the terminal value for Γ (t, s, x) at s = t .

See Fig. 3 for the domains in which Θ(t, s, ξ, x) and Γ (t, s, ξ ) are defined. Let us make some
observations. Suppose (Γ (· , · , ·),Θ(· , · , · , ·)) is a solution to (5.41). Then

Γ (t, s, x) =
∫
Rn

G(s, x; t, η)Θ(t, t, η, η)dη, 0 ⩽ s ⩽ t ⩽ T, x ∈ Rn, (5.42)
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Fig. 3. Domains for Θ(t, s, ξ, x), Γξ (s, t, ξ, x) and Γ (t, s, ξ ).

and thus,

Γξ (τ, t, ξ ) =
∫
Rn

Gξ (t, ξ ; τ, η̄)Θ(τ, τ, η̄, η̄)dη̄, 0 ⩽ t ⩽ τ ⩽ T, ξ ∈ Rn.

On the other hand,

Θ(t, s, ξ, x) =
∫ T

s

∫
Rn

G(s, x; τ, η)g
(
t, τ, ξ, η,Θ(τ, τ, η, η),

Θη(t, τ, ξ, η)σ (τ, η),Γξ (τ, t, ξ )σ (τ, η)
)
dηdτ

=

∫ T

s

∫
Rn

G(s, x; τ, η)g
(

t, τ, ξ, η,Θ(τ, τ, η, η),Θη(t, τ, ξ, η)σ (τ, η),[∫
Rn

Gξ (t, ξ ; τ, η̄)Θ(τ, τ, η̄, η̄)dη̄
]
σ (τ, η)

)
dηdτ,

(t, s, ξ, x)∈∆[0, T ]×Rn
×Rn.

(5.43)

The above tells us that if (5.41) admits a classical solution (Γ ,Θ), then Θ must be a solution
to the above nonlinear integral equation (5.43). Conversely, if nonlinear integral equation (5.43)
admits a smooth solution Θ , by defining Γ as (5.42), we have a solution (Γ ,Θ) to the second
representation PDE (5.41). Hence, we could introduce the following definition.

Definition 5.3. A pair of functions (Γ ,Θ) is called a mild solution of (5.41) if Θ is a solution to
the integral equation (5.28) and Γ is defined by (5.42).

Now, we introduce the following hypothesis for system (5.41).

(H4) The maps b(s, x), σ (s, x), and g(t, s, ξ, x, y, z, ζ ) are bounded and have all needed
orders of bounded derivatives. Moreover (5.15) holds for some σ̄ > 0.

The main result of this subsection is the following theorem.
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Theorem 5.4. Let (H4) hold. Then (5.41) admits a unique mild solution (Γ ,Θ).

Proof. Let 1 < p < 2, S ∈ [0, T ) and recall ∆̂[S, T ] defined by (5.20). Let Y [S, T ] be the set
of all functions θ : ∆̂[S, T ] × Rn

× Rn
→ Rm such that

∥θ∥Y [S,T ] = sup
t∈[0,T ]

(∫ T

t∨S
sup
ξ,x∈Rn

|θx (t, s, ξ, x)|pds
) 1

p
+ sup

(t,s)∈∆̂[S,T ]
ξ,x∈Rn

|θ (t, s, ξ, x)| <∞.

Clearly, ∥ · ∥Y [S,T ] is a norm under which Y [S, T ] is a Banach space.

For any θ ∈ Y [S, T ], define

S[θ ](t, s, ξ, x) =
∫ T

s

∫
Rn

G(s, x; τ, η)g
(

t, τ, ξ, η, θ(τ, τ, η, η), θη(t, τ, ξ, η)σ (τ, η),[∫
Rn

Gξ (t, ξ ; τ, η̄)θ (τ, τ, η̄, η̄)dη̄
]
σ (τ, η)

)
dηdτ,

(t, s, ξ, x) ∈ ∆̂[S, T ] × Rn
× Rn.

(5.44)

Note that

S[0](t, s, ξ, x) =
∫ T

s

∫
Rn

G(s, x; τ, η)g(t, τ, ξ, η, 0, 0, 0)dηdτ,

(t, s, ξ, x) ∈ ∆̂[S, T ] × Rn
× Rn.

Thus,

S[0](s, s, x, x) =
∫ T

s

∫
Rn

G(s, x; τ, η)g(s, τ, x, η, 0, 0, 0)dηdτ, (s, x) ∈ [S, T ] × Rn,

and

S[0]x (t, s, ξ, x) =
∫ T

s

∫
Rn

Gx (s, x; τ, η)g(t, τ, ξ, η, 0, 0, 0)dηdτ,

(t, s, ξ, x) ∈ ∆̂[S, T ] × Rn
× Rn.

Then

|S[0](t, s, ξ, x)| ⩽ K
∫ T

s

∫
Rn

1

(τ − s)
n
2

e−λ
|η−x |2
τ−s dηdτ = K

∫ T

s

∫
Rn

e−λz2
dzdτ ⩽ K .

Also,

|S[0]x (t, s, ξ, x)| ⩽ K
∫ T

s

∫
Rn

1

(τ − s)
n+1

2
e−λ

|η−x |2
τ−s dηdτ

= K
∫ T

s

∫
Rn

1

(τ − s)
1
2

e−λz2
dzdτ ⩽ K .

Hence, S[0] ∈ Y [S, T ].



T. Wang and J. Yong / Stochastic Processes and their Applications 129 (2019) 4926–4964 4961

Next, let θ, θ̂ ∈ Y [S, T ]. We estimate the following:

|S[ θ ](t, s, ξ, x) − S[ θ̂ ](t, s, ξ, x)|

⩽ K
∫ T

s

∫
Rn

|G(s, x; τ, η)|
(
|θ (τ, τ, η, η) − θ̂ (τ, τ, η, η)|

+|θη(t, τ, ξ, η) − θη(t, τ, ξ, η)|

+

∫
Rn

|Gξ (t, ξ, τ, η̄)| |θ(τ, τ, η̄, η̄) − θ̂ (τ, τ, η̄, η̄)|dη̄
)

dηdτ

= K
∫ T

s

∫
Rn

|G(s, x; τ, η)| |θη(t, τ, ξ, η) − θ̂η(t, τ, ξ, η)|dηdτ

+K
∫ T

s

∫
Rn

(
|G(s, x; τ, η)| + |Gξ (t, ξ ; τ, η)|

∫
Rn

|G(s, x; τ, η̄)dη̄
)

|θ (τ, τ, η, η) − θ̂ (τ, τ, η, η)|dηdτ

⩽ K
∫ T

s

[∫
Rn

e−λ
|η−x |2
τ−s

(τ − s)
n
2

dη
]

sup
x,η∈Rn

|θη(t, τ, ξ, η) − θ̂η(t, τ, ξ, η)|dτ

+K
[∫ T

s

∫
Rn

(e−λ
|η−x |2
τ−s

(τ − s)
n
2
+

e−λ
|η−x |2
τ−t

(τ − t)
n+1

2

∫
Rn

e−λ
|η̄−x |2
τ−s

(τ − s)
n
2

dη̄
)

dηdτ
]

× sup
(τ,η)∈[s,T ]×Rn

|θ (τ, τ, η, η) − θ̂ (τ, τ, η, η)|

⩽ K
∫ T

s

[∫
Rn

e−λz2
dz

]
sup
ξ,x∈Rn

|θx (s, τ, ξ, x) − θ̂x (s, τ, ξ, x)|dτ

+K
[∫ T

s

∫
Rn

(
e−λz2

dz +
∫
Rn

e−λz2

(τ − t)
1
2

∫
Rn

e−λz̄2
dz̄

)
dzdτ

]
× sup

(τ,η)∈[s,T ]×Rn
|θ (τ, τ, η, η) − θ̂ (τ, τ, η, η)|

⩽ K
∫ T

s
sup
ξ,x∈Rn

|θx (s, τ, ξ, x) − θ̂x (s, τ, ξ, x)|dτ

+K
[
(T − t)

1
2 − (s − t)

1
2

]
sup

(τ,η)∈[s,T ]×Rn
|θ (τ, τ, η, η) − θ̂(τ, τ, η, η)|

⩽ K (T − s)
p−1

p
(∫ T

s
sup
ξ,x∈Rn

|θx (s, τ, ξ, x) − θ̂x (s, τ, ξ, x)|pdτ
) 1

p

+K (T − s)
1
2 sup

(t,τ )∈∆[s,T ]
ξ,x∈Rn

|θ (t, τ, ξ, x) − θ̂ (t, τ, ξ, x)|.

This leads to (note p−1
p < 1

2 )

sup
(t,s)∈∆̂[S,T ]
ξ,x∈Rn

⏐⏐S[ θ ](t, s, ξ, x) − S[ θ̂ ](t, s, ξ, x)| ⩽ K (T − S)
p−1

p ∥θ − θ̂∥Y[S,T ]. (5.45)

Next,

|S[ θ ]x (t, s, ξ, x) − S[ θ̂ ]x (t, s, ξ, x)|

⩽ K
∫ T

s

∫
Rn

|Gx (s, x; τ, η)|
(
|θ (τ, τ, η, η) − θ̂ (τ, τ, η, η)|
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+|θη(t, τ, ξ, η) − θ̂η(t, τ, ξ, η)| +
∫
Rn

|Gξ (t, ξ, τ, η̄)|

|θ (τ, τ, η̄, η̄) − θ̂ (τ, τ, η̄, η̄)|dη̄
)

dηdτ

= K
∫ T

s

∫
Rn

|Gx (s, x; τ, η)| |θη(t, τ, ξ, η) − θ̂η(t, τ, ξ, η)|dηdτ

+K
∫ T

s

∫
Rn

(
|Gx (s, x; τ, η)| + |Gξ (t, ξ ; τ, η)|

∫
Rn

|Gx (s, x; τ, η̄)|dη̄
)

|θ (τ, τ, η, η) − θ̂ (τ, τ, η, η)|dηdτ

⩽ K
∫ T

s

[∫
Rn

e−λ
|η−x |2
τ−s

(τ − s)
n+1

2
dη

]
× sup

ξ,η∈Rn
|θη(t, τ, ξ, η) − θ̂η(t, τ, ξ, η)|dτ

+K
[∫ T

s

∫
Rn

( e−λ
|η−x |2
τ−s

(τ − s)
n+
2
+

e−λ
|η−x |2
τ−t

(τ − t)
n+1

2

∫
Rn

e−λ
|η̄−x |2
τ−s

(τ − s)
n+1

2
dη̄

)
dηdτ

]
× sup

(τ,η)∈[s,T ]×Rn
|θ (τ, τ, η, η)−θ̂ (τ, τ, η, η)|

⩽ K
∫ T

s

1

(τ − s)
1
2

sup
ξ,x∈Rn

|θx (t, τ, ξ, x) − θ̂x (t, τ, ξ, x)|dτ

+K
[∫ T

s

( 1

(τ − s)
1
2
+

1

(τ − t)
1
2 (τ − s)

1
2

)
dτ

]
× sup

(t,τ )∈∆̂[s,T ]
ξ,η∈Rn

|θ (t, τ, ξ, η) − θ̂(t, τ, ξ, η)|.

Then noting 1 < p < 2, by Young’s inequality, we have(∫ T

t∨S
sup
ξ,x∈Rn

|S[ θ ]x (t, s, ξ, x) − S[ θ̂ ]x (t, s, ξ, x)|pds
) 1

p

⩽K (T −S)
1
2

[(∫ T

t∨S
sup
ξ,x∈Rn

|θx (t, τ, ξ, x)−θ̂x (t, τ, ξ, x)|pdτ
) 1

p

+ sup
(t,s)∈∆̂[S,T ]
ξ,x∈Rn

|θ (t, s, ξ, x) − θ̂ (t, s, ξ, x)|
]

⩽ K (T − S)
1
2 ∥θ − θ̂∥Y [S,T ].

Combining the above, we obtain

∥S[ θ ] − S[ θ̂ ]∥Y [S,T ] ⩽ K (T − S)
p−1

p ∥θ − θ̂∥Y [S,T ]. (5.46)

By taking θ̂ = 0, we see that

∥S[ θ ]∥Y [S,T ] ⩽ ∥S[0]∥Y [S,T ] + K (T − S)
p−1

p ∥θ∥Y [S,T ], ∀θ ∈ Y [S, T ].

Consequently, S : Y [S, T ] → Y [S, T ] and it is a contraction when δ = T − S > 0 is
small. Hence, it admits a unique fixed point on [T − δ, T ], which gives a solution to (5.28) on
∆̂[T − δ, T ] ×R2n . By repeating the same argument, we will be able to get a unique solution of
(5.28) on ∆[0, T ]×R2n . Then we define Γ by (5.42). This gives the existence of a mild solution
(Γ ,Θ) of (5.41).
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The argument used to establish the contractiveness of the solution map S also gives the
uniqueness of the mild solution. □

6. Concluding remarks

In this paper, we have derived the representations of adapted solutions of Type-I BSVIEs
and adapted M-solutions of Type-II BSVIEs in terms of the solution to forward SDEs via the
solutions of representation PDEs. For Type-I BSVIEs, the well-posedness of representation PDE
is established in the classical sense, and for Type-II BSVIEs, the well-posedness of representation
PDE is established in the mild solution. It remains open at the moment whether the representation
PDE for Type-II BSVIEs admits a unique classical solution, which we believe it to be true, under
certain conditions.

On the other hand, our results could also be regarded as Feynman–Kac formula, from which
the solutions to the PDE systems of forms (1.21) and (1.23) can be represented by the solutions
to the corresponding BSVIEs.

It is worthy of pointing out that, to our best knowledge, representation PDEs of form (1.21)
appeared the first time in the study of time-inconsistent optimal control problems [41], see
also [25,36]. This indicates that there should be some intrinsic relationship between BSVIEs and
time-inconsistent optimal control problems. We hope to explore that in our future publications.
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