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Abstract— We study the problem of erasure correction (node
repair) for regenerating codes defined on graphs wherein the
cost of transmitting the information to the failed node depends
on the graphical distance from this node to the helper vertices
of the graph. The information passed to the failed node from
the helpers traverses several vertices of the graph, and savings
in communication complexity can be attained if the intermediate
vertices process the information rather than simply relaying it
toward the failed node. We derive simple information-theoretic
bounds on the amount of information communicated between the
nodes in the course of the repair. Next we show that Minimum
Storage Regenerating (MSR) codes can be modified to perform
the intermediate processing, thereby attaining the lower bound
on the information exchange on the graph. We also consider node
repair when the underlying graph is random, deriving conditions
on the parameters that support recovery of the failed node with
communication complexity smaller than required by the simple
relaying.

Index Terms— Distributed storage, Minimum Storage Regen-
erating (MSR) codes, graph-constrained storage systems, random
graphs.

I. INTRODUCTION

APPLICATIONS of erasure-correcting codes in distributed
storage are focused on recovering a single erasure under

the constraint on the total amount of data “moved” from the
other coordinates to correct the erased (failed) coordinate.
This processing is commonly modeled by assuming that the
codeword coordinates are placed on different servers (storage
nodes), and aims at limiting the information communicated
between them for the recovery of the failed node. The currently
adopted framework for studying erasure correction under
communication constraints was established in [6], and coding
constructions that minimize the communication are known
collectively as regenerating codes. The authors of [6] derived a
lower bound on the minimum amount of information acquired
from the surviving nodes for the purposes of repair.
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For a finite field F = Fq we consider a code C ⊂ Fnl

whose codewords are represented by l × n matrices over F.
We assume that each coordinate (a vector in Fl) is written on a
single storage node, and that a failed node amounts to having
its coordinate erased. The task of node repair can be thought
of as correcting a single erasure in the vector code of length n
over F. In this paper we address communication complexity of
node repair under the assumption that communication between
the nodes is constrained by a (connected) graph G(V, E),
where V is an n-set of vertices and the cost of sending a
unit of information from vi to vj is determined by the graph
distance ρ(vi, vj) in G. This group of problems is motivated
by the assumption that the links between the nodes are estab-
lished based on physical proximity and the associated energy
constraints, limitations of the system architecture, or other
features with the same effect. In the network environment such
as low-power wide-area networks (LP-WAN), e.g., path loss
in narrow-band lower-power IoT, the mentioned limitations
arise naturally as a part of the functioning of the system.
We also always assume point-to-point rather than broadcast
communication. For distributed storage systems this is a
natural restriction, while for IoT applications this assumption
may be imposed because of energy or privacy considerations.

Under a naive approach to this problem, it is still possible
to use the known methods of node repair whereby the chosen
group of the helper nodes communicates some functions of
their contents to the failed node. Note however that the data
from the helper nodes not directly connected to the failed node
will have to be relayed along some path to the failed node,
increasing the bandwidth utilized for the repair. Thus, a natural
question to study is whether there are more economical ways
of accomplishing this goal given the structure of the graph
G, under which the data from the far-off helper nodes is
processed along the way and combined with the contents of
the intermediate nodes, saving on the overall communication.
We give an affirmative answer in Sec. III, showing that if
the data is encoded using a minimum storage regenerating,
or MSR code, then under some conditions it is possible to
save on the communication cost of node repair compared to
simple relaying of the information. More precisely, we derive
a lower bound on the repair bandwidth on a graph and
show that this bound can be attained with linear MSR codes.
We note that the problem of repair on graphs was considered
in earlier [10] in the case when the graph is a path and in [13]
for a directed ring. These papers derived lower bounds on the
repair bandwidth which coincide with our bound once it is
specialized to a path or a ring.

Intermediate data processing is also an essential component
of a version of the node repair problem known as cooperative
repair [21]. It is therefore of interest to examine possible

0018-9448 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on April 27,2022 at 21:14:07 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8972-4413


3082 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 5, MAY 2022

applications of cooperative MSR codes to the problem at hand,
aiming again at reduced communication complexity of repair.
We show one application of this idea in Sec. IV, using a family
of cooperative codes to design a scheme with reduced repair
bandwidth in the case of multiple failed nodes. In Sec. V-B we
consider the problem of node repair in the situation when the
helper nodes can exchange (and process) information before
communicating with the failed nodes. We derive a framework
to bound below the complexity of repair under this relaxation
and use it to compute lower bounds on the repair bandwidth
in several examples. One of these examples also affords a
matching code construction, again inspired by cooperative
codes. Since the setting of this example is rather restricted,
we give the details in the appendix. Finally, in Sec. VI we
address the question of node repair for random graphs from
the standard Erdös-Rényi ensemble Gn,p as well as from the
ensemble of random regular graphs, and determine a range
of parameters under which the communication cost of repair
with intermediate processing is advantageous over the repair
scheme based on the relaying.

Throughout the paper we focus only on the node repair
problem and do not study the communication complexity of
the actual access to the encoded data (the “data collection”
task in the terminology of [6]).

To conclude this introduction, we note that the general
problem of information processing or recovery under com-
munication constraints represented by a graph has recently
been studied in a number of specific settings. Among them,
locally recoverable codes on graphs [14], [15] (and the asso-
ciated problems of guessing games on graphs [9] and index
coding [1]), their extension to recoverable systems [7], private
information retrieval on graphs [19], and others. The problem
of node repair under communication constraints introduced
here is another instantiation of this broadly defined theme.

II. LOWER BOUNDS ON THE REPAIR BANDWIDTH

A. MSR Codes: A Reminder

Let F be a finite field. A vector code C of length n is an
F-linear subspace of (Fl)n whose codewords can be thought
of as l × n matrices. In the context of storage codes, elements
of C are often referred to as n-words whose coordinates
are l-vectors over F. We further assume that the information
contents of the codeword is kl symbols of F, in other words,
that |C| = qkl, and that any k coordinates suffice to recover
the entire codeword. Thus, the code has the maximum distance
separable (MDS) property, and any n − k erased coordinates
can be found from the remaining k ones, accounting for the
optimal erasure correction capacity.

Suppose that the coordinates of the codeword are placed
on n different storage nodes, and refer to the coordinates
themselves as nodes. The defining property of MSR codes
is related to recovering the value of an erased coordinate of
the codeword, or repairing a single failed node. According to
the above description, we can accomplish this by using the
information from k functional nodes and downloading a total
of kl symbols of the field F. At the same time, this operation
supports recovery of the entire codeword, accomplishing more
than we actually need. An important finding of the work [6]

was to point out that we can save on the amount of downloaded
information by performing the repair based on the contents of
d > k helper nodes. To achieve the saving, each of the helper
nodes provides a function of its contents, and [6] showed that
to accomplish the repair it is necessary to download at least

dl
d−k+1 field symbols. This is smaller than kl for all d ≤ n.
A code C with the parameters (n, k, d, l) is called MSR if
it supports node recovery with repair bandwidth meeting the
lower bound for the chosen number d of helper nodes. It is
easy to show that for a code to have this property, each of the
helper nodes necessarily provides l/(d− k + 1) field symbols
for the recovery of the failed node (the so-called uniform
download property).

Formally, an (n, k, d, l) linear MDS vector code C over
F is called MSR if there are linear functions hi : Fl →
F

l/(d−k+1), i = 1, . . . , n such that for any j ∈ [n] and any
subset {i1, . . . , id} ⊂ [n]\{j} there exists a linear function
gj : Fd(l/(d−k+1)) → Fl such that for any codeword C =
(C1, . . . , Cn) ∈ C the value Cj (the contents of the failed
node) is found as

Cj = gj(hi1(Ci1 ), . . . , hid
(Cid

)).

Slightly more generally, the functions hi could also depend
on j, but this will not be important below. A number of
families of MSR codes are known in the literature, among
them constructions of [11], [17], [18], [22], [23], [25], see also
a recent survey in [16]. In this paper we use two such families
to exemplify our approach to node repair on graphs, namely
product matrix codes [17] and diagonal-matrix codes [25].
It will become apparent toward the end of Sec. III that any
family of F-linear MSR codes can be incorporated in our repair
scheme.

B. Problem Statement and the Lower Bounds

The problem that we consider is associating the nodes
with the vertices of a graph and performing node repair by
transmitting the information along the edges. Let C be an
(n, k, d, l) MSR code and suppose that each coordinate of a
codeword C ∈ C is written on a vertex of a graph G(V, E)
with |V | = n, which represents a distributed storage system
with a given connectivity structure. Suppose further that the
coordinate Cf , f ∈ [n] is erased, or, as we will say, that
the node vf has failed. Let D ⊂ V \{vf}, |D| = d be a set
of helper nodes. To repair the failed node, the helper nodes
provide information which is communicated to vf over the
edges in E. If one discounts the connectivity constraints, then
to accomplish the repair, each of the helper nodes sends the
information to the failed node over the shortest path in G, and
the intermediate nodes simply relay this information further,
possibly supplementing it with their own data. We call this
repair strategy accumulate and forward (AF). To examine
options for more economical repair including intermediate
processing (IP) of the information, we begin with deriving
a lower bound on the repair bandwidth.

Before proceeding, let us further specify our assumptions.
We assume that for the failed node vf , the helper nodes D are
chosen to be the d closest nodes to vf in terms of the graph
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distance.1 These nodes can be found by a simple breadth-first
search on G starting at vf . Denote by Gf,D = (Vf,D, Ef,D)
the subgraph spanned by {vf}∪D. Let t = maxv∈D ρ(v, vf ).
We will use the following notation for spheres and balls around
vf in Gf,D:

Γj(vf ) = {v ∈ Vf,D : ρ(v, vf ) = j}, Ni(vf ) = ∪i
j=1Γj(vf ),

and we refer to the vertices in Γj(vf ) as the helper nodes
in layer j. The case t = 1 corresponds to the much-
studied graph-agnostic repair scenario [6], and therefore we
exclude it from consideration. Observe that the graph Gf,D

is not necessarily unique; in particular, there may be multiple
possible choices for the helper nodes in the t-th layer.

In the next lemma, we derive lower bounds on the amount
of information contributed by a group of helper nodes for
the purposes of repair. The lemma is phrased in information-
theoretic terms. We assume that the information stored at the
vertices is given by random variables Wi, i ∈ [n] that have
some joint distribution on (Fl)n and satisfy H(Wi) = l for
all i, where H(·) is the entropy. For a subset A ⊂ V we write
WA = {Wi, i ∈ A}. Let Sf

i be the information provided to
vf by the ith helper node in the traditional, fully connected
repair setting, and let Sf

D = {Sf
i , i ∈ D}. The RV Sf

i is a
function of the contents of the node vi, and the RVs Sf

i , i ∈ D
determine the contents of vf , or formally,

(i) H(Sf
i |Wi) = 0, i ∈ D,

(ii) H(Wf |Sf
D) = 0.

From the cut-set bound [6] it follows that H(Sf
i ) ≥ l/

(d−k+1), and we assume that this is achieved with equality,
i.e., the codes we use have the MSR property. In the next
lemma we bound below the amount of information sent by a
subset of helper nodes in an MSR code. The proof that we
give is close to the arguments that have previously appeared
in the literature, see for instance [20].

Lemma 1: Let vf , f ∈ [n] be the failed node. For a subset
of the helper nodes A ⊂ D let Rf

A be such that H(Rf
A|WA) =

0 and

H(Wf |Rf
A, Sf

D\A) = 0. (1)

1) If |A| ≥ d − k + 1, then

H(Rf
A) ≥ l.

2) If |A| ≤ d − k, then

H(Rf
A) ≥ |A|l

d − k + 1
.

Proof: Part (1): By the assumption (1), given the contents
of all the nodes in D\A, the information contained in Rf

A is
sufficient to repair vf , i.e.,

H(Wf |Rf
A, WD\A) = 0. (2)

1This assumption is not restrictive because, whenever the set D spans a
connected subgraph, our bounds on communication complexity apply for the
information processing within that subgraph.

We have |D\A| ≤ k − 1. Consider a set B ⊂ A with |B| =
k − 1 − |D\A|. Now,

H(Rf
A, WD\A, WB) = H(Rf

A, WD\A, Wf , WB) ≥ kl, (3)

where the equality in (3) follows from (2) and the chain rule,
and the inequality follows from the MDS property of MSR
codes because |D\A| + |B| + 1 = k. Next observe that

H(Rf
A, WD\A, WB) ≤ H(Rf

A) + H(WD\A, WB)

= H(Rf
A) + (k − 1)l, (4)

where the equality again uses the independence of any k − 1
coordinates in an MDS code. Combining (3) and (4), we obtain
the claimed inequality.

For Part (2), let C ⊆ D\A such that |C| = k − 1 and let
I = D\{A ∪ C}. By the assumption (1), we have

H(Wf |Rf
A, WC , Sf

I ) = 0. (5)

Now,

H(Rf
A, WC , Sf

I ) = H(Rf
A, Wf , WC , Sf

I ) ≥ kl, (6)

where the equality in (6) follows from (5) and the chain rule,
and the inequality follows from the MDS property and the fact
that |C| = k − 1. Next observe that

H(Rf
A, WC , Sf

I )

≤ H(Rf
A) + H(WC) + H(Sf

I )

≤ H(Rf
A) + H(WC) +

∑
i∈D\{A∪C}

H(Sf
i )

= H(Rf
A) + (k − 1)l +

(d − (k − 1) − |A|)l
d − k + 1

(7)

where we again use the independence of any k−1 coordinates
in an MDS code. Combining (6) and (7), we obtain the claimed
inequality.

Rephrasing this lemma, we obtain a lower bound on the
amount of information transmitted between the layers in Gf,D.

Proposition 1: Let Rf
j be the random variable denoting the

information flow from the j-th layer to the (j − 1)-th layer.
Then

H(Rf
j ) ≥ min

{
l,
| ∪t

i=j Γi(vf )| · l
d − k + 1

}
Proof: Follows from Lemma 1 by taking A =

∪t
i=jΓi(vf ).
Note that Rf

j in the above proposition represents the joint
information transmitted by all the nodes in layer j to layer j−1
and hence it does not account for any other communication
occurring among the helper nodes. If Gf,D is a rooted tree,
such communication does not occur, and this will be the main
(but not the only) case studied below. In this case we can make
our arguments more precise.

Let Tf be a rooted spanning tree of Gf,D with root vf

(see Fig.1), then it defines the set of descendants of each node
in Tf . Let D(vi) be the set of descendants of vi, and let
D∗(vi) = D(vi) ∪ {vi}. The total communication complexity
of node repair using the tree Tf is bounded below in the
following proposition.
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Fig. 1. Repair tree of the node vf .

Proposition 2: Let Jf = {v ∈ V (Tf )\{vf} : |D∗(v)| ≥
d − k + 2}. The total communication complexity β for the
repair of node vf on the repair tree Tf is bounded as

β ≥ |Jf |l +
∑

v∈V (Tf )\({vf}∪Jf )

|D∗(v)|l
d − k + 1

. (8)

Proof: For every non-root node v /∈ Jf , we have
|D∗(v)| ≤ d−k. Since Tf is a tree, any outflow of information
out of the subtree spanned by D∗(v) passes through the node
v, so it needs to transmit at least |D∗(v)| · l/(d − k + 1)
symbols to its immediate parent in Tf by Lemma 1. By the
same lemma, every node v ∈ Jf needs to transmit at least l
symbols to its immediate parent.

For comparison purposes we also write out an expression
for the AF repair procedure of MSR codes, described in the
beginning of this section. Its repair bandwidth can be found
as

βAF =
(
t(d − |Nt−1(vf )|) +

t−1∑
i=1

i|Γi(vf )|
) l

d − k + 1
. (9)

Every helper node provides l/(d−k+1) symbols of informa-
tion for repair, so for a node v 	∈ Jf the AF strategy is trivially
optimal by part (2) of Lemma 1. At the same time, for nodes
v ∈ Jf a better communication strategy is not a priori ruled
out. This problem is addressed in the next section.

C. A Bound for Repair of Multiple Nodes

Before proceeding further, let us note a simple extension
of Lemma 1 to the case of multiple failed nodes, which is
often studied for regenerating codes under full node connec-
tivity [25]. The repair of multiple nodes in a graph depends on
their mutual placement and their connections to the helpers,
and gives rise to several options. Denote by F ⊂ V the set of
failed nodes, and let |F | = h ≥ 1. To keep the argument
manageable, we assume that recovery of all the nodes in
F relies on a common set D of helper nodes. With this
assumption Lemma 1 affords the following extension.

Lemma 2: Let F ⊂ [n], |F | = h, 1 ≤ h ≤ n − d be the set
of failed nodes. For a subset of the helper nodes A ⊂ D let
RF

A be a function of SF
A such that

H(WF |RF
A, SF

D\A) = 0. (10)

1) If |A| ≥ d − k + h, then

H(RF
A) ≥ hl.

2) If |A| ≤ d − k + h − 1, then

H(RF
A) ≥ h|A|l

d − k + h
.

The proof follows closely the proof of Lemma 1 and will be
omitted (it is included in the preprint version of this paper,
arXiv:2108.00939, Appendix B). As above, in Lemma 2 we
sidestepped the specific way of communicating the informa-
tion from the helpers to the failed nodes, limiting ourselves to
the lower bounds on the information provided by the helpers.
The communication complexity of implementing the repair
depends on the topology of the graph and on the relative
location of the failed nodes and the helpers. In Sec. IV
we present a construction that, under certain assumptions,
attains the bounds of this lemma, performing the intermediate
processing instead of relaying and gaining in communication
complexity over the AF protocol.

III. MSR CONSTRUCTIONS FOR REPAIR OF GRAPH

VERTICES

In this section we show that linear MSR codes support
a repair procedure that attains the lower bound (8) on the
communication complexity. While this procedure is general,
we begin with illustrating it for product-matrix codes of [17].
Then we consider several examples of graphs, estimating the
savings of repair complexity compared to the AF repair. After
that, we show that conceptually the same procedure applies
to the diagonal-matrix codes of [25], and then briefly discuss
a general version of this repair protocol as it applies to all
families of F-linear MSR codes.

A. Product-Matrix (PM) Codes

In their standard form, PM codes are described as follows.
Fix the code length n and the dimension parameter k, and
take d = 2k − 2, l = k − 1. The code C : F

k(k−1) → Fln

encodes k(k − 1) symbols of F into a codeword of length
n with each coordinate formed of l symbols. To define this
mapping, form a matrix M = [S1 |S2]T , where S1, S2 are
symmetric matrices of order l. The number of unique symbols
in M equals 2

(
l+1
2

)
= k(k − 1). Next let xi, i = 1, . . . , n be

distinct elements of F, let

Φ = [φT
1 , . . . , φT

n ]T

be a Vandermonde matrix with rows of the form φi =
(1, xi, . . . , x

l−1
i ) and take Λ = diag(λ1, . . . , λn) with λi =

xl
i, i = 1, . . . , n. Now form an n × 2l matrix Ψ = [Φ, ΛΦ]

The encoding mapping C sends the matrix M to C = ΨM ,
which is an n × l matrix, and thus the contents of the node
vi, i = 1, . . . , n is given by the product

Ci := [φi, x
l
iφi]M = φiS1 + λiφiS2. (11)

To describe the repair procedure from [17], suppose without
loss of generality that the helper nodes form the set D =
{1, . . . , d} and that the failed node’s index is f ∈ [n]\[D].
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The original node repair (erasure correction) procedure pro-
posed in [17] proceeds as follows. The information down-
loaded by the failed node vf from the helper node i ∈ D
is given by (φiS1 + λiφiS2)φT

f , i.e., each helper node pro-
vides one symbol of F. Thus, the failed node downloads a
d-dimensional vector y = yf,D given by

y = ΨDMφT
f = ΨD

[
S1φ

T
f

S2φ
T
f

]
, (12)

where ΨD is the submatrix of Ψ formed of the first d = 2l
rows. The matrix ΨD is square d × d and it is invertible
by construction, so we can compute the vectors (S1φ

T
f )T =

φfS1 and (S2φ
T
f )T = φfS2. By (11) the sum φfS1 +

λfφfS2 equals Cf , and this completes the repair process.
Now we will modify the repair procedure in a way that

supports processing the information received by the nodes in
the repair tree as it is passed to the failed node vf . Note that
by (12)

φfMT = yT (ΨT
D)−1. (13)

Using (11), (13), the contents of the node vf can be written as

Cf = φfMT

[
Il

λfIl

]
= yT (ΨT

D)−1

[
Il

λfIl

]
.

Introduce a d× l matrix U := (ΨT
D)−1

[
Il

λfIl

]
and denote its

rows by Ui, i = 1, . . . , d, then we have

Cf =
d∑

i=1

yiUi. (14)

Note that the matrix U does not depend on the codeword,
and can be precomputed. Overall this rewriting of the repair
process (12) enables us to separate the contributions of the
helper nodes, and offers savings in the communication cost of
repair. Recalling our notation D∗(vi), suppose that, instead of
transmitting the symbol yi to its parent, the node transmits the
sum

∑
j∈D∗(vi)

yjUj . Since we are now moving vectors rather
than individual symbols along the edges of Tf , this may seem
wasteful; however remember that the symbols are relayed
many times, and that from some point on, the repair process
has to move at least l symbols along the edge by Lemma 1.
To justify the savings, suppose that |D∗(vi)| ≥ d−k+2 = k,
then forwarding the symbols (yj , j ∈ D∗(vi)) from vi to its
predecessor in Tf amounts to sending at least k symbols,
whereas transmitting the sum

∑
j∈D∗(vi)

yjUj requires l =
k − 1 transmissions.

Therefore, the communication for repair can be summarized
as follows. First, the leaf nodes in Tf send their symbols yi

one level up, then the nodes that received these symbols send
them together with their symbols yi, etc. If at any stage a
node vi has d − k + 1 or more descendants, then it switches
to transmitting ∑

j∈D∗(vi)

yjUj . (15)

Finally if a node vi received a vector
∑

j∈D(vi)
yjUj from

its immediate descendant, it adds to it the vector yiUi and
forwards it to its parent in Tf .

In summary, we have shown that, for every node vi ∈ Tf

with |D(vi)| ≥ d − k + 1 descendants in Tf there exists a
repair procedure under which vi transmits exactly l symbols
of F to its parent in Tf . This proves the following theorem.

Theorem 1: Suppose a codeword of a PM code C is written
on the vertices of a graph G, and let Tf be the repair tree of a
failed node vf . There exists an explicit repair procedure that
achieves the lower bound in (8) with equality.

To match the above procedure to the bound (8), recall that
each helper node in the PM code construction provides one
symbol of F for repair.

B. Examples of Graphs

Let us give a few examples in which the proposed repair
procedure gains in communication complexity over the AF
repair. For simplicity we will assume that each helper node
provides one symbol of F for the repair of vf .

1. Suppose that the repair tree Tf is a star with d rays in
which vf is one of the leaves and the remaining d vertices
serve as the helper nodes. Using the AF repair, each of the
nonerased leaves sends its symbol to the center, which then
sends d symbols to vf , so βAF = 2d−1 = 4k−5. At the same
time, the repair bandwidth with intermediate processing equals
βIP = 3k−4 because the symbols of the helpers other than the
center are aggregated using (15) before relaying to vf . Another
elementary example, which results in a similar improvement,
arises when the repair tree Tf is a path on d + 1 vertices.

2. Regular tree. Suppose that G is an (r+1)-regular graph,
and the repair tree Tf of every node is (r + 1)-regular as
shown in Fig.1. We need to take the depth t of the tree to
satisfy (r + 1)

∑t−1
i=0 ri ≥ d; suppose for simplicity that this

holds with equality. The communication complexity of the AF
repair is

βAF = td − (r + 1)
t−2∑
i=0

(t − i − 1)ri.

Suppose that r > d − k + 1, then from the next to last layer
we can switch to uploading the linear combination of the form
(15), resulting in the repair bandwidth βIP = d + (d − k)
(r + 1)

∑t−2
i=0 ri. The difference

βAF − βIP = (t − 1)d − (r + 1)
t−2∑
i=0

((d − k) + (t − i − 1))ri

is positive if d−k
d is small, i.e., if d ≥ k is close to k. Note that

the regime of small d− k arises also as a sufficient condition
of repair bandwidth savings for random graphs in Sec. VI.

3. Galton-Watson tree. Having in mind a scenario in which
the helper nodes are chosen randomly and independently by
the nodes already included in the repair tree Tf , suppose
that it is constructed following a branching process with the
root vf , resulting in a Galton-Watson ensemble of random
trees Tf . In this example we choose a simple “offspring pmf”
under which a node has 1 or 2 descendants with probability
p and 1 − p, respectively. Let Zi = |Γi(vf )| be the total
number of vertices in layer i of Tf . Thus, Pr(Z1 = 1) =
p = 1 − Pr(Z1 = 2) where p ∈ (0, 1) is chosen to satisfy
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m := E(Z1) = 2 − p > 1 so that we are operating in the
supercritical regime. Assuming that a tree of depth t suffices
for repair, we have

βAF = td −
t−1∑
i=1

(t − i)Zi; E[βAF] = td −
t−1∑
i=1

(t − i)mi.

If we assume that the intermediate processing technique can
be applied to layers i, 1 ≤ i ≤ s, then an easy calculation
yields

E[βIP] = (t−s)d+(d−k+1− t+s)
s∑

i=1

mi−
t−1∑

i=s+1

(t− i)mi

and so

E[βAF − βIP] = sd −
s∑

i=1

(2 − p)i(d − k + 1 + s − i)

which is positive for small values of d − k and large d.

C. Diagonal-Matrix MSR Codes

While the product-matrix codes are limited by the code rate
k/n < 1/2, the construction of [25] removes this limitation,
providing explicit families of exact-repair MSR codes for all
possible values of n − 1 ≥ d ≥ k.

The codes in [25] are defined in terms of the parity-check
matrix which has a block diagonal structure. Below we assume
that the parameters of the (n, k, l) array code C are fixed,
and that d = n − 1, l = rn, where r := n − k. The
code is defined over a finite field F of size at least rn.
Let {λi,j}i∈[n],j=0,1,...,r−1 be rn distinct elements of F. For
an integer a ∈ {0, 1, . . . , l − 1} let ai be the i-th digit of
its r-ary expansion. For i = 1, 2, . . . , n define the matrix
Ai = diag(λi,ai , a = 0, . . . , l − 1). The code C is formed
of the codewords C = (C1, . . . , Cn) ∈ (Fl)n that satisfy the
following set of r parity-check equations:

n∑
i=1

At−1
i Ci = 0, t = 1, . . . , r. (16)

Let Ci = (ci,a, a = 0, . . . , l − 1)T . Since the matrices Ai are
diagonal, the parity check equations (16) take the form

n∑
i=1

λt−1
i,ai

ci,a = 0, t = 1, . . . , r, a = 0, 1, . . . , l − 1. (17)

The node repair with no communication constraints pro-
ceeds as follows. Assume that the node i ∈ [n] has failed.
We partition the set of coordinates (ci,a) into groups of size
r whose indices differ only in the ith entry. Namely, start
with some a ∈ {0, . . . , l − 1} and consider the set of indices
a(i, u) = (an, . . . , ai+1, u, ai−1, . . . , a1), u = 0, 1, . . . , r − 1.
The information downloaded from the helper node j ∈ [n]\{i}
is given by μ

(a)
j,i =

∑r−1
u=0 cj,a(i,u). Writing (17) for each of

the indices a(i, u), we obtain

λt
i,uci,a(i,u) +

∑
j �=i

λt
j,aj

cj,a(i,u) = 0, t = 0, 1, . . . , r − 1.

Summing these equations on u and writing the result in matrix
form, we obtain the relation⎡
⎢⎢⎢⎣

1 1 . . . 1
λi,0 λi,1 . . . λi,r−1

...
...

. . .
...

λr−1
i,0 λr−1

i,1 . . . λr−1
i,r−1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

ci,a(i,0)

ci,a(i,1)

...
ci,a(i,r−1)

⎤
⎥⎥⎥⎦=−

⎡
⎢⎢⎢⎢⎣

∑
j �=i μ

(a)
j,i∑

j �=i λj,aj μ
(a)
j,i

...∑
j �=i λr−1

j,aj
μ

(a)
j,i

⎤
⎥⎥⎥⎥⎦.

(18)

This equation permits recovery of the symbols ci,a(i,u), 0 ≤
u ≤ r − 1 of the failed coordinate, and varying a, we recover
the other groups of coordinates in the same manner.

To adapt this procedure to repair on graphs, assume that the
failed node is i = n and write the vector on the right-hand
side of (18) as [μ(a)

1,n, μ
(a)
2,n, . . . , μ

(a)
n−1,n]V T

1 , where

V1 := Vandermonde(λ1,a1 , λ2,a2 , . . . , λn−1,an−1)

is an r × (n − 1) Vandermonde matrix with columns defined
by the arguments. The matrix on the left in (18) is also
Vandermonde, denote it by V2. With these notations, (18) can
be rewritten as

[cn,a(n,0), cn,a(n,1), . . . , cn,a(n,r−1)]V T
2

= −[μ(a)
1,n, μ

(a)
2,n, . . . , μ

(a)
n−1,n]V T

1

or

[cn,a(n,0),cn,a(n,1), . . . , cn,a(n,r−1)]

= [μ(a)
1,n, μ

(a)
2,n, . . . , μ

(a)
n−1,n]U

=
n−1∑
j=1

μ
(a)
j,nUj (19)

where we denoted U := −V T
1 (V T

2 )−1 and Uj is the jth
row of U . This representation is essentially the same as (14),
and hence the generic distributed repair scheme described
in Sec. III applies to the codes considered in this section.
Specifically, the matrix U is independent of the codeword,
and can be computed in advance, and once a node v in the
repair tree has d − k + 1 or more descendants, it switches to
transmitting

∑
j∈D∗(v) μ

(a)
j,nUj . This procedure supports repair

bandwidth gains over the AF strategy for each of the groups
of the node components mentioned above.

D. Node Repair for General Linear Array Codes

From the examples in the previous sections it is clear that
the graph-based repair procedure defined in (15) applies to
any F-linear MSR code for which the information downloaded
from the helper nodes is an F-linear function of their contents
(all the known MSR codes are such). Indeed, the download
operation can be written as C(D)U , where C(D) is the
contents of the helper nodes and U represents the linear
transformation of the form (15). Once we reach the helper
nodes in Tf with at least d− k + 1 descendants, then we can
switch to relaying linear combinations rather than the contents
of the helper nodes. The savings in repair bandwidth will be
the same as for the two constructions considered above in this
section.
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Remark (MBR Codes): For the other extremal point of the
storage-bandwidth trade-off [6], i.e., the Minimum Bandwidth
Regenerating codes, the AF repair strategy is optimal in terms
of the repair bandwidth because the amount of downloaded
information is minimized by the code design.

IV. NODE REPAIR FOR MULTIPLE FAILURES

In this section we present a code construction for the repair
of multiple nodes that attains the lower bound of Lemma 2.
We begin with specifying our assumptions. Suppose that the
data is stored on a connected graph G(V, E), and F ⊂ V is a
set of failed vertices of size h. Further, let D, |D| = d be the
subset of helper nodes. The data is encoded using an (n, k, d, l)
MSR code, where n = |V | is the number of vertices. The
encoding scheme that we present below further assumes that
the communication from D to F passes through some fixed
node w ∈ D as shown in Fig. 2 for h = 2 and F = {v1, v2}.
This assumption, taken to fit the structure behind Lemma 2,
suggests that we perform simple relaying along the path(s)
from w to the failed vertices. The repair process becomes more
complicated if the failed vertices have different access points
to D, and we do not consider it here. We further assume that
the set D spans a connected subgraph GD ⊂ G and denote
by Tw a (rooted) spanning tree of GD with root w. Finally,
denote by Dw(v) the set of descendants of v ∈ V (Tw) in the
tree Tw and let D∗

w(v) = Dw(v) ∪ {v}.
Under these assumptions it is possible to write out a bound

on the communication complexity of repair within the set of
the helper nodes until the data reaches the node w (after that
the data is no longer processed until it reaches the nodes in
F ). The following proposition is an obvious extension of the
bound (8).

Proposition 3: Let Jw,h = {v ∈ V (Tw) : Dw(v) ≥ d−k+
h}. The total communication along the edges of Tw for repair
of the nodes in F is bounded below as

β(D) ≥ |Jw,h|l +
∑

v∈V (Tw)\Jw,h

|D∗
w(v)|l

d − k + h
.

Below we present a construction of codes and a repair
scheme that meets this bound with equality, attaining the
minimum possible communication complexity of repair of
the nodes in F under the assumptions discussed above (it
is possible that removing these assumptions enables one to
further lower the communication cost). The scheme relies on
the idea of cooperative repair [21]. In this setting, under the
full connectivity assumption, two or more failed nodes connect
directly to the same set of helpers, evaluate partial information
about their contents, and then exchange the results to complete
the repair.

We use this idea for repair on graphs wherein the informa-
tion from helpers is transmitted along some path to the failed
node, relying on a family of cooperative codes constructed
recently in [24]. The savings come from the fact that in
the course of this transmission we can perform intermediate
processing rather than simple relaying. In our presentation for
simplicity we assume that d = k+1, h = 2 as in Fig. 2. At the
same time it will be obvious that the technique applies to all
other feasible parameter regimes.

Fig. 2. Graph topology for repair of multiple nodes.

Let C be the [n, k, d = k + 1, l = 3 × 2n] cooperative
repair MSR code from the family constructed in [24].2 Every
coordinate Ci of a codeword C = (C1, . . . , Cn) ∈ (Fl)n is a
vector {ci,b,a : b ∈ {1, 2, 3}, a ∈ {0, 1, . . .2n − 1}}. For 2n
distinct field elements {λi,j : i ∈ [n], j ∈ {0, 1}}, the parity
check equations that define the code are

n∑
i=1

λt
i,ai

ci,b,a = 0 ∀ t ∈ {0, 1, . . . , n − k − 1},

a ∈ {0, 1, . . . , 2n − 1}, b ∈ {1, 2, 3}, (20)

where ai is the i-th coordinate in the binary representation
of a. Below we use the notation a(i, ai ⊕ 1) to denote
the number obtained from a by flipping the ith bit in its
binary expansion. Assume that the failed nodes correspond to
coordinates 1 and 2 and fix a value of a ∈ {0, 1, . . . , 2n − 1}.
The standard cooperative repair under direct connectivity (on
a complete graph) proceeds in two steps. In step 1, helper
node i sends {ci,1,a + ci,2,a(1,a1⊕1) : a ∈ {0, 1, . . . , 2n − 1}}
to node 1 and {ci,1,a + ci,3,a(2,a2⊕1) : a ∈ {0, 1, . . . , 2n − 1}}
to node 2. Using a with b = 1 and a(1, a1 ⊕ 1) with b = 2
in (20) and summing the corresponding equations, we obtain

λt
1,a1

c1,1,a + λt
1,a1⊕1c1,2,a(1,a1⊕1)

+ λt
2,a2

(c2,1,a + c2,2,a(1,a1⊕1))

+
n∑

i=3

λt
i,ai

(ci,1,a + ci,2,a(1,a1⊕1)) = 0 (21)

for all t ∈ {0, 1, . . . , n − k − 1}. Equations (21) form a
set of parity checks of an (n + 1, k + 1) Reed-Solomon
code, and hence knowing ci,1,a + ci,2,a(1,a1⊕1) at k +
1 positions allows node 1 to recover c1,1,a, c1,2,a(1,a1⊕1) and
(c2,1,a + c2,2,a(1,a1⊕1)). A similar argument shows that node
2 can recover c2,1,a, c2,3,a(2,a2⊕1) and (c1,1,a +c1,3,a(2,a2⊕1)).
In step 2 of the repair, node 1 sends (c2,1,a + c2,2,a(1,a1⊕1))
to node 2 and node 2 sends (c1,1,a + c1,3,a(2,a2⊕1)) to node 1,
which completes the repair of both node 1 and 2; for details
see [24].

2We could use other code families, for instance, the codes from [26].
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To see how intermediate processing at the nodes of the
tree Tw can simplify repair on a graph of the type shown
in Fig. 2, observe that the first step above, node 1 seeks
to learn three code symbols (namely c1,1,a, c1,2,a(1,a1⊕1) and
(c2,1,a + c2,2,a(1,a1⊕1))) of the (n + 1, k + 1) RS codeword,
and it does so by collecting k + 1 symbols from k + 1 helper
nodes. In an RS code, once we know any k + 1 coordinates,
all the other coordinates of the codeword can be computed via
Lagrange interpolation and subsequent evaluation. This can be
expressed in matrix form as follows:⎡

⎣ c1,1,a

c1,2,a(1,a1⊕1)

(c2,1,a + c2,2,a(1,a1⊕1))

⎤
⎦

= [U1 U2 . . . Uk+1]

⎡
⎢⎢⎢⎣

(ci1,1,a + ci1,2,a(1,a1⊕1))
(ci2,1,a + ci2,2,a(1,a1⊕1))

...
(cik+1,1,a + cik+1,2,a(1,a1⊕1))

⎤
⎥⎥⎥⎦ ,

where i1, i2, . . . , ik+1 are the helper nodes and the matrix
U = [U1 U2 . . . Uk+1] is obtained by multiplying an
inverse Vandermonde matrix (Lagrange interpolation) and a
matrix corresponding to evaluating the obtained polynomial
at the three coordinates being sought. Since the matrix U
can again be pre-computed, a node that has collected the
values (ci,1,a+ci,2,a(1,a1⊕1)) from three or more helper nodes,
can start transmitting the corresponding linear combinations,
much in the same way as was done in Section III. The above
procedure is repeated for node 2 with appropriate adjustments
to the subscripts in the last displayed equation. Step 2 of
the repair process is unchanged from that of the standard
cooperative repair, and it yields no communication savings.
Exactly as in the case of a single failed node, viz., Theorem 1,
we can show that this procedure meets the bound of Lemma 2.

V. REPAIR WITH INFORMATION EXCHANGE AMONG THE

HELPERS

The bounds and constructions presented earlier in this paper
are focused on communication from the helper nodes to the
failed node. In this section we consider a more general prob-
lem (and potential savings in the repair cost) when the helper
nodes may communicate with each other before transmitting
the information to the failed node. Recall that a variant of
this problem was considered earlier in the literature under
very specific assumptions: The nodes in the storage cluster
are organized in subsets, called racks, and communication
between the nodes in the rack does not count toward the repair
bandwidth. This model enables one to derive tighter bounds
on the cost of node repair [12], and there are families of codes
that attain these bounds [4].

Another version of information exchange in the context of
erasure recovery appeared earlier in the problem of coop-
erative repair, already mentioned in the previous section.
In this setting (assuming full connectivity) several failed nodes
contact the same set of helpers and process the received
information, gaining some knowledge about their contents
and about the contents of the other failed nodes. They then
exchange information to complete the repair. This problem,

introduced in [21], is vaguely reminiscent of repair on graphs
because different nodes of the encoding acquire partial infor-
mation about the contents of other nodes. Below we make this
link more precise by presenting an example of node repair
on graphs motivated by cooperative repair (albeit in a rather
restricted setting).

We begin with establishing a framework for finding a lower
bound on the total communication complexity of repair for
general graphs. Let us define some additional notation. Let
an (n, k, d, l) MSR code be defined on a connected graph
G = (V, E). Assume that the subgraph Gf,D = (Vf,D, Ef,D)
spanned by the failed node vf and the set of helper nodes D is
connected. Construct a directed graph Ḡf,D = (Vf,D, Ēf,D)
as follows:

• For every edge (u, v) ∈ Ef,D with u, v ∈ D, add the two
directed edges (u, v) and (v, u) to Ēf,D.

• For every edge (u, vf ) ∈ Ef,D, add the directed edge
(u, vf ) to Ēf,D.

For an arbitrary communication protocol that repairs the
failed node vf , let Xu,v, for (u, v) ∈ Ēf,D , be the total number
of symbols sent along the edge (u, v) during the complete
protocol. Fix an order of the edges in Ē = Ēf,D and let X̄ be
the vector of Xu,v’s. Let P∗(D) be the set of all non-empty
subsets of D. Define a binary matrix M of size (2d−1)×|Ē|
by setting MS,(u,v) = �(u ∈ S ∧ v ∈ Sc), where Sc =
Vf,D\S. The rows of M are characteristic vectors of the cuts
(S, Sc). Let b̄ ∈ R|2d−1| with b̄S = β · min{d − k + 1, |S|}
for all S ∈ P∗(D).

Proposition 4: For the failed node vf and helper nodes
D, the total communication complexity of repair is bounded
below by the solution to the following linear program with
|Ē| variables and 2d − 1 constraints:

minimize 1T X̄

subject to MX̄ ≥ b̄,

X̄ ≥ 0.

Proof: We only need to justify the inequality MX̄ ≥ b̄.
For any set S ∈ P∗(D), Lemma 1 implies∑

(u,v)∈Ēf,D

u∈S,v∈Sc

Xu,v ≥ Rf
S ≥ min{d − k + 1, |S|}β.

Collecting these inequalities for all S ∈ P∗(D), we obtain the
claimed set of constraints.

The key observation here is that the quantity Rf
A in

Lemma 1 represents the total outflow of information trans-
mitted from the set of nodes A for the repair, and hence the
bounds still hold irrespective of the communication among the
nodes in set A.

In the remainder of this section we consider two settings
in which the bound of this proposition enables one to prove
optimality of communication for recovery while allowing
communication between the helper nodes, namely when the
failed node has the largest and the smallest possible number
of helpers, respectively, as immediate neighbors. In both cases
we allow arbitrary communication among the helper set.
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Fig. 3. Repair graph of the node vf that attains the LP lower bound.

A. The Case of the Complete Graph

This case corresponds to the original repair problem of [6],
and the cut-set bound provides the minimum required down-
load per helper node for the repair of a failed node. In this
model, the transmitted data of each helper node is a function
of its own stored content only. Can communication complexity
be reduced if the helper nodes are allowed to exchange
information before communicating with the failed node? An
easy corollary of Proposition 4 and Lemma 1 implies that in
case of MSR codes the answer is negative.

Proposition 5: For the complete graph Kn, the communi-
cation complexity is bounded below by dβ and is achieved by
having all the helper nodes directly transmit β symbols to the
failed node.

Proof: Consider the assignment of variables of the LP
problem X∗ with X∗

u,v = β�(v = vf ). It is clearly feasible
because it corresponds to all the helper nodes transmitting β
symbols to the failed node. Indeed, this assignment satisfies the
bounds of Lemma 1 and thus also the inequality constraints of
Proposition 4. Next we show that X∗ is optimal by considering
the dual LP problem, which has the form

maximize b̄T Ȳ

subject to MT Ȳ ≤ 1,

Ȳ ≥ 0.

Take the assignment of variables Y ∗ with Y ∗
S = �(|S| =

1) for all S ⊂ D. Since for two different S1 = {v1} and
S2 = {v2} any edge (u, v) ∈ Ē can belong to at most one
of the cuts (S1, S

c
1) or (S2, S

c
2), we have that MT Y ∗ ≤ 1.

Since 1T X∗ = b̄T Y ∗ = dβ, we conclude that X∗ is indeed
optimal.

B. The Case of Two Neighbors

Assume that the information is encoded with an [n, k, d =
k+1, l] MSR code and stored on a graph G(V, E) with |V | =
n. Consider the repair graph (no longer a tree) shown in Fig.3
with the failed node vf connected to two helper nodes which
connect to the remaining subset of the helper set.

We will prove that for this graph the minimum required
communication for repair equals (d+1)β = (k+2)β. To show
this, assume that the failed node vf relies on a set D of k + 1
helpers for repair, and that it is connected to two of them,
denoted v1 and v2. Assume further that the k + 1 helpers
span a complete graph Kk+1, where k is the dimension of
the MSR code used for the encoding of the data. To link this

graph to the LP problem of Prop. 4, construct a directed graph
by replacing every edge between a pair of helpers with a pair
of opposing directed edges, and make a directed edge from
each of v1, v2 to vf . Thus, the new set of directed edges is

Ē = {((vi, vj), vi, vj ∈ D), and (v1, vf ), (v2, vf )}.
To construct a primal LP program, assign

X∗
(u,v) =

⎧⎪⎨
⎪⎩

β if u ∈ Γ2(vf ) ∪ {v2}, v = v1

2β if u = v1, v = vf

0 otherwise.

This assignment defines a valid repair protocol, so it’s a
feasible solution of the LP problem which gives the value
of the objective function to be

1T X∗ = (d − 1)β + 2β = (d + 1)β (22)

Construct a dual program Y ∗ = (Y ∗
S )S by setting

Y ∗
S =

{
1

d−2 if |S| = 2, S 	= {v1, v2}
0 otherwise.

The vector Y ∗ is a feasible assignment of the dual program.
To show this, consider an edge (u, v) with u ∈ D. Our
argument depends on whether v ∈ D or v = vf . In the first
case, the row of MT contains d−2 ones which correspond to
the cuts in Gf,D that contain the edge (u, v) (there are exactly
d− 2 such cuts), so this row times Y ∗ equals one. If v = vf ,
then u is either v1 or v2. Say it is v1, then the row (v1, vf )
contains d− 1 ones which correspond to the cuts that contain
the edge (v1, vf ). Further, Y ∗ = 0 in the coordinate S =
{v1, v2}, so the nonzeros in the vector Y ∗ and the (MT )v1,vf

overlap in d− 2 places, again satisfying the constraints of the
dual program.

To compute the value of the dual problem, note that Y ∗ 	=
0 in

(
d
2

)− 1 = (d−2)(d+1)
2 coordinates, and the corresponding

entries in b̄ are set to 2β. Thus, b̄T Y ∗ = (d−2)(d+1)
2 · 1

d−2 ·2β =
(d+1)β, which equals the value of the primal problem, prov-
ing that the repair protocol defined by it yields the minimum
possible communication complexity. Finally, we argue that if
there does not exist a repair protocol that performs better in
terms of complexity when the helper nodes form the complete
graph, then there cannot exist a repair protocol that performs
better for any sub-graph of the complete graph.

The repair bandwidth (d + 1)β can be attained by sending
the data from all the helper nodes but v1 to the node v1,
combining them and passing the result to vf (which is the
IP repair discussed earlier). This repair protocol does not
involve two-way communication between the neighboring
helper nodes. In the appendix we construct another protocol
that does involve it, while still having the same communication
complexity of repair.

C. Can the Repair Bandwidth Be Lower Than the IP
Protocol?

So far we have not identified cases in which communication
among the helper nodes reduces the complexity of repair
compared to the IP protocol. That this may be possible is
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Fig. 4. The repair graph.

Fig. 5. Repair using IP.

demonstrated in the next numerical example in which the value
of the linear program is below the repair bandwidth of the
IP scheme. Note that we still stop short of constructing an
actual node repair scheme that would have this value of the
communication complexity.

Consider the graph Gf,D in Fig. 4 with three direct neigh-
bors of the failed node, and let d = 6, k = 5. We assume that
vf = 1, and it is directly connected to helper nodes 2, 3 and
4. The six helper nodes form a complete graph K6. The IP
technique can achieve the complexity of 7 units by transmitting
along the spanning tree shown in Fig. 5 and performing IP
(combining the data) at node 3.

To define the LP problem we construct a directed graph
Ḡf,D as explained in the beginning of this section. The linear
program of Prop. 4 in this case has value 6.75 and the
assignments of variables are: the primal program

X∗
(u,v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if u ∈ {2, 3, 4}, v = 1,
0.5 if u, v ∈ {5, 6, 7}, u 	= v,

0.25 if u ∈ {5, 6, 7}, v ∈ {2, 3, 4},
0 otherwise;

the dual program:

Y ∗
S =

⎧⎪⎨
⎪⎩

0.125 if |S| = 2, S ⊂ {2, 3, 4},
0.25 if |S| = 2, S 	⊂ {2, 3, 4},
0 otherwise

Many more similar examples can be constructed for small-size
graphs.

VI. NODE REPAIR ON RANDOM GRAPHS

In this section we analyze the distributed repair procedure
in the case when the underlying graph G(V, E) is sampled
from the Gn,p ensemble, where 0 < p < 1. We denote such

a random element from the ensemble as Gn,p. As before,
we assume that the coordinates C1, . . . , Cn of a codeword of
an (n, k, d) MSR code are placed on the vertices v1, . . . , vn.
The main question that we address is finding relations between
the parameters p, n, k, d such that graph-based repair of the
failed node with high probability results in lower repair
bandwidth than the AF strategy. Throughout this section we
assume that each helper node provides one field symbol for
the repair of the (single) failed node.

We will assume that p 
 log n
n because if Gn,p is not

connected, then with positive probability the node vf is
isolated, and repair is not possible (the notation f(n) 
 g(n)
means that g(n) = o(f(n))). Furthermore, PGn,p(deg(vf ) ≥
d) =

∑n
i=d

(
n
i

)
pi(1 − p)n−i, which goes to zero for n → ∞

if d 
 np. Thus, overall this is the parameter regime that may
make the graph-based repair (possible and) advantageous over
the agnostic AF repair procedure.

Throughout we will assume that k and d ∈ Θ(n), and that
χ(n) := d − k is o(n), i.e., d is close to k. For simplicity
(without loss of generality) we also assume that each helper
node provides only one symbol of F for the repair of the failed
node.

We will use the following two results regarding the random
Erdös-Rényi graphs (below P = PGn,p).

Lemma 3 ([3], p. 50; [8], Sec.7.1): (i) If p2n− 2 logn →
∞, and n2(1 − p) → ∞, then

P(diam(Gn,p) = 2) → 1.

(ii) Suppose that the functions t = t(n) ≥ 3 and 0 < p =
p(n) < 1 satisfy

(log n)/t − 3 log log n → ∞, ptnt−1 − 2 log n → ∞,

pt−1nt−2 − 2 logn → −∞,

then P(diam(Gn,p) = t) → 1.
Lemma 4 ([5], Lemma 3): Suppose that p ≥ log n

n . For any
� > 0 and all i = 1, . . . , �log n�

P(|Γi(x)| ≤ (1 + �)(np)i) ≥ 1 − 1/log2 n (23)

P(|Ni(x)| ≤ (1 + 2�)(np)i) ≥ 1 − 1/log2 n. (24)

A. Repair Threshold

Let t be a fixed integer. We say that t-layer repair of the
failed node v is possible if

P(|Nt(v)| ≥ d) → 1 as n → ∞
and call the minimum t for which this holds the threshold
depth for repair. Note that such a t is a function of n and p.
The next proposition establishes a threshold for t-layer repair
in terms of p.

Proposition 6: If

(np)t−1 = o(n), ptnt−1 − 2 logn → ∞, (25)

then t is the threshold depth for repair.
Proof: To show that t-layer repair is possible, we observe

that from Lemma 3, P(diam(Gn,p) = t) → 1 for all t ≥ 2.
This implies that for any failed node v, all the other nodes in
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the graph are reachable in at most t steps, and in particular,
|Nt(v)| = n > d. To show that t is the smallest radius that
supports repair, observe that by (24) for any � > 0

P(|Nt−1(v)| ≤ (1 + 2�)(np)t−1) → 1. (26)

Since d is a linear function of n, we have the inclusion

{|Nt−1(v)| ≥ d} ⊂ {|Nt−1(v)|/n > 0} (n → ∞).

Together with (26) this implies that P(|Nt−1(v)|/n ≥ γ) →
0 for any γ > 0.

Remark: Given t, the conditions (25) are satisfied if

n−(t−1)/tg(n) � p(n) � n−(t−2)/(t−1), (27)

where g(n) 
 (2 log n)1/t. Rephrasing Prop. 6, we could
say that for a given repair depth t the probability p(n) that
satisfies conditions (27) is a threshold for repair of depth t in
the ensemble Gn,p.

B. Repair Bandwidth

In this section we estimate the communication complexity
of node recovery on a random graph. Throughout this section
we assume that t is the threshold for repair, i.e., conditions
(25) hold for t, n, and p. Recall that by our assumption, l =
d − k + 1.

Proposition 7: The repair bandwidth βAF satisfies

P(βAF ≥ td − o(n)) → 1

where t is the threshold for repair as given by (25).
Proof: Rewriting the expression for βAF in (9), we obtain

βAF = td −
t−1∑
i=1

(t − i)|Γi(vf )|.

Define the events Ei = {|Γi(vf )| ≤ (1 + �)(np)i} and notice
that E := ∩t−1

i=1Ei ⊆ {βAF ≥ (td − o(n))}. From Lemma 4
we know that P(Ec

i ) ≤ 1/ log2 n for all i, and thus

Pr(∪t−1
i=1Ec

i ) ≤
t−1∑
i=1

Pr(Ec
i ) ≤ t/log2 n.

Finally, P(βAF ≥ td − o(n)) ≥ Pr(E) ≥ 1 − t
log2 n

→ 1.
Remark: This proposition implies that for large n, most of

the helper nodes are at distance t from the failed node. Note
that, assuming (25), Lemma 4 along with Lemma 8 in [5]
imply that the size of the neighborhood Γt(v) with high
probability grows as c(np)t for some constant c < 1. This
provides an intuitive explanation of the claim of Prop. 7
for d = Θ(n) and (np)t−1 = o(n), implying that the AF
repair strategy results in a t-fold increase of repair bandwidth
compared to full connectivity.

The next proposition gives further insights into the relation-
ship between βAF and t.

Proposition 8: Let d = δn, 0 < δ < 1, let κ(n) be a
function of n such that c ≤ κ(n)/n ≤ c̄ for some constants
c, c̄ and all sufficiently large n, and let t be the threshold for
repair as given by (25). We have

P(βAF ≤ κ(n)) →
{

0 if t > c̄/δ

1 if t ≤ c/δ.

Proof: To prove the first claim in the proposition, compute

P(βAF ≤ κ(n)) ≤ P(βAF ≤ cn)

= P

(
td −

t−1∑
i=1

(t − i)|Γi(vf )| ≤ cn
)

= P

( t−1∑
i=1

(t − i)|Γi(vf )| ≥ (tδ − c)n
)

≤ P

(t−1∑
i=1

(t − i)|Γi(vf )| ≥ (tδ − c)n
∣∣∣ E

)
P(E) + P(Ec),

where the event E is defined above in Prop. 7. Conditional on
E we have

∑t−1
i=1(t− i)(1 + �)(np)i = Θ((np)t−1), and (25)

implies that the first term → 0 w.h.p. To complete the proof
notice that P(Ec) ≤ t/log2 n → 0.

For the second claim, observe that

P(βAF ≤ κ(n)) ≥ P(βAF ≤ cn) ≥ P(βAF ≤ td) = 1

concluding the proof.
Now let us show that the graph-based repair as defined

in (15) or (19) with high probability has smaller repair
bandwidth.

Theorem 2: Let t be the threshold given in Prop. 6. Let
χ(n) be such that χ(n)ns−1ps → 0 where s ≤ t − 1 is the
largest integer for which this condition holds. Then P(βIP ≤
(t − s)d + o(n)) → 1.

Remark: Since pn → ∞, it is easy to check that the
assumptions of the theorem are non-vacuous, i.e., the largest
s satisfying the condition exists and is well defined.

Proof: Let Tf be the repair tree with the root vf .
By assumption, the distance from the root to the leaves is
t, and we will assume that the helper nodes in Γi(vf ), i = t,
t−1, . . . , s+1 simply relay their information along the edges,
while the nodes in Ns(vf ) transmit l = d − k + 1 symbols
given by a linear combination of the form given in (15).

Then, for the failed node vf , we have

βIP = (t − s)(d − |Nt−1(vf )|)

+
t−s−1∑

i=1

(t − s − i)|Γt−i(vf )| + (d − k + 1)
s∑

i=1

|Γi(vf )|

= (t − s)d +
s∑

i=1

|Γi(vf )|(d − k + 1 − (t − s))

−
t−1∑

i=s+1

|Γi(vf )|(t − i)

≤ (t − s)d +
s∑

i=1

|Γi(vf )|(d − k + 1 − t + s)).

Proceeding similarly to the proof of Prop. 7, we obtain

P

(
βIP ≤ (t − s)d +

s∑
i=1

(1 + �)(np)i(χ(n) + 1 − t + s)
)

≥ 1 − s/log2 n → 1.

Now using the assumption χ(n)(np)s = o(n) finishes the
proof.
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To conclude, we have shown a strict separation between
the typical communication cost of node recovery using the
IP repair procedure and the graph-agnostic AF protocol when
the number of helpers d is only slightly more than k. Note the
following simple corollary:

Corollary 1: Let t be the threshold given in Prop. 6. For
χ(n) = O(1),

P(βIP ≤ d + o(n)) → 1.

Proof: By (25), for χ(n) = O(1), the condition
χ(n)ns−1ps → 0 is satisfied for s = t − 1.

Corollary 1 supports the following intuition. Since χ(n)
is a constant, nodes in all layers but the last can do a very
high amount of compression and hence the contribution of
those layers to the total communication complexity becomes
insignificant; the complexity is primarily determined by the
number of helper nodes in the last layer which is approxi-
mately d. This implies that even in random graphs where we
do not have direct connectivity among all the helper nodes and
the failed node, it is possible to bring down the communication
complexity to the same order as that of the case of direct
connectivity using IP.

The above theorem and corollary suggest that the com-
munication complexity is primarily controlled by the two
parameters p(n) and χ(n). One can ask the question, for
what values of these parameters, does the complexity become
significantly higher than that of the complexity of repair under
full connectivity, i.e., d. In other words, we wish to study the
behavior of β∗−d where β∗ is the minimum complexity over
all possible repair schemes.3 In this regard, Corollary 1 says
that for χ(n) = O(1), we have β∗ − d = o(n) with high
probability. We will now show that for sparse graphs with high
probability the repair becomes significantly more complex
than sending d symbols. The following theorem quantifies
this claim. Its proof relies on Lemma 1 together with another
lemma from [5].

Lemma 5 ([5], Lemma 2): Suppose that p > c log n
n for a

constant c ≤ 2. Then with probability at least 1 − o( 1
n ),

we have for all 1 ≤ i ≤ n

|Γi(x)| ≤ 9
c
(np)i (28)

|Ni(x)| ≤ 10
c

(np)i. (29)

Theorem 3: For p(n) = o(χ(n)
n ), we have P(β∗ − d =

Θ(n)) → 1.
Proof: Given p(n), let t be the threshold for repair

as given in Prop. 6. Clearly, any helper node v ∈ Nt(vf )
needs to transmit at least one unit of information, so β∗ ≥
d − |Nt−1(vf )|. Let Fn := {Γt−1(vf ) ≤ 9

c (np)t−1}. Now
consider a node v ∈ Nt−1(vf ). From Lemma 5, the immediate
neighborhood of this node satisfies

P

(
|Γ1(v)| ≤ 9

c
np

)
≥ 1 − o

( 1
n

)
3Our arguments rely on the information-theoretic lower bounds, so they

indeed apply to all possible repair schemes.

for some constant c ≤ 2. Let D(v) be the immediate descen-
dants of node v in the repair tree. For every δ > 0, there exists
an n1 such that |D(v)| ≤ |Γ1(v)| ≤ 9

cnp with probability at
least 1 − δ

n for every n ≥ n1. Further, since np = o(χ(n)),
for every � > 0, there exists an n2 such that np ≤ �χ(n) for
every n ≥ n2. Combining these two statements, we claim that
the event Ev,�,n := {|D(v)| ≤ �χ(n)} satisfies

P(Ec
v,�,n) ≤ δ/n for all �, δ > 0, n ≥ max(n1, n2).

Since this is true for all v ∈ Γt−1(vf ), we have

P(∪v∈Γt−1(vf )E
c
v,�,n) = P(∪v∈Γt−1(vf )E

c
v,�,n|Fn)P(Fn)

+ P(∪v∈Γt−1(vf )E
c
v,�,n|F c

n)P(F c
n)

≤ 9δ

c

(np)t−1

n
+ o

( 1
n

)
→ 0,

where the last step follows because by the definition
of the threshold t, (np)t−1 = o(n). This implies that
P(∩v∈Γt−1(vf )Ev,�,n) → 1 for all � > 0. Now by Lemma 1,
for |D(v)| ≤ χ(n) the outflow of communication from the set
D(v) ∪ {v} has to be at least |D(v)| + 1 and by the above
analysis this is true for all v ∈ Γt−1(vf ) with high probability.
This implies that with high probability

β∗ ≥ d − |Nt−1(vf )| +
∑

v∈Γt−1(vf )

(|D(v)| + 1)

≥ d − |Nt−1(vf )| + Γt(vf ) = 2(d − |Nt−1(vf )|).
Finally, noting that P(|Nt−1(vf )| = o(n)) → 1 gives the
desired claim.

This theorem gives a sufficient condition for the separation
of complexity of repair on a complete graph and a sparse
random graph.

C. Random Regular Graphs

In this section we briefly address node repair on random
regular graphs. We single out this ensemble from a multitude
of other options because it is conceivable that the architecture
of the storage system places the same number of servers in
close proximity to any single server, and this is modeled by
a regular graph. Let Gn,r be the set of all r-regular n-vertex
graphs with a uniform distribution on it. We denote a random
element from this ensemble by Gn,r. Assume again that
the data is encoded with an (n, k, d, l) MSR code, and the
coordinates C1, . . . , Cn of the codeword are placed on the
vertices v1, . . . , vn.

We will derive conditions on the parameters k = k(n), d =
d(n) and r = r(n) such that as n → ∞, with high probability
the graph-based repair process is advantageous over the AF
strategy. We again assume that d = Θ(n). Denote by Gn,m

the ensemble of graphs with n vertices and m edges and let
Gn,m be a random graph sampled from it.

For the purposes of node repair we need the graph to be
connected. In [2], Bollobás showed that Gn,r is r-connected
with high probability.

Recall that a property of graphs is called increasing if it is
inherited from a subgraph to any graph that contains it. The
following equivalence between properties of Gn,m and Gn,r

will be used below.
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Lemma 6 ([8], Corollary 10.11): Let L be an increasing
property of graphs such that Gn,m satisfies L with high
probability for some m = m(n), where n log n �
m � n2. Then Gn,r satisfies L with high probability for
r = r(n) ∪ 2m

n .
The following proposition is a counterpart to Prop. 6 for

random regular graphs. Here the definition of the threshold
depth of repair is the same as in Sec. VI-A.

Proposition 9: Let d = δn, 0 < δ < 1 and let t be a fixed
integer. Then t is the threshold depth for repair if

rt−1 = o(n),
rt

n
− 2 logn → ∞. (30)

Proof: For finite t, |Nt−1(v)| ≤ ∑t−1
i=1 ri = Θ(rt−1) =

o(n) � d and so (t − 1)-layer repair is not possible.
For the other direction, let r(n) satisfy relations (30). Take

p(n) = r(n)
n , then by Prop. 6 Gn,p satisfies t-layer repair

with high probability. Recall a basic fact that the ensembles
Gn,p and Gn,m are equivalent for all monotone properties
(i.e., graphs sampled from them either both have the property
w.h.p. or they both do not). Therefore, the graph Gn,m

with m(n) ∪ n2

2 p(n) = nr(n)
2 affords t-layer repair with

high probability. Now, satisfying t-layer repair is a monotone
increasing graph property and so by Lemma 6 we have that
Gn,r affords t-layer repair with high probability.

With the threshold conditions established, counterparts of
Prop. 7, 8 and Theorem 2 can be proved for Gn,r by simply
replacing np with r and proceeding along similar arguments
(which are in fact simpler because the neighborhood sizes of
a vertex afford uniform bounds). In the following statements,
given without proofs, t is the repair threshold as defined
in (30).

Proposition 10: The repair bandwidth βAF satisfies

P(βAF ≥ td − o(n)) → 1.

Proposition 11: Let d = δn, 0 < δ < 1 and let κ(n) be a
function of n such that c ≤ κ(n)/n ≤ c̄ starting with some n.
Then

P(βAF ≤ κ(n)) →
{

0 if t > c̄/δ

1 if t ≤ c/δ.

for t > c̄/δ we have P(βAF ≤ κ(n)) → 0.
Theorem 4: Let d− k = χ(n) be a function of n such that

χ(n)r(n)s

n → 0 where s ≤ t−1 is the largest integer for which
this condition holds. Then P(βIP ≤ (t − s)d + o(n)) → 1.

Similarly to the case of Gn,p, this shows a strict separation
between the typical communication cost of node recovery
using the IP repair procedure and the graph-agnostic AF
protocol under a certain assumption on χ(n). A theorem that
parallels Theorem 3 can be also easily established (note that
the bounds of the form given in Lemma 5 for regular graphs
come for free).

VII. CONCLUSION

In this paper we posed and advanced the problem of
erasure correction (node repair) when the elements of encoded
information are placed on the nodes of a graph, adopting the
total amount of communication for repair as the figure of merit

in the analysis. The main difference of this problem from the
standard setting of regenerating codes stems from the fact that
most helpers are not directly connected to the failed node,
and the information transmitted by them can be processed by
the intermediate nodes or combined with the contents of these
nodes. We showed that the intermediate processing scheme can
be implemented by linear MSR codes, attaining the general
lower bounds on complexity derived in the paper. These results
were also extended to the case of multiple failed nodes.
We also established a framework for the analysis of repair
schemes when the helpers communicate among themselves
before contributing data toward the repair task, and gave sim-
ple examples when the arising complexity bounds are attained
with equality. Finally, we studied the repair problem when the
underlying graph is random, establishing bounds on the edge
probability under which the intermediate processing scheme
provides complexity savings compared to simple relaying.

Among the problems that so far have resisted analysis is
the case when some of the helper nodes provide incorrect
information. Since the erroneous information is propagated
along the edges and potentially combined with the contents
of the intermediate nodes, the repair procedures proposed in
this paper do not support node recovery. This is unlike the
case of complete connectivity, where optimal repair is possible
even in the presence of errors [25]. Another version of repair
with errors assumes that the edges form noisy channels, so the
information propagated along them is received as realizations
of random variables. A simple way to address this problem
suggests to add redundancy to the data transmitted over the
edges, and it combines channel coding and the repair task.
Optimizing the tradeoffs that arise as a result presents an
open problem. Yet another challenge is to construct codes and
nontrivial repair protocols when the helper nodes communicate
among themselves in the process of repair, extending the
approach of Sec. V.

APPENDIX

We present an encoding/repair scheme for the example in
Sec. V-B, Fig.3 that enables recovery of the contents of the
node vf which assumes that the nodes in Γ1(vf ) exchange
information before passing the repair data to the node vf . The
construction shares some features of cooperative repair, and
it relies on a code family constructed earlier for the case of
the complete graph Kn [25, Sec.IV]. Namely, suppose that
the information is encoded with an [n, k, d = k + 1, l = 2n]
MSR array code C and the codeword coordinates are placed
on the vertices of a graph G(V, E) with |V | = n. Suppose
further that the repair graph of the failed node vf is as shown
in the figure. In accordance with [25], Construction 2, we will
assume that each helper node provides β = 2n−1 symbols for
the repair of vf .

Let C = (c1, c2, . . . , cn) ∈ C be a codeword with ci =
(ci,0, ci,1, . . . , ci,l−1) ∈ Fl. The code is defined by the follow-
ing parity-check equations:

n∑
i=1

λt
i,ai

ci,a = 0 for all a ∈ {0, 1, . . . , l − 1},

t ∈ {0, 1, . . . , n − k − 1},
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where (a1, a2, . . . , an) is the binary representation of a. Below
we assume that vf = 1, that Γ1(1) = {2, 3}. and that Γ2(1) =
{4, 5, . . . , k + 2}. For a string s = (s1, s2, . . . , sn−k−2) ∈
{0, 1}n−k−2, consider the set of 2k+2 values of a for which
(ak+3, ak+4, . . . , an) = s. Isolate a subset of this set by fixing
a string ŝ = (ŝ1, ŝ2, . . . , ŝk−1) ∈ {0, 1}k−1 and collecting
only those values of a for which (a4, a5, . . . , ak+2) = ŝ.
Having fixed s and ŝ, we are left with 8 parity check equations
which can be labeled by a binary vector s̃ ∈ {0, 1}3:

λt
1,s̃1

c1,(s̃,ŝ,s) + λt
2,s̃2

c2,(s̃,ŝ,s) + λt
3,s̃3

c3,(s̃,ŝ,s)

+
k+2∑
i=4

λt
i,ŝi−3

ci,(s̃,ŝ,s) +
n∑

i=k+3

λt
i,si−k−2

ci,(s̃,ŝ,s) = 0

∀ s̃ ∈ {0, 1}3, t ∈ {0, 1, . . . , n − k − 1} (31)

For fixed ŝ and s, the λ’s in the last two sums the same in all
the equations. Define

μ
(ŝ,s)
2,1,i = ci,(000,ŝ,s) + ci,(010,ŝ,s) + ci,(100,ŝ,s)

μ
(ŝ,s)
3,1,i = ci,(000,ŝ,s) + ci,(100,ŝ,s) + ci,(101,ŝ,s)

μ
(ŝ,s)
2,2,i = ci,(001,ŝ,s) + ci,(011,ŝ,s) + ci,(111,ŝ,s)

μ
(ŝ,s)
3,2,i = ci,(011,ŝ,s) + ci,(110,ŝ,s) + ci,(111,ŝ,s)

For i ∈ {4, 5, . . . , k +2} the helper node i sends μ
(ŝ,s)
2,1,i , μ

(ŝ,s)
2,2,i

to node 2 and μ
(ŝ,s)
3,1,i , μ

(ŝ,s)
3,2,i to node 3. Additionally node 3

sends μ
(ŝ,s)
2,1,3, μ

(ŝ,s)
2,2,3 to node 2 and node 2 sends μ

(ŝ,s)
3,1,2, μ

(ŝ,s)
3,2,2

to node 3.
Node 2, having μ

(ŝ,s)
2,1,i for all i ∈ {3, . . . , k+2}, can recover

c1,(000,ŝ,s)+c1,(010,ŝ,s), c1,(100,ŝ,s). To see this, sum Eqns. (31)
for s̃ ∈ {000, 010, 100} to obtain

λt
1,0(c1,(000,ŝ,s) + c1,(010,ŝ,s)) + λt

1,1c1,(100,ŝ,s)

+ λt
2,0(c2,(000,ŝ,s) + c2,(100,ŝ,s)) + λt

2,1c2,(010,ŝ,s)

+ λt
3,0μ

(ŝ,s)
2,1,3 +

k+2∑
i=4

λt
i,ŝi−3

μ
(ŝ,s)
2,1,i +

n∑
i=k+3

λt
i,si−k−2

μ
(ŝ,s)
2,1,i = 0.

The multiplies of the λ’s in this equation form a codeword
of an (n + 2, k + 2 = d + 1) Reed-Solomon code. Node 2
collects μ

(ŝ,s)
2,1,i for all i ∈ {3, . . . , k + 2} and it already knows

(c2,(000,ŝ,s) + c2,(100,ŝ,s)), c2,(010,ŝ,s), and so it can recover
(c1,(000,ŝ,s) + c1,(010,ŝ,s)) and c1,(100,ŝ,s). Similarly, it can be

shown that with μ
(ŝ,s)
2,2,i for all i ∈ {3, . . . , k + 2}, node 2 can

recover (c1,(001,ŝ,s) + c1,(011,ŝ,s)) and c1,(111,ŝ,s).

Node 3, using μ
(ŝ,s)
3,1,i and μ

(ŝ,s)
3,2,i for all i ∈ {2, 4, 5 . . . ,

k + 2}, can recover (c1,(100,ŝ,s) + c1,(101,ŝ,s)) and c1,(000,ŝ,s)

and (c1,(110,ŝ,s) + c1,(111,ŝ,s)) and c1,(011,ŝ,s). Nodes 2 and 3
send these recovered linear combinations to the failed node,
which can recover all c1,(s̃,ŝ,s) for s̃ ∈ {0, 1}3. Finally this
is done for all ŝ and s, and this recovers the entire of
node 1.

Communication Complexity: Each helper node i ∈
{4, 5, . . . , k + 2} sends two symbols to node 2 and 2 sym-
bols to node 3 for each fixed ŝ, s. Hence they transmit
4 symbols each resulting in a total transmission of 4(k − 1)
for each fixed ŝ, s. Similarly node 3 transmits 2 symbols

to node 2 and node 2 transmits 2 symbols to node 3 for
each fixed ŝ, s. Finally node 2 and node 3 total transmit
8 symbols to node 1 for each fixed ŝ, s. This is repeated
for every possible ŝ and s. Hence the total communication
complexity is

B = (4(k − 1) + 4 + 8) · 2k−1 · 2n−k−2

= 2n−1k + 2n = β(d − 1) + l = (d + 1)β

(since l = 2β). This matches the communication complexity
of repair attainable with an IP protocol of Sec. V-B.
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