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Abstract
For an FT -measurable payoff of a European type contingent claim, the recursive
utility process/dynamic risk measure can be described by the adapted solution to a
backward stochastic differential equation (BSDE). However, for an FT -measurable
stochastic process (called a position process, not necessarily F-adapted), mimick-
ing BSDE’s approach will lead to a time-inconsistent recursive utility/dynamic risk
measure. It is found that a more proper approach is to use the adapted solution to a
backward stochastic Volterra integral equation (BSVIE). The corresponding notions
are called equilibrium recursive utility and equilibrium dynamic risk measure, respec-
tively.Motivated by this, the current paper is concernedwithBSVIEswhose generators
are allowed to have quadratic growth (in Z(t, s)). The existence and uniqueness for
both the so-called adapted solutions and adapted M-solutions are established. A com-
parison theorem for adapted solutions to the so-called Type-I BSVIEs is established
as well. As consequences of these results, some general continuous-time equilibrium
dynamic risk measures and equilibrium recursive utility processes are constructed.
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1 Introduction

Let (�,F ,P) be a complete probability space on which a one-dimensional standard
Brownian motion W = {W (t); 0 ≤ t < ∞} is defined, with F = {Ft }t≥0 being the
natural filtration of W augmented by all the P-null sets in F . Let ξ be a (random)
payoff at some future time T of a certain European type contingent claim, and c(·) be
a consumption rate. Following [17], we let Y (·) solve the following equation:

Y (t) = Et

[
ξ +

∫ T

t

(
f (c(s),Y (s)) + A(Y (s))Z(s)2

)
ds

]
, t ∈ [0, T ], (1.1)

hereafter, Et [ · ] = E[ · |Ft ] is the conditional expectation operator, and f : R×R →
R is a given map, called the aggregator,

Z(t)2 = d

dt
〈Y 〉(t),

with t 	→ 〈Y 〉(t) being the quadratic variation process of Y (·), and A(Y (t)) is called
the variance multiplier. Such defined Y (·) is called a recursive utility process (which
has also been called stochastic differential utility process) of the payoff ξ and the
consumption rate c(·). The main feature of such a process Y (·) is that the current value
Y (t) depends on the future values Y (s), t < s ≤ T of the process. This notion was
firstly introduced by Duffie and Epstein [17] in 1992. It is easy to see that (Y (·), Z(·))
solves (1.1) if and only if it is an adapted solution to the following backward stochastic
differential equation (BSDE, for short):

Y (t) = ξ +
∫ T

t
g(s,Y (s), Z(s))ds −

∫ T

t
Z(s)dW (s), t ∈ [0, T ], (1.2)

with

g(s, y, z) = f (c(s), y) + A(y)z2. (1.3)

Thanks to the discovery of the relation between (1.1) and (1.2), recursive utility process
was later extended to the adapted solution of general BSDEs (see [18,27,28]).

Now, if instead of ξ , we have an FT -measurable process ψ(t), not necessarily F-
adapted, which is called a position process (see [36] for a study of discrete-time cases).
It could also be called an anticipated wealth flow process. For example, it could be
an anticipated received dividend process of a stock (which depends on the uncertain
performance of the company), anticipated received mortgage payments (for a bank,
say, with an uncertainty of default or prepayment), anticipated claim payments of an
insurance policy, the random maintenance costs of an owned facility, etc. The feature
of such kind of process is that at time t , the actually anticipated value of the process is
notFt -measurable. To “calculate” the recursive utility for such a process at the current
time t , mimicking (1.1), we might formally solve the following BSDE:

123



Applied Mathematics & Optimization (2021) 84:145–190 147

Y (t; r) = ψ(t) +
∫ T

r
g(s,Y (t; s), Z(t; s))ds

−
∫ T

r
Z(t; s)dW (s), r ∈ [t, T ], (1.4)

with the current time t being a parameter. Intuitively, Y (t; r) should represent the
utility of the process ψ(·) at a future time r , estimated/predicted at the current time
t . Therefore, the utility at the current time t should be given by Y (t; t). However, by
taking r = t in the above, we obtain

Y (t; t) = ψ(t) +
∫ T

t
g(s,Y (t; s), Z(t; s))ds

−
∫ T

t
Z(t; s)dW (s), t ∈ [0, T ], (1.5)

which is not an equation for the process t 	→ Y (t; t) since Y (t; s) appears on the right-
hand side of the above. A careful observation shows that Y (t; r) obtained through (1.4)
has some time-inconsistent nature, by which we mean the following: If everything is
ideal, the value Y (t; r), which is supposed to be the utility of the process ψ(·) at a
future time r estimated/predicted at the current time t should be equal to Y (r; r), the
realistic utility at future time r . But this seems to have very little hope. In another
word, t 	→ Y (t; t) determined by a family of BSDEs as above seems not to be a good
description of the recursive utility process for the position process ψ(·).

Suggested by (1.4)–(1.5), we propose the following modified equation:

Y (t) = ψ(t) +
∫ T

t
g(s,Y (s), Z(t, s))ds

−
∫ T

t
Z(t, s)dW (s), t ∈ [0, T ]. (1.6)

Note that the above modification is simply to force Y (t; s) = Y (s; s) in (1.5), then
rename Y (t; t) to be Y (t). The advantage of such a modification is that as long as
a solution (Y (·), Z(· , ·)) of (1.6) exists, Y (·) is time-consistent. Then, Y (·) could
serve as a good description of the recursive utility for the process ψ(·) (by suitably
selecting the aggregator g(s, y, z)). However, a couple of natural questions arise: (i)
Is there any convincing mathematical justification for the model (1.6), and (ii) By
“brutally” forcing Y (t; s) = Y (s; s), is the resulting equation (1.6) well-posed? For
question (i), we will sketch a convincing argument in the appendix at the end of the
paper, justifying our modification. We will borrow some ideas from the study of time-
inconsistent optimal control problems [49]. For question (ii), it turns out that (1.6) is
nothing but a so-called backward stochastic Volterra integral equation (BSVIE, for
short), which has been studied since the early 2000 for various cases, and the current
paper is actually a continuation of those investigations. With the well-posedness of
(1.6) (see below for details), the map t 	→ Y (t)will be called an equilibrium recursive
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utility process of ψ(·). Interestingly, our mathematical justification presented in the
appendix will perfectly justify the word “equilibrium”.

BSVIEs have been studied since 2002 [29]. Let us now elaborate a little more on
BSVIEs. Let

g : [0, T ]2 × R × R × R × � → R, ψ : [0, T ] × � → R

be two given random fields. We consider the following BSVIE:

Y (t) = ψ(t) +
∫ T

t
g(t, s,Y (s), Z(t, s), Z(s, t))ds

−
∫ T

t
Z(t, s)dW (s), t ∈ [0, T ]. (1.7)

By an adapted solution to BSVIE (1.7), we mean an (R × R)-valued random field
(Y , Z) = {(Y (t), Z(t, s)); 0 ≤ s, t ≤ T } such that

(i) Y (·) is F-progressively measurable (not necessarily continuous),
(ii) for each fixed 0 ≤ t ≤ T , Z(t, ·) is F-progressively measurable, and
(iii) Equation (1.7) is satisfied in the usual Itô sense for Lebesgue measure almost

every t ∈ [0, T ].
Condition (ii) implies that for any t ∈ [0, T ), the random variable Z(t, s) is Fs-
measurable for any s ∈ [t, T ]. In (1.7), g and ψ are called the generator and the
free term, respectively. Let us point out that in this paper, we only study the BSVIEs
with Y (·) being one-dimensional. The case that Y (·) being higher dimensional will be
significantly different in general, and will be investigated in the near future. However,
the Brownian motion W (·) assumed to be one-dimensional is just for convenience of
our presentation.

When Z(s, t) is absent, (1.7) is reduced to the form

Y (t) = ψ(t) +
∫ T

t
g(t, s,Y (s), Z(t, s))ds

−
∫ T

t
Z(t, s)dW (s), t ∈ [0, T ], (1.8)

which is a natural extension of BSDEs, and is a little more general than (1.6) since g
depends on both t and s. BSVIEs of form (1.8), referred to as Type-I BSVIEs, were
firstly studied by Lin [29], followed by several other researchers: Aman and N’Zi [3],
Wang and Zhang [44], Djordjević and Janković [15,16], Hu and Øksendal [20].

BSVIEs of the form (1.7) (containing Z(s, t)) were firstly introduced by Yong
[46,48], motivated by the study of optimal control for forward stochastic Volterra
integral equations (FSVIEs, for short). We call (1.7) a Type-II BSVIE to distinguish it
from Type-I BSVIEs. Type-II BSVIE (1.7) has a remarkable feature that its adapted
solution, similarly defined as that for Type-I BSVIEs, might not be unique due to
lack of restriction on the term Z(s, t) (with 0 ≤ t ≤ s ≤ T ). Suggested by the
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natural form of the adjoint equation in the Pontryagin type maximum principle, Yong
[48] introduced the notion of adapted M-solutions: A pair (Y (·), Z(· , ·)) is called
an adapted M-solution to (1.7), if in addition to (i)–(iii) stated above, the following
condition is also satisfied:

Y (t) = E[Y (t)] +
∫ t

0
Z(t, s)dW (s), a.e. t ∈ [0, T ], a.s. (1.9)

Under usual Lipschitz conditions, well-posedness was established in [48] for the
adapted M-solutions to Type-II BSVIEs of form (1.7). This important development
has triggered extensive research on BSVIEs and their applications. For instance, Anh,
Grecksch and Yong [4] investigated BSVIEs in Hilbert spaces; Shi et al. [37] stud-
ied well-posedness of BSVIEs containing mean-fields (of the unknowns); Ren [35],
Wang and Zhang [45] discussed BSVIEs with jumps; Overbeck and Röder [32] even
developed a theory of path-dependent BSVIEs; Numerical aspect was considered by
Bender and Pokalyuk [6]; relevant optimal control problems were studied by Shi et
al. [38], Agram and Øksendal [2], Wang and Zhang [43], and Wang [40]; Wang and
Yong [41] established various comparison theorems for both adapted solutions and
adapted M-solutions to BSVIEs in multi-dimensional Euclidean spaces.

Recently, inspired by the Four-Step Scheme in the theory of forward-backward
stochastic differential equations (FBSDEs, for short) [31] and the time-inconsistent
stochastic optimal control problems [49], Wang and Yong [42] established a repre-
sentation of adapted solutions to Type-I BSVIEs and adapted M-solutions to Type-II
BSVIEs in terms of the solution to a system of (non-classical) partial differential
equations and the solution to a (forward) stochastic differential equation.

We point out that in all the above-mentioned works on BSVIEs, the generator
g(t, s, y, z, z′) of the BSVIE (1.7) satisfies a uniform Lipschitz condition in (y, z, z′)
so that the generator has a linear growth in (z, z′). However, when the generator
g(s, y, z) of BSVIE (1.6) is given by (1.3), it has a quadratic growth in z. Hence, a
theory needs to be established for BSVIEs with the generators g(t, s, y, z, z′) growing
quadratically in z, which are called quadratic BSVIEs (QBSVIEs, for short, if the
quadratic growth of the generator in z needs to be emphasized). We point out that at
the moment, we are not able to handle the case that z′ 	→ g(t, s, y, z, z′) is quadratic,
and it is also lack of motivation for that case.

Recall that for BSDE (1.2), when (y, z) 	→ g(s, y, z) satisfies a uniform Lip-
schitz condition, with g(· , 0, 0) being L p-integrable (with some p > 1), for any
FT -measurable L p-integrable random variable ξ , it admits a unique adapted solution
(Y (·), Z(·)) [31,33,50] which could be called a recursive utility process for ξ . On the
other hand, when z 	→ g(s, y, z) has an up to quadratic growth, the BSDE (1.2) is
called a quadratic BSDE (QBSDE, for short). In 2000, Kobylanski [24] established
the well-posedness of QBSDE with ξ being bounded. Since then, some efforts have
been made by researchers to relax the assumptions on the generator as well as on the
terminal value ξ . Among relevant works, we would like to mention Briand and Hu
[7,8], Hu and Tang [21], Briand and Richou [9], and Zhang [51, Chapter 7]. Further,
BSDEs with superquadratic growth was investigated by Delbaen et al. [10], where
some general negative results concerning the well-posedness can be found. Therefore,
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one can say that the theory of recursive utility for terminal payoff ξ has reached a
pretty mature stage.

The purpose of this paper is to establish the well-posedness of QBSVIEs under
certain conditions. The method introduced by Yong [48] and techniques found in
Briand–Hu [7,8] will be combined and further developed. In addition, a comparison
theorem for adapted solutions of Type-I QBSVIEs will be established. Consequently,
equilibrium recursive utility processes and continuous-time equilibrium dynamic risk
measures will be investigated. See Yong [47] and Wang–Yong [41], Agram [1] for
some earlier works. See also Di Persio [14] for stochastic differential utility, and
Kromer–Overbeck [26] for dynamical capital allocation by means of BSVIEs.

The rest of this paper is organized as follows. In Sect. 2, we introduce some prelim-
inary notations and definitions, and present some lemmas which are of frequent use
in the sequel. Section 3 is devoted to the study of existence and uniqueness of adapted
solutions for Type-I QBSVIEs, and Sect. 4 is devoted to the study of existence and
uniqueness of adapted M-solutions for Type-II QBSVIE. A comparison theorem for
adapted solutions to Type-I QBSVIEs (1.8) will be established in Sect. 5, and an appli-
cation of Type-I BSVIEs to continuous-time equilibrium dynamic risk measures will
be presented in Sect. 6. Some conclusion remarks will be collected in Sect. 7. Finally,
a mathematical justification of the BSVIE model is sketched in the appendix.

2 Preliminaries

For 0 ≤ a < b ≤ T , we denote by B([a, b]) the Borel σ -field on [a, b] and define the
following sets:

�[a, b] �
{
(t, s)

∣∣ a≤ t≤s≤b
}
, �c[a, b] �

{
(t, s)

∣∣ a≤s< t≤b
}
,

[a, b]2 �
{
(t, s)

∣∣ a≤ t, s≤b
}=�[a, b] ∪ �c[a, b], �∗[a, b]��c[a, b].

Note that �∗[a, b] is a little different from the complement �c[a, b] of �[a, b] in
[a, b]2, since both �[a, b] and �∗[a, b] contain the diagonal line segment. In the
sequel we shall deal with various spaces of functions and processes, which we collect
here first for the convenience of the reader:

L1(a, b)

=
{
h : [a, b] → R | h(·) is B([a, b])-measurable,

∫ b
a |h(s)|ds < ∞

}
,

L∞
Fb

(�)

=
{
ξ : � → R | ξ is Fb-measurable and bounded

}
,

L∞
Fb

(a, b)

=
{
ϕ : [a, b] × � → R | ϕ(·) is B([a, b]) ⊗ Fb-measurable and bounded

}
,

L2
F
(a, b)

=
{
ϕ : [a, b] × � → R | ϕ(·) is F-progressively measurable, E

∫ b
a |ϕ(s)|2ds < ∞

}
,
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L∞
F

(a, b)

=
{
ϕ(·) ∈ L2

F
(a, b)

∣∣ ϕ(·) is bounded
}
,

L2
F
(�;C[a, b])
=

{
ϕ : [a, b] × � → R | ϕ(·) is continuous, F-adapted, E[

sup
a≤s≤b

|ϕ(s)|2] < ∞
}
,

L∞
F

(�;C[a, b])
=

{
ϕ(·) ∈ L2

F
(�;C[a, b]) ∣∣ sup

a≤t≤b
|ϕ(t)| ∈ L∞

Fb
(�)

}
,

L∞
Fb

(�;CU [a, b])
=

{
ϕ(·) ∈ L∞

Fb
(a, b)

∣∣ there exists a modulus of continuity ρ : [0,∞) → [0,∞)

such that |ϕ(t) − ϕ(s)| ≤ ρ(|t − s|), (t, s) ∈ [a, b], a.s.
}
,

L2
F
(�[a, b])
=

{
ϕ :�[a, b]×�→R | ϕ(t, ·) is F-progressively measurable on [t, b], a.e. t ∈[a, b],

E
∫ b
a

∫ b
t |ϕ(t, s)|2dsdt < ∞

}
,

L2
F
([a, b]2)
=

{
ϕ : [a, b]2×�→R | ϕ(t, ·) is F-progressively measurable on [a, b], a.e. t ∈[a, b],

E
∫ b
a

∫ b
a |ϕ(t, s)|2dsdt < ∞

}
,

H2
�[a, b] = L2

F
(a, b) × L2

F
(�[a, b]), H2[a, b] = L2

F
(a, b) × L2

F
([a, b]2).

Now, we recall the definitions of adapted solutions and adaptedM-solutions for Type-I
BSVIE (1.8) and Type-II BSVIE (1.7), respectively (see [48]).

Definition 2.1 (i) A pair of processes (Y (·), Z(·, ·)) ∈ H2
�[0, T ] is called an adapted

solution of BSVIE (1.8) if (1.8) is satisfied in the usual Itô sense for Lebesgue measure
almost every t ∈ [0, T ].

(ii) A pair of processes (Y (·), Z(·, ·)) ∈ H2[0, T ] is called an adapted solution of
BSVIE (1.7) if (1.7) is satisfied in the usual Itô sense for Lebesgue measure almost
every t ∈ [0, T ]. Further, it is called an adapted M-solution of BSVIE (1.7) on [r , T ]
if, in addition, the following holds:

Y (s) = Er [Y (s)] +
∫ s

r
Z(s, t)dW (t), a.e. s ∈ [r , T ]. (2.1)

Here, we recall that Er = [ · |Fr ].
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Let M2[r , T ] be the set of all (y(·), z(·, ·)) ∈ H2[r , T ] satisfying (2.1). Clearly,
M2[r , T ] is a closed subspace ofH2[r , T ]. Further, for any (y(·), z(·, ·)) ∈ M2[r , T ],
we have

E|y(s)|2 = E
∣∣Er [y(s)]

∣∣2 + E

∫ s

r
|z(s, t)|2dt ≥ E

∫ s

r
|z(s, t)|2dt, a.e. s ∈ [r , T ].

It follows that

‖(y(·), z(·, ·))‖2H2[r ,T ]

≡ E

[ ∫ T

r
|y(s)|2ds +

∫ T

r

∫ T

r
|z(s, t)|2dtds

]

= E

[ ∫ T

r
|y(s)|2ds +

∫ T

r

∫ s

r
|z(s, t)|2dtds +

∫ T

r

∫ T

s
|z(s, t)|2dtds

]

≤ E

[
2

∫ T

r
|y(s)|2ds + 2

∫ T

r

∫ T

s
|z(s, t)|2dtds

]

≡ 2‖(y(·), z(·, ·))‖2M2[r ,T ] ≤ 2‖(y(·), z(·, ·))‖2H2[r ,T ],

which implies that ‖ · ‖M2[r ,T ] is an equivalent norm of ‖ · ‖H2[r ,T ] onM2[r , T ].
Next, we recall the following definition (see [23] for relevant details).

Definition 2.2 A uniformly integrable F-martingale M = {M(t) : 0 ≤ t ≤ T } with
M(0) = 0 is called a BMO martingale on [0, T ] if

‖M(·)‖2BMO(0,T ) � sup
τ∈T [0,T ]

∥∥∥Eτ

[|M(T ) − M(τ )|2]
∥∥∥∞ < ∞,

where T [0, T ] is the set of all F-stopping times τ valued in [0, T ].
Sometimes, the norm ‖ · ‖BMO(0,T ) is written as ‖ · ‖BMOP(0,T ), indicating the

dependence on the probability P.
Next, let X = {Xt ,Ft ; 0 ≤ t ≤ T } be a measurable, adapted process satisfying

P

[∫ T

0
|X(s)|2ds < ∞

]
= 1.

Recall the Doléan-Dade exponential of X :

E{X}t � e
∫ t
0 X(s)dW (s)− 1

2

∫ t
0 |X(s)|2ds, t ∈ [0, T ], (2.2)

and define a probability measure P on FT by

dP = E{X}T dP. (2.3)

Then, we have the following lemma which is a combination of the Girsanov’s theorem
(see Karatzas–Shreve [22] for a proof) and a result found in Kazamaki [23].
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Lemma 2.3 If t 	→ ∫ t
0 X(s)dW (s) is a BMO martingale on [0, T ], then E{X}t is a

uniformly integrable martingale and the process W = {W (t),Ft
∣∣ 0 ≤ t ≤ T }

defined by

W (t) � W (t) −
∫ t

0
X(s)ds, 0 ≤ t ≤ T (2.4)

is a standard Brownian motion on (�,FT ,P).

Next, we introduce the following spaces. Let 0 ≤ a < b < c ≤ T , and

BMO(a, b)

=
{
ϕ : [a, b] × � → R

∣∣ ϕ(·) ∈ L2
F
(a, b),

‖ϕ(·)‖2
BMO(a,b)

� sup
τ∈T [a,b]

∥∥∥Eτ

[ ∫ b

τ

|ϕ(s)|2ds
]∥∥∥∞ < ∞

}
,

BMO(�[a, b])
=

{
ϕ : �[a, b] × � → R

∣∣ ϕ(·, ·) ∈ L2
F
(�[a, b]),

‖ϕ(·, ·)‖2
BMO

(
�[a,b]

) � esssup
t∈[a,b]

sup
τ∈T [t,b]

∥∥∥Eτ

[ ∫ b

τ

|ϕ(t, s)|2ds
]∥∥∥∞ < ∞

}
,

BMO
([a, b] × [b, c])

=
{
ϕ : [a, b] × [b, c] × � → R

∣∣ ϕ(·, ·) ∈ L2
F
([a, b] × [b, c]),

‖ϕ(·, ·)‖2
BMO([a,b]×[b,c]) � esssup

t∈[a,b]
sup

τ∈T [b,c]

∥∥∥Eτ

[ ∫ c

τ

|ϕ(t, s)|2ds
]∥∥∥∞ < ∞

}
.

We note that for ϕ(·) ∈ BMO(a, b), if we let ϕ(s) ≡ 0, s ∈ [0, a), then∫ s
0 ϕ(r)dW (r); 0 ≤ s ≤ b is a BMO martingale on [0, b]. Similarly, for ϕ(· , ·) ∈
BMO(�[a, b]), if we let ϕ(t, s) ≡ 0, s ∈ [0, t), then ∫ s

0 ϕ(t, r)dW (r); 0 ≤
s ≤ b is a BMO martingale on [0, b] for almost all t ∈ [a, b). The situation for
BMO

([a, b] × [b, c]) is also similar. The following lemma plays a basic role in our
subsequent arguments. we refer the reader to [23, Theorem 3.3] for the proof and
details.

Lemma 2.4 For K > 0, there are constants c1, c2 > 0 depending only on K such that
for any BMO martingale M(·), we have for any one-dimensional BMO martingale
N (·) such that ‖N (·)‖BMO(0,T ) ≤ K,

c1‖M(·)‖BMOP(0,T ) ≤ ‖M(·)‖BMO
P
(0,T ) ≤ c2‖M(·)‖BMOP(0,T ),

where M(·) � M(·) − 〈M, N 〉(·) and dP = Ē{N (·)}T dP.
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We now consider the following BSDE:

Y (t) = ξ +
∫ T

t
f (s,Y (s), Z(s))ds −

∫ T

t
Z(s)dW (s), t ∈ [0, T ]. (2.5)

Let us introduce the following hypothesis.

(A0) Let the generator f : [0, T ] × R × R × � → R be B([0, T ] × R × R) ⊗ FT -
measurable such that s 	→ f (s, y, z) is F-progressively measurable for all (y, z) ∈
R × R. There exist constants β, γ , L and a function h(·) ∈ L1(0, T ) such that

| f (s, y, z)| ≤ h(s) + β|y| + γ

2
|z|2, (s, y, z) ∈ [0, T ] × R × R; (2.6)

| f (s, y1, z1) − f (s, y2, z2)| ≤ L|y1 − y2| + L(1 + |z1| + |z2|)|z1 − z2|,
(s, yi , zi ) ∈ [0, T ] × R × R, i = 1, 2. (2.7)

Lemma 2.5 Let (A0) hold. Then, for any ξ ∈ L∞
FT

(�), BSDE (2.5) admits a unique

adapted solution (Y (·), Z(·)) ∈ L∞
F

(�; C[0, T ]) × BMO(0, T ). Moreover,

eγ |Y (t)| ≤ Et

[
eγ eβ(T−t)|ξ |+γ

∫ T
t |h(s)|eβ(s−t)ds

]
. (2.8)

Proof By [51, Theorem 7.3.3], BSDE (2.5) admits a unique adapted solution
(Y (·), Z(·)) ∈ L∞

F
(�;C[0, T ]) × L2

F
(0, T ). Then, by [51, Theorem 7.2.1], we see

that the adapted solution (Y (·), Z(·)) ∈ L∞
F

(�;C[0, T ]) × BMO(0, T ). Further, by
[8, Proposition 1], we have inequality (2.8). ��

3 Adapted Solution to Type-I QBSVIE

In this section, we will establish the existence and uniqueness of the adapted solution
to Type-I QBSVIE. Keep in mind that we may just use “BSVIE”, instead of “Type-I
QBSVIE”, for convenience. First, let us look at the following simple example.

Example 3.1 Consider the one-dimensional BSVIE:

Y (t) = ψ(t) +
∫ T

t

Z(t, s)2

2
ds −

∫ T

t
Z(t, s)dW (s), (3.1)

where ψ(·) ∈ L∞
FT

(0, T ), and W (·) is a one-dimensional standard Brownian motion.
In order to solve Eq. (3.1), we introduce a family of BSDEs parameterized by t ∈
[0, T ]:

η(t, s) = ψ(t) +
∫ T

s

ζ(t, r)2

2
dr −

∫ T

s
ζ(t, r)dW (r), s ∈ [t, T ]. (3.2)

123



Applied Mathematics & Optimization (2021) 84:145–190 155

By Lemma 2.5, BSDE (3.2) admits a unique adapted solution (η(t, ·), ζ(t, ·)) ∈
L∞
F

(�;C[t, T ]) × BMO(t, T ). Let

Y (t) = η(t, t) and Z(t, s) = ζ(t, s), (t, s) ∈ �[0, T ],

then

Y (t) = ψ(t) +
∫ T

t

Z(t, s)2

2
ds −

∫ T

t
Z(t, s)dW (s), t ∈ [0, T ],

which implies that (Y (·), Z(·, ·)) is an adapted solution to BSVIE (3.1). The unique-
ness of the solutions to BSVIE (3.1) can be obtained by the following Theorem 3.2.
Moreover, the first term Y (·) of the unique solution to BSVIE (3.1) could be solved
explicitly:

Y (t) = ln{E[eψ(t)|Ft ]}, t ∈ [0, T ]. (3.3)

Clearly, from the expression (3.3), we see that as long as

sup
t∈[0,T ]

E

[
eψ(t)

]
< ∞,

by a usual approximation technique, one could find that BSVIE (3.1) will still have the
adapted solution with Y (·) given by (3.3). Some general exploration in this direction
will be carried out elsewhere.

From the above example, we see that BSVIE (3.1) can be fully characterized by
a family of BSDEs (3.2). The main reason is that the generator of equation (3.1) is
independent of y. This suggests us first consider a special case of Type-I QBSVIE
(1.8).

3.1 A Special Case

Consider the following BSVIE:

Y (t) = ψ(t) +
∫ T

t
g(t, s, Z(t, s))ds −

∫ T

t
Z(t, s)dW (s), (3.4)

where the generator g : �[0, T ] × R × � → R and the free term ψ : [0, T ] × � →
R are given maps. We adopt the following assumption concerning g(·), which is
comparable with (A0).

(A1) Let the generator g : �[0, T ] × R × � → R be B(�[0, T ] × R) ⊗ FT -
measurable such that s 	→ g(t, s, z) is F-progressively measurable on [t, T ], for all
(t, z) ∈ [0, T ) ×R. There exist two constants γ , L and a function h(·) ∈ L1(0, T ;R)

such that
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|g(t, s, z)| ≤ h(s) + γ

2
|z|2, (t, s, z) ∈ �[0, T ] × R;

|g(t, s, z1) − g(t, s, z2)| ≤ L(1 + |z1| + |z2|)|z1 − z2|,
(t, s, zi ) ∈ �[0, T ] × R, i = 1, 2.

Now, we state the following existence and uniqueness result of BSVIE (3.4).

Theorem 3.2 Let (A1) hold. Then for any ψ(·) ∈ L∞
FT

(0, T ), BSVIE (3.4) admits a

unique adapted solution (Y (·), Z(·, ·)) ∈ L∞
F

(0, T ) × BMO(�[0, T ]).
Proof We first show the existence of the adapted solution to BSVIE (3.4). Consider
the following BSDEs parameterized by t ∈ [0, T ]:

η(t, s) = ψ(t) +
∫ T

s
g(t, r , ζ(t, r))dr −

∫ T

s
ζ(t, r)dW (r), s ∈ [t, T ]. (3.5)

For almost all t ∈ [0, T ], by Lemma 2.5, under (A1), BSDE (3.5) admits a unique
adapted solution (η(t, ·), ζ(t, ·)) ∈ L∞

F
(�;C[t, T ]) × BMO(t, T ). Let

Y (t) = η(t, t), Z(t, s) = ζ(t, s), (t, s) ∈ �[0, T ],

then (Y (·), Z(·, ·)) ∈ L∞
F

(0, T ) × BMO(�[0, T ]) and

Y (t) = ψ(t) +
∫ T

t
g(t, s, Z(t, s))ds −

∫ T

t
Z(t, s)dW (s), t ∈ [0, T ],

which implies that (Y (·), Z(·, ·)) is an adapted solution for BSVIE (3.4).
The uniqueness is followed from the next theorem. ��
Consider the following BSVIEs: For i = 1, 2,

Yi (t) = ψi (t) +
∫ T

t
gi (t, s, Zi (t, s))ds −

∫ T

t
Zi (t, s)dW (s), t ∈ [0, T ]. (3.6)

We have the following comparison theorem.

Theorem 3.3 Let g1(·) and g2(·) satisfy (A1), ψ1(·), ψ2(·) ∈ L∞
FT

(0, T ). Let

(Yi (·), Zi (·, ·)) ∈ L∞
F

(0, T )×BMO(�[0, T ]) be the adapted solution of correspond-
ing BSVIE (3.6). Suppose

ψ1(t) ≤ ψ2(t), g1(t, s, z) ≤ g2(t, s, z),

a.s., a.e. (t, s, z) ∈ �[0, T ] × R, (3.7)

then we have

Y1(t) ≤ Y2(t), a.s., a.e. t ∈ [0, T ]. (3.8)
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In particular, if g1(·) = g2(·) and ψ1(·) = ψ2(·), the comparison implies the unique-
ness of adapted solution to BSVIEs (3.4).

Proof We note that

Y1(t) − Y2(t) = ψ1(t) − ψ2(t) +
∫ T

t
[g1(t, s, Z1(t, s)) − g2(t, s, Z2(t, s))] ds

−
∫ T

t
[Z1(t, s) − Z2(t, s)] dW (s). (3.9)

Define the process θ(·, ·) such that

θ(t, s) = 0, (t, s) ∈ �∗[0, T ]; (3.10)

|θ(t, s)| ≤ C(1 + |Z1(t, s)| + |Z2(t, s)|), (t, s) ∈ �[0, T ]; (3.11)

g1(t, s, Z1(t, s)) − g1(t, s, Z2(t, s))

= [
Z1(t, s) − Z2(t, s)

]
θ(t, s), (t, s) ∈ �[0, T ]. (3.12)

Hereafter, C > 0 stands for a generic constant which could be different from line to
line. Then, for almost all t ∈ [0, T ], W (t; ·) defined by

W (t; s) � W (s) −
∫ s

0
θ(t, r)dr , s ∈ [0, T ] (3.13)

is a Brownian motion on [0, T ] under the equivalent probability measure Pt defined
by

dPt � E{θ(t, ·)}T dP.

The corresponding expectation is denoted by EP̄t . Thus, by (3.9) and (3.13), we have

Y1(t) − Y2(t) = ψ1(t) − ψ2(t) +
∫ T

t
[g1(t, s, Z2(t, s)) − g2(t, s, Z2(t, s))] ds

−
∫ T

t
[Z1(t, s) − Z2(t, s)] dW (t; s).

Taking the conditional expectation with respect to Pt on the both sides of the above
equation and then by (3.7), we have

Y1(t) − Y2(t) = E
P̄t
t

[
ψ1(t) − ψ2(t) +

∫ T

t
[g1(t, s, Z2(t, s))

−g2(t, s, Z2(t, s))] ds
]

≤ 0, a.s.

Hence, (3.8) follows. ��
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Remark 3.4 Theorems 3.2 and 3.3 are both concerned with the BSVIE (3.4), a very
special case of Type-I BSVIE (1.8), in which, the generator g(·) is independent of
the variable y. This makes the BSVIE (3.4) much easier to handle. Even though,
Theorems 3.2 and 3.3 serve as a crucial bridge to the proof of the results for general
Type-I BSVIEs.

3.2 The General Case

In this subsection, we will consider the following Type-I BSVIE:

Y (t) = ψ(t) +
∫ T

t
g(t, s,Y (s), Z(t, s))ds

−
∫ T

t
Z(t, s)dW (s), t ∈ [0, T ]. (3.14)

We first introduce the following assumption, which is comparable to (A0).

(A2) Let the generator g : �[0, T ]×R×R×� → R be B(�[0, T ]×R×R)⊗FT -
measurable such that s 	→ g(t, s, y, z) is F-progressively measurable on [t, T ] for all
(t, y, z) ∈ [0, T ] × R × R. There exist two constants L and γ such that:

|g(t, s, y, z)| ≤ L(1 + |y|) + γ

2
|z|2, ∀(t, s, y, z) ∈ �[0, T ] × R × R;

|g(t, s, y1, z1) − g(t, s, y2, z2)| ≤ L
{|y1 − y2| + (1 + |z1| + |z2|)|z1 − z2|

}
,

∀(t, s, yi , zi ) ∈ �[0, T ] × R × R, i = 1, 2.

At the same time, we introduce the following additional assumption which will be
used to establish a better regularity for the adapted solutions.

(A3) Let g : [0, T ]2 ×R×R× � → R be measurable such that for every (t, y, z) ∈
[0, T ] × R × R, s 	→ g(t, s, y, z) is F-progressively measurable. There exists a
modulus of continuity ρ : [0,∞) → [0,∞) (a continuous and monotone increasing
function with ρ(0) = 0) such that

|g(t, s, y, z) − g(t ′, s, y, z)| ≤ ρ(|t − t ′|)(1 + |y| + |z|2),
∀ t, t ′, s ∈ [0, T ], (y, z) ∈ R × R.

Note that in (A3), the generator g(t, s, y, z) is defined for (t, s) in the square domain
[0, T ]2 instead of the triangle domain �[0, T ], and the uniform continuity of the map
t 	→ f (t, y, z) (uniform for (y, z) in any bounded set) is assumed. Now, we state the
main result of this subsection.

Theorem 3.5 Let (A2) hold. Then for any ψ(·) ∈ L∞
FT

(0, T ), BSVIE (3.14) admits a

unique adapted solution (Y (·), Z(·, ·)) ∈ L∞
F

(0, T ) × BMO(�[0, T ]).
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We will prove Theorem 3.5 by means of contraction mapping theorem. For any
(U (·), V (·, ·)) ∈ L∞

F
(0, T ) × BMO(�[0, T ]), consider the following BSVIE:

Y (t) = ψ(t) +
∫ T

t
g(t, s,U (s), Z(t, s))ds −

∫ T

t
Z(t, s)dW (s). (3.15)

By Theorem 3.2, BSVIE (3.15) admits a unique adapted solution (Y (·), Z(·, ·)) ∈
L∞
F

(0, T ) × BMO (�[0, T ]). Thus, the map

�(U (·), V (·, ·)) � (Y (·), Z(·, ·)), (U (·), V (·, ·)) ∈ L∞
F

(0, T ) × BMO(�[0, T ])
(3.16)

is well-defined. In order to prove Theorem 3.5, we present the following lemma.

Lemma 3.6 Let (A2) hold and ε ∈ (0, 1
2L ]. Then for any ψ(·) ∈ L∞

FT
(0, T ), the map

�(·, ·) defined by (3.16) satisfies the following:

�(Bε) ⊆ Bε, (3.17)

where Bε is defined by the following:

Bε �
{
(U (·), V (·, ·)) ∈ L∞

F
(T − ε, T ) × BMO(�[T − ε, T ]) ∣∣

‖U (·)‖L∞
F

(T−ε,T ) ≤ 2‖ψ(·)‖∞ + 1, ‖V (· , ·)‖2
BMO(�[T−ε,T ]) ≤ A

}
,

(3.18)

with

A = 2

γ 2 e
γ ‖ψ(·)‖∞ + 1

γ
e2(γ+1)‖ψ(·)‖∞+γ+2.

Proof For any (U (·), V (·, ·)) ∈ Bε, consider a family of BSDEs (parameterized by
t ∈ [0, T ]):

η(t, s) = ψ(t) +
∫ T

s
g(t, r ,U (r), ζ(t, r))dr

−
∫ T

s
ζ(t, r)dW (r), s ∈ [t, T ]. (3.19)

Note that U (·) is bounded. For almost all t ∈ [T − ε, T ], by Lemma 2.5, the
above BSDE admits a unique adapted solution (η(t, ·), ζ(t, ·)) ∈ L∞

F
(�;C[t, T ]) ×

BMO(t, T ). Let

Y (t) = η(t, t), Z(t, s) = ζ(t, s), (t, s) ∈ �[T − ε, T ]. (3.20)
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Then by Theorem 3.2, (Y (·), Z(·, ·)) ∈ L∞
F

(0, T ) × BMO(�[0, T ]) is the unique
adapted solution to BSVIE (3.15). The rest of the proof is divided into two steps.

Step 1 Estimate of ‖Y (·)‖∞.
For BSDE (3.19), by (A2), we have

|g(t, r ,U (r), ζ )| ≤ L
(
1 + |U (r)|) + γ

2
|ζ |2.

Thus, note that ε ∈ (0, 1
2L ], by Lemma 2.5 with h(s) = L(1 + |U (s)|), γ = γ and

β = 0, we have

eγ |η(t,s)| ≤ Es

[
eγ

(
|ψ(t)|+L

∫ T
s (1+|U (r)|)dr

)]
≤ e

γ
[
‖ψ(·)‖∞+Lε

(
1+‖U (·)‖L∞

F
(T−ε,T )

)]

≤ eγ (2‖ψ(·)‖∞+1), T − ε ≤ t ≤ s ≤ T , (3.21)

which is equivalent to

|η(t, s)| ≤ 2‖ψ(·)‖∞ + 1, T − ε ≤ t ≤ s ≤ T . (3.22)

Consequently, noting Y (t) = η(t, t), one has

‖Y (·)‖L∞
F

(T−ε,T ) ≤ 2‖ψ(·)‖∞ + 1.

Step 2 Estimate of ‖Z(· , ·)‖2
BMO(�[T−ε,T ]).

Define

φ(y) � γ −2(eγ |y| − γ |y| − 1
); y ∈ R. (3.23)

Then, we have

φ′(y) = γ −1[eγ |y| − 1]sgn(y), φ′′(y) = eγ |y|, (3.24)

which leads to φ′′(y) = γ |φ′(y)| + 1. Applying Itô’s formula to s 	→ φ(η(t, s)), we
have

φ(ψ(t)) − φ(η(t, s))

= −
∫ T

s
φ′(η(t, r))g(t, r ,U (r), ζ(t, r))dr + 1

2

∫ T

s
φ′′(η(t, r))|ζ(t, r)|2dr

(3.25)

+
∫ T

s
φ′(η(t, r))ζ(t, r)dW (r), s ∈ [t, T ].
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Taking conditional expectation on the both sides of (3.25) and by (A2), we have

φ(η(t, s)) + 1

2
Es

[ ∫ T

s
φ′′(η(t, r))|ζ(t, r)|2dr

]

≤ φ(‖ψ(·)‖∞) + LEs

[ ∫ T

s
|φ′(η(t, r))|(1 + |U (r)|)dr

]

+ γ

2
Es

[ ∫ T

s
|φ′(η(t, r))| |ζ(t, r)|2dr

]
.

Combining this with (3.24), one obtains

φ(η(t, s)) + 1

2
Es

[ ∫ T

s
|ζ(t, r)|2dr

]

≤ φ(‖ψ(·)‖∞) + LEs

[ ∫ T

s
|φ′(η(t, r))|(1 + |U (r)|)dr

]
. (3.26)

Then, noting that φ(η(t, s)) ≥ 0, we simply drop it to get

Es

[ ∫ T

s
|Z(t, r)|2dr

]
≤ 2φ(‖ψ(·)‖∞) + 2LEs

[ ∫ T

s
|φ′(η(t, r))|(1 + |U (r)|)dr

]

≤ 2

γ 2 e
γ ‖ψ(·)‖∞ + 2L

γ
εeγ (2‖ψ(·)‖∞+1)e2(‖ψ(·)‖∞+1)

≤ 2

γ 2 e
γ ‖ψ(·)‖∞ + 1

γ
e2(γ+1)‖ψ(·)‖∞+γ+2.

Hence,

‖Z(· , ·)‖2
BMO(�[T−ε,T ]) ≤ 2

γ 2 e
γ ‖ψ(·)‖∞ + 1

γ
e2(γ+1)‖ψ(·)‖∞+γ+2 = A. (3.27)

This proves our claim. ��
The next result is concerned with the local solution of BSVIE (3.14).

Proposition 3.7 Let (A2) hold and the map �(· , ·) be defined by (3.16). Then there
is ε > 0 such that �(· , ·) is a contraction on Bε, where Bε is defined by (3.18). This
implies that BSVIE (3.14) admits a unique adapted solution on [T − ε, T ].
Proof Let ε ∈ (0, 1

2L ]. For any (U (·), V (· , ·)), (Ũ (·), Ṽ (· , ·)) ∈ Bε, set

(Y (·), Z(·, ·)) = �(U (·), V (· , ·)) and (Ỹ (·), Z̃(·)) = �(Ũ (·), Ṽ (· , ·)); (3.28)

that is,

η(t, s) = ψ(t) +
∫ T

s
g(t, r ,U (r), ζ(t, r))ds −

∫ T

s
ζ(t, r)dW (r), (3.29)
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η̃(t, s) = ψ(t) +
∫ T

s
g(t, r , Ũ (r), ζ̃ (t, r))dr −

∫ T

s
ζ̃ (t, r)dW (r), (3.30)

and

Y (t) = η(t, t), Ỹ (t) = η̃(t, t), Z(t, r) = ζ(t, r), Z̃(t, r) = ζ̃ (t, r). (3.31)

By Lemma 3.6, (Y (·), Z(· , ·)) and (Ỹ (·), Z̃(· , ·)) ∈ Bε. By (A2), for almost all t ∈
[T − ε, T ], we can define the process θ(t, ·) in an obvious way such that:

θ(t, s) = 0, (t, s) ∈ [T − ε, T ] × [0, t], (3.32)

|θ(t, s)| ≤ L(1 + |ζ(t, s)| + |̃ζ (t, s)|), (t, s) ∈ �[T − ε, T ], (3.33)

g(t, s, Ũ (s), ζ(t, s)) − g(t, s, Ũ (s), ζ̃ (t, s)) = [ζ(t, s) − ζ̃ (t, s)]θ(t, s). (3.34)

Note that (Y (·), ζ(· , ·)), (Ỹ (·), ζ̃ (· , ·)) ∈ Bε. Thus, by (3.32)–(3.33),

‖θ(·, ·)‖2
BMO(�[T−ε,T ]) ≤ 3L2T + 3L2‖ζ(·, ·)‖2

BMO(�[T−ε,T ])
+ 3L2‖̃ζ (·, ·)‖2

BMO(�[T−ε,T ])]
≤ 3L2T + 6L2A. (3.35)

Thus, for almost all t ∈ [T −ε, T ], ∫ s
0 θ(t, r)dW (r); 0 ≤ s ≤ T is a BMOmartingale

and

∥∥∥∥
∫ ·

0
θ(t, r)dW (r)

∥∥∥∥
2

BMO(0,T )

≤ 3L2T + 6L2A. (3.36)

By Lemma 2.3, W (t; ·) defined by

W (t; s) � W (s) −
∫ s

0
θ(t, r)dr , s ∈ [0, T ] (3.37)

is a Brownian motion on [0, T ] under the equivalent probability measure Pt , which is
defined by

dPt � E{θ(t, ·)}T dP. (3.38)

Denote the expectation in P̄t by EP̄t . Combining (3.29), (3.30), and (3.34)–(3.37), we
have

η(t, s) − η̃(t, s) +
∫ T

s
[ζ(t, r) − ζ̃ (t, r)]dW (t; r)

=
∫ T

s

[
g(t, r ,U (r), ζ(t, r)) − g(t, r , Ũ (r), ζ(t, r))

]
dr . (3.39)
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Taking square and then taking conditional expectation with respect to P̄t on the both
sides of the above equation, we have (noting T − ε ≤ t ≤ s ≤ T )

|η(t, s) − η̃(t, s)|2 + E
P̄t
s

[ ∫ T

s
|ζ(t, r) − ζ̃ (t, r)|2dr

]

= E
P̄t
s

{[ ∫ T

s

(
g(t, r ,U (r), ζ(t, r)) − g(t, r , Ũ (r), ζ(t, r))

)
dr

]2}

≤ E
P̄t
s

{[ ∫ T

s

(
L|U (r) − Ũ (r)|

)
dr

]2}
(3.40)

≤ L2(T − t)2‖U (·) − Ũ (·)‖2L∞
F

(T−ε,T )

≤ L2ε2‖U (·) − Ũ (·)‖2L∞
F

(T−ε,T ).

Let s = t , by (3.31) and (3.40), we have

‖Y (·) − Ỹ (·)‖2L∞
F

(T−ε,T ) ≤ L2ε2‖U (·) − Ũ (·)‖2L∞
F

(T−ε,T ). (3.41)

Also, by (3.31), (3.40), (3.36), and Lemma 2.4, there is a constantC (which is depend-
ing on ‖ψ(·)‖∞ and is independent of t) such that

sup
s∈[t,T ]

Es

[ ∫ T

s
|Z(t, r) − Z̃(t, r)|2dr

]
= sup

s∈[t,T ]
Es

[ ∫ T

s
|ζ(t, r) − ζ̃ (t, r)|2dr

]

≤ C sup
s∈[t,T ]

E
P̄t
s

[ ∫ T

s
|ζ(t, r) − ζ̃ (t, r)|2dr

]
≤ CL2ε2‖U (·) − Ũ (·)‖2L∞

F
(T−ε,T ).

(3.42)

Thus,

‖Z(·, ·) − Z̃(·, ·)‖2
BMO(�[T−ε,T ]) ≤ CL2ε2‖U (·) − Ũ (·)‖2L∞

F
(T−ε,T ). (3.43)

Combining (3.41)–(3.43), we see that for some small ε > 0, the map �(· , ·) is a
contraction on the set Bε. Hence, BSVIE (3.14) admits a unique adapted solution on
[T − ε, T ]. ��

Let us make some comments on the above local existence of the unique adapted
solution.
We have seen that (Y (s), Z(t, s)) is defined for (t, s) ∈ �[T − ε, T ], the region
marked 1© in the Fig. 1. Now, for any t ∈ [0, T −ε], we can rewrite our Type-I BSVIE
as follows:

Y (t) = ψT−ε(t) +
∫ T−ε

t
g(t, s,Y (s), Z(t, s))ds

−
∫ T−ε

t
Z(t, s)dW (s), t ∈ [0, T − ε], (3.44)
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Fig. 1 Type-I

where

ψT−ε(t) = ψ(t) +
∫ T

T−ε

g(t, s,Y (s), Z(t, s))ds

−
∫ T

T−ε

Z(t, s)dW (s), t ∈ [0, T − ε]. (3.45)

If ψT−ε(·) ∈ L∞
FT−ε

(0, T − ε), then (3.44) is a BSVIE on [0, T − ε]. However, unlike
BSDEs, having (Y (s), Z(t, s)) defined on �[T − ε, T ], ψT−ε(t); t ∈ [0, T − ε]
has still not been defined yet. Since, on the right-hand side of (3.45), although Y (s)
with s ∈ [T − ε, T ] has already been determined, Z(t, s) has not been defined for
(t, s) ∈ [0, T − ε] × [T − ε, T ], the region marked 2© in the Fig. 1, which is needed
to define ψT−ε(t). Moreover, we need that ψT−ε(t) is FT−ε-measurable (not just
FT -measurable). Hence, (3.45) is actually a stochastic Fredholm integral equation
(SFIE, for short) to be solved to determine ψT−ε(t); t ∈ [0, T − ε].

Now, we are at the position to prove Theorem 3.5.

Proof of Theorem 3.5 The proof will be divided into three steps.

Step 1 Estimate of |Y (·)|2.
For givenψ(·) ∈ L∞

FT
(0, T ), we can find a constant C̃ > 0 such that ‖ψ(·)‖2∞ ≤ C̃

and (by (A2))

|2xg(t, s, y, 0)| ≤ C̃ + C̃ |x |2 + C̃ |y|2, ∀(t, s, x, y) ∈ �[0, T ] × R × R. (3.46)

Let us consider the following (integral form of) ordinary differential equation:

α(t) = C̃ +
∫ T

t
C̃α(s)ds +

∫ T

t
C̃[α(s) + 1]ds, t ∈ [0, T ]. (3.47)
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It is easy to see that the unique solution to the above ordinary differential equation is
given by

α(t) =
(
C̃ + 1

2

)
e2C̃(T−t) − 1

2
, t ∈ [0, T ],

which is a (continuous) decreasing function. Thus,

‖ψ(·)‖2∞ ≤ C̃ = α(T ) ≤ α(0).

By Proposition 3.7, there exists an ε > 0 (depending on ‖ψ(·)‖∞) such that �(· , ·)
defined by (3.16) is a contraction on Bε. Therefore, a Picard iteration sequence con-
verges to the unique adapted solution (Y (·), Z(·, ·)) of the BSVIE on [T − ε, T ].
Namely, if we define:

{
(Y 0(·), Z0(·, ·)) = 0,
(Y k+1(·), Zk+1(·, ·)) = �(Y k(·), Zk(·, ·)), k ≥ 0; (3.48)

that is,

(Y 0(·), Z0(·, ·)) = 0,

ηk+1(t, s) = ψ(t) +
∫ T

s
g(t, r ,Y k(r), ζ k+1(t, r))dr −

∫ T

s
ζ k+1(t, r)dW (r),

Y k+1(t) = ηk+1(t, t), Zk+1(t, s) = ζ k+1(t, s), (t, s) ∈ �[T − ε, T ],

then

lim
k→∞ ‖(Y k(·), Zk(·, ·)) − (Y (·), Z(·, ·))‖L∞

F
(T−ε,T )×BMO(�[T−ε,T ]) = 0. (3.49)

Next, for almost all t ∈ [T − ε, T ], similar to (3.33), (3.34), (3.37), and (3.38), there
exists a process θk+1(t, ·) such that

g(t, r ,Y k(r), ζ k+1(t, r)) − g(t, r ,Y k(r), 0) = ζ k+1(t, r)θk+1(t, r), (3.50)

and

Wk+1(t; s) � W (s) −
∫ s

0
θk+1(t, r)dr , s ∈ [0, T ] (3.51)

is a Brownian motion on [0, T ] under the corresponding equivalent probability mea-
sure Pk+1

t defined by

P
k+1
t = E{θk+1(t, ·)}T dP.
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For simplicity, we denote Pk+1
t by P

k+1 here, suppressing the subscript t . The corre-
sponding expectation is denoted by E

k+1. It follows that

ηk+1(t, s) = ψ(t) +
∫ T

s
g(t, r ,Y k(r), ζ k+1(t, r))dr −

∫ T

s
ζ k+1(t, r)dW (r),

= ψ(t) +
∫ T

s
g(t, r ,Y k(r), 0)dr −

∫ T

s
ζ k+1(t, r)dWk+1(t; r). (3.52)

Applying the Itô formula to the map s 	→ |ηk+1(t, s)|2 and taking conditional expec-
tation Ek+1

τ = E
k+1[ · |Fτ ] for any τ ∈ [T − ε, s], by (3.46), we have

E
k+1
τ

[
|ηk+1(t, s)|2

]
+ E

k+1
τ

[ ∫ T

s
|ζ k+1(t, r)|2dr

]

= E
k+1
τ

[
|ψ(t)|2

]
+ E

k+1
τ

[ ∫ T

s
2ηk+1(t, r)g(t, r ,Y k(r), 0)dr

]
(3.53)

≤ C̃ + C̃
∫ T

s
E
k+1
τ

[
|ηk+1(t, r)|2

]
dr + C̃

∫ T

s

{
E
k+1
τ

[
|Y k(r)|2

]
+ 1

}
dr .

We now prove the following inequality by induction:

|Y k(t)|2 ≤ α(t), t ∈ [T − ε, T ], for any k ≥ 0. (3.54)

In fact, by (3.48), it is obvious to see |Y 0(t)|2 = 0 ≤ α(t). Suppose |Y k(t)|2 ≤ α(t)
for any t ∈ [T − ε, T ], then

E
k+1
τ

[
|ηk+1(t, s)|2

]

≤ C̃ + C̃
∫ T

s
E
k+1
τ

[
|ηk+1(t, r)|2

]
dr + C̃

∫ T

s
[α(r) + 1]dr . (3.55)

In light of (3.47), by the comparison theorem of ordinary differential equations, we
have

E
k+1
τ

[
|ηk+1(t, s)|2

]
≤ α(s). (3.56)

Let τ = s and s = t , we have

|Y k+1(t)|2 ≤ α(t), t ∈ [T − ε, T ]. (3.57)

Thus, by induction, (3.54) holds. Then by (3.49), we have

|Y (t)|2 ≤ α(t), t ∈ [T − ε, T ]. (3.58)

Step 2 A related stochastic Fredholm integral equation is solvable on [0, T − ε].
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We now solve SFIE (3.45) on [0, T − ε]. Let us introduce a family of BSDEs
parameterized by t ∈ [0, T − ε]:

η(t, s) = ψ(t) +
∫ T

s
g(t, r ,Y (r), ζ(t, r))dr

−
∫ T

s
ζ(t, r)dW (r), s ∈ [T − ε, T ]. (3.59)

By Lemma 2.5, the above BSDE admits a unique adapted solution (η(t, ·), ζ(t, ·)) on
[T − ε, T ]. Note that (3.58), similar to (3.56), we have

|η(t, s)|2 ≤ α(s), s ∈ [T − ε, T ]. (3.60)

Similar to (3.27), we have

esssup
t∈[0,T−ε]

‖ζ(t, ·)‖2
BMO([T−ε,T ]) < ∞. (3.61)

Let ψT−ε(t) = η(t, T − ε) and Z(t, s) = ζ(t, s), we have (ψT−ε(·), Z(·, ·)) ∈
L∞
FT−ε

(0, T − ε)×BMO([0, T − ε]× [T − ε, T ]) and (ψT−ε(·), Z(·, ·)) is a solution
to SFIE (3.45). Moreover, by (3.60), we have

|ψT−ε(t)|2 = |η(t, T − ε)|2 ≤ α(T − ε) ≤ α(0), t ∈ [0, T − ε]. (3.62)

Next, we will prove the solution to SFIE (3.45) is unique. Let

(ψT−ε(·), Z(·, ·)), (ψ̃T−ε(·), Z̃(·, ·))
∈ L∞

FT−ε
(0, T − ε) × BMO([0, T − ε] × [T − ε, T ]).

be two solutions to SFIE (3.45). Then

ψT−ε(t) − ψ̃T−ε(t) =
∫ T

T−ε

[
g(t, s, Y (s), Z(t, s)) − g(t, s, Y (s), Z̃(t, s))

]
ds

−
∫ T

T−ε

[
Z(t, s) − Z̃(t, s)

]
dW (s), t ∈ [0, T − ε]. (3.63)

For almost all t ∈ [0, T − ε], similar to (3.33), (3.34), (3.37), and (3.38), there is a
process θ̃ (t, ·) such that:

g(t, s,Y (s), Z(t, s)) − g(t, s,Y (s), Z̃(t, s)) = [Z(t, s) − Z̃(t, s)]θ̃ (t, s), (3.64)

and

W (t; s) � W (s) −
∫ s

0
θ̃ (t, r)dr , s ∈ [0, T ] (3.65)
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is a Brownian motion on [0, T ] under the corresponding equivalent probability mea-
sure Pt . The corresponding expectation is denoted by E

P̄t . Combining (3.63)–(3.65),
we have

ψT−ε(t) − ψ̃T−ε(t)

= −
∫ T

T−ε

[
Z(t, s) − Z̃(t, s)

]
dW (t; s), t ∈ [0, T − ε]. (3.66)

Taking conditional expectation E
P̄t
T−ε[ · ] ≡ E

P̄t [ · |FT−ε] on the both sides of the
equation (3.66), we have

E
P̄t
T−ε

[
ψT−ε(t) − ψ̃T−ε(t)

]
= 0, t ∈ [0, T − ε]. (3.67)

Note that ψT−ε(t) is FT−ε-adapted for any t ∈ [0, T − ε]. It follows that

ψT−ε(t) = ψ̃T−ε(t), a.s., t ∈ [0, T − ε]. (3.68)

By (3.66)–(3.68), we have

∫ T

T−ε

[
Z(t, s) − Z̃(t, s)

]
dW (t; s) = 0, t ∈ [0, T − ε], (3.69)

which implies

Z(t, s) = Z̃(t, s), a.s., (t, s) ∈ [0, T − ε] × [T − ε, T ]. (3.70)

Combining (3.68)–(3.70), SFIE (3.45) admits a unique solution.

Step 3 Complete the proof by induction.
Combining Steps 1 and 2, we have uniquely determined

⎧⎨
⎩

Y (t), t ∈ [T − ε, T ],
Z(t, s), (t, s) ∈ �[T − ε, T ]

⋃ (
[0, T − ε] × [T − ε, T ]

)
.

(3.71)

Now, we consider BSVIE (3.44) on [0, T − ε]. By (3.62), we see that the above
procedure can be repeated. We point out that the introduction of α(·) is to uniformly
control the terminal state ψ(T − ε), ψ(T − 2ε), etc. Then we can use induction to
finish the proof of the existence and uniqueness of adapted solution to BSVIE (3.14).��
Remark 3.8 When the terminal condition ψ(·) is bounded, the well-posedness of
QBSVIE (3.14) is established by Theorem 3.5. If ψ(·) is unbounded, the unbound-
edness of ψ(·) will bring some essential difficulties in establishing the solvability of
QBSVIE (3.14). At the moment, we are not able to overcome the difficulties. We hope
to come back in our future publications.
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We now would like to look at some better regularity for the adapted solution of
BSVIEs under additional conditions. More precisely, we introduce the following
assumption.

Theorem 3.9 Let (A2)–(A3) hold. Then for any ψ(·) ∈ L∞
FT

(�;CU [0, T ]), BSVIE
(3.14) admits a unique adapted solution (Y (·), Z(·, ·)) ∈ L∞

F
(�;C[0, T ]) ×

BMO(�[0, T ]).
Proof Without loss of generality, let us assume that

|ψ(t ′) − ψ(t)| ≤ ρ(|t − t ′|), ∀ t, t ′ ∈ [0, T ],

with the same modulus of continuity ρ(·) given in (A3).
By Theorem 3.5, BSVIE (3.14) admits a unique adapted solution (Y (·), Z(·, ·)) ∈

L∞
F

(0, T ) × BMO(�[0, T ]). We just need to prove that Y (·) ∈ L∞
F

(�;C[0, T ]),
i.e., Y (·) is continuous. Consider the following family of BSDEs (parameterized by
t ∈ [0, T ]):

η(t, s) = ψ(t) +
∫ T

s
g(t, r ,Y (r), ζ(t, r))dr

−
∫ T

s
ζ(t, r)dW (r), s ∈ [0, T ]. (3.72)

By Lemma 2.5, for any t ∈ [0, T ], BSDE (3.72) admits a unique adapted solution
(η(t, ·), ζ(t, ·)) ∈ L∞

F
(�;C[0, T ]) × BMO(0, T ). By Theorem 3.5, we have Y (t) =

η(t, t), Z(t, s) = ζ(t, s) for any (t, s) ∈ �[0, T ]. Now, let 0 ≤ t < t ′ ≤ T . Similar
to (3.33), (3.34), (3.37), and (3.38), there is a process θ(t, t ′; ·) such that

g(t ′, s,Y (s), ζ(t, s)) − g(t ′, s,Y (s), ζ(t ′, s))
= [ζ(t, s) − ζ(t ′, s)]θ(t, t ′; s), (3.73)

and

W (t, t ′; s) � W (s) −
∫ s

0
θ(t, t ′; r)dr , s ∈ [0, T ] (3.74)

is a Brownian motion on [0, T ] under the corresponding equivalent probability mea-
sure Pt,t ′ . The corresponding expectation is denoted by E

Pt,t ′ . Combining (3.72),
(3.73), and (3.74), we have

η(t, s) − η(t ′, s) = ψ(t) − ψ(t ′) −
∫ T

s
[ζ(t, r) − ζ(t ′, r)]dW (t, t ′; r)

+
∫ T

s
[g(t, r ,Y (r), ζ(t, r)) − g(t ′, r ,Y (r), ζ(t, r))]dr .
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Taking conditional expectation E
Pt,t ′
s [ · ] ≡ E

Pt,t ′
s [ · |Fs] on the both sides of the above

equation, we have

η(t, s) − η(t ′, s) = E
Pt,t ′
s

[
ψ(t) − ψ(t ′) +

∫ T

s

(
g(t, r ,Y (r), ζ(t, r))

− g(t ′, r ,Y (r), ζ(t, r))
)
dr

]
.

Combining this with (A3), by Lemma 2.4, we have

|η(t, s) − η(t ′, s)|

≤ E
Pt,t ′
s

[
|ψ(t) − ψ(t ′)| +

∫ T

s
|g(t, r ,Y (r), ζ(t, r)) − g(t ′, r ,Y (r), ζ(t, r))|dr

]

≤ ρ(|t − t ′|) + ρ(|t − t ′|)EPt,t ′
s

[ ∫ T

s
(1 + |Y (s)| + |ζ(t, r)|)dr

]

≤ C(1 + ‖Y (·)‖L∞
F

(0,T ))ρ(|t − t ′|) + Cρ(|t − t ′|)EPt,t ′
s

[ ∫ T

s
|ζ(t, r)|2dr

]

≤ C(1 + ‖Y (·)‖L∞
F

(0,T ))ρ(|t − t ′|) + Cρ(|t − t ′|)‖ζ(t, ·)‖BMOPt,t ′ (t,T )

≤ C(1 + ‖Y (·)‖L∞
F

(0,T ))ρ(|t − t ′|) + Cρ(|t − t ′|)‖ζ(t, ·)‖BMOP(t,T )

≤ C(1 + ‖Y (·)‖L∞
F

(0,T ) + ‖ζ(·, ·)‖BMOP(�[0,T ]))ρ(|t − t ′|)
= C(1 + ‖Y (·)‖L∞

F
(0,T ) + ‖Z(·, ·)‖BMOP(�[0,T ]))ρ(|t − t ′|),

where C > 0 is a generic constant (which could be different from line to line). This
leads to

lim
|t−t ′|→0

[
sup

s∈[0,T ]
|η(t, s) − η(t ′, s)|

]
= 0, a.s.

On the other hand, since η(t, ·) ∈ L∞
F

(�;C[0, T ]) for any t ∈ [0, T ], one has

lim
|s−s′|→0

|η(t, s) − η(t, s′)| = 0, ∀t ∈ [0, T ], a.s. (3.75)

It follows that (t, s) 	→ η(t, s) is continuous, i.e.,

lim
(t ′,s′)→(t,s)

|η(t ′, s′) − η(t, s)| = 0, ∀(t, s) ∈ [0, T ]2, a.s.

Consequently, t 	→ η(t, t) = Y (t) is continuous. ��
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4 AdaptedM-Solution to Type-II QBSVIE

We now consider the following one-dimensional Type-II QBSVIE:

Y (t)=ψ(t)+
∫ T

t
g(t, s, Y (s), Z(t, s), Z(s, t))ds−

∫ T

t
Z(t, s)dW (s), t ∈[0, T ]. (4.1)

Since Z(s, t) is presented in the generator g(·), we shall consider the adapted M-
solution. Let us first introduce the following assumption:

(A4) Let the generator g : �[0, T ] ×R×R×R× � → R be B(�[0, T ] ×R×R×
R) ⊗FT -measurable such that s 	→ g(t, s, y, z, z′) is F-progressively measurable on
[t, T ] for all (t, y, z, z′) ∈ [0, T ] × R × R × R. There exist two constants L and γ

such that:

|g(t, s, y, z, z′)| ≤ L(1 + |y|) + γ

2
|z|2, ∀(t, s, y, z, z′) ∈ �[0, T ] × R × R × R;

|g(t, s, y1, z1, z′1) − g(t, s, y2, z2, , z
′
2)|

≤ L
(
|y1 − y2| + (1 + |z1| + |z2|)|z1 − z2| + |z′1 − z′2|

)
,

∀(t, s, yi , zi , z
′
i ) ∈ �[0, T ] × R × R × R, i = 1, 2.

Note that in (A4), we have assumed that z′ 	→ g(t, s, y, z, z′) is bounded. This
will allow us to use the results for Type-I QBSVIEs. Therefore, the following result
can be regarded as a byproduct of the results for Type-I QBSVIEs from the previous
section. The case that allowing z′ 	→ g(t, s, y, z, z′) to be unbounded seems to be
more difficult and might be treated in our future investigations. Now, here is the main
result of this section.

Theorem 4.1 Let (A4) hold. Then for any ψ(·) ∈ L∞
FT

(0, T ), Type-II QBSVIE (4.1)

admits a unique adapted M-solution (Y (·), Z(·, ·)) ∈ M2[0, T ]⋂ (
L∞
F

(0, T )×
BMO(�[0, T ])).

Proof For any (y(·), z(·, ·)) ∈ M2[0, T ], consider the following BSVIE:

Y (t) = ψ(t) +
∫ T

t
g(t, s,Y (s), Z(t, s), z(s, t))ds

−
∫ T

t
Z(t, s)dW (s), t ∈ [0, T ]. (4.2)

In light of (A4), by Theorem 3.5, BSVIE (4.2) admits a unique adapted solution
(Y (·), Z(·, ·)) ∈ L∞

F
(0, T )×BMO(�[0, T ]). Determine Z(s, t); (t, s) ∈ �[0, T ] by

martingale representation theorem, i.e.,

Y (s) = E[Y (s)] +
∫ s

0
Z(s, t)dW (t), s ∈ [0, T ].
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This means that BSVIE (4.2) admits a unique adapted M-solution (Y (·), Z(·, ·)) ∈
M2[0, T ]. Thus the map

�̃(y(·), z(·, ·)) � (Y (·), Z(·, ·)), (y(·), z(·, ·)) ∈ M2(0, T ) (4.3)

is well-defined. In order to prove BSVIE (4.1) admits a unique adapted M-solution,
we need to prove that �̃(· , ·) has a fixed point inM2[0, T ]. The proof is divided into
two steps.

Step 1 There is an ε > 0 such that �̃(·, ·) is a contraction onM2[T − ε, T ] and hence
BSVIE (4.1) admits a unique adapted M-solution on [T − ε, T ].

For any (y(·), z(·, ·)), (ỹ(·), z̃(·, ·)) ∈ M2[T − ε, T ], with ε > 0 undetermined,
set

(Y (·), Z(·, ·)) = �̃(y(·), z(·, ·)), (Ỹ (·), Z̃(· , ·)) = �̃(ỹ(·), z̃(·, ·)); (4.4)

that is, for t ∈ [T − ε, T ],

Y (t) = ψ(t) +
∫ T

t
g(t, s,Y (s), Z(t, s), z(s, t))ds −

∫ T

t
Z(t, s)dW (s), (4.5)

Ỹ (t) = ψ(t) +
∫ T

t
g(t, s, Ỹ (s), Z̃(t, s), z̃(s, t))ds −

∫ T

t
Z̃(t, s)dW (s), (4.6)

and

Y (s) = E[Y (s)|FT−ε] +
∫ s

T−ε

Z(s, t)dW (t), s ∈ [T − ε, T ], (4.7)

Ỹ (s) = E[Ỹ (s)|FT−ε] +
∫ s

T−ε

Z̃(s, t)dW (t), s ∈ [T − ε, T ]. (4.8)

Similar to Lemma 3.6, noting that z′ 	→ g(t, s, y, z, z′) is bounded, there is an ε > 0
such that �̃(y(·), z(· , ·)) ∈ Bε for any (y(·), z(· , ·)) ∈ M2(T − ε, T ), where Bε is
defined by (3.18). Thus, we have

(Y (·), Z(· , ·)), (Ỹ (·), Z̃(· , ·)) ∈ Bε. (4.9)

By (A4), for any t ∈ [T − ε, T ], there is a process θ(t, ·) such that:

θ(t, s) = 0, t ∈ [T − ε, T ], s ∈ [0, t], (4.10)

|θ(t, s)| ≤ L(1 + |Z(t, s)| + |Z̃(t, s)|), (t, s) ∈ �[T − ε, T ], (4.11)

g(t, s, Ỹ (s), Z(t, s), z̃(s, t)) − g(t, s, Ỹ (s), Z̃(t, s), z̃(s, t))

= [Z(t, s) − Z̃(t, s)]θ(t, s), (t, s) ∈ �[T − ε, T ]. (4.12)

Similar to (3.36), we have

‖θ(·, ·)‖2
BMO(�[T−ε,T ]) ≤ 3L2T + 6L2A. (4.13)
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For almost all t ∈ [T − ε, T ], by Lemma 2.3, W (t; ·) defined by

W (t; s) � W (s) −
∫ s

0
θ(t, r)dr , s ∈ [0, T ] (4.14)

is a Brownian motion on [0, T ] under the equivalent probability measure Pt , which is
defined by

dPt � E{θ(t, ·)}T dP. (4.15)

The corresponding expectation is denoted by EP̄t . Combining (4.5)–(4.6) and (4.12)–
(4.14), we have

Y (t) − Ỹ (t) +
∫ T

t
[Z(t, s) − Z̃(t, s)]dW (t, s)

=
∫ T

t

[
g(t, s,Y (s), Z(t, s), z(s, t)) − g(t, s, Ỹ (s), Z(t, s), z̃(s, t))

]
ds. (4.16)

Taking square and then taking the conditional expectation E
P̄t
t [ · ] = E

P̄t [ · |Ft ], we
have

|Y (t) − Ỹ (t)|2 + E
P̄t
t

[ ∫ T

t
|Z(t, s) − Z̃(t, s)|2ds

]

= E
P̄t
t

[ ∫ T

t

(
g(t, s,Y (s), Z(t, s), z(s, t)) − g(t, s, Ỹ (s), Z(t, s), z̃(s, t))

)
ds

]2

≤ L2
E
P̄t
t

[ ∫ T

t

(
|Y (s) − Ỹ (s)| + |z(s, t) − z̃(s, t)|

)
ds

]2
. (4.17)

By (Y (·), Z(·, ·)), (Ỹ (·), Z̃(·, ·)) ∈ Bε and Lemma 2.4, there is a constant C > 0
(which is depending on ‖ψ(·)‖∞ and is independent of t) such that

|Y (t) − Ỹ (t)|2 + Et

[ ∫ T

t
|Z(t, s) − Z̃(t, s)|2ds

]

≤ CEt

[ ∫ T

t

(
|Y (s) − Ỹ (s)| + |z(s, t) − z̃(s, t)|

)
ds

]2

≤ C(T − t)Et

[ ∫ T

t

(
|Y (s) − Ỹ (s)|2 + |z(s, t) − z̃(s, t)|2

)
ds

]
. (4.18)

Thus, integrating the above on [T − ε, T ], we obtain

E

∫ T

T−ε

|Y (t) − Ỹ (t)|2dt + E

∫ T

T−ε

∫ T

t
|Z(t, s) − Z̃(t, s)|2dsdt
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Fig. 2 Type-II

≤ CεE

∫ T

T−ε

∫ T

t

[
|Y (s) − Ỹ (s)|2 + |z(s, t) − z̃(s, t)|2

]
dsdt, (4.19)

with a possible different constant C > 0. By the variation of constants formula, we
obtain

E

∫ T

T−ε

|Y (t) − Ỹ (t)|2dt + E

∫ T

T−ε

∫ T

t
|Z(t, s) − Z̃(t, s)|2dsdt

≤ CεE

∫ T

T−ε

∫ T

t
|z(s, t) − z̃(s, t)|2dsdt ≤ CεE

∫ T

T−ε

|y(t) − ỹ(t)|2dt . (4.20)

The constant appears above is generic (only depends on the constants L , γ , T , and
‖ψ(·)‖∞, and is independent of ε > 0). Therefore, when ε is small enough, �̃(·, ·) is
a contraction onM2(T − ε, T ). Consequently, BSVIE (4.1) admits a unique adapted
solution on [T −ε, T ]. Further, by (4.9), the unique adaptedM-solution (Y (·), Z(·, ·))
also belongs to L∞

F
(T − ε, T ) × BMO(�[T − ε, T ]).

The above determined Y (t) for t ∈ [T − ε, T ] and determined Z(t, s) for (t, s) ∈
�[T − ε, T ] (the region marked 1© in the Fig. 2) by using Type-I BSVIEs, and for
(t, s) ∈ �∗[T − ε, T ] (the region marked 3© in the Fig. 2) by using martingale
representation.

Step 2 BSVIE (4.1) admits a unique adapted M-solution on [0, T ].
By Step 1, BSVIE (4.1) admits a unique solution on [T − ε, T ]. For almost every

s ∈ [T −ε, T ],ET−ε[Y (s)] ∈ L2
FT−ε

(�), by martingale representation theorem, there

is a unique Z(·, ·) ∈ L2(T − ε, T ; L2
F
(0, T − ε)) such that:

ET−ε[Y (s)] = E[Y (s)| +
∫ T−ε

0
Z(s, t)dW (t), s ∈ [T − ε, T ]. (4.21)
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Hence, we have uniquely determined (Y (t), Z(t, s)) for (t, s) ∈ [T − ε, T ] × [0, T ]
(the region marked 1©, 3© and 4©) and the following is well-defined:

gT−ε(t, s, z)=g(t, s,Y (s), z, Z(s, t)), (t, s)∈[0, T − ε]×[T −ε, T ]. (4.22)

Note that [0, T − ε] × [T − ε, T ] is the region marked 2© in the above Fig. 2. Now,
consider the following SFIE:

ψT−ε(t) = ψ(t) +
∫ T

T−ε

gT−ε(t, s, Z(t, s))ds

−
∫ T

T−ε

Z(t, s)dW (s), t ∈ [0, T − ε]. (4.23)

Similar to the Step 2 of the proof of Theorem 3.5, SFIE (4.23) admits a unique solution
(ψT−ε(·), Z(·, ·)) on [0, T − ε] × [T − ε, T ] and the following estimate holds:

|ψT−ε(t)|2 ≤ α(0), t ∈ [0, T − ε], (4.24)

where α(·) solves an equation similar to (3.47). The above uniquely determined

⎧⎨
⎩

Y (t), t ∈ [T − ε, T ],
Z(t, s), (t, s) ∈

(
[T − ε, T ] × [0, T ]

) ⋃(
[0, T − ε] × [T − ε, T ]

)
.
(4.25)

Now, we consider

Y (t) = ψT−ε(t) +
∫ T−ε

t
g(t, s,Y (s), Z(t, s), Z(s, t))ds

−
∫ T−ε

t
Z(t, s)dW (s) (4.26)

on [0, T − ε]. Since ψT−ε(·) ∈ L∞
FT−ε

(0, T − ε), (4.26) is a BSVIE on [0, T − ε].
Then the above procedure can be repeated. Since the step-length ε > 0 can be fixed,
we then could use induction to complete the proof. ��

5 A Comparison Theorem for Type-I BSVIEs

Consider the following BSVIEs: For i = 1, 2,

Y i (t) = ψ i (t) +
∫ T

t
gi (t, s,Y i (s), Zi (t, s))ds

−
∫ T

t
Z i (t, s)dW (s), t ∈ [0, T ]. (5.1)
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We assume that the generators gi (·), i = 1, 2 of BSVIEs (5.1) satisfy (A2). Then
by Theorem 3.5, BSVIE (5.1) admits a unique adapted solution (Y i (·), Zi (·, ·)) ∈
L∞
F

(0, T ) × BMO(�[0, T ]) for any ψ i (·) ∈ L∞
FT

(0, T ). In order to study the com-
parison theorem of the solutions to BSVIE (5.1), we introduce the following BSVIE:

Ȳ (t) = ψ̄(t) +
∫ T

t
ḡ(t, s, Ȳ (s), Z̄(t, s))ds

−
∫ T

t
Z̄(t, s)dW (s), t ∈ [0, T ], (5.2)

with the generator ḡ(·) also satisfies (A2). Further, we adopt the following assumption.

(C) Let the generator ḡ : �[0, T ] × R × R × � → R satisfy that y 	→ ḡ(t, s, y, z)
is nondecreasing for any (t, s, z) ∈ �[0, T ] × R.

We present the comparison theorem for BSVIE (5.1) now.

Theorem 5.1 Let g1(·), g2(·) and ḡ(·) satisfy (A2) and let ḡ(·) satisfy (C). Suppose

g1(t, s, y, z) ≤ ḡ(t, s, y, z) ≤ g2(t, s, y, z),

∀(y, z) ∈ R × R, a.s., a.e. (t, s) ∈ �[0, T ]. (5.3)

Then for any ψ1(·), ψ2(·) ∈ L∞
FT

(0, T ) satisfying

ψ1(t) ≤ ψ2(t), a.s., a.e. t ∈ [0, T ], (5.4)

the corresponding unique adapted solutions (Y i (·), Zi (·, ·)), i = 1, 2 of BSVIEs (5.1)
satisfy

Y 1(t) ≤ Y 2(t), a.s., a.e. t ∈ [0, T ]. (5.5)

If, in addition, the generators g1(·), g2(·) and ḡ(·) satisfy (A3), and

g1(t, s, y, z) ≤ ḡ(t, s, y, z) ≤ g2(t, s, y, z),

∀(t, y, z) ∈ [0, T ] × R × R, a.s., a.e. s ∈ [0, T ]. (5.6)

Then for any ψ1(·), ψ2(·) ∈ L∞
FT

(�;CU [0, T ]) satisfying

ψ1(t) ≤ ψ2(t), t ∈ [0, T ], a.s., (5.7)

the corresponding unique adapted solutions (Y i (·), Zi (·, ·)), i = 1, 2 of BSVIEs (5.1)
satisfy

Y 1(t) ≤ Y 2(t), t ∈ [0, T ], a.s. (5.8)
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Proof Let ψ̄(·) ∈ L∞
FT

(0, T ) such that

ψ1(t) ≤ ψ̄(t) ≤ ψ2(t), a.s., a.e. t ∈ [0, T ]. (5.9)

Without loss of generality, let

‖ψ(·)‖∞ ≤ L, (5.10)

where ψ(·) = ψ1(·), ψ2(·), ψ̄(·). By Theorem 3.5, BSVIE (5.1) admits a unique
adapted solution (Y 1(·), Z1(·, ·)) ∈ L∞

F
(0, T )×BMO(�[0, T ]) for i = 1. Set Ỹ0(·) =

Y 1(·) and consider

Ỹ1(t) = ψ̄(t) +
∫ T

t
ḡ(t, s, Ỹ0(s), Z̃1(t, s))ds

−
∫ T

t
Z̃1(t, s)dW (s), t ∈ [0, T ]. (5.11)

By Theorem 3.2, there is a unique adapted solution (Ỹ1(·), Z̃1(·, ·)) ∈ L∞
F

(0, T ) ×
BMO(�[0, T ]) to the above BSVIE. By (5.3), we have

g1(t, s, Ỹ0(s), z) ≤ ḡ(t, s, Ỹ0(s), z), ∀z ∈ R, a.s., a.e. (t, s) ∈ �[0, T ]. (5.12)

Combining this and (5.9), by Theorem 3.3, for almost all t ∈ [0, T ], there exists a
measurable set �1

t ⊆ � satisfying P(�1
t ) = 0 such that

Ỹ0(t) = Y 1(t) ≤ Ỹ1(t), ω ∈ �\�1
t , a.e. t ∈ [0, T ]. (5.13)

Next, we consider the following BSVIE

Ỹ2(t) = ψ̄(t) +
∫ T

t
ḡ(t, s, Ỹ1(s), Z̃2(t, s))ds

−
∫ T

t
Z̃2(t, s)dW (s), t ∈ [0, T ]. (5.14)

Let (Ỹ2(·), Z̃2(·, ·)) be the unique solution to the above equation. Since y 	→
ḡ(t, s, y, z) is nondecreasing, by (5.13), we have

ḡ(t, s, Ỹ0(s), z) ≤ ḡ(t, s, Ỹ1(s), z), ∀z ∈ R, a.s., a.e. (t, s) ∈ �[0, T ]. (5.15)

Similar to the above, for almost everywhere t ∈ [0, T ], there exists a measurable set
�2

t ⊆ � satisfying P(�2
t ) = 0 such that

Ỹ1(t) ≤ Ỹ2(t), ω ∈ �\�2
t , a.e. t ∈ [0, T ]. (5.16)
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By induction, we can construct a sequence (Ỹk(·), Z̃k(·, ·)) and�k
t satisfyingP(�k

t ) =
0 such that

Ỹk+1(t) = ψ̄(t) +
∫ T

t
ḡ(t, s, Ỹk(s), Z̃k+1(t, s))ds

−
∫ T

t
Z̃k+1(t, s)dW (s), t ∈ [0, T ], (5.17)

and

Y 1(t) = Ỹ0(t) ≤ Ỹ1(t) ≤ Ỹ2(t) ≤ · · · ,

ω ∈ �\
( ⋃
k≥1

�k
t

)
, a.e. t ∈ [0, T ]. (5.18)

Note that P[�\(⋃k≥1 �k
t )] = 0. We may assume that

|ψ(t)| ≤ α(0), t ∈ [0, T ], (5.19)

where ψ(·) = ψ1(·), ψ2(·), ψ̄(·) and α(·) solves an ODE of form (3.47). By Propo-
sition 3.7, there is an ε > 0 such that Ỹk(·) is Cauchy in L∞

F
(T − ε, T ) and

lim
k→∞ ‖Ỹk(·) − Ȳ (·)‖L∞

F
(T−ε,T ) = 0. (5.20)

Combining (5.18) and (5.20), we have

Y 1(t) ≤ Ȳ (t), a.s., a.e. t ∈ [T − ε, T ]. (5.21)

Next, consider the following SFIEs:

ψ1,T−ε(t) = ψ1(t) +
∫ T

T−ε

g1(t, s,Y 1(s), Z1(t, s))ds

−
∫ T

T−ε

Z1(t, s)dW (s), t ∈ [0, T − ε]; (5.22)

ψ̄T−ε(t) = ψ̄(t) +
∫ T

T−ε

ḡ(t, s, Ȳ (s), Z̄(t, s))ds

−
∫ T

T−ε

Z̄(t, s)dW (s), t ∈ [0, T − ε]. (5.23)

Similar to the Step 2 in Theorem 3.5, the above SFIEs (5.22) and (5.23) admit unique
solutions (ψ1,T−ε(·), Z1(·, ·)), (ψ̄T−ε(·), Z̄(·, ·)) ∈ L∞

FT−ε
(0, T −ε)×BMO([0, T −

ε] × [T − ε, T ]), respectively. Similar to (3.62), we have

|ψ1,T−ε(t)| ≤ α(0), |ψ̄T−ε(t)| ≤ α(0), t ∈ [0, T − ε]. (5.24)
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For almost all t ∈ [0, T − ε], similar to (3.33)–(3.34) and (3.37)–(3.38), there is a
process θ(t, ·) such that:

g1(t, s,Y 1(s), Z1(t, s)) − g1(t, s,Y 1(s), Z̄(t, s))

= [
Z1(t, s) − Z̄(t, s)

]
θ(t, s), (5.25)

and

W (t; s) � W (s) −
∫ s

0
θ(t, r)dr , s ∈ [0, T ] (5.26)

is a Brownian motion on [0, T ] under the corresponding equivalent probability mea-
sure Pt . The corresponding expectation is denoted by E

P̄t . Combining (5.22)–(5.23)
and (5.25)–(5.26), we have

ψ1,T−ε(t) − ψ̄T−ε(t)

= ψ1(t) − ψ̄(t) +
∫ T

T−ε

[
g1(t, s,Y 1(s), Z̄(t, s)) − ḡ(t, s, Ȳ (s), Z̄(t, s))

]
ds

−
∫ T

T−ε

[
Z1(t, s) − Z̄(t, s)

]
dW (t; s), t ∈ [0, T − ε]. (5.27)

Since y 	→ ḡ(t, s, y, z) is nondecreasing for any (t, s, z) ∈ �[0, T ] × R, by (5.21),
we have

ḡ(t, s,Y 1(s), z) ≤ ḡ(t, s, Ȳ (s), z), (t, s, z) ∈ [0, T ] × [T − ε, T ] × R. (5.28)

Taking conditional expectation E
P̄t
t [ · ] ≡ E

P̄t [ · | · ], on the both sides of (5.27), by
(5.3), (5.28) and (5.21), we have

ψ1,T−ε(t) − ψ̄T−ε(t)

= E
P̄t
t

[
ψ1(t) − ψ̄(t) +

∫ T

T−ε

[
g1(t, s,Y 1(s), Z̄(t, s)) − ḡ(t, s, Ȳ (s), Z̄(t, s))

]
ds

]

≤ E
P̄t
t

[
ψ1(t) − ψ̄(t) +

∫ T

T−ε

[
g1(t, s,Y 1(s), Z̄(t, s)) − ḡ(t, s,Y 1(s), Z̄(t, s))

]
ds

]

≤ 0, t ∈ [0, T − ε]. (5.29)

Now, we consider the following BSVIEs:

y1(t) = ψ1,T−ε(t) +
∫ T−ε

t
g1(t, s, y1(s), z1(t, s))ds

−
∫ T−ε

t
z1(t, s)dW (s), t ∈ [0, T − ε]; (5.30)
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ȳ(t) = ψ̄T−ε(t) +
∫ T−ε

t
ḡ(t, s, ȳ(s), z̄(t, s))ds

−
∫ T−ε

t
z̄(t, s)dW (s), t ∈ [0, T − ε]. (5.31)

By Theorem 3.5, the above Eqs. (5.30), (5.31) admit unique solutions (y1(·), z1(·, ·)),
(ȳ(·), z̄(·, ·)) ∈ L∞

F
(0, T − ε) × BMO(�[0, T − ε]), respectively. By the Step 3 in

the proof of Theorem 3.5, we have

y1(t) =Y 1(t), z1(t, s) = Z1(t, s), (t, s) ∈ �[0, T − ε]; (5.32)

ȳ(t) =Ȳ (t), z̄(t, s) = Z̄(t, s), (t, s) ∈ �[0, T − ε]. (5.33)

Hence, by induction, we have

Y 1(t) ≤ Ȳ (t), a.s., a.e. t ∈ [0, T ]. (5.34)

Similarly, we can prove that

Ȳ (t) ≤ Y 2(t), a.s., a.e. t ∈ [0, T ]. (5.35)

Thus, the inequality (5.5) holds.
Next, by what we have proved,

Y 1(t) ≤ Y 2(t), a.s., t ∈ [0, T ]. (5.36)

Let {tk}k≥1 ⊆ [0, T ] be all the rational numbers in [0, T ]. For any fixed tk , by (5.36),
there is a �k ⊆ � satisfying P(�k) = 0 such that:

Y1(tk) ≤ Y2(tk), ω ∈ �\�tk . (5.37)

Let �̃ = ⋃
k≥1 �tk , then P(�̃) = 0. By (5.37), we have

Y1(t) ≤ Y2(t), t ∈ {tk}k≥1, ω ∈ �\�̃. (5.38)

By Theorem 3.9, there is a �̄ ⊆ � satisfying P(�̄) = 0 such Yi (· , ω), i = 1, 2 are
continuous for any ω ∈ �\�̄. For any fixed ω ∈ �\(�̃ ∪ �̄), by (5.38), we have

Y1(t, ω) ≤ Y2(t, ω), t ∈ {tk}k≥1. (5.39)

Since Yi (·, ω), i = 1, 2 are continuous on [0, T ] and {tk}k≥1 ⊆ [0, T ] is dense on
[0, T ], we have

Y1(t, ω) ≤ Y2(t, ω), t ∈ [0, T ]. (5.40)
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Note that P(�\(�̃ ∪ �̄)) = 0, we have

Y1(t) ≤ Y2(t), t ∈ [0, T ], a.s. (5.41)

This completes the proof. ��

6 Continuous-Time EquilibriumDynamic Risk Measures

We have seen the so-called equilibrium recursive utility process in the introduction
section, which serves as a very important motivation of studying BSVIEs. In this
section, we will look another closely related application of BSVIEs.

Static risk measures have been studied by many researchers. Among many of them,
we mention Artzner–Delbaen–Eber–Heath [5], Föllmer–Schied [19], and the refer-
ences cited therein. For discrete-time dynamic risk measures, we mention Riedel [36]
and Detlefsen–Scandolo [13], and the references cited therein.

We now look at continuous-time dynamic risk measures. Any ξ ∈ L∞
FT

(�) rep-
resents the payoff of certain European type contingent claim at the maturity time T .
According to El Karoui–Peng–Quenez [18], we introduce the following definition.

Definition 6.1 A map ρ : [0, T ] × L∞
FT

(�) → R is called a dynamic risk measure if
the following are satisfied:

(i) (Adaptiveness) For any ξ ∈ L∞
FT

(�), t 	→ ρ(t; ξ) is F-adapted;

(ii) (Monotonicity) For any ξ, ξ̄ ∈ L∞
FT

(�) with ξ ≥ ξ̄ , one has ρ(t; ξ) ≤ ρ(t; ξ̄ ),
for all t ∈ [0, T ];

(iii) (Translation Invariant) For any ξ ∈ L∞
FT

(�) and c ∈ R, ρ(t; ξ +c) = ρ(t; ξ)−c.

Further, ρ is said to be convex if the following holds:

(iv) (Convexity): ξ 	→ ρ(t; ξ) is convex;

and ρ is said to be coherent if the following are satisfied:

(v) (Positive Homogeneity): For any ξ ∈ L∞
FT

(�) and λ ≥ 0, ρ(t; λξ) = λρ(t; ξ);

(vi) (Subadditivity): For any ξ, ξ̄ ∈ L∞
FT

(�), ρ(t; ξ + ξ̄ ) ≤ ρ(t; ξ) + ρ(t; ξ̄ ).

Each item in the above definition can be naturally explained. For example, (ii)means
that between two gains, the one dominantly larger one has a smaller risk; (vi) means
that combining two investments will have smaller risk. The following is a combination
of the results from [18] and [24] (see also [7–9]).

Proposition 6.2 Let g : [0, T ] × R → R be measurable such that z 	→ g(t, z) is
convex and grow at most quadratically. Then for any ξ ∈ L∞

FT
(�), the following

BSDE:

Y (t) = −ξ +
∫ T

t
g(s, Z(s))ds −

∫ T

t
Z(s)dW (s), t ∈ [0, T ], (6.1)
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admits a unique adapted solution (Y (·), Z(·)) ≡ (Y (· ; ξ), Z(· ; ξ)). Let ρ : [0, T ] ×
L∞
FT

(�) → R be defined by the following:

ρ(t, ξ) = Y (t; ξ), (t, ξ) ∈ [0, T ] × L∞
FT

(�).

Then ρ is a dynamic convex risk measure.

One of the most interesting examples is the following.

Y (t) = −ξ +
∫ T

t

1

2γ
|Z(s)|2ds −

∫ T

t
Z(s)dW (s), t ∈ [0, T ].

The above admits a unique adapted solution (Y (·), Z(·)), and

ρ(t, ξ) ≡ Y (t) = γ lnE
[
e− ξ

γ

∣∣∣ Ft

]
� eγ,t (ξ), t ∈ [0, T ],

is called a dynamic entropic risk measure for ξ .
Now, if we have an FT -measurable wealth flow process ψ(·) instead of just a

terminal payoff ξ , then formally, the corresponding dynamic risk should be measured
via the following parameterized BSDE:

Y (t, r) = −ψ(t) +
∫ T

r
g(s,Y (t, s), Z(t, s))ds

−
∫ T

r
Z(t, s)dW (s)), (r , t) ∈ �[0, T ],

and the current dynamic risk should be Y (t; t). But, similar to the introduction section,
simply taking r = t in the above leads to the following:

Y (t, t) = −ψ(t) +
∫ T

t
g(s,Y (t, s), Z(t, s))ds −

∫ T

t
Z(t, s)dW (s)), t ∈ [0, T ],

which is not a closed form equation for the pair (Y (t, t), Z(t, s)) of processes. As
we indicated in the introduction, Y (t, r) above has some hidden time-inconsistency
nature. One expects that the dynamic risk measure should be time-consistent. Namely,
the value of the risk today (for a process ψ(·)) should match the one that one expected
yesterday. Therefore, it is natural to use BSVIEs to describe/measure the dynamic risk
of the process ψ(·). We now make this precise.

We call ψ(·) ∈ L∞
FT

(0, T ) a position process (a name borrowed from [36]), and
ψ(t) could represent the total (nominal) value of certain portfolio process whichmight
be a combination of certain (say, European type) contingent claims (which are mature
at time T , thus they are usually only FT -measurable), some current cash flows (such
as dividends to be received, premia to be paid), positions of stocks, mutual funds,
and bonds, and so on, at time the current time t . Thus, the position process ψ(·) is
merely FT -measurable (not necessarily F-adapted). Now, mimicking Definition 6.1,
we introduce the following.
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Definition 6.3 A map ρ : [0, T ] × L∞
FT

(0, T ) → L∞
F

(0, T ) is called an equilibrium
dynamic risk measure if the following hold:

(i) (Past Independence) For any ψ1(·), ψ2(·) ∈ L∞
FT

(0, T ), if

ψ1(s) = ψ2(s), a.s., a.e. s ∈ [t, T ],

for some t ∈ [0, T ), then

ρ(t;ψ1(·)) = ρ(t;ψ2(·)), a.s.

(ii) (Monotonicity) For any ψ1(·), ψ2(·) ∈ L∞
FT

(0, T ), if

ψ1(s) ≤ ψ2(s), a.s., a.e. s ∈ [t, T ],

for some t ∈ [0, T ), then

ρ(s;ψ1(·)) ≥ ρ(s;ψ2(·)), a.s., s ∈ [t, T ].

(iii) (Translation Invariance) There exists a deterministic integrable function r(·)
such that for any ψ(·) ∈ L∞

FT
(0, T ),

ρ(t;ψ(·) + c) = ρ(t;ψ(·)) − ce
∫ T
t r(s)ds, a.s., t ∈ [0, T ].

Further, ρ is said to be convex if the following holds:
(iv) (Convexity) For any ψ1(·), ψ2(·) ∈ L∞

FT
(0, T ) and λ ∈ [0, 1],

ρ(t; λψ1(·) + (1 − λ)ψ2(·)) ≤ λρ(t;ψ1(·)) + (1 − λ)ρ(t;ψ2(·)), a.s., t ∈ [0, T ].

And ρ is said to be coherent if the following are satisfied:
(v) (Positive Homogeneity) For any ψ(·) ∈ L∞

FT
(0, T ) and λ > 0,

ρ(t; λψ(·)) = λρ(t;ψ(·)), a.s., t ∈ [0, T ].

(vi) (Subadditivity) For any ψ1(·), ψ2(·) ∈ L∞
FT

(0, T ),

ρ(t;ψ1(·) + ψ2(·)) ≤ ρ(t;ψ1(·)) + ρ(t;ψ2(·)), a.s., t ∈ [0, T ].

The word “equilibrium” indicates the time-consistency of the risk measure ρ which
is some kind of modification of the naive one. Similar situation has happened in the
study of time-inconsistent optimal control problems (see [49]). The meaning of each
item is similar to the static case. In (iii), the function r(·) is the riskless interest rate.

Let us now look at the following Type-I BSVIE:

Y (t) = −ψ(t) +
∫ T

t
g(t, s,Y (s), Z(t, s))ds
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−
∫ T

t
Z(t, s)dW (s), t ∈ [0, T ]. (6.2)

We have the following result.

Proposition 6.4 Let the generator be given by

g(t, s, y, z) ≡ r(s)y + g0(t, s, z); (t, s, y, z) ∈ �[0, T ] × R × R,

satisfying (A2), where r(·) is a non-negative deterministic function. Then the following
are true:

(i) The map ψ(·) 	→ ρ(t;ψ(·)) is translation invariant.
(ii) Suppose z 	→ g0(t, s, z) is convex, so is ψ(·) 	→ ρ(t;ψ(·)).
(iii) Suppose z 	→ g0(t, s, z) is positively homogeneous and sub-additive, so is

ψ(·) 	→ ρ(t;ψ(·)).

By Theorem 5.1, the proof of Proposition 6.4 is very similar to [47, Corollary 3.4,
Proposition 3.5], we omit them here. By Proposition 6.4, we can construct a large class
of equilibrium dynamic risk measures by choosing suitable generator g(·) of BSVIE
(6.2). More precisely, we have the following result.

Theorem 6.5 Let the generator g(t, s, y, z) ≡ r(s)y + g0(t, s, z); (t, s, y, z) ∈ � ×
R × R satisfy (A2), where r(·) is a non-negative deterministic function and z 	→
g0(t, s, z) is convex, then ψ(·) 	→ ρ(t;ψ(·)) is an equilibrium dynamic convex risk
measure. If z 	→ g0(t, s, z) is positively homogeneous and sub-additive, then ψ(·) 	→
ρ(t;ψ(·)) is an equilibrium dynamic coherent risk measure.

From Proposition 6.4, the proof of the above result is obvious. According to the
above results, we can have some examples of equilibrium dynamic risk measures by
the choices of g0(t, s, z): If

g0(t, s, z) = ḡ(t, s)|z|, ḡ(t, s) ≥ 0,

then, it is sub-additive and positively homogeneous in z. The corresponding equilib-
rium dynamic risk measure is coherent. If

g0(t, s, z) = ḡ(t, s)
√
1 + |z|2, ḡ(t, s) ≥ 0,

then, it is convex in z. The corresponding equilibrium dynamic risk measure is convex.
If

g0(t, s, z) = ḡ(t, s)|z|2, ḡ(t, s) ≥ 0,

then one has an entropy type equilibrium dynamic risk measure.
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7 Concluding Remarks

Recursive utility process (or stochastic differential utility process) and dynamic risk
measures for terminal payoff can be described by the adapted solutions to proper
BSDEs. For FT -measurable position process ψ(·), instead of the terminal payoff ξ ,
one could also try to find its recursive utility process and/or dynamic risk. One possibil-
ity is again to use BSDEs. However, one immediately finds that the resulting processes
(recursive utility or dynamic riskmeasure) are kind of time-inconsistent nature. Type-I
BSVIEs turn out to be a proper tool for describing them. This serves one of major
motivations of studying BSVIEs. Recall from [46,48], we know that mathematical
extension of BSDEs and optimal control of forward stochastic Volterra integral equa-
tions are other two motivations. To meet the needs for the equilibrium recursive utility
processes and equilibrium dynamic risk measures, we have to allow the generator of
the BSVIE to have a quadratic growth in Z(t, s).We have developed a theory of Type-I
QBSVIEs, including the well-posedness, regularity and a comparison theorem, etc.
in this paper. As a byproduct, we also have obtained the well-posedness of Type-II
QBSVIEs. Then a theory of equilibrium recursive utility and equilibrium dynamic
risk measures are successfully established with the results of Type-I QBSVIEs.

Acknowledgements Theauthorswould like to thank twoanonymous referees for their suggestive comments
which leads to the current version of the paper.

8 Appendix

In this appendix, we will sketch an argument supporting the BSVIE model for the
equilibrium recursive utility process/equilibrium dynamic risk measure of a position
process ψ(·). The idea is adopted from [49]. Let ψ(·) be a continuousFT -measurable
process. Let � = {tk | 0 ≤ k ≤ N } be a partition of [0, T ] with 0 = t0 < t1 < · · · <

tN−1 < tN = T . The mesh size of � is denoted by ‖�‖ � max
0≤i≤N−1

|ti+1 − ti |. Let

ψ�(t) =
N∑

k=1

ψk1(tk−1,tk ](t),

with

ψk = ψ(tk) ∈ L2
FT

(�;R), k = 1, 2, . . . , N .

We assume that

lim‖�‖→0
sup

t∈[0,T ]
E|ψ�(t) − ψ(t)|2 = 0.

We first try to specify the time-consistent recursive utility process for ψ�(·), making
use of BSDEs. Then let ‖�‖ → 0 to get our BSVIE time-consistent recursive utility
process model for ψ(·).
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For {ψ�(t) | t ∈ (tN−1, tN ]} = {ψN }, its recursive utility at t ∈ [tN−1, tN ] is given
by Y N (t), where (Y N (·), ZN (·)) is the adapted solution to the following BSDE:

Y N (t) = ψN +
∫ T

t
g(s,Y N (s), ZN (s))ds

−
∫ T

t
Z N (s)dW (s), t ∈[tN−1, tN ]. (8.1)

Here, g : [0, T ] × R × R → R is an aggregator. Next, for {ψ�(t) | t ∈ (tN−2, tN ]},
the recursive utility at t ∈ (tN−2, tN−1] is denoted by Y N−1(t) and we should have

Y N−1(t)

= ψN−1 +
∫ T

tN−1

g(s,Y N (s), ZN−1(s))ds +
∫ tN−1

t
g(s,Y N−1(s), ZN−1(s))ds

−
∫ T

t
Z N−1(s)dW (s), t ∈ (tN−2, tN−1]. (8.2)

Note that due to the time-consistent requirement,we have to use the already determined
Y N (·) in the drift term over [tN−1, T ]. On the other hand, since ψN−1 is still merely
FT -measurable, (8.2) has to be solved in [t, T ] although t ∈ (tN−2, tN−1]. Hence, in
the martingale term, ZN−1(·) has to be free to choose over the entire [tN−2, T ] and the
already determined ZN (·) cannot be forced to use there (on [tN−1, T ]). Whereas, in
the drift term over [tN−1, T ], it seems to be fine to either use already determined ZN (·)
or to freely choose ZN−1(·), since the time-inconsistent requirement is not required
for Z part. However, we use ZN−1(·) in the drift, which will enable us to avoid a
technical difficulty for BSVIEs later.

Similarly, the recursive utility on (tN−3, tN−2] should be

Y N−2(t)

= ψN−2 +
∫ T

tN−1

g(s,Y N (s), ZN−2(s))ds +
∫ tN−1

tN−2

g(s,Y N−1(s), ZN−2(s))ds

+
∫ tN−2

t
g(s,Y N−2(s), ZN−2(s))ds −

∫ T

t
Z N−2(s)dW (s), t ∈ (tN−3, tN−2].

This procedure can be continued inductively. In general, we have

Y k(t) = ψk +
N∑

i=k+1

∫ ti

ti−1

g(s,Y i (s), Zk(s))ds +
∫ tk

t
g(s,Y k(s), Zk(s))ds

−
∫ T

t
Zk(s)dW (s), t ∈ (tk−1, tk].
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Let us denote

Y�(t) =
N∑

k=1

Y k(t)1(tk−1,tk ](t), Z�(t, s) =
N∑

k=1

Zk(s)1(tk−1,tk ](t).

Then

Y�(t) = ψ�(t) +
∫ T

t
g(s,Y�(s), Z�(t, s))ds −

∫ T

t
Z�(t, s)dW (s), t ∈ [0, T ].

Let ‖�‖ → 0, by the stability of adapted solutions to BSVIEs [48], we obtain

Y (t)=ψ(t)+
∫ T

t
g(s,Y (s), Z(t, s))ds −

∫ T

t
Z(t, s)dW (s), t ∈[0, T ], (8.3)

which is the BSVIE that we expected. Moreover, it is found that if Y (·) is a utility
process for ψ(·), the current utility Y (t) depends on the (realistic) future utilities
Y (r); t ≤ r ≤ T , which is the main character of recursive utility process. Finally, we
note that if we restrict ZN−1(·) on [tN−1, T ] in (8.2), etc., then we will end up with
the following BSVIE:

Y (t) = ψ(t) +
∫ T

t
g(s,Y (s), Z(s, s))ds −

∫ T

t
Z(t, s)dW (s), t ∈ [0, T ],

which is technically difficult since in general, s 	→ Z(s, s) is not easy to define.
Finally, we would like to point out a fact about BSVIEs and BSDEs. Let us first

look at the following general BSDE:

Y (t) = ξ +
∫ T

t
g(s,Y (s), Z(s))ds −

∫ T

t
Z(s)dW (s), t ∈ [0, T ]. (8.4)

Under standard conditions, for any ξ in a proper space, the above BSDE admits a
unique solution (Y (·), Z(·)) ≡ (Y (· ; T , ξ), Z(· ; T , ξ)). By the uniqueness of adapted
solutions of BSDEs, we have

Y (t; T , ξ) = Y (t; τ,Y (τ ; T , ξ)),

Z(t; T , ξ) = Z(t; τ,Y (τ ; T , ξ)),
∀0 ≤ t < τ ≤ T .

This can be referred to as a (backward) semi-group property of BSDEs [34]. However,
there is no way to talk about the (backward) semi-group property for BSVIEs. To
illustrate this point, let us look at the following simple BSVIE:

Y (t) = tW (T ) −
∫ T

t
Z(t, s)dW (s), t ∈ [0, T ].
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We can directly check that the adapted solution is given by

Y (t) = tW (t), Z(t, s) = t, (t, s) ∈ �[0, T ].

We see that the above Y (·) really could not be related to any (backward) semi-group
property. The point that we want to make is that time-consistency and semi-group
property are irrelevant.
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