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ABSTRACT

In this study, we investigate how different types of masks
affect automatic emotion classification in different channels
of audio, visual, and multimodal. We train emotion classifica-
tion models for each modality with the original data without
mask and the re-generated data with mask respectively, and
investigate how muffled speech and occluded facial expres-
sions change the prediction of emotions. Moreover, we con-
duct the contribution analysis to study how muffled speech
and occluded face interplay with each other and further inves-
tigate the individual contribution of audio, visual, and audio-
visual modalities to the prediction of emotion with and with-
out mask. Finally, we investigate the cross-corpus emotion
recognition across clear speech and re-generated speech with
different types of masks, and discuss the robustness of speech
emotion recognition.

Index Terms— multimodal emotion classification, mask,
muffled speech, occluded facial expressions, cross-corpus
evaluation

1. INTRODUCTION

Recently, the COVID-19 pandemic has affected more than
200 countries on all continents. Wearing face masks is one of
the essential ways to control the spread of the virus and more
than 50 countries require their citizens to wear face masks
in public. While face masks effectively reduce the risk of
infection, it has created a new normal, changing how people
communicate in fundamental ways. On one hand, masks can
muffle sounds, particularly the high-frequency sounds, which
makes it harder to understand certain voices and speech, as
well as the paralinguistic information. On the other hand,
masks also block facial expressions and prevent people from
seeing and reading lips, which can help people to better un-
derstand what they are hearing and the emotional state of
the speaker. Several studies have been conducted recently to
study the effect of face masks on hearing and speech recogni-
tion [1, 2, 3, 4]. For example, a study in [5] investigated how
different types of masks affect speech recognition with differ-
ent levels of background noise, and they found that different
types of masks generally yield similar accuracy with low

levels of background noise, but differences between masks
become larger with high levels of noise. On the other hand,
many recent studies investigated how masks affect human
emotion perception and social judgments [6]. For example, a
study in [7] investigated how emotion recognition, trust attri-
bution and re-identification of faces differ when faces are seen
without mask, with a surgical mask, and with a transparent
face mask restoring visual access to the mouth region.

However, there is no existing study systematically inves-
tigating how face masks affect the automatic emotion clas-
sification in different modalities of audio, video and audio-
visual. More specifically, we still do not have a full under-
standing of how the muffled speech and the limited visibility
of facial expression degrade the emotion classification per-
formance, as well as the interplay between the muffled au-
dio and the occluded visual modalities. Moreover, it is of
interest to know how often and for which emotion the muf-
fled audio and the occluded visual modalities exhibit comple-
mentarity (i.e. when only the combination of the two modal-
ities can perform the correct prediction), dominance (when
the two modalities predict different emotions, and one domi-
nating modality gives the correct prediction and matches the
output from multi-modal prediction), and redundancy (when
both modalities can predict the correct emotion).

In this study, we systematically investigate how different
types of mask affect automatic emotion classification in dif-
ferent channels of audio, visual, and multimodal. We train
emotion classification models for each modality with the orig-
inal data and the re-generated mask data respectively, and in-
vestigate how face masks change the prediction of emotions
in different modalities. Moreover, we perform the contribu-
tion analysis to study how muffled speech and occluded face
interplay with each other and contribute to the emotion clas-
sification tasks. The rest of the paper presents the full details
of our study. Section 2 describes the CREMA-D dataset used
in our study and how we re-generate the mask data from that.
Section 3 introduces different types of acoustic, facial, and
multimodal features used in our study. Section 4 presents the
multimodal emotion classification experiments and results,
and discusses the unique contributions from different modali-
ties. In Section 5, we study speech emotion recognition across
the original clear speech and the re-generated speech with dif-



ferent masks, and discuss the robustness of speech emotion
recognition, followed by the conclusion in Section 6.

2. DATASET
The dataset we use is Crowd-sourced Emotional Multimodal
Actors Dataset (CREMA-D) [8], which is an audiovisual cor-
pus collected to explore human emotion expression and per-
ception behaviors in different modalities. It consists of fa-
cial and vocal emotional expressions in sentences spoken in
a range of basic emotional states (Anger, Disgust, Fear, Hap-
piness, Neutral, and Sadness). This corpus consists of 7, 442
clips (over 10 hours) of emotional sentences collected from
91 actors with diverse ethnic backgrounds. The task for the
actors was to convey that they are experiencing a target emo-
tion while uttering a given sentence.

In order to measure speech changes caused by sound
absorption by the mask material, we use an artificial voice
generator, a micro bluetooth speaker (Bose Sound Link mi-
cro), to re-generate the speech signal from the CREMA-D
dataset with two types of mask: disposable surgical mask
and fabric mask, and the re-generated mask speech was
recorded using a digital sound recorder. As a result, three
speech datasets are used for the speech emotion recognition
experiments. Figure 1 shows the example speech waveforms
and mel-spectrograms for the original speech without mask
(left), the re-generated speech with surgical mask (middle),
and the re-generated speech with fabric mask (right). As
we can clearly see from the figure that both the surgical and
fabric masks muffle speech, especially on the higher fre-
quency bands. We use the following labels for the speech
data:NoMask represents the original clear speech from the
CREMA-D dataset, M Surgical represents the re-generate
speech from CREMA-D dataset with surgical mask, and
M Fabric represents re-generate speech from CREMA-D
dataset with fabric mask.

To emulate the occlusion of facial expressions resulted
from a mask, we only feed visual features extracted from the
upper face not blocked by the mask to the prediction models,
as will be detailed in the next section.

Fig. 1. Example speech waveforms and mel-spectrograms
for the original speech without mask (left), the re-generated
speech with surgical mask (middle), and the re-generated
speech with fabric mask (right).

3. FEATURES

We investigate the state-of-the-art ComParE acoustic feature
set for speech emotion recognition with and without masks.
For the visual features, we investigate two sets of Bag-of-
AUs features, one based on 17 AUs over the entire face area,
and the other based on the AUs extracted only from the upper
face not blocked by the mask. Finally, we combine the acous-
tic features and visual features together as the multi-modality
features for multimodal emotion recognition.

3.1. Acoustic Features
We first use the openSMILE toolkit [9] to extract the Com-
ParE acoustic features [10], which is the state-of-the-art
feature set for many paralinguistic tasks including speech
emotion recognition, speaker trait analysis, etc. This compre-
hensive set of acoustic features contains 6,373 static features
resulting from the computation of functionals (statistics) over
low-level descriptor (LLD) contours. It includes 130 Low
Level Descriptors (LLDs), such as prosodic, spectral and
voice quality features, from which we estimate the High
Level Statistical Functionals (e.g., min, max, range, argmin,
argmax, mean, standard deviation, skewness, kurtosis) at the
utterance level.

3.2. Video Facial Features
Facial Action Units (AUs) are characterized by contractions
of specific facial muscles that correspond to a displayed
emotion. They have been widely used as features in facial
expression analysis and emotion recognition [11, 12, 13]. In
this study, we select 17 AUs that are commonly involved in
the coding of the six basic emotions, and divide them into
two groups. The first one only contains 8 AUs extracted
from upper face without the mask blocking, and the second
group includes the complete set of the 17 AUs over the en-
tire face area. The descriptions of these 17 selected action
units are listed in Table 1. Similar to the ComParE features
used in acoustic analysis, we also extract the utterance-level
Bag-of-AUs features. Specifically, for each video frame, we
first estimate the intensity of the selected AUs by using the
OpenFace facial behavior analysis toolkit [14, 15]. Those
are the LLDs for video features. After that, we estimate 21
High Level Statistical Functionals (min, max, range, argmin,
argmax, mean, standard deviation, three quartile values, three
inter-quartile range values, skewness, kurtosis, and intercept,
slope, quadratic error in linear regression, and R-square, p-
value, standard error of estimated slope in linear regression)
at the utterance level. Thus, for each video clip, we extract
two sets of utterance-level facial action unit features: the
BoAU Mask with 168 static features and the BoAU noMask
contains 357 features.

3.3. Multimodal Features

Finally, we combine the ComParE acoustic features and the
Bag-of-AUs video facial action unit features together as our



Table 1. The descriptions of the selected action units.
AUs from upper face without the mask blocking

AU1: Inner brow raiser AU 6: Cheek raiser
AU2: Outer brow raiser AU 7: Lid tightener
AU 4: Brow lowerer AU 9: Nose wrinkler
AU 5: Upper lid raiser AU 45: Blink

AUs from lower face blocked by mask
AU 10: Upper lip raiser AU 20: Lip stretcher
AU 12: Lip corner puller AU 23: Lip tightener
AU 14: Dimpler AU 25: Lips part
AU 15: Lip corner depressor AU 26: Jaw drop
AU 17: Chin raiser

multimodal features. For the original data without mask, we
concatenate the ComParE acoustic features extracted from
the original clear speech with the BoAU noMask features ex-
tracted from the complete set of AUs over the entire face,
and the resulting Multi NoMask features contain 6730 dimen-
sions. For the re-generated data with mask, we concatenate
the ComParE features extracted from the masked speech with
the BoAU Mask features extracted from subset of AUs on the
upper face, and the corresponding Multi Mask features con-
tain 6541 dimensions.

4. EXPERIMENTS & RESULTS

In order to investigate how masks affect automatic emo-
tion classification in different channels of audio, visual, and
multimodal, we train emotion classification models for each
modality with the original data and the re-generated mask
data respectively. Following the standard setting, we use
Support Vector Machine (SVM) with linear kernel for model
training and classification. All the results reported in this pa-
per are based on subject-independent 5-fold cross-validation.

4.1. Emotion Classification Results

Table 2 summarizes the classification accuracy of different
types of acoustic, video facial, and multimodal features for
the original (no mask) and the re-generated surgical (S) and
fabric (F) mask data. We first discuss how speech emotion
classification is affected by sound absorption of different
mask materials. As expected, compared with the 59% un-
weighted averaged recall (UAR) obtained on original clear
speech, the classification accuracy significantly degrades on
the re-generated masked speech (47.0% on the surgical mask
speech and 46% on the fabric mask speech). We also noticed
that accuracy degradation varies for different emotions. For
example, fear and happy are affected the most, followed by
disgust and neutral, with anger and sad being the least af-
fected emotions, where the reduced loudness on mask speech
even increases the chance of predicting sad and slightly im-
proves its classification accuracy. It’s well known that anger
and sad can be perceived most easily on the audio channel,
while fear, happy, and disgust are more difficult to identify

with acoustic in general. Our results indicate that masks fur-
ther increase the difficulty to predict the emotions which are
usually hard to predict by audio in normal conditions. We
also noticed that the two types of masks (surgical & fabric)
achieve comparable performance, which suggests that they
show similar impacts on speech emotion classification and
we can combine data with different masks together to build
more robust models.

Table 2. The classification accuracy of different types of
acoustic, facial, and multimodal features for original (no
mask) and re-generated surgical (S) and fabric (F) mask data.

% UAR ANG DIS FEA HAP NEU SAD
Acoustic Features

NoMask 0.59 0.77 0.52 0.49 0.57 0.68 0.54
M Surgical 0.47 0.71 0.43 0.29 0.30 0.52 0.57
M Fabric 0.46 0.73 0.38 0.22 0.30 0.52 0.59

Video Facial Features
BoAU NoMask 0.63 0.68 0.72 0.48 0.90 0.65 0.37

BoAU Mask 0.55 0.61 0.64 0.38 0.87 0.56 0.25
Multimodal Features

Multi NoMask 0.76 0.86 0.76 0.65 0.90 0.82 0.58
Multi Mask (S) 0.66 0.77 0.66 0.36 0.85 0.69 0.54
Multi Mask (F) 0.66 0.77 0.68 0.41 0.87 0.68 0.54

Next, we turn to discuss how emotion classification is af-
fected by less visible cues of facial expressions due to wear-
ing masks. Similar as what we observed in audio channel,
the BoAU NoMask features extracted from the entire face
achieve 63% UAR, which substantially outperforms the 55%
obtained by the BoAU Mask features from the upper face
only. However, compared with the acoustic analysis, less per-
formance degradations are observed in general and on each
individual emotions. The facial expression analysis shows the
best prediction power on predicting happy and the worst re-
sults on sad, regardless of wearing mask or not.

Then we turn to discuss the multimodal emotion classi-
fication. The two types of multimodal mask models achieve
similar performance, 66% UAR, which are remarkably higher
than the performance of uni-modal analysis with re-generated
mask data. It demonstrates that muffled speech and occluded
facial expression can still provide complementary informa-
tion to each other for emotion classification with mask. More-
over, compared with the no mask situation, the overall perfor-
mance gap is 10%. Fear is the emotion being affected the
most by masks, with 29% accuracy drop, and happy and sad
are the two emotions that are most robust to different masks,
with less than 5% performance degradation.

4.2. Multimodal Contribution Analysis

Next, in order to study the individual contribution of audio
and video modalities to the prediction of emotion with and
without mask, we examine the agreement among predictions
based on individual modality (audio or visual) and the audio-
visual prediction, and divide all the data in 6 groups: recog-
nized by audio only; recognized by visual only; complemen-



tary (recognized by audio-visual only); dominance (when au-
dio and visual predict different emotions, one of which gives
the correct prediction and matches the prediction from multi-
modal); redundancy (can be recognized by both audio and
visual modals); and can’t be recognized by any models. We
count the proportion of clips falling into each group and show
the results in Figure 2.

Based on figure, we first notice that compared with emo-
tion classification without mask, individual modality (audio
or visual) shows more contributions for emotion classifica-
tion with mask, and they also provide much less redundant
information. We also notice that the contributions from dif-
ferent modality changed substantially with the muffled sound
and blocked face.

Fig. 2. Individual contribution of audio and video modalities
to the prediction of corrected emotion without (WO) and with
surgical (S) and fabric (F) mask.

5. CROSS-CORPUS EVALUATION
In this section we study speech emotion recognition across
the original speech and the re-generated speech with different
masks, and discuss the robustness of speech emotion recog-
nition. Five SVM classifiers were trained with ComParE fea-
tures on each of the following datasets respectively: NoMask,
M Surgical, M Fabric, M All combing two types of mask
speech, and Clean+Mask combing the original clean speech
and the re-generated mask speech together. The cross-corpus
evaluation results are shown in Figure 3, where the results
along the diagonal are from within corpus cross validation.

It’s clear that the mask muffled speech is very differ-
ent from the clean speech, and the performance from the
cross evaluations between clean and mask datasets are very
poor. The cross-evaluations across different mask datasets
shows comparable results with the within-corpus evaluation,
which further confirms the similarity of the two types of
mask speech. We also notice that the models trained with the
Clean+Mask speech together perform the best on all datasets,
and achieve comparable performance with the within-corpus
evaluations on both the clean and mask speech. This sug-
gests that we may boost performance when the training data
is noisy by making use of the additional reliable emotional
speech from the other datasets for more precise prediction.

Fig. 3. Cross-corpus evaluation across NoMask, M Surgical,
M Fabric, M All, and Clean+Mask speech.

6. CONCLUSION
In this study, we trained emotion classification models for
audio, visual, and audio-visual with the original CREMA-D
dataset without mask and the re-generated mask data respec-
tively, and investigated how muffled speech and occluded fa-
cial expressions change the prediction of emotions in different
modalities. Our results suggest that different types of masks
generally yield similar accuracy, and they show substantial
degradations compared with the general unimodal and mul-
timodal emotion recognition without mask. Similar to what
we usually found in the no mask cases, more emotion-related
information is portrayed in the mask occluded facial expres-
sions than in the mask muffled speech, and the combined
audio-visual presentation further improves the emotion recog-
nition performance. Moreover, we perform the contribution
analysis to study how muffled speech and occluded face inter-
play with each other and further analyze the individual con-
tributions of audio, visual, and audio-visual modalities to the
prediction of emotion with and without mask. It’s interest-
ing to observe that compared with the general cases without
mask, the individual modality (audio or visual) seems more
important for emotion classification with mask, and the muf-
fled speech and occluded face also show much less redun-
dant information with each other. Finally, we investigated the
cross-corpus emotion recognition across the clear speech and
the re-generated speech with different masks, and discuss the
robustness of speech emotion recognition. Our results indi-
cated that the model trained with clean and mask speech to-
gether is the most robust model against all types of speech.
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[9] Florian Eyben, Martin Wöllmer, and Björn Schuller,
“Opensmile: the munich versatile and fast open-source
audio feature extractor,” in Proceedings of the 18th
ACM international conference on Multimedia, 2010, pp.
1459–1462.

[10] Felix Weninger, Florian Eyben, Björn W Schuller, Mar-
cello Mortillaro, and Klaus R Scherer, “On the acous-
tics of emotion in audio: what speech, music, and sound
have in common,” Frontiers in psychology, vol. 4, pp.
292, 2013.

[11] Gianluca Donato, Marian Stewart Bartlett, Joseph C
Hager, Paul Ekman, and Terrence J Sejnowski, “Clas-
sifying facial actions,” IEEE Transactions on pattern
analysis and machine intelligence, vol. 21, no. 10, pp.
974, 1999.

[12] Maja Pantic and Marian Stewart Bartlett, “Machine
analysis of facial expressions,” in Face recognition. In-
Tech, 2007.

[13] Arman Savran, Bulent Sankur, and M Taha Bilge,
“Regression-based intensity estimation of facial action
units,” Image and Vision Computing, vol. 30, no. 10,
pp. 774–784, 2012.

[14] T. Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-
Philippe Morency, “Openface 2.0: Facial behavior anal-
ysis toolkit,” 2018 13th IEEE International Conference
on Automatic Face & Gesture Recognition (FG 2018),
pp. 59–66, 2018.

[15] T. Baltrusaitis, M. Mahmoud, and P. Robinson, “Cross-
dataset learning and person-specific normalisation for
automatic action unit detection,” 2015 11th IEEE Inter-
national Conference and Workshops on Automatic Face
and Gesture Recognition (FG), vol. 06, pp. 1–6, 2015.


