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Precisely engineered mechanical oscillators keep time, filter signals and sense
motion, making them anindispensable part of the technological landscape of today.
These unique capabilities motivate bringing mechanical devices into the quantum
domain by interfacing them with engineered quantum circuits. Proposals to combine
microwave-frequency mechanical resonators with superconducting devices suggest
the possibility of powerful quantum acoustic processors' . Meanwhile, experiments

in several mechanical systems have demonstrated quantum state control and
readout*’, phonon number resolution®” and phonon-mediated qubit-qubit
interactions®’. At present, these acoustic platforms lack processors capable of
controlling the quantum states of several mechanical oscillators with a single qubit
and the rapid quantum non-demolition measurements of mechanical states needed
for error correction. Here we use a superconducting qubit to control and read out the
quantum state of a pair of nanomechanical resonators. Our device is capable of fast
qubit-mechanics swap operations, which we use to deterministically manipulate the
mechanical states. By placing the qubit into the strong dispersive regime with both
mechanical resonators simultaneously, we determine the phonon number
distributions of the resonators by means of Ramsey measurements. Finally, we
present quantum tomography of the prepared nonclassical and entangled
mechanical states. Our result represents a concrete step towards feedback-based
operation of aquantum acoustic processor.

Theburgeoning field of quantum acoustics combines the established
tools and infrastructure of circuit quantum electrodynamics (cQED)
with the many benefits of nanomechanical oscillators. This creates a
rich platform for explorations of fundamental quantum physics* 7012,
with promising applications towards scalable quantum compu-
tation"*'®, Over a small footprint, mechanical systems have the
potential to provide access to a large number of highly coherent
microwave-frequency modes that can act as high-precision sensors
of force and motion™, store long-lived quantum memories with minimal
crosstalk' and form interconnects with optical systems™*. Further-
more, it is possible to generate nonclassical*’ and entangled states
of motion?2in mechanical oscillators, making them a compelling
system for storing and processing quantum information. By placing
these acoustic systems in the strong dispersive coupling limit*?*,
both non-Gaussian and non-demolition measurements can be made
by means of phonon-number-resolved detection.

Access to this regime is enabled by our device design and hetero-
geneously integrated material platform. We leverage the small mode
volume and strong piezoelectricity of a phononic crystal resonator
in thin-film lithium niobate (LN), combined with a high-coherence
aluminium transmon qubit, to achieve large coupling rates between a
superconducting qubit processor and two nanomechanical resonators.
Our approach allows for strong coupling while suppressing the phonon

radiation loss channels that arise in piezoelectric materials. In phon-
onic crystal devices, the density of states for acoustic radiation loss
canbeeliminated over awide frequency range by choosing a periodic
geometry that produces afull phononic bandgap™. This approachlocal-
izes the gigahertz-frequency mechanical mode to awavelength-scale
volume® and has produced resonators with extremely long mechanical
lifetimes®. With improved fabrication processes (see Methods), we
have extended the qubit 7; and mechanical resonator T, ,, coherence
times by a factor of 3 and 4, both of which limited experimental capa-
bilities in previous work®.

Our hybrid device iscomposed of two chips integrated in a flip-chip
architecture? (Fig. 1a). We fabricate a frequency-tunable transmon
qubit®with microwave control lines and a coplanar waveguide read-
out resonator (Fig. 1b) on a 6-mm x 9-mm silicon chip. The qubit is
capacitively coupled across a small vacuum gap to two phononic
crystal resonators fabricated on a separate 2-mm x 4-mm top chip
(Fig.1c). These cavities are patterned by argonion milling a thin film
of LN?’, whichis thenreleased from the silicon handle of the chip by a
xenon difluoride dry etch®*°, Each mechanical eigenmode is confined
to asmall defect site suspended on either side by a one-dimensional
phononic crystal mirror™®, Using the piezoelectric effect of LN, the
qubit couples to the mechanical modes by means of aluminium elec-
trodes patterned on each resonator. These electrodes extend to a
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Fig.1|Device description. a, Schematic of the modes and flip-chip device.
Afrequency-tunable qubit on the bottom chip (blue) is capacitively coupled
across asmall vacuum gap to two mechanical modes on the top chip (orange).
The mechanical modes are represented as Butterworth-van Dyke equivalent
circuits. b, Optical micrograph of the bottom (qubit) chip, with the inset
showing the superconducting quantum interference device of the qubitand
adjacent fluxline, used for frequency control. Therightmostarm of the
transmonisland extends to form the bottom pad of the coupling capacitor. The
scale bar denotes 300 pm. ¢, False-colour scanning electron micrograph of the
top (mechanics) chip, showing two phononic crystal resonators (red).
Aluminium electrodes (orange) are galvanically connected toboth the
coupling capacitor pad of the top chip and the ground plane, asshownin the
inset. Thescalebar denotes1pm.

metallized pad, which forms the top half of a cross-chip coupling
capacitor, withamatching pad on the qubitisland. The capacitor gap
is defined by the flip-chip separation distance of 1 um (see Methods
for the flip-chip procedure).

The Hamiltonian for the resulting device includes two mechanical
oscillators with frequencies wmiand lowering operators 5,-, inaddition
to a qubit with transition frequency w, and Pauli operators
6: Hy= 0y, 516, + 0y Brb, + 3040, A direct piezoelectric coupling
bAetween thg unit and mechanics leads toaninteraction Hamiltonian
Hine= 2, 8,(b; + b;)6,, with coupling rates g;. In the limit of large detun-
ing, theinteractionis best described by an effective dispersive Hamil-
tonian™

A e A
Hegr= Ho+ (x, 610+ X,0,0,)0,.

In this regime, each mechanical mode imparts a frequency shift of
2x; per phonon on the qubit. This dispersive coupling rate y;is related
to the qubit anharmonicity a,, the coupling rate of each mechanical
mode g;and the detunings A, = wg, ~ @, by*!

)(?éi"2 %
[ Al

Ai - aq ’

The time required to resolve these phonon-induced frequency shifts
is roughly 1/x;, making it important for x; to exceed the decoherence
rates of both the mechanical resonators and the qubit. A system that
satisfies this condition, while maintaining the detuning requirement
A; > g;for the effective Hamiltonian to hold, is said to be in the strong
dispersive coupling regime®, which has only recently been demon-
strated for circuit quantum acoustic devices®’. A useful figure of merit
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Fig.2|Characterization of the mechanical modes. a, Qubit spectroscopy
near the mechanicalmode M, with w,. detunedrelative tow ,.b, PulseA
sequence for Rabi-swap experiment. The qubitis excited to |e) using a X pulse,
then fluxdetuned by frequency A for aninteraction time rbefore qubit
measurement. ¢, Pulse sequence for single-phonon T, ,,and T, ,, experiments.
The qubitis prepared using eithera X, ora )?“/2 rotation, then swappedtoone
of mechanical modes M, or M,. After waiting a variable delay time ¢, the qubit
and mechanics are swapped again, followed by an optional qubit tomography
rotation Rand measurement. d, Qubit response as a function of bias frequency
g+ Aandinteractiontimeroftheapplied flux pulseinb. At the start of the
experiment, the qubitis held at w,./211=2.26 GHz (rightmostblue line, in which
A =0)beforebeing frequency detuned to interact with the mechanical modes
(redlines). e, Single-phonon T, ,, measurement for each mechanical mode
(blue: My, red: M,), using the pulse sequence in c with the qubit preparedin |e)
and theidentity operation for R.f, Single-phonon T, ,, measurements of the
mechanical modes (top: M;, bottom: M,). Here the qubit is initially prepared in
thesuperposition|g) + |e) and we use tomography rotationsR = )?",2 (blue) or
V2 (red)inc.

for devices in this regime is the dispersive cooperativity C=4x’T,T, .,
which our device improves to C=490 compared with C=170 in previ-
ous work in quantum acoustics®.

For thisexperiment, we leverage established techniquesin cQED to
perform state preparation and readout of the qubit (see Methods),
allowing characterization of the mechanical resonators using the qubit
asaprobe. We control the qubit frequency by flowing current through
an on-chip flux line shown in Fig. 1b. Tuning the qubit yields avoided
crossings in the qubit spectrum at both the lower and upper mechan-
ical frequencies, wm1/2n =2.053GHz and a)mz/ZTI =2.339GHz
(Fig. 2a). From these avoided crossings, we determine the qubit-
mechanics coupling strengths to be g,/2m = (9.5 + 0.1) MHz and
g,/21=(10.5+0.1) MHz.

Although the static capacitive coupling between the qubit and the
mechanicsis fixed, the qubit-mechanicsinteractionis controlled on
nanosecond timescales by rapidly tuning the frequency of the
qubit between the off-resonant (loge - Wm|>g) and on-resonant
(Wge = 0p,) regimes by means of current pulses sent through the flux
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Fig.3|Single-mode tomography. a, Pulse sequence showing state
preparation, displacement and Ramsey measurement. First, we use the qubit
(blue) to prepare [1) in the upper mechanical mode, M,. M, is thendisplaced by a
microwave pulse D, with variable amplitude and phase. Finally, we performa
Ramsey sequence on the qubit. For |0), state preparation (left) is omitted, and
for |0) + [1), the X, pulse s replaced with X, ,.b, Complex-valued amplitudes a

line. To characterize and calibrate swap operations, we bias the qubit
frequency to w,./21 = 2.26 GHz, far from the mechanical resonances.
Using the pulse sequence of Fig. 2b, we perform Rabi-swap experi-
ments using asingleinitial excitationin Fig. 2d. At the correct detun-
ings, the excitation is exchanged between the qubit and one
mechanical resonator, enabling transfer of the qubit state to the
mechanics. We performan iSwAP operationinatime of t/2g; ~ 24-26 ns
and estimate a fidelity of 0.95 + 0.01 from the fringe visibility.

Access to a fast, high-fidelity swap operation allows us to extend
our control of the qubit to the mechanical devices. We perform
single-phonon characterization of both resonators using the pulse
sequencein Fig.2c.Inthese experiments, we use the qubit to prepare a
quantum state of the resonator, then wait a delay time ¢t before swapping
the mechanical state backinto the qubit for measurement. By choosing
toinitially rotate the qubit into the state |e) or |g) + |e), we character-
ize either the mechanical energy decay time T ,, or the mechanical
dephasingtime 7, .

We observe that both resonators exhibit energy-relaxation dynam-
icsthatarebest described as the sum of three decaying exponentials
(Fig. 2e). The fastest decay is observed to be T; ,, =(1.23+0.08) ps
and T,m,=(0.99+0.03) us for mechanical resonators M, and M,. By
contrast, the other decay times are on the order of 10 and 90 ps for
both resonators. The observed multi-exponential response may be
explained by resonant decay into saturable and rapidly dephasing
two-level systems (TLSs) in the device®*, but a more detailed study
isrequired.

Theresults of asimilar Ramsey experiment are shownin Fig. 2f and
used to extract the mechanical dephasingtimes7, ;, =(0.87+0.02) pis
andT, ,, =(1.71+0.03) us. For a harmonic oscillator under the pres-
ence of amplitude damping, we expect the T, ,, of each mechanical
resonator to be twice its T, ,,; however, both modes seem to suffer
from an extra, non-negligible source of phase decoherence, with
inferred pure dephasing times Tpm=Ll4us and Ty m,=13ps. This
may also be owing to the presence of TLSs, and a more complete
analysis of decoherence in these devices will be the subject of future
studies.

Re(a)

ofthe displacements D, (red points), with a few corresponding measurement
results (highlighted points). Representative Ramsey measurement result (c)
and extracted phonon number distribution (d). The data (dark blue points) are
fitto equation (1) (light blue line), with the dashed lines showing the fitted
decay envelope. Reconstructed density matrices (e) and Wigner functions (f)
foreach prepared state, extracted by convex optimization.

After characterizing the device, we use the qubit to perform full
quantum state tomography of the upper mechanical resonator. Our
goal is to obtain the density matrix p describing the state of a
single resonator. Previously, this has been achieved by means of
dynamicsinwhich the qubit and mechanics directly exchange excita-
tions*>. Here we use the strong dispersive interaction to impart a
phonon-number-dependent frequency shift on the qubit, which is
then read out by a Ramsey measurement®?***-¥ that yields the pho-
non number distribution Py(n). This provides us with the diagonal
elements of the density matrix (n|p|n) but does not fully determine
the state. To gain information about the off-diagonal elements
of p, we perform a calibrated displacement operation D, on the
mechanical resonator before the Ramsey measurement to find
P(n) = nlD, pD,In).

We begin the tomography protocol by using the qubit to prepare
phonon states |0), |1) or |0) + [1) in the upper mechanical mode. For
this experiment, the qubitis initially biased to w,, /21 =2.26 GHz to
ensure sufficient detuning for a dispersive interaction, |A,|/g, ~ 8.
We synthesize these states by first rotating the qubit to the desired
state with a X, or an X, pulse, then swapping itinto the resonator,
as shown in Fig. 3a. Next, we displace the resonator state (D,) with a
microwave pulse at the mechanical frequency, applied to the XY line
of the qubit®. We then perform a Ramsey measurement to resolve
the dispersive shifts on the qubit resulting from each populated Fock
level in the displaced mechanical state. The resulting signal takes
the form of asum of oscillating terms with an exponentially decaying
envelope,

S@t)=Y A,e™* cos [(wo +2xn)t+ (prj .
n=0

@

We fit the data to equation (1) to learn the weight A, and frequency
of each spectral component (see Methods) and measure a dispersive
shift x/2= (735 + 8) kHz. Here x,,=1/T, + n/T, ,, accounts for qubit
dephasing caused by the transmon 7, and the decay of the nth phonon
state. This fit allows us to extract the population P,(n) in each Fock level
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Fig.4|Joint tomography of amechanical Bell state. a, Pulse sequence for
mechanical Bell-state preparation (left) and two-mode tomography
(right). The qubitis first excited to |e), followed by a +/iswap and iSWAP
operation to the mechanical resonators M, and M,, respectively. Two-mode
tomography is performed asin Fig. 3a, with the modification thata
displacement D, ® Dﬂ isnow applied simultaneously to each resonator.

b, Representative Ramsey interference pattern (points) and fit (blueline)
for the two-mode measurements. The qubit frequency is positioned
between the mechanical resonators to achieve discernibly different
dispersive shifts x; and y, from each mode (inset). ¢, Extracted joint phonon
number distribution P,(m, n) from the fit of b, with the P,4(0, 0) ~ 0.32
element truncated for visual clarity. d, Reconstructed density matrix p for
the mechanical Bell state. Twenty-five different Ramsey measurements
(a-c) arecombined to obtain the most probable quantum state (blue bars),
ingood agreement with numerical simulations (red) that take into account
mechanical decay during the Ramsey measurement of aninitial ideal Bell
state (grey dashed outlines).

nbynormalizing the spectral amplitudes: P,(n) =A,/Z,A,. Arepresenta-
tivetime-domainfitand extracted distribution are showninFig.3c, d.

Finally, we estimate the most probable state p of the mechanical
resonator using convex optimization®, In this procedure, we perform
Ramsey measurements (Fig. 3¢) to find P,(n) for 36 different complex
values of a (Fig. 3b). We then infer the most probable state p by
minimizing the distance between the experimentally obtained P,(n)
and(n|D, p‘DZm) over allmeasured a. The reconstructed g are shown
in Fig. 3e and have state fidelities 7= (@|p|¢)=0.874+£0.003,
0.658 £ 0.003 and 0.786 + 0.003 for the target phonon states |¢) = |0),
|1y and |0) + |1), respectively. These reconstructed g are then used to
compute the Wigner functions W(a) in Fig. 3f, in which the negative
valuesin W(a) for [1) demonstrate the quantum nature of the phonon
state. We note that the phonon parity can also simply be extracted
from the measured P,(n), from which we directly observe negative
parity valuesin [1) (see Methods and Extended Data Fig. 5).

We attribute the imperfect overlaps 7, between the target and
measured states mostly to mechanical decoherence and thermal
occupationinthe qubitand mechanical mode. These thermal states
limit the fidelity of phonon state preparation and also affect the
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decay of the prepared state during various delays in the tomography
preparation. Quantum master equation simulations of the protocol
agree with the measured fidelities when we include thermal
occupation levels n, in the mechanical mode and P, , in the qubit
(see Methods).

By developing fast gates for several mechanical oscillators and
extending our tomography protocol to bipartite states, we realize a
small quantumacoustic processor that can generate and characterize
entangled states of mechanical systems. As in Fig. 4a, our entangling
gate consists of several sub-operations to create a mechanical Bell
state, | g = |01) + €?]10). After exciting the qubit, a~/iswap operation
is performed between the qubit and the upper mechanical mode to
maximally entangle the two. The qubit state is then fully swapped to
the lower mechanical mode, which translates the entanglement to be
between the two mechanical systems.

Next, we perform tomography on the joint mechanical system
by extending our Ramsey measurement approach. We position
the qubit frequency such that the mechanical dispersive shifts,
X/21 = (=516 £ 8) kHz and x,/21 = (-830 + 5) kHz, are distinguishable
from each other, with a typical Ramsey measurement signal shownin
Fig. 4b. Infitting the interference patterns of these two-mode experi-
ments, the model of equation (1) is extended to accommodate both
resonatorsbyreplacingA, > A, K, > K, and 2xn - 2x,m + 2x,n for Fock
indices m and n of the lower and upper mechanics, respectively. Nor-
malization of the signal amplitudes A,,, gives the joint phonon number
distribution P,4(m, n) (Fig. 4c). To reconstruct the joint state p of the
two mechanical systems, we repeat the experiment for 25 different
combinations of displacements ), ® D; on the resonators, each time
extracting theassociated P,4(m, n). We then estimate p from the set of
P.5(m, n) using convex optimization (see Methods), resulting in the
reconstructed stateshownin Fig.4d. The overlap of the inferred state
with the target Bell state is g = (@, |01¢5,» = 0.66£0.03, witha
quantum state purity tr(ﬁz) =0.51+0.03. Numerical simulations of
the mechanical system, shown in Fig. 4d, are in good agreement with
the measured p, allowing us to attribute the dominant source of
lossin fidelity 7., to mechanical T, ,,and T, , decay during the tomog-
raphy protocol, as well as state preparation error owing to thermal
occupation (see Methods).

In conclusion, we demonstrate deterministic quantum control over
apairof nanomechanical resonators and characterize their joint quan-
tum state using a dispersive, non-demolition measurement. In future
work, mitigation of TLS-induced decoherence in LN phononic crystal
resonators should allow for longer mechanical coherence times?**?,
which at present limit the observed state fidelities in our device. The
flip-chip architecture in this experiment is well suited for separate
optimization of the qubit and mechanical systems by enabling amodu-
lar approach to engineering hybrid quantum systems. Our hardware
implementation has enabled deterministic manipulation of quantum
entanglement between macroscopic mechanical objects and can be
extended toarchitectures including quantumrandom access memories
and biased-error cat qubits'>.
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Methods

Fabrication

Our device fabrication closely follows previous methods®, with the
important difference that the processes for qubits and nanomechani-
cal structures are now performed on separate dies. We have moved
to aslightly different material platform for the mechanics chip, in
which the thin-film LN has been doped with magnesium oxide (MgO)
toimprove the mechanical properties of the crystal®>. Furthermore,
we thermally anneal the mechanics chip (8 hat 500 °C) before pattern-
ing the device. On the qubit chip, we have added aluminium crosso-
vers across the qubit controllines and readout transmission line. We
have also developed an oxygen plasma descum process to remove
polymer residues from inter-metallic layers, reducing TLS-induced
microwave loss.

The flip-chip bonding procedure is the final step in our fabrication
process. We use a submicron die bonder (Finetech) to align the two
chips by positioning the two pads of the coupling capacitor on top of
eachother. The active surfaces of the two chips are brought to a separa-
tion distance of 1 um, as allowed by 500-nm aluminium spacer ridges
patterned on each chip. Finally, an adhesive polymer (9:1 ethanol/GE
Varnish) ismanually applied to the outer edges of the top chip to secure
itin place.Images of the final integrated flip-chip device are shownin
Extended Data Fig. 1.

Mechanics design

For our experiment, itis important to carefully choose the frequency
arrangement such that all modes are sufficiently protected from deco-
herence channels, while the qubit-mechanics interaction remains in
the dispersive regime. Using finite-element simulations, we choose a
phononic crystalgeometry with abandgap extending fromabout1.90
t0 2.50 GHz and a pitch of a =900 nm. The mechanical frequencies,
controlled by adjusting the width of the defect site, are designed to
be about 150 MHz away from the bandgap edges, ensuring that the
modes are protected from clamping losses.

Qubit design and control

Our device uses a transmon-style qubit with microwave control lines
and a dispersively coupled microwave resonator for readout.
Anon-chip flux line positioned near the superconducting quantum
interference device loop of the qubit provides capability for both
static (DC) and rapid (pulsed) frequency tuning of the qubit by means
of externally applied magnetic flux. In Extended Data Fig. 2a,
we measure the frequency tuning curve of the qubit, with the max-
imum qubit frequency at wge/2m=2.443 GHz. Our device has
charging energy Ec/h = a,/211 =126 MHz and Josephson energy
E/h=6.550 GHz, ensuring that it operates well into the transmon
regime®, £/E. > 1.

For tomography experiments, the qubit operating frequency
is chosen to be in between the two mechanical frequencies. This
ensures that both the primary qubit transition w,. and the next higher
transition w.s = Wy, — a,are sufficiently distant from the mechanical
modes that the qubit is effectively decoupled, allowing us to perform
rotations of the qubit state with high fidelity. Placing the qubit fre-
quency in this region also gives strong dispersive coupling to both
mechanical modes to perform joint tomography of the mechanical
systems.

We perform gates on the qubit state by applying microwave pulses
with variable amplitude, phase and duration to the XY line of the
qubit. For these experiments, we use 20-ns DRAG (derivative removal
by adiabatic gate) pulses with roughly Gaussian envelopes®*°. Using
randomized benchmarking techniques**?, we observe a single-qubit
gatefidelity of 0.996 at the operating frequency used for tomography
(wge/211=2.26 GHz), as shownin Extended Data Fig. 2c. Tomeasure the
qubit state, we use a standard cQED approach of dispersive readout

by means of an off-resonantly coupled coplanar waveguide resona-
tor. To infer the qubit excited state probability, we apply a microwave
pulse to the transmission line of the readout resonator and measure
thescattered response, which allows us to detect shifts inits resonant
frequency induced by the state of the qubit.

InExtended Data Fig.2b, we measure the qubit energy decay time T,
over a large frequency range and plot the results. For each horizontal
slice, we statically bias the qubit to the indicated frequency and perform
astandard ring-down measurement to study its 7, energy decay. The
qubit excited state probability, indicated by the colour bar, is plotted
as afunction of time. The white points show the resulting T, values,
extracted by fitting each data slice to an exponential decay function.
From this dataset, we find the average qubit decay time to be T, ,,, =
(4.9 £2.3) ps.

Wealso characterize the thermal population of the qubit with a ther-
mometry experiment, shown in Extended Data Fig. 2d. For this meas-
urement, we use a Rabi population method*** to quantify the residual
qubit populationin |e). This is done by driving rotations of the qubit
state between the |e) and |[f) levels with varying rotation angle. A final
X, pulse exchanges the |g) and |e) populations before we measure the
qubit state. We perform this measurement both with and without an
optional X, pulse at the beginning of the sequence, which exchanges
the steady-state |g) and |e) populations in the qubit. These measure-
ments produce two Rabi-like oscillation patterns, whose amplitudes
Agand A, containinformation about the thermal |e) population, P, , =
AJ/(Ag+A,). By this method, we find P, ,, = 0.057 with the qubit biased
t0 w,g/211=1.798 GHz. We perform this measurement far detuned
from both mechanical modes to ensure high-fidelity rotations of the
qubit states. At this operating point, the reported value is likely to be
anupper bound on the qubit thermal population relevant for our pri-
mary experiments.

Master equation simulations

To model the quantum dynamics of our device and obtain estimates
of the mechanical state fidelities, we perform time-domain master
equationsimulations using the QuTiP package**. First, we simulate the
qubit-mechanics dynamics during Rabi-swap experiments toillustrate
how nanosecond-timescale flux pulses can be used to manipulate the
device.Here the qubitis modelled as athree-level nonlinear resonator
awith time-dependent frequency w,.(f) and anharmonicity a,, subject
to T, decay and pure dephasing T,. The mechanical resonators are taken
to be three-level harmonic oscillators b, also with T, and Ty m
decoherence channels. For this experiment, the total Hamiltonian
H=Hy+H,,,+ Hyhas contributions
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A drive term H, allows for population of either the qubit or the
mechanical resonators, depending on the chosen modulation fre-
quency of the applied drive, Q(¢). We also allow applied flux pulses to
addtime-dependentfrequency controlof the qubit,wge(t) =Wge + aN)ge(t),
inwhichw,. is the static qubit frequency and 5ge(t) representsthetran-
sient frequency control.

In simulating the time evolution of the total quantum system g, we
numerically integrate the Lindblad master equation,
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w1th collapse operators ¢,=b,/ [T, my b,/ [T, my b bl/ 12T m, -
bzbz/ [2Tym, /[T, and @'a/ [2T,,. Note that all model parameters
are experimentally determined from standard qubit measurements.
For the mechanics energy decay time, we choose the shorter one from
the measured multi-exponential decay, as it best represents the dynam-
ics on the timescales important for simulation of the tomography
protocol. Thereisalso asubtlety in our choice of the bare frequencies
wg and w,,, . To obtain consistent results between experiment and
theory,Hlsf"rstdefmedmthebarebaSIsandthen diagonalized tofind
the dressed basis eigenstates and eigenvalues. The bare frequencies
of H are then chosen such that the dressed frequencies of the qubit
and mechanics best match the experimentally measured values at
steady state. These dressed states can then be used to evaluate final
state probabilities and expectation values.

Using this framework, we aim to reproduce the asymmetry present
inthe qubit-mechanics chevrons of Fig. 2d. These simulations show
excellent agreement with experimental Rabi-swap results, as shown
in Extended DataFig. 3a. The limited visibility of the fringes near the
static qubit bias w, is owing to the details of the dressed statein a
system inwhich the coupling g;is always present. In the case of small
detuning (), the instantaneous dressed bases do not change
appreciably and so the qubit-like mode roughly remains in the same
dressed eigenstate throughout the operation. This contrasts with
systems in which the g; can be turned off during single-qubit opera-
tions, thereby avoiding dressing of the qubit state except when the
couplingis desired.

We perform further master equation simulations to compare with
the observed mechanical state fidelities 7 and 7, reported in the
main text. For these simulations, the qubit is modelled as a two-level
resonator, and we assume that the initial mechanical state g_(0)and
qubit state ﬁq(O) are thermally populated to levels ny and P, ,, respec-
tively. To estimate the state preparation fidelity for the mechanical
state [1), we excite the qubit with the Pauli X operator and simulate the
swap operation by evolving the joint state under H,, for a time
twap = TU/28, subject to collapse operators & = /(n,, + 1)/T1,mi5,- and
ep= [/ Ty m, 5;, which account for mechanical energy decay, as well

as 5IT1§I./ 2T . which models dephasing in the mechanical mode.

Separately, to estimate the state reconstruction fidelity in the absence
of state preparation error, we initialize the mechanical state in|1) and
let the state freely evolve during various delay steps in the tomography
protocol, subject to the same collapse operators as above. We then
apply 36 complex displacements to the resulting state, mirroring our
experimental procedure, and use the resulting phonon number distri-
butions in our state reconstruction protocol to estimate the impact
ontheextracted fidelity. For the target state|1), using thermal occupa-
tionlevelsng,=0.1and P, = 0.05, we estimate a state preparation fidel-
ity of 0.875 and state reconstruction fidelity of 0.777 from these
simulations, yielding a total estimated fidelity of 0.680, similar to the
measured 7, 0f 0.658 + 0.003.

For the mechanical Bell state, we again begin with thermal states in
the qubit and mechanical modes. After exciting the qubit, we model
both the-/iswap andiSWAP operations to estimate the state prepara-
tion fidelity and let the resulting state evolve under the same decay
and dephasing operators as above. Using thermal occupation levels
ng=0.05and P, = 0.05, these master equation simulations predict a
state preparation fidelity of 0.857 and total fidelity of 0.627, similar to
the observed F.;= 0.66 + 0.03. The good agreement between simula-
tion and our measured fidelities suggest that 7 and . are likely to
belimitedby T; ,and T, ,,decoherence mechanismsin the mechanical
system, in addition to state preparation error caused by steady-state
thermal occupation in all modes. Applying the same approach to the
single-mode tomography target states, with n,, = 0.1, we obtain esti-
mates for the total fidelity of 0.693 for |1). For |0) + [1), we estimate the
state preparation fidelity to be 0.909 and total fidelity to be 0.850.

Swap characterization

To demonstrate control of the qubit-mechanics swap operation, we
perform quantum state tomography on the qubit during resonant
Rabi-swap experiments. Using the pulse sequence of Fig. 2b, we bring
the qubit into resonance with the upper mechanical mode M, for an
interaction time rbefore applying tomography gates X, or Y,, chosen
from 0 = {0, +11/2, +1t}. Combining the results of this set of measure-
ments allows for the reconstruction of the qubit Bloch vector (0)
shownin Extended DataFig. 3b, c. Note that, as our experiment does
not have single-shot qubit state readout, we calibrate the observed
qubitresponse using the measured qubit thermal population P, ,, to
estimate the Bloch vector. In Extended Data Fig. 3b, the qubit is pre-
paredin |e) before resonantly interacting with M,; the resulting data
show the excitation periodically returning to the qubit, with the g,
and o,components largely unaffected. A similar experiment is per-
formed in Extended Data Fig. 3¢, with the qubit now starting in the
superposition |g) +|e). As expected, the superposition of the qubit
isrecovered from the mechanical resonator at even multiples of the
swap time.

Time domain data analysis

TheRamsey measurements used for state tomography containinforma-
tion about the phonon number distribution of the dispersively coupled
mechanical state. The distinct spectral componentsin the number-split
qubit spectrum create an interference pattern that depends strongly
onthe mechanical occupation, as shownin Fig. 3b. We fit the datato a
function of the form (equation (1))

S(6)=Y Ae™ cos|(wo+2x)t+g, ],

n=0

in which y and A, are model fit parameters. In 5(¢), the component
corresponding to the occupation of the nth Fock level is given an
amplitude A, and frequency w, + 2xn. Here the dispersive shift y is
constrained to be the same for all nand the frequency w,/2m = 25 MHz
is the programmed frame detuning of the second Xn/z pulse of the
Ramsey sequence. The phases @, = 2ynt, account for qubit phase
accumulation during the two X, , pulses of the Ramsey sequence, in
which ¢, sets the effective delay time. Because we define S(¢) in terms
of the elapsed time ¢t between the Ramsey pulses, there is a small
phonon-state-dependent phase accumulation at ¢ = 0 owing to the
finite operation time of our single-qubit gates and the geometry
of rotating the qubit state about a frequency-detuned axis. We find
the effective delay time t4=1.13x 7 in ¢, from master equation
simulations of the qubit S(¢) with )?“/2 pulses of duration T=20 ns.
Finally, the dephasing rate of each component in S(¢) is given by
K,=1/T,+n/T,,, inwhich T,is the qubit dephasing timeand T, , is the
mechanical energy decay time. In our fitting procedure, we fix T, to
itsmeasured value and then find the single value of T, ,, that minimizes
the meansquared error across all sub-experimentsinagiventomog-
raphy run. Performing this fit allows us to extract the Fock populations
P.(n) by normalizing the spectral amplitudes: P,(n) =A,/X,A,. From
comparisons of S(¢) to master equation simulations of the system,
we find that S(¢) isagood approximation of the qubit dynamicsin the
limitn/2xT,, <1.

To extend the model to the two-mode case, we replace A, > A,,,.,
Ky K =1 Ty+m/T, o +0/T, o, and 2xn > 2x,m + 2x,n for Fock
indices mand nof theresonators. We also need to adjust the zero-delay
qubit phase @, > @,,, = 2x;m + 2x,n)t,to account for both resonators
shifting the qubit frame during the Ramsey Xn/z pulses. Thisyields an
adjusted time domain model

SO =Y Ape ™ mt cos [(wo+2x,m+2x,n)t+g@, 1.

m,n



Article

We use this function to fit the Ramsey measurements of Fig. 4b
and thereby determine the two-mode phonon number distribution
Pos(m, n) = A/ X n An

State reconstruction

Forboththesingle-mode and the two-mode tomography demonstrated
in this experiment, we can use similar protocols for state reconstruc-
tion. We perform tomography of an unknown two-mode mechanical
state p by applying displacements D, = D, ® Dy on p, then measuring
the dlagonal elements Py(m, n) of the resulting joint state
(@, B) =Dy p Daﬂ (ref. %%). More specifically, the set of measurement
data can be represented as Fop(m, n) =<{m, n|D, ﬂpDaﬁlm ny, inwhich
|m, n) =|m) ® |n)is the joint Fock basis of the resonators. In our exper-
iment, we choose from combinations of complex displacements with
amplitudes (lal, |B]) < (0.65, 0.75), and fit the resulting P,4(m, n) up to
maximum Fockindices (1,5, Ninay) = (3, 3). The unknown density matrix
pcanthenbereconstructed by minimizing the loss function

LP)=Y Y Km,niDygpDoglm, ny - Pyg(m, n)l?,

a,f m,n

aconvex problemthat can be solved efficiently using the CVX pack-
age®. The single-mode mechanical state tomography follows a similar
method by setting either a or fto zero and ignoring the corresponding
mode in the analysis. For the single-mode tomography experiments,
weuse |a|<1.39and n,,, =9.

Direct parity calculation

In our single-mode tomography protocol, we choose to reconstruct
the Wigner functions by fitting over candidate g for experimental
efficiency. However, the Wigner function of the mechanical
resonator, W(a), can also be directly computed from the parity
M(a) =%, (-1)"Pyn) = %W(a) of each Ramsey measurement. In asepa-
rate dataset (Extended Data Fig. 5), we measure [1(0) = -0.45 for the
| = [1) target state, which confirms the quantum nature of this pre-
pared state by direct measurement.

Displacement calibration

Mechanical state reconstruction relies on knowing the amplitudes |a|
of the displacements D, that we apply during each tomography pulse
sequence. This requires a calibration relating the voltage amplitude
of the applied microwave pulse to the resulting mechanical displace-
ment amplitude |a|, shown in Extended Data Fig. 4a. Here we displace
the upper mechanical mode by applying a microwave pulse to the qubit
XY line at the mechanical frequency and then perform Ramsey
interferometry on the resulting state to extract the phonon number
distribution P,(n). Next, we perform a least squares fit to find the
coherent state |a) whose coefficients [(n|a)|> most closely match the
measured P,(n) to obtain the inferred displacement amplitude |a;,l.
We find that the relation between the applied voltage amplitude Vand
theinferred displacement amplitude |a;,| follows a‘hockey-stick’ curve
el = (V)% + ¢,)¥%, in which the second fit parameter ¢, accounts for
the thermal population of the mechanical mode. During state recon-
struction, we only attribute the displacement amplitude to the voltage
we apply, namely, |a| = c,V. For our system, we find ¢, = 1.854 + 0.007
andc,=0.116 + 0.002.

We also perform a simulation of this displacement calibration pro-
cedure and the results (Extended Data Fig. 4b) show good agreement
with the experimental data. In these simulations, asmall thermal state
p,, with population n, = 0.10 is coherently displaced D, p‘th[iz witha
programmed amplitude |a|. The phonon number distribution of the
resulting state is fit to the nearest coherent state, from which we infer

the effective displacement amplitude |a;,|. This operation yields a

similar hockey-stick behaviour as the experimental data, with a yinter-

cept |a;, = 0.305. This corresponds to an average phonon number

N, =0.093 ~ ny,. Fitting this simulated data to the hockey-stick model

yields a scale factor between the inferred |a| and the input |a| of
=0.984 +0.002 ~ 1, as we expect.

Error analysis of state reconstruction

We use Monte Carlo error propagation to determine the robustness of
the mechanical state reconstruction previously described. In fitting
the P,(n) or P,4(m, n) from $(¢), we obtain an estimate for the covariance
matrix of the model parameters during the nonlinear least squares
regression. For error propagation testing, we then randomly resample
the P,(n) or P,4(m, n) and displacement calibrations, using their respec-
tive statistical uncertainties computed from the covariance matrix of
the model. The resampled parameters are then fed into the convex
optimizationroutine that minimizes £(4)to obtain thereconstructed
state p.This resampling process is repeated 3 x 10* times to obtain the
resulting variationsin the reconstructed density matrix fidelities shown
in Extended Data Fig. 4c, d. We use the standard deviation of these
reconstructed fidelities to obtain the error estimates for the state
fidelities 7 and F. reported in the main text.

Data availability

The datasets generated and analysed for this study are available from
the corresponding author on reasonable request.
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Extended DataFig.1|Deviceimages. Angled top view (a) and angled sideview  secured face down to the bottom (qubit) chip by an adhesive polymer
(b) photographs of the fully packaged device. The top (mechanics) chip is (9:1ethanol to GE Varnish) applied manually to the sides of the chip.
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Extended DataFig.2|Qubit characterization. a, Qubitspectrumasa
function of the externally applied magnetic flux @, in units of the magnetic
flux quantum ®,. The qubit is tuned from its maximum frequency

Wge /2m=2.443 GHz and shows avoided crossings at w,, /2 =2.053 GHzand
@m,/21=2.339 GHz, corresponding to the mechanical modes M, and M,.

b, Qubit 7, asafunction of qubit frequency. Each horizontal slice represents a
separate ring-down measurement, with the qubit excited state probability
indicated by the colour bar. Thefitted T, values for eachsslice are plotted as

Time (us)

35 c ; ; r
— 40 i
S
3
] *%
.‘330- m 1
oy ‘M‘
§: ¢ “a
s 20k RS 5 i o o
£ 0 100 200 300
3 Number of Cliffords
%
g d —
s \
E 20 v { 4
v |
el
210t
3 \ / \
g \ /
0 0- 1 1 1 1 1 ]

-400 -200 O

200 400
e-f Drive Amplitude (V)

white points. ¢, Randomized benchmarking results. Here the qubit responseis
measured after applying arandom sequence of Clifford gates, with the final
Clifford always chosen to map the cumulative effect of the sequenceto|e).

d, Qubitthermometry measurement. The dark blue points (dark red points)
show the measurement result with (without) aninitial X, pulse to exchange the
steady-state|g) and |e) populations. The light blue (light red) lines show the fits
for these Rabi-like oscillations, withamplitudes A, (A.). From these amplitudes,
we estimate a qubit thermal populationine) of P, = 0.057.



Interaction time, T (ns)

200 T T T T i , 35
+ S
150 £
8
100F =
g
50 <
o L 1 f L 1 0
200 1‘ T T T T T lr 1
150F \ ]
100f =1 Pe
50F b
0 . . . . . 0
1.95 2.05 21 2.15 2.2 2.25 2.3 2.35 24

Qubit bias frequency, (W, +A)2m (GHz)

Extended DataFig.3|Swap characterization. a, Experimental results (top)
and simulated qubit excited state probability P, (bottom) for the Rabi-swap
experimentdescribedin Fig.2b,d. Theasymmetryinthe chevronsofthe
qubit-mechanicsinteractionis replicated by master equation simulations.
b, Qubit state tomography results for the X (blue), ¥ (red) and Z (black)

components of the qubit state Bloch vector during aresonant Rabi-swap
experiment. The qubitisinitially preparedin|e) and then swapped to the upper
mechanical mode M, before performing tomography on the qubit. ¢, Qubit
state tomography results for aresonant Rabi-swap experiment, similar tob, in
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Extended DataFig. 4 |Statereconstruction. a, Experimental results for the
mechanical displacement calibration, showing the inferred displacement
amplitudes |a;,¢ (points) corresponding to the voltage amplitude of each
applied pulse, and afit to the hockey-stick model (line). b, Simulation and fit of
the displacement calibration performed experimentally in a. A small thermal
state (n,, = 0.10) isdisplaced with aprogrammed amplitude (input |a|, x axis),
fromwhich we determine theinferred displacement amplitude (la;l, y axis).

Thesimulation dataare plotted in dark blue points, with afit to the hockey-stick
model plottedinlightblue.Inthelinear portion of the graph, we find the ratio
ofthesevalues, ¢, = (inferred |a|)/(input |a|) ~ 1, asexpected. ¢, Results of error
propagation for thereconstructed fidelity 7 = 0.786 + 0.003 in single-mode
tomography of the |0) + 1) state. d, Results of error propagation for the joint
tomography Bell-state fidelity 7., = 0.66 + 0.03.
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Extended DataFig. 5| Parity measurement. a, Parity of the displaced
mechanical state 1) preparedin the upper mechanical mode. The state s
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voltage amplitudes of the applied microwave pulses that generate these
displacements. This yieldsaminimum observed parity [1(0) ~ -0.45at the

prepared and characterized using the same pulse sequenceasin Fig.3a. Here origin.b, The same parity measurement, plottedinterms of the inferred
we use 16 displacementsin the upper-right quadrant of the complex plane and displacement amplitudes. We extrapolate these a values using the calibration

performthe Ramsey measurement for atotal time ¢,,,, = 4.0 ps. For each
displacement D(a), parity is computed from the extracted phonon number
distributionasI(a) = X,_,(-1)"P,(n). The axes correspond to the complex

scheme described in Extended DataFig. 4. ¢, Upper-right quadrant of the
reconstructed Wigner function shown in Fig. 3f, reproduced here for
comparison.
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Extended Data Table 1| Device parameters

Parameter Value(s)
o5/ 27 2.443 GHz
o,/2m 126 MHz
T, (4.9+2.3) us
T, (flux sweet spot) 1.4 us
T, (g, /2n=2.26 GHz) 0.6-1.2 ps
O, /27 2.0583, 2.339 GHz
Tim 1.23,0.99 us
Tom 0.87,1.71 us
g:/2n 9.5, 10.5 MHz
or/2n 2.872 GHz
K /2n 1.29 MHz
sample temperature 10 mK

Parameters of the qubit, mechanical modes and readout resonator.
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