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Quantum state preparation and tomography 
of entangled mechanical resonators

E. Alex Wollack1,2,4, Agnetta Y. Cleland1,2,4, Rachel G. Gruenke1,2, Zhaoyou Wang1,2,  
Patricio Arrangoiz-Arriola1,2,3 & Amir H. Safavi-Naeini1,2 ✉

Precisely engineered mechanical oscillators keep time, filter signals and sense 
motion, making them an indispensable part of the technological landscape of today. 
These unique capabilities motivate bringing mechanical devices into the quantum 
domain by interfacing them with engineered quantum circuits. Proposals to combine 
microwave-frequency mechanical resonators with superconducting devices suggest 
the possibility of powerful quantum acoustic processors1–3. Meanwhile, experiments 
in several mechanical systems have demonstrated quantum state control and 
readout4,5, phonon number resolution6,7 and phonon-mediated qubit–qubit 
interactions8,9. At present, these acoustic platforms lack processors capable of 
controlling the quantum states of several mechanical oscillators with a single qubit 
and the rapid quantum non-demolition measurements of mechanical states needed 
for error correction. Here we use a superconducting qubit to control and read out the 
quantum state of a pair of nanomechanical resonators. Our device is capable of fast 
qubit–mechanics swap operations, which we use to deterministically manipulate the 
mechanical states. By placing the qubit into the strong dispersive regime with both 
mechanical resonators simultaneously, we determine the phonon number 
distributions of the resonators by means of Ramsey measurements. Finally, we 
present quantum tomography of the prepared nonclassical and entangled 
mechanical states. Our result represents a concrete step towards feedback-based 
operation of a quantum acoustic processor.

The burgeoning field of quantum acoustics combines the established 
tools and infrastructure of circuit quantum electrodynamics (cQED) 
with the many benefits of nanomechanical oscillators. This creates a 
rich platform for explorations of fundamental quantum physics4–7,10–12,  
with promising applications towards scalable quantum compu-
tation1,2,13. Over a small footprint, mechanical systems have the 
potential to provide access to a large number of highly coherent 
microwave-frequency modes that can act as high-precision sensors 
of force and motion14, store long-lived quantum memories with minimal 
crosstalk1–3 and form interconnects with optical systems15,16. Further-
more, it is possible to generate nonclassical4,5 and entangled states 
of motion17–22 in mechanical oscillators, making them a compelling 
system for storing and processing quantum information. By placing 
these acoustic systems in the strong dispersive coupling limit23,24, 
both non-Gaussian and non-demolition measurements can be made 
by means of phonon-number-resolved detection.

Access to this regime is enabled by our device design and hetero-
geneously integrated material platform. We leverage the small mode 
volume and strong piezoelectricity of a phononic crystal resonator 
in thin-film lithium niobate (LN), combined with a high-coherence 
aluminium transmon qubit, to achieve large coupling rates between a 
superconducting qubit processor and two nanomechanical resonators. 
Our approach allows for strong coupling while suppressing the phonon 

radiation loss channels that arise in piezoelectric materials. In phon-
onic crystal devices, the density of states for acoustic radiation loss 
can be eliminated over a wide frequency range by choosing a periodic 
geometry that produces a full phononic bandgap11. This approach local-
izes the gigahertz-frequency mechanical mode to a wavelength-scale 
volume25 and has produced resonators with extremely long mechanical 
lifetimes26. With improved fabrication processes (see Methods), we 
have extended the qubit T1 and mechanical resonator T1,m coherence 
times by a factor of 3 and 4, both of which limited experimental capa-
bilities in previous work6.

Our hybrid device is composed of two chips integrated in a flip-chip 
architecture27 (Fig. 1a). We fabricate a frequency-tunable transmon 
qubit28 with microwave control lines and a coplanar waveguide read-
out resonator (Fig. 1b) on a 6-mm × 9-mm silicon chip. The qubit is 
capacitively coupled across a small vacuum gap to two phononic 
crystal resonators fabricated on a separate 2-mm × 4-mm top chip 
(Fig. 1c). These cavities are patterned by argon ion milling a thin film 
of LN29, which is then released from the silicon handle of the chip by a 
xenon difluoride dry etch6,30. Each mechanical eigenmode is confined 
to a small defect site suspended on either side by a one-dimensional 
phononic crystal mirror11,25. Using the piezoelectric effect of LN, the 
qubit couples to the mechanical modes by means of aluminium elec-
trodes patterned on each resonator. These electrodes extend to a 
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metallized pad, which forms the top half of a cross-chip coupling 
capacitor, with a matching pad on the qubit island. The capacitor gap 
is defined by the flip-chip separation distance of 1 μm (see Methods 
for the flip-chip procedure).

The Hamiltonian for the resulting device includes two mechanical 
oscillators with frequencies ωmi

 and lowering operators b̂i, in addition 
to a qubit with transition frequency ωge and Pauli operators  
σ̂: H ω b b ω b b ω σˆ = ˆ ˆ + ˆ ˆ + ˆ .z0 m 1

†
1 m 2

†
2

1
2 ge1 2

 A direct piezoelectric coupling 
between the qubit and mechanics leads to an interaction Hamiltonian 
H g b b σˆ = ∑ ( ˆ + ˆ ) ˆi i i i xint

†
, with coupling rates gi. In the limit of large detun-

ing, the interaction is best described by an effective dispersive Hamil-
tonian31

H H χ b b χ b b σˆ = ˆ + ( ˆ ˆ + ˆ ˆ ) ˆ .zeff 0 1 1
†

1 2 2
†
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In this regime, each mechanical mode imparts a frequency shift of 
2χi per phonon on the qubit. This dispersive coupling rate χi is related 
to the qubit anharmonicity αq, the coupling rate of each mechanical 
mode gi and the detunings ω ωΔ = −i ge mi

 by31
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The time required to resolve these phonon-induced frequency shifts 
is roughly π/χi, making it important for χi to exceed the decoherence 
rates of both the mechanical resonators and the qubit. A system that 
satisfies this condition, while maintaining the detuning requirement 
Δi ≫ gi for the effective Hamiltonian to hold, is said to be in the strong 
dispersive coupling regime24, which has only recently been demon-
strated for circuit quantum acoustic devices6,7. A useful figure of merit 

for devices in this regime is the dispersive cooperativity C = 4χ2T1T1,m, 
which our device improves to C = 490 compared with C = 170 in previ-
ous work in quantum acoustics6.

For this experiment, we leverage established techniques in cQED to 
perform state preparation and readout of the qubit (see Methods), 
allowing characterization of the mechanical resonators using the qubit 
as a probe. We control the qubit frequency by flowing current through 
an on-chip flux line shown in Fig. 1b. Tuning the qubit yields avoided 
crossings in the qubit spectrum at both the lower and upper mechan-
ical frequencies, ω /2π = 2.053 GHzm1

 and ω /2π = 2.339 GHzm2
  

(Fig. 2a). From these avoided crossings, we determine the qubit–
mechanics coupling strengths to be g1/2π = (9.5 ± 0.1) MHz and 
g2/2π = (10.5 ± 0.1) MHz.

Although the static capacitive coupling between the qubit and the 
mechanics is fixed, the qubit–mechanics interaction is controlled on 
nanosecond timescales by rapidly tuning the frequency of the  
qubit between the off-resonant ω ω g(| − | )ige mi

≫  and on-resonant 
ω ω( = )ge mi

 regimes by means of current pulses sent through the flux 
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Fig. 1 | Device description. a, Schematic of the modes and flip-chip device.  
A frequency-tunable qubit on the bottom chip (blue) is capacitively coupled 
across a small vacuum gap to two mechanical modes on the top chip (orange). 
The mechanical modes are represented as Butterworth–van Dyke equivalent 
circuits. b, Optical micrograph of the bottom (qubit) chip, with the inset 
showing the superconducting quantum interference device of the qubit and 
adjacent flux line, used for frequency control. The rightmost arm of the 
transmon island extends to form the bottom pad of the coupling capacitor. The 
scale bar denotes 300 μm. c, False-colour scanning electron micrograph of the 
top (mechanics) chip, showing two phononic crystal resonators (red). 
Aluminium electrodes (orange) are galvanically connected to both the 
coupling capacitor pad of the top chip and the ground plane, as shown in the 
inset. The scale bar denotes 1 μm.
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Fig. 2 | Characterization of the mechanical modes. a, Qubit spectroscopy 
near the mechanical mode M2, with ωge detuned relative to ω .m2

 b, Pulse 
sequence for Rabi-swap experiment. The qubit is excited to |e⟩ using a X̂π pulse, 
then flux detuned by frequency Δ for an interaction time τ before qubit 
measurement. c, Pulse sequence for single-phonon T1,m and T2,m experiments. 
The qubit is prepared using either a X̂π or a X̂π/2 rotation, then swapped to one 
of mechanical modes M1 or M2. After waiting a variable delay time t, the qubit 
and mechanics are swapped again, followed by an optional qubit tomography 
rotation R and measurement. d, Qubit response as a function of bias frequency 
ωge + Δ and interaction time τ of the applied flux pulse in b. At the start of the 
experiment, the qubit is held at ωge/2π = 2.26 GHz (rightmost blue line, in which 
Δ = 0) before being frequency detuned to interact with the mechanical modes 
(red lines). e, Single-phonon T1,m measurement for each mechanical mode 
(blue: M1, red: M2), using the pulse sequence in c with the qubit prepared in |e⟩ 
and the identity operation for R. f, Single-phonon T2,m measurements of the 
mechanical modes (top: M1, bottom: M2). Here the qubit is initially prepared in 
the superposition |g⟩ + |e⟩ and we use tomography rotations R = X̂π/2 (blue) or 
Ŷπ/2 (red) in c.
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line. To characterize and calibrate swap operations, we bias the qubit 
frequency to ωge/2π = 2.26 GHz, far from the mechanical resonances. 
Using the pulse sequence of Fig. 2b, we perform Rabi-swap experi-
ments using a single initial excitation in Fig. 2d. At the correct detun-
ings, the excitation is exchanged between the qubit and one 
mechanical resonator, enabling transfer of the qubit state to the 
mechanics. We perform an iswap operation in a time of π/2gi ≃ 24–26 ns 
and estimate a fidelity of 0.95 ± 0.01 from the fringe visibility.

Access to a fast, high-fidelity swap operation allows us to extend 
our control of the qubit to the mechanical devices. We perform 
single-phonon characterization of both resonators using the pulse 
sequence in Fig. 2c. In these experiments, we use the qubit to prepare a 
quantum state of the resonator, then wait a delay time t before swapping 
the mechanical state back into the qubit for measurement. By choosing 
to initially rotate the qubit into the state |e⟩ or |g⟩ + |e⟩, we character-
ize either the mechanical energy decay time T1,m or the mechanical 
dephasing time T2,m.

We observe that both resonators exhibit energy-relaxation dynam-
ics that are best described as the sum of three decaying exponentials 
(Fig. 2e). The fastest decay is observed to be T = (1.23 ± 0.08) μs1,m1

  
and T = (0.99 ± 0.03) μs1,m2

 for mechanical resonators M1 and M2. By 
contrast, the other decay times are on the order of 10 and 90 μs for 
both resonators. The observed multi-exponential response may be 
explained by resonant decay into saturable and rapidly dephasing 
two-level systems (TLSs) in the device32,33, but a more detailed study 
is required.

The results of a similar Ramsey experiment are shown in Fig. 2f and 
used to extract the mechanical dephasing times T = (0.87± 0.02) μs2,m1

 
and T μ= (1.71 ± 0.03) s.2,m2

 For a harmonic oscillator under the pres-
ence of amplitude damping, we expect the T2,m of each mechanical 
resonator to be twice its T1,m; however, both modes seem to suffer 
from an extra, non-negligible source of phase decoherence, with 
inferred pure dephasing times T = 1.4 μsϕ,m1

 and T = 13 μsϕ,m2
. This  

may also be owing to the presence of TLSs, and a more complete 
analysis of decoherence in these devices will be the subject of future 
studies.

After characterizing the device, we use the qubit to perform full 
quantum state tomography of the upper mechanical resonator. Our 
goal is to obtain the density matrix ρ̂ describing the state of a  
single resonator. Previously, this has been achieved by means of 
dynamics in which the qubit and mechanics directly exchange excita-
tions4,5. Here we use the strong dispersive interaction to impart a 
phonon-number-dependent frequency shift on the qubit, which is 
then read out by a Ramsey measurement23,24,34–37 that yields the pho-
non number distribution P0(n). This provides us with the diagonal 
elements of the density matrix n ρ nˆ  but does not fully determine 
the state. To gain information about the off-diagonal elements  
of ρ̂, we perform a calibrated displacement operation D̂α  on the 
mechanical resonator before the Ramsey measurement to find 
P n n D ρD n( ) ≡ ⟨ | ˆ ˆ ˆ | ⟩.α α α

†

We begin the tomography protocol by using the qubit to prepare 
phonon states |0⟩, |1⟩ or |0⟩ + |1⟩ in the upper mechanical mode. For 
this experiment, the qubit is initially biased to ωge /2π = 2.26 GHz to 
ensure sufficient detuning for a dispersive interaction, |Δ2|/g2 ≃ 8. 
We synthesize these states by first rotating the qubit to the desired 
state with a X̂π or an X̂π/2 pulse, then swapping it into the resonator, 
as shown in Fig. 3a. Next, we displace the resonator state D( ˆ )α  with a 
microwave pulse at the mechanical frequency, applied to the XY line 
of the qubit6. We then perform a Ramsey measurement to resolve 
the dispersive shifts on the qubit resulting from each populated Fock 
level in the displaced mechanical state. The resulting signal takes 
the form of a sum of oscillating terms with an exponentially decaying 
envelope,

 ∑S t A e ω χn t φ( ) = cos ( + 2 ) + . (1)
n

n
κ t

n
=0

−
0

n

We fit the data to equation (1) to learn the weight An and frequency 
of each spectral component (see Methods) and measure a dispersive 
shift χ/2π = (−735 ± 8) kHz. Here κn = 1/T2 + n/T1,m accounts for qubit 
dephasing caused by the transmon T2 and the decay of the nth phonon 
state. This fit allows us to extract the population Pα(n) in each Fock level 
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Fig. 3 | Single-mode tomography. a, Pulse sequence showing state 
preparation, displacement and Ramsey measurement. First, we use the qubit 
(blue) to prepare |1⟩ in the upper mechanical mode, M2. M2 is then displaced by a 
microwave pulse D̂α with variable amplitude and phase. Finally, we perform a 
Ramsey sequence on the qubit. For |0⟩, state preparation (left) is omitted, and 
for |0⟩ + |1⟩, the X̂π pulse is replaced with X̂ .π/2  b, Complex-valued amplitudes α 

of the displacements D̂α (red points), with a few corresponding measurement 
results (highlighted points). Representative Ramsey measurement result (c) 
and extracted phonon number distribution (d). The data (dark blue points) are 
fit to equation (1) (light blue line), with the dashed lines showing the fitted 
decay envelope. Reconstructed density matrices (e) and Wigner functions (f) 
for each prepared state, extracted by convex optimization.
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n by normalizing the spectral amplitudes: Pα(n) = An/Σn An. A representa-
tive time-domain fit and extracted distribution are shown in Fig. 3c, d.

Finally, we estimate the most probable state ρ̂ of the mechanical 
resonator using convex optimization38. In this procedure, we perform 
Ramsey measurements (Fig. 3c) to find Pα(n) for 36 different complex 
values of α (Fig. 3b). We then infer the most probable state ρ̂ by  
minimizing the distance between the experimentally obtained Pα(n) 
and n D ρD n⟨ | ˆ ˆ ˆ | ⟩α α

†  over all measured α. The reconstructed ρ̂ are shown 
in Fig.  3e and have state fidelities ψ ρ ψ= ˆ = 0.874 ± 0.003,sF  
0.658 ± 0.003 and 0.786 ± 0.003 for the target phonon states |ψ⟩ = |0⟩, 
|1⟩ and |0⟩ + |1⟩, respectively. These reconstructed ρ̂ are then used to 
compute the Wigner functions W(α) in Fig. 3f, in which the negative 
values in W(α) for |1⟩ demonstrate the quantum nature of the phonon 
state. We note that the phonon parity can also simply be extracted 
from the measured Pα(n), from which we directly observe negative 
parity values in |1⟩ (see Methods and Extended Data Fig. 5).

We attribute the imperfect overlaps sF  between the target and 
measured states mostly to mechanical decoherence and thermal 
occupation in the qubit and mechanical mode. These thermal states 
limit the fidelity of phonon state preparation and also affect the 

decay of the prepared state during various delays in the tomography 
preparation. Quantum master equation simulations of the protocol 
agree with the measured fidelities when we include thermal  
occupation levels nth in the mechanical mode and Pe,th in the qubit 
(see Methods).

By developing fast gates for several mechanical oscillators and 
extending our tomography protocol to bipartite states, we realize a 
small quantum acoustic processor that can generate and characterize 
entangled states of mechanical systems. As in Fig. 4a, our entangling 
gate consists of several sub-operations to create a mechanical Bell 
state, |ψBell⟩ = |01⟩ + eiϕ|10⟩. After exciting the qubit, a iSWAP  operation 
is performed between the qubit and the upper mechanical mode to 
maximally entangle the two. The qubit state is then fully swapped to 
the lower mechanical mode, which translates the entanglement to be 
between the two mechanical systems.

Next, we perform tomography on the joint mechanical system  
by extending our Ramsey measurement approach. We position  
the qubit frequency such that the mechanical dispersive shifts, 
χ1/2π = (−516 ± 8) kHz and χ2/2π = (−830 ± 5) kHz, are distinguishable 
from each other, with a typical Ramsey measurement signal shown in 
Fig. 4b. In fitting the interference patterns of these two-mode experi-
ments, the model of equation (1) is extended to accommodate both 
resonators by replacing An → Amn, κn → κmn and 2χn → 2χ1m + 2χ2n for Fock 
indices m and n of the lower and upper mechanics, respectively. Nor-
malization of the signal amplitudes Amn gives the joint phonon number 
distribution Pαβ(m, n) (Fig. 4c). To reconstruct the joint state ρ̂ of the 
two mechanical systems, we repeat the experiment for 25 different 
combinations of displacements D Dˆ ⊗ ˆα β on the resonators, each time 
extracting the associated Pαβ(m, n). We then estimate ρ̂ from the set of 
Pαβ(m, n) using convex optimization (see Methods), resulting in the 
reconstructed state shown in Fig. 4d. The overlap of the inferred state 
with the target Bell state is F ψ ρ ψ= ⟨ | ˆ| ⟩ = 0.66 ± 0.03,Bell Bell Bell  with a 
quantum state purity ρtr( ˆ ) = 0.51 ± 0.03.2  Numerical simulations of  
the mechanical system, shown in Fig. 4d, are in good agreement with 
the measured ρ̂, allowing us to attribute the dominant source of  
loss in fidelity FBell to mechanical T1,m and T2,m decay during the tomog-
raphy protocol, as well as state preparation error owing to thermal 
occupation (see Methods).

In conclusion, we demonstrate deterministic quantum control over 
a pair of nanomechanical resonators and characterize their joint quan-
tum state using a dispersive, non-demolition measurement. In future 
work, mitigation of TLS-induced decoherence in LN phononic crystal 
resonators should allow for longer mechanical coherence times26,32, 
which at present limit the observed state fidelities in our device. The 
flip-chip architecture in this experiment is well suited for separate 
optimization of the qubit and mechanical systems by enabling a modu-
lar approach to engineering hybrid quantum systems. Our hardware 
implementation has enabled deterministic manipulation of quantum 
entanglement between macroscopic mechanical objects and can be 
extended to architectures including quantum random access memories 
and biased-error cat qubits1–3.
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Methods

Fabrication
Our device fabrication closely follows previous methods6, with the 
important difference that the processes for qubits and nanomechani-
cal structures are now performed on separate dies. We have moved 
to a slightly different material platform for the mechanics chip, in 
which the thin-film LN has been doped with magnesium oxide (MgO) 
to improve the mechanical properties of the crystal32. Furthermore, 
we thermally anneal the mechanics chip (8 h at 500 °C) before pattern-
ing the device. On the qubit chip, we have added aluminium crosso-
vers across the qubit control lines and readout transmission line. We 
have also developed an oxygen plasma descum process to remove 
polymer residues from inter-metallic layers, reducing TLS-induced 
microwave loss.

The flip-chip bonding procedure is the final step in our fabrication 
process. We use a submicron die bonder (Finetech) to align the two 
chips by positioning the two pads of the coupling capacitor on top of 
each other. The active surfaces of the two chips are brought to a separa-
tion distance of 1 μm, as allowed by 500-nm aluminium spacer ridges 
patterned on each chip. Finally, an adhesive polymer (9:1 ethanol/GE 
Varnish) is manually applied to the outer edges of the top chip to secure 
it in place. Images of the final integrated flip-chip device are shown in 
Extended Data Fig. 1.

Mechanics design
For our experiment, it is important to carefully choose the frequency 
arrangement such that all modes are sufficiently protected from deco-
herence channels, while the qubit–mechanics interaction remains in 
the dispersive regime. Using finite-element simulations, we choose a 
phononic crystal geometry with a bandgap extending from about 1.90 
to 2.50 GHz and a pitch of a = 900 nm. The mechanical frequencies, 
controlled by adjusting the width of the defect site, are designed to 
be about 150 MHz away from the bandgap edges, ensuring that the 
modes are protected from clamping losses.

Qubit design and control
Our device uses a transmon-style qubit with microwave control lines 
and a dispersively coupled microwave resonator for readout.  
An on-chip flux line positioned near the superconducting quantum 
interference device loop of the qubit provides capability for both 
static (DC) and rapid (pulsed) frequency tuning of the qubit by means 
of externally applied magnetic flux. In Extended Data Fig.  2a,  
we measure the frequency tuning curve of the qubit, with the max-
imum qubit frequency at ω /2π = 2.443 GHz.ge

max  Our device has  
charging energy EC/h = αq/2π = 126 MHz and Josephson energy 
EJ/h = 6.550 GHz, ensuring that it operates well into the transmon 
regime31, EJ/EC ≫ 1.

For tomography experiments, the qubit operating frequency 
is chosen to be in between the two mechanical frequencies. This 
ensures that both the primary qubit transition ωge and the next higher 
transition ωef = ωge − αq are sufficiently distant from the mechanical 
modes that the qubit is effectively decoupled, allowing us to perform 
rotations of the qubit state with high fidelity. Placing the qubit fre-
quency in this region also gives strong dispersive coupling to both 
mechanical modes to perform joint tomography of the mechanical 
systems.

We perform gates on the qubit state by applying microwave pulses 
with variable amplitude, phase and duration to the XY line of the 
qubit. For these experiments, we use 20-ns DRAG (derivative removal 
by adiabatic gate) pulses with roughly Gaussian envelopes39,40. Using 
randomized benchmarking techniques41,42, we observe a single-qubit 
gate fidelity of 0.996 at the operating frequency used for tomography 
(ωge/2π = 2.26 GHz), as shown in Extended Data Fig. 2c. To measure the 
qubit state, we use a standard cQED approach of dispersive readout 

by means of an off-resonantly coupled coplanar waveguide resona-
tor. To infer the qubit excited state probability, we apply a microwave 
pulse to the transmission line of the readout resonator and measure 
the scattered response, which allows us to detect shifts in its resonant 
frequency induced by the state of the qubit.

In Extended Data Fig. 2b, we measure the qubit energy decay time T1 
over a large frequency range and plot the results. For each horizontal 
slice, we statically bias the qubit to the indicated frequency and perform 
a standard ring-down measurement to study its T1 energy decay. The 
qubit excited state probability, indicated by the colour bar, is plotted 
as a function of time. The white points show the resulting T1 values, 
extracted by fitting each data slice to an exponential decay function. 
From this dataset, we find the average qubit decay time to be T1,avg =  
(4.9 ± 2.3) μs.

We also characterize the thermal population of the qubit with a ther-
mometry experiment, shown in Extended Data Fig. 2d. For this meas-
urement, we use a Rabi population method4,43 to quantify the residual 
qubit population in |e⟩. This is done by driving rotations of the qubit 
state between the |e⟩ and |f ⟩ levels with varying rotation angle. A final 
Xπ pulse exchanges the |g⟩ and |e⟩ populations before we measure the 
qubit state. We perform this measurement both with and without an 
optional Xπ pulse at the beginning of the sequence, which exchanges 
the steady-state |g⟩ and |e⟩ populations in the qubit. These measure-
ments produce two Rabi-like oscillation patterns, whose amplitudes 
Ag and Ae contain information about the thermal |e⟩ population, Pe,th =  
Ae/(Ag + Ae). By this method, we find Pe,th = 0.057 with the qubit biased 
to ωge/2π = 1.798 GHz. We perform this measurement far detuned 
from both mechanical modes to ensure high-fidelity rotations of the 
qubit states. At this operating point, the reported value is likely to be 
an upper bound on the qubit thermal population relevant for our pri-
mary experiments.

Master equation simulations
To model the quantum dynamics of our device and obtain estimates 
of the mechanical state fidelities, we perform time-domain master 
equation simulations using the QuTiP package44. First, we simulate the 
qubit–mechanics dynamics during Rabi-swap experiments to illustrate 
how nanosecond-timescale flux pulses can be used to manipulate the 
device. Here the qubit is modelled as a three-level nonlinear resonator 
â with time-dependent frequency ωge(t) and anharmonicity αq, subject 
to T1 decay and pure dephasing Tϕ. The mechanical resonators are taken 
to be three-level harmonic oscillators b̂i, also with T1,m and Tϕ,m  
decoherence channels. For this experiment, the total Hamiltonian 
H H H Hˆ = ˆ + ˆ + ˆ

0 int d has contributions

∑H ω t a a
α

a a aa ω b b^ = ( ) ^ ^ −
2

^ ^ ^ ^ + ^ ^ ,
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i i0 ge
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†
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† †
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(Ω( ) ˆ + Ω ( ) ˆ ).d
⁎ †

A drive term Ĥd allows for population of either the qubit or the 
mechanical resonators, depending on the chosen modulation fre-
quency of the applied drive, Ω(t). We also allow applied flux pulses to 
add time-dependent frequency control of the qubit, ω t ω ω t( ) = + ( ),ge ge ge

∼  
in which ωge is the static qubit frequency and ω t( )ge

∼  represents the tran-
sient frequency control.

In simulating the time evolution of the total quantum system ρ̂, we 
numerically integrate the Lindblad master equation,
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with collapse operators c b Tˆ = ˆ / ,k 1 1,m1
 b Tˆ / ,2 1,m2

 b b Tˆ ˆ / 2 ,ϕ1
†

1 ,m1
 

b b Tˆ ˆ / 2 ,ϕ2
†

2 ,m2
 a Tˆ/ 1  and a a Tˆ ˆ/ 2 .ϕ

†  Note that all model parameters 
are experimentally determined from standard qubit measurements. 
For the mechanics energy decay time, we choose the shorter one from 
the measured multi-exponential decay, as it best represents the dynam-
ics on the timescales important for simulation of the tomography 
protocol. There is also a subtlety in our choice of the bare frequencies 
ωge and ω .mi

 To obtain consistent results between experiment and 
theory, Ĥ is first defined in the bare basis and then diagonalized to find 
the dressed basis eigenstates and eigenvalues. The bare frequencies 
of Ĥ  are then chosen such that the dressed frequencies of the qubit 
and mechanics best match the experimentally measured values at 
steady state. These dressed states can then be used to evaluate final 
state probabilities and expectation values.

Using this framework, we aim to reproduce the asymmetry present 
in the qubit–mechanics chevrons of Fig. 2d. These simulations show 
excellent agreement with experimental Rabi-swap results, as shown 
in Extended Data Fig. 3a. The limited visibility of the fringes near the 
static qubit bias ωge is owing to the details of the dressed state in a 
system in which the coupling gi is always present. In the case of small 
detuning ω t( ),ge

∼  the instantaneous dressed bases do not change  
appreciably and so the qubit-like mode roughly remains in the same 
dressed eigenstate throughout the operation. This contrasts with 
systems in which the gi can be turned off during single-qubit opera-
tions, thereby avoiding dressing of the qubit state except when the 
coupling is desired.

We perform further master equation simulations to compare with 
the observed mechanical state fidelities Fs and FBell reported in the 
main text. For these simulations, the qubit is modelled as a two-level 
resonator, and we assume that the initial mechanical state ρ̂ (0)m  and 
qubit state ρ̂ (0)q  are thermally populated to levels nth and Pe,th respec-
tively. To estimate the state preparation fidelity for the mechanical 
state |1⟩, we excite the qubit with the Pauli X operator and simulate the 
swap operation by evolving the joint state under Ĥint for a time 

tswap = π/2g, subject to collapse operators c n T b^ = ( + 1)/ ^
k ith 1,mi

 and 

c n T b^ = / ^ ,k i
†

th 1,m

†

i
 which account for mechanical energy decay, as well 

as b b Tˆ ˆ / 2 ,i i ϕ
†

,mi
 which models dephasing in the mechanical mode. 

Separately, to estimate the state reconstruction fidelity in the absence 
of state preparation error, we initialize the mechanical state in |1⟩ and 
let the state freely evolve during various delay steps in the tomography 
protocol, subject to the same collapse operators as above. We then 
apply 36 complex displacements to the resulting state, mirroring our 
experimental procedure, and use the resulting phonon number distri-
butions in our state reconstruction protocol to estimate the impact 
on the extracted fidelity. For the target state |1⟩, using thermal occupa-
tion levels nth = 0.1 and Pe,th = 0.05, we estimate a state preparation fidel-
ity of 0.875 and state reconstruction fidelity of 0.777 from these 
simulations, yielding a total estimated fidelity of 0.680, similar to the 
measured sF  of 0.658 ± 0.003.

For the mechanical Bell state, we again begin with thermal states in 
the qubit and mechanical modes. After exciting the qubit, we model 
both the iSWAP  and iSWAP operations to estimate the state prepara-
tion fidelity and let the resulting state evolve under the same decay 
and dephasing operators as above. Using thermal occupation levels 
nth = 0.05 and Pe,th = 0.05, these master equation simulations predict a 
state preparation fidelity of 0.857 and total fidelity of 0.627, similar to 
the observed BellF  = 0.66 ± 0.03. The good agreement between simula-
tion and our measured fidelities suggest that Fs and BellF  are likely to 
be limited by T1,m and T2,m decoherence mechanisms in the mechanical 
system, in addition to state preparation error caused by steady-state 
thermal occupation in all modes. Applying the same approach to the 
single-mode tomography target states, with nth = 0.1, we obtain esti-
mates for the total fidelity of 0.693 for |1⟩. For |0⟩ + |1⟩, we estimate the 
state preparation fidelity to be 0.909 and total fidelity to be 0.850.

Swap characterization
To demonstrate control of the qubit–mechanics swap operation, we 
perform quantum state tomography on the qubit during resonant 
Rabi-swap experiments. Using the pulse sequence of Fig. 2b, we bring 
the qubit into resonance with the upper mechanical mode M2 for an 
interaction time τ before applying tomography gates Xθ or Yθ, chosen 
from θ = {0, ±π/2, ±π}. Combining the results of this set of measure-
ments allows for the reconstruction of the qubit Bloch vector σ⟨→⟩, 
shown in Extended Data Fig. 3b, c. Note that, as our experiment does 
not have single-shot qubit state readout, we calibrate the observed 
qubit response using the measured qubit thermal population Pe,th to 
estimate the Bloch vector. In Extended Data Fig. 3b, the qubit is pre-
pared in |e⟩ before resonantly interacting with M2; the resulting data 
show the excitation periodically returning to the qubit, with the σX 
and σY components largely unaffected. A similar experiment is per-
formed in Extended Data Fig. 3c, with the qubit now starting in the 
superposition |g⟩ + |e⟩. As expected, the superposition of the qubit 
is recovered from the mechanical resonator at even multiples of the 
swap time.

Time domain data analysis
The Ramsey measurements used for state tomography contain informa-
tion about the phonon number distribution of the dispersively coupled 
mechanical state. The distinct spectral components in the number-split 
qubit spectrum create an interference pattern that depends strongly 
on the mechanical occupation, as shown in Fig. 3b. We fit the data to a 
function of the form (equation (1))

 ∑S t A e ω χn t φ( ) = cos ( + 2 ) + ,
n

n
κ t

n
=0

−
0

n

in which χ and An are model fit parameters. In S(t), the component 
corresponding to the occupation of the nth Fock level is given an 
amplitude An and frequency ω0 + 2χn. Here the dispersive shift χ is 
constrained to be the same for all n and the frequency ω0/2π = 25 MHz 
is the programmed frame detuning of the second X̂π/2 pulse of the 
Ramsey sequence. The phases φn = 2χntd account for qubit phase 
accumulation during the two X̂π/2 pulses of the Ramsey sequence, in 
which td sets the effective delay time. Because we define S(t) in terms 
of the elapsed time t between the Ramsey pulses, there is a small 
phonon-state-dependent phase accumulation at t = 0 owing to the 
finite operation time of our single-qubit gates and the geometry  
of rotating the qubit state about a frequency-detuned axis. We find 
the effective delay time ∼t τ= 1.13 ×d  in φn from master equation  
simulations of the qubit S(t) with X̂π/2 pulses of duration τ = 20 ns∼ . 
Finally, the dephasing rate of each component in S(t) is given by 
κn = 1/T2 + n/T1,m, in which T2 is the qubit dephasing time and T1,m is the 
mechanical energy decay time. In our fitting procedure, we fix T2 to 
its measured value and then find the single value of T1,m that minimizes 
the mean squared error across all sub-experiments in a given tomog-
raphy run. Performing this fit allows us to extract the Fock populations 
Pα(n) by normalizing the spectral amplitudes: Pα(n) = An/Σn An. From 
comparisons of S(t) to master equation simulations of the system, 
we find that S(t) is a good approximation of the qubit dynamics in the 
limit n/2χT1,m ≪ 1.

To extend the model to the two-mode case, we replace An → Amn, 
κ κ T m T n T→ = 1/ + / + /n mn 2 1,m 1,m1 2

 and 2χn → 2χ1m + 2χ2n for Fock  
indices m and n of the resonators. We also need to adjust the zero-delay 
qubit phase φn → φmn = (2χ1m + 2χ2n)td to account for both resonators 
shifting the qubit frame during the Ramsey X̂π/2 pulses. This yields an 
adjusted time domain model

∑S t A e ω χ m χ n t φ( ) = cos [( + 2 + 2 ) + ].
m n

mn
κ t

mn
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We use this function to fit the Ramsey measurements of Fig. 4b  

and thereby determine the two-mode phonon number distribution 
Pαβ(m, n) = Amn/Σm,n Amn.

State reconstruction
For both the single-mode and the two-mode tomography demonstrated 
in this experiment, we can use similar protocols for state reconstruc-
tion. We perform tomography of an unknown two-mode mechanical 
state ρ̂ by applying displacements D D Dˆ ≡ ˆ ⊗ ˆαβ α β on ρ̂, then measuring 
the diagonal elements Pαβ(m, n) of the resulting joint state 
ρ α β D ρ Dˆ( , ) = ˆ ˆ ˆαβ αβ

†
 (ref. 38). More specifically, the set of measurement 

data can be represented as P m n m n D ρD m n( , ) = ⟨ , | ˆ ˆ ˆ | , ⟩,αβ αβ αβ
†

 in which 
m n m n, = ⊗  is the joint Fock basis of the resonators. In our exper-
iment, we choose from combinations of complex displacements with 
amplitudes (|α|, |β|) ≤ (0.65, 0.75), and fit the resulting Pαβ(m, n) up to 
maximum Fock indices (mmax, nmax) = (3, 3). The unknown density matrix 
ρ̂ can then be reconstructed by minimizing the loss function

∑ ∑ρ m n D ρD m n P m n( ˆ) = |⟨ , | ˆ ˆ ˆ | , ⟩ − ( , )| ,
α β m n

αβ αβ αβ
, ,

† 2L

a convex problem that can be solved efficiently using the CVX pack-
age45. The single-mode mechanical state tomography follows a similar 
method by setting either α or β to zero and ignoring the corresponding 
mode in the analysis. For the single-mode tomography experiments, 
we use |α| ≤ 1.39 and nmax = 9.

Direct parity calculation
In our single-mode tomography protocol, we choose to reconstruct 
the Wigner functions by fitting over candidate ρ̂ for experimental 
efficiency. However, the Wigner function of the mechanical  
resonator, W(α), can also be directly computed from the parity 

α P n W αΠ( ) = Σ ( − 1) ( ) = ( )n
n

α
π
2  of each Ramsey measurement. In a sepa-

rate dataset (Extended Data Fig. 5), we measure Π(0) = −0.45 for the 
|ψ⟩ = |1⟩ target state, which confirms the quantum nature of this pre-
pared state by direct measurement.

Displacement calibration
Mechanical state reconstruction relies on knowing the amplitudes |α| 
of the displacements D̂α that we apply during each tomography pulse 
sequence. This requires a calibration relating the voltage amplitude 
of the applied microwave pulse to the resulting mechanical displace-
ment amplitude |α|, shown in Extended Data Fig. 4a. Here we displace 
the upper mechanical mode by applying a microwave pulse to the qubit 
XY line at the mechanical frequency and then perform Ramsey  
interferometry on the resulting state to extract the phonon number 
distribution Pα(n). Next, we perform a least squares fit to find the  
coherent state |α⟩ whose coefficients |⟨n|α⟩|2 most closely match the 
measured Pα(n) to obtain the inferred displacement amplitude |αinf|. 
We find that the relation between the applied voltage amplitude V and 
the inferred displacement amplitude |αinf| follows a ‘hockey-stick’ curve 
|αinf| = ((c1V)2 + c2)1/2, in which the second fit parameter c2 accounts for 
the thermal population of the mechanical mode. During state recon-
struction, we only attribute the displacement amplitude to the voltage 
we apply, namely, |α| = c1V. For our system, we find c1 = 1.854 ± 0.007 
and c2 = 0.116 ± 0.002.

We also perform a simulation of this displacement calibration pro-
cedure and the results (Extended Data Fig. 4b) show good agreement 
with the experimental data. In these simulations, a small thermal state 
ρ̂th with population nth = 0.10 is coherently displaced D ρ Dˆ ˆ ˆα αth

†
 with a 

programmed amplitude |α|. The phonon number distribution of the 
resulting state is fit to the nearest coherent state, from which we infer 

the effective displacement amplitude |αinf|. This operation yields a 
similar hockey-stick behaviour as the experimental data, with a y inter-
cept |αinf| = 0.305. This corresponds to an average phonon number 
navg = 0.093 ≃ nth. Fitting this simulated data to the hockey-stick model 
yields a scale factor between the inferred |α| and the input |α| of 
c1 = 0.984 ± 0.002 ≃ 1, as we expect.

Error analysis of state reconstruction
We use Monte Carlo error propagation to determine the robustness of 
the mechanical state reconstruction previously described. In fitting 
the Pα(n) or Pαβ(m, n) from S(t), we obtain an estimate for the covariance 
matrix of the model parameters during the nonlinear least squares 
regression. For error propagation testing, we then randomly resample 
the Pα(n) or Pαβ(m, n) and displacement calibrations, using their respec-
tive statistical uncertainties computed from the covariance matrix of 
the model. The resampled parameters are then fed into the convex 
optimization routine that minimizes L ρ( ˆ) to obtain the reconstructed 
state ρ̂. This resampling process is repeated 3 × 103 times to obtain the 
resulting variations in the reconstructed density matrix fidelities shown 
in Extended Data Fig. 4c, d. We use the standard deviation of these 
reconstructed fidelities to obtain the error estimates for the state 
fidelities sF  and BellF  reported in the main text.

Data availability
The datasets generated and analysed for this study are available from 
the corresponding author on reasonable request.
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Extended Data Fig. 1 | Device images. Angled top view (a) and angled side view 
(b) photographs of the fully packaged device. The top (mechanics) chip is 

secured face down to the bottom (qubit) chip by an adhesive polymer  
(9:1 ethanol to GE Varnish) applied manually to the sides of the chip.
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Extended Data Fig. 2 | Qubit characterization. a, Qubit spectrum as a 
function of the externally applied magnetic flux Φe, in units of the magnetic 
flux quantum Φ0. The qubit is tuned from its maximum frequency 
ω π/2 = 2.443 GHzge

max  and shows avoided crossings at ω /2π = 2.053 GHzm1
 and 

ω /2π = 2.339 GHz,m2
 corresponding to the mechanical modes M1 and M2.  

b, Qubit T1 as a function of qubit frequency. Each horizontal slice represents a 
separate ring-down measurement, with the qubit excited state probability 
indicated by the colour bar. The fitted T1 values for each slice are plotted as 

white points. c, Randomized benchmarking results. Here the qubit response is 
measured after applying a random sequence of Clifford gates, with the final 
Clifford always chosen to map the cumulative effect of the sequence to |e⟩.  
d, Qubit thermometry measurement. The dark blue points (dark red points) 
show the measurement result with (without) an initial Xπ pulse to exchange the 
steady-state |g⟩ and |e⟩ populations. The light blue (light red) lines show the fits 
for these Rabi-like oscillations, with amplitudes Ag (Ae). From these amplitudes, 
we estimate a qubit thermal population in |e⟩ of Pe,th = 0.057.



Extended Data Fig. 3 | Swap characterization. a, Experimental results (top) 
and simulated qubit excited state probability Pe (bottom) for the Rabi-swap 
experiment described in Fig. 2b, d. The asymmetry in the chevrons of the 
qubit–mechanics interaction is replicated by master equation simulations.  
b, Qubit state tomography results for the X (blue), Y (red) and Z (black) 

components of the qubit state Bloch vector during a resonant Rabi-swap 
experiment. The qubit is initially prepared in |e⟩ and then swapped to the upper 
mechanical mode M2 before performing tomography on the qubit. c, Qubit 
state tomography results for a resonant Rabi-swap experiment, similar to b, in 
which the qubit now starts in |g⟩ + |e⟩.
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Extended Data Fig. 4 | State reconstruction. a, Experimental results for the 
mechanical displacement calibration, showing the inferred displacement 
amplitudes |αinf| (points) corresponding to the voltage amplitude of each 
applied pulse, and a fit to the hockey-stick model (line). b, Simulation and fit of 
the displacement calibration performed experimentally in a. A small thermal 
state (nth = 0.10) is displaced with a programmed amplitude (input |α|, x axis), 
from which we determine the inferred displacement amplitude (|αinf|, y axis). 

The simulation data are plotted in dark blue points, with a fit to the hockey-stick 
model plotted in light blue. In the linear portion of the graph, we find the ratio 
of these values, c1 = (inferred |α|)/(input |α|) ≃ 1, as expected. c, Results of error 
propagation for the reconstructed fidelity sF  = 0.786 ± 0.003 in single-mode 
tomography of the |0⟩ + |1⟩ state. d, Results of error propagation for the joint 
tomography Bell-state fidelity BellF  = 0.66 ± 0.03.



Extended Data Fig. 5 | Parity measurement. a, Parity of the displaced 
mechanical state |1⟩ prepared in the upper mechanical mode. The state is 
prepared and characterized using the same pulse sequence as in Fig. 3a. Here 
we use 16 displacements in the upper-right quadrant of the complex plane and 
perform the Ramsey measurement for a total time tmax = 4.0 μs. For each 
displacement D αˆ( ), parity is computed from the extracted phonon number 
distribution as Π(α) = Σn=0(−1)nPα(n). The axes correspond to the complex 

voltage amplitudes of the applied microwave pulses that generate these 
displacements. This yields a minimum observed parity Π(0) ≃ −0.45 at the 
origin. b, The same parity measurement, plotted in terms of the inferred 
displacement amplitudes. We extrapolate these α values using the calibration 
scheme described in Extended Data Fig. 4. c, Upper-right quadrant of the 
reconstructed Wigner function shown in Fig. 3f, reproduced here for 
comparison.
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Extended Data Table 1 | Device parameters

Parameters of the qubit, mechanical modes and readout resonator.
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