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Abstract—We consider a demand management problem of
an energy community, in which several users obtain energy
from an external organization such as an energy company,
and pay for the energy according to pre-specified prices that
consist of a time-dependent price per unit of energy, as well
as a separate price for peak demand. Since users’ utilities are
private information which they may not be willing to share, a
mediator, known as the planner, is introduced to help optimize
the overall satisfaction of the community (total utility minus
total payments) by mechanism design. A mechanism consists
of message spaces, and a set of tax and allocation functions
for each user. Once we implement the mechanism, each user
reports a message chosen from her own message space, and then
receives some amount of energy determined by the allocation
function and pays the tax specified by the tax function. A
desirable mechanism induces a game, the Nash equilibria (NE)
of which, result in an allocation that coincides with the optimal
allocation for the community.

As a starting point, we design a standard, centralized
mechanism for the energy community with desirable proper-
ties such as full implementation, strong budget balance and
individual rationality for both users and the planner. Then
we extend this mechanism to the case of communities where
message exchanges only happen among neighborhoods, and
consequently, the tax and allocation functions of each user
are only determined by the messages from her neighbors.
All the properties designed for the centralized mechanism are
preserved in the distributed mechanism.

I. INTRODUCTION

Resource allocation is an essential task in networked
systems such as communication networks, energy/power net-
works, etc. In such systems, there is usually one or multiple
kinds of limited and divisible resources allocated among sev-
eral agents. When full information regarding agents interests
is available, solving the optimal resource allocation problem
reduces to a standard optimization problem. However, in
many interesting scenarios, strategic agents may choose to
conceal or misreport their interests in order to get more
resources. In such cases, it is possible that appropriate incen-
tives are designed so that selfish agents are incentivized to
report truly their private information, thus enabling optimal
resource allocation.

In existing work related to resource allocation problems,
mechanism design is frequently used for resolving the ob-
stacles mentioned above. In the framework of mechanism
design, the participants reach an agreement regarding how
they exchange messages, how they share the resources, and
how much they should pay. Such agreements are designed
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to incentivize the agents to provide the information needed
to solve the optimization problem.

In this paper, we develop mechanisms to solve a demand
management problem in energy communities. In an energy
community, users obtain energy from an energy company and
pay for it. Users’ demand is subject to constraints relating to
equipment capacity and minimum comfort level. Each user
possesses a utility as a function of her/his own demand.
Utilities are private information for users. The welfare of
the community is the sum of utilities minus the energy cost.
If users were willing to report truthfully their utilities, one
could easily optimize energy allocation to maximize social
welfare. However, since users are strategic and might not be
willing to report utilities directly, to maximize the welfare,
we need to find an appropriate mechanism that incentivizes
them to reveal some information about their utilities, so
that optimal allocation is reached even in the presence of
strategic behaviors. These mechanisms are usually required
to possess several interesting properties, among which, full
implementation in Nash equilibria (NE), individual rational-
ity and budget balance [1]–[3].

A. Contributions

The main contribution of this work is to design a mecha-
nism for implementing the optimal allocation of the demand
management problem in an energy community with strategic
users and a pre-specified message exchange network. Empha-
sizing more on non-VCG mechanisms, we look into indirect
mechanisms similar to the ones in [4], [5]. Unlike [4], [5]
where a radial allocation scheme is used, the allocation
scheme used in this work is much simpler and can be
used in more general settings (e.g., environments with non-
monotonic utilities). We start from a centralized mechanism
without communication constraints. We design a mechanism
that satisfies the properties of full implementation, budget
balance, and individual rationality. We then generalize the
mechanism into a distributed version.

B. Related Literature

The starting point of this work is network utility maxi-
mization (NUM), which is one typical category of resource
allocation. The interested reader might refer to Chapter 2
of [6] for a detailed approach to models and algorithms
for solving NUM problems. For the demand management
problem in energy communities, the model formulation
follows in a similar way. As mentioned previously, when
strategic users are involved, mechanism design is a powerful
approach. One well-known framework proposed by [7]–[9]
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is the VCG mechanism. In this mechanism, users have to
communicate utilities (i.e., entire functions), which leads to
a high cost of information transmission. To ease the burden
of communication, Kelly mechanism in [10] uses logarithmic
functions as surrogates of utilities. The agents only need to
report one parameter for the logarithms. This saves a lot of
communication costs but only works for price-taking agents.
There is a line of work based on these two mechanisms.
The mechanism proposed by [11] is an online mechanism
modified from VCG, with a δ-strategy-proof. The work
in [12] extends Kelly’s mechanism to an environment with
multiple divisible resources, but still needs the assumption of
price-taking. By introducing additional message components
of prices, [13] develops a mechanism for strategic agents
based on Kelly’s. Moreover, under some certain assumptions
on the utilities, [13] provides a surrogate optimization-based
algorithm for learning the Nash equilibrium.

There are a number of mechanisms reported in the liter-
ature that are not based on VCG or Kelly mechanism. The
mechanisms proposed by [14] fully implement the Walrasian
equilibrium (for divisible private goods) and Lindahl equilib-
rium (for divisible public goods) with feasibility on and off
equilibria, individual rationality, budget balance, and conver-
gence guarantees. The works in [15], [16] adopt an idea of
penalty functions to incentivize feasibility on equilibrium.
The mechanism in [5] presents a technique called radial
allocation, which ensures the feasibility on and off equilibria
in a centralized mechanism. With a loss of feasibility off
equilibria, the work in [4] extends the mechanisms with the
help of demand proxies to distributed environments where
message exchanges are only allowed between neighbors.

The paper is structured as follows. In Section II the
demand management problem in energy communities is for-
mulated. Some necessary concepts of mechanism design are
also presented. Section IV presents a centralized mechanism
for demand management without communication constraints.
The mechanism is characterized by the message spaces,
allocation functions and tax functions. We show that the cen-
tralized mechanism possesses several desirable properties.
In Section V, we incorporate communication constraints by
introducing the concept of message exchange network, and
propose a distributed mechanism. We conclude the paper in
Section VI. The proofs of lemmas and theorems can be found
in the appendix.

II. MODEL

Consider an energy community consisting of N users and
a given time horizon T , where T can be viewed as the
number of days during one billing period. Each user i in
the user set N has her own prediction on her usage over
one billing period denoted by xi = (xi

1, . . . , x
i
T )

T, where xi
t

is the predicted usage of user i on the t-th time slot of the
billing period. Note that xi

t can be a negative number due
to the potential possibility that users in the electrical grid
can generate power through renewable technologies (e.g.,
photovoltaic) and return the surplus back to the grid. The

users are characterized by their utility functions as

vi(xi) =
T∑

t=1

vit(x
i
t), ∀i ∈ N .

The energy community, as a whole, pays for the energy.
The unit prices are given separately for every time slot t
denoted by pt. These prices are considered given and fixed
(e.g., by the local utility company). In addition, the local
utility company imposes a unit peak price p0 in order to
incentivize load balancing and lessen the burden of peaks in
demand. To summarize, the cost of the energy community is
as follows:

J(x) =
T∑

t=1

pt

(
N∑
i=1

xi
t

)
+ p0 · max

1≤t≤T

N∑
i=1

xi
t, (1)

where x is a concatenation of demand vectors x1, . . . ,xN .
The centralized demand management problem for the

energy community can be formulated as

maximize
x∈X

N∑
i=1

vi(xi)− J(x). (2)

The meaning of the feasible set X is to incorporate
possible lower bounds on each user’s demand (e.g., minimal
indoor heating or AC) and/or upper bounds due to the
capacities of the facilities.

In order to solve the optimization problem (2) using
convex optimization methods, the following assumptions are
made.

Assumption 1: All the utility functions vit(·)’s are twice
differentiable and strictly concave.

Assumption 2: The feasible set X is a polytope formed
by several linear inequality constraints, and 0 ∈ X .

By Assumption 2, X can be written as {x|Ax ≤ b} for
some A ∈ RL×NT and b ∈ RL

+, where L is the number of
linear constraints in X , and

A =
[
a1 . . . aL

]T
,

al =
[
a1,l1 . . . a1,lT . . . aN,l

1 . . . aN,l
T

]T
, l = 1, . . . , L,

b =
[
b1, . . . , bL

]T
.

With Assumptions 1, 2, the energy community faces an
optimization problem with a strictly concave objective func-
tion over a nonempty compact convex feasible set. Therefore,
from convex optimization theory, the optimal solution for this
problem always exists and is unique.

Substituting the max function in (1) with a new variable w,
the optimization problem in (2) can be equivalently restated
as

maximize
x,w

N∑
i=1

vi(xi)−
T∑

t=1

pt

(
N∑
i=1

xi
t

)
− p0w (3a)

subject to Ax ≤ b, (3b)
N∑
i=1

xi
t ≤ w, ∀t ∈ {1, . . . , T} . (3c)
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The new optimization problem has a differentiable con-
cave objective function with a convex feasible set, which
means it is still a convex optimization problem, and therefore,
KKT conditions are the sufficient and necessary conditions
for a solution (x,λ,µ) to be an optimal solution, where
λ = [λ1, . . . , λL]T are the Lagrange multipliers for each
linear constraint alx ≤ bl in constraint x ∈ X , and
µ = [µ1, . . . , µT ]

T are the Lagrange multipliers for (3c).
The KKT conditions are listed as follows:

1) Primal Feasibility:

x ∈ X , (4a)
N∑
i=1

xi
t ≤ w. (4b)

2) Dual Feasibility:

λl ≥ 0, l = 1, . . . , L;µt ≥ 0, t = 1, . . . , T. (4c)

3) Complementary Slackness:

λl(alTx− bl) = 0, l = 1, . . . , L, (4d)

µt(
N∑
i=1

xi
t − w) = 0, t = 1, . . . , T. (4e)

4) Stationarity:

p0 =
∑
t

µt, (4f)

v̇it(x
i
t) = pt +

∑
l

λlai,lt + µt, t = 1, . . . , T, i ∈ N .

(4g)

where v̇it(·) is the first order derivative of vit(·).

III. MECHANISM DESIGN PRELIMINARIES

In an energy community, utilities are users’ private in-
formation. Due to privacy and strategic concerns, users
might not be willing to report their utilities. As a result,
(3) cannot be solved directly. In order to solve (3) under
the settings stated above, we introduce a planner as an
intermediary between the community and the energy com-
pany. To incentivize users to provide necessary information
for optimization, the planner signs a contract with users,
which prespecifies the messages needed from users and rules
for determining the allocation and taxes/subsidies from/to
the users. The planner commits to the contract. Informally
speaking, the design of such a contract is referred to as
mechanism design.

More formally, a mechanism is a collection of message
sets and an outcome function [2]. Specifically, in resource
allocation problems, a mechanism can be defined as a tuple
(M, x̂(·), t̂(·)), where M = M1 × . . . × MN is a space
of message profile, x̂ : M 7→ X is an allocation function
determining the allocation x according to the received mes-
sages m, t̂ : M 7→ RN is a tax function which defines
the payments (or subsidies) of users based on m. Once
defined, the mechanism induces a game (N ,M, {ui}i∈N ).
In the game, each user i chooses her message mi from

message space Mi, with the objective to maximize her
payoff ui(m) = vi(x̂i(m)) − t̂i(m). The planner charges
taxes and pays for the energy cost to the company, so the
planner’s payoff turns out to be

∑
i t̂

i(m) − J(x̂(m)) (the
net income of the planner).

For the mechanism-induced game G, Nash equilibrium
(NE) is an appropriate solution concept. At the equilibrium
point m∗, if x̂(m∗) coincides with the optimal allocation, we
say that the mechanism implements the optimal allocation at
m∗. A mechanism has the property of full implementation if
all the NE m∗’s implement the optimal allocation.
There are other desirable properties in a mechanism.

Individual rationality is the property that everyone volunteers
to participate in the mechanism-induced game instead of
quitting. For the planner, this means that the sum of taxes∑

i t̂
i(m∗) collected at NE is larger than the cost paid to

the energy company J(x̂(m∗)). In the context of this paper,
strong budget balance is the property that the sum of taxes
is exactly the same as the cost paid to the energy company,
so no additional funds are required by the planner or the
community to run the mechanism other than the true energy
cost paid to the energy company.

IV. CENTRALIZED MECHANISM

In this section, we temporarily assume there are no com-
munication constraints, i.e., all the message components are
accessible for the calculations of the allocation and taxation.
The mechanism designed under this assumption is called a
centralized mechanism. In the next section, we will extend
this mechanism to an environment with communication
constraints.

In the proposed centralized mechanism we define the user
i’s message mi as

mi =
({

yit
}T
t=1

,
{
qi,l
}
l∈L ,

{
sit
}T
t=1

,
{
βi
t

}T
t=1

)
. (5)

Each message component has an intuitive meaning. Mes-
sage yit ∈ R can be regarded as the demand for time slot t
announced by user i. Message qi,l ∈ R+ is the additional
price that user i expects to pay for the constraint l, which
corresponds to the Lagrange multiplier λl. Message sit ∈ R+

is proportional to the peak price that user i expects to pay at
time t. Intuitively, setting one sit greater than sit′ means user
i thinks day t is more likely to be the day with the peak
demand rather than t′. This component corresponds to the
Lagrange multiplier µt. Message βi

t ∈ R is the prediction
of user (i+ 1)’s usage at time t by user i. This message is
included for technical reasons that will become clear in the
following (for a user index i ∈ N , let i− 1 and i+1 denote
modulo N operations).
Denote the message space of user i by Mi, and the space

of the message profile is represented as M = M1 × . . . ×
MN . The allocation functions and the tax functions are
functions defined on M. The allocation functions follow the
simple definition:

x̂i
t(m) = yit, t = 1, . . . , T, ∀i ∈ N . (6)

i.e., users get exactly what they request.
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Prior to the definition of the tax functions, we want to find
some variable that acts like µt at NE. Although sit is designed
to be proportional to µt, it does not guarantee

∑
t s

i
t =

p0, which is one of the essential conditions (4f) in KKT
conditions. To solve this problem, we utilize a technique
similar to the radial allocation in [4], [5] to shape the
suggested peak price vector s into the form which satisfies
(4f). Define a radial pricing operator RPi : RT

+×RT 7→ RT
+,

such that

RPi(s, ζ−i) =
(
RPi

1(s, ζ
−i), . . . ,RPi

T (s, ζ
−i)
)
,

where

RPi
t(s, ζ

−i) =


st∑
t′ st′

, if ∃t′, st′ > 0,
p0·1{t∈argmax

t̃
ζ−i

t̃
}

#(argmax
t̃

ζ−i

t̃
)

, if ∀t′, st′ = 0,

and
ζ−i
t =

∑
j ̸=i

yjt + βi−1
t , ∀i∀t,

where #(·) represents the number of elements in a finite
set, ζ−i

t is the total demand on day t predicted by users
other than i. The output of the radial pricing RP(·, ·) will
be taken as the peak price in the subsequent tax functions.
When the given suggested prices are not all zeros, the unit
peak price will be separated to each day proportional to st.
If the suggested price vector s = 0, then divide p0 to the
days with peak demand with equal proportion.

The tax functions are defined as

t̂i(m) = costi(m)+
T∑

t=1

prβi
t(m)+

∑
l∈L

coni,l(m)+
T∑

t=1

conit(m),

(7)
where

costi(m) =
T∑

t=1

(pt +RPi
t(s

−i, ζ−i))x̂i
t(m)

+
∑
l∈Li

q−i,l
T∑

t=1

ai,lx̂i(m),

coni,l(m) =(qi,l − q−i,l)2 + qi,l(bl −
∑
j ̸=i

aj,lyj − ai,lβi−1),

conit(m) =(sit − s−i
t )2 + sit(z

−i − ζ−i
t ),

prβi
t(m) =(βi

t − yi+1
t )2,

and

s−i
t =

1

N − 1

∑
j ̸=i

sjt ∀i ∀t,

q−i,l =
1

N − 1

∑
j ̸=i

qj,l ∀i ∀l,

z−i = max
t

{
ζ−i
t

}
∀i.

The tax function for user i consists of three parts. The
first part costi(m) is the cost for the demand. According
to this part, user i pays the fixed price and the peak price
for her demand. The second part prβi

t(m) is a penalty term

for the imprecision of prediction βi, which incentivizes βi to
align with yi+1 at NE. The third part consists of two penalty
terms coni,l(m) and conit(m) for constraints l and peak
demand inequalities t. Both of them have a quadratic term
and possess a form that looks similar to the complementary
slackness conditions (4d), (4e). This special design facilitates
the suggested price to come to an agreement, and ensures the
primal feasibility and complementary slackness hold at NE,
which will be shown in Lemma 2.

The main property we want from this mechanism is full
implementation. We expect the allocation scheme under
the Nash equilibrium of the mechanism-induced game to
coincide with that of the original optimization problem. Full
implementation can be shown in two steps. First, we can
show that if there is a (pure strategy) NE, it must induce
the optimal allocation. Then we prove the existence of such
(pure strategy) Nash equilibrium.

From the form of the tax functions, we can immediately
get the following lemma.

Lemma 1: At any NEs, for each user i, the demand proxy
βi
t’s are the same as the demand of her next neighbor, i.e.,

βi
t = yi+1

t for all t.
Proof: Suppose m is a NE where there exists at least

one usre i, whose message βi does not agree with next user’s
demand, i.e., βi ̸= yi+1. Say, βi

t ̸= yi+1
t . Then we can find

a profitable deviation m̃, which keeps everything other than
βi the same as m, but modifies βi

t with β̃i
t = yi+1

t . Compare
the payoff value ui before and after the deviation:

ui(m̃)− ui(m) =− (β̃i
t − yi+1

t )2 + (βi
t − yi+1

t )2

=(βi
t − yi+1

t )2 > 0.

Thus, if there is some βi ̸= yi+1, user i can always construct
another announcement m̃i, such that user i get a better
payoff.

Lemma 1 plays an important role in the mechanism. Recall
that coni,l(m), conit(m) facilitate complementary slackness
by giving feedback to the prices with the slackness of
constraints. While if we directly use the announced demand
of user i here, this term would somehow impede the full
implementation of the optimal demand because quoting
the self-announced demand in the tax function raises the
possibility of unexpected strategic moves for user i to obtain
extra profit. Instead, using proxy eliminates the control on
the slackness factor of user i, which excludes the disturbance
to the feedback for the prices.

With the introduction of these proxies, we show in the
following lemmas, that at NE, all KKT conditions required
for the optimal solution are satisfied.

Lemma 2: At any NEs, user suggested prices are equal:

qi,l = ql, ∀l ∈ Li ∀i ∈ N , (8)

sit = st, t = 1, . . . , T, ∀i ∈ N . (9)

Furthermore, users’ announced demand profile satisfies y ∈
X , and the equal prices, together with the demand profile,
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have the property of complementary slackness:

q(Ax− b) = 0, (10)

st(z −
∑
i

yit) = 0, ∀t = 1, . . . , T, (11)

and (11) implies

RPi
t(s, ζ

−i)

(
z −

∑
i

yit

)
= 0, ∀t = 1, . . . , T, (12)

where z is the peak demand during the billing period.
Proof: The proof can be found in Appendix A.

We now prove stationarity under Nash equilibrium.
Lemma 3: At NE, stationarity holds, i.e.,

v̇it(x̂
i
t(m)) = pt +RPi

t(s, ζ
−i) +

∑
l∈Li

qlai,lt , (13)

p0 =
T∑

t=1

RPi
t(s, ζ

−i). (14)

Proof: (13) can be shown by evaluating the derivative
of ui(m) w.r.t. yit at NE. (14) comes from the definition of
RP . The details can be found in Appendix C of [17].
With Lemmas 1, 2 and 3, it is straightforward to derive

the first part of our result, i.e., efficiency of the allocation at
any NE.

Theorem 1: For the mechanism-induced game G, if there
exist Nash equilibria, then these NEs result in the same
allocation as the optimal solution of the centralized problem.

Proof: For a NE message profile m∗, one can verify
that the induced allocation x together with the prices q∗ and
s∗ after radial pricing satisfy all the KKT conditions. The
details can be found in the proof of Theorem 1 in [17].

By construction, one can easily prove the existence of
Nash equilibrium.

Theorem 2: For the mechanism-induced game G, there
has to be at least one NE.

Proof: From the theory of convex optimization, we
know that the optimal solution of (3) exists. Based on this
solution, one can construct a message profile which satisfies
all the properties we present in Lemmas 1,2,3 and prove
there is no unilateral deviation for all users. The details can
be found in Appendix D of [17].

Full implementation indicates that if all users are willing
to participate in the mechanism, the equilibrium outcome is
nothing but the optimal allocation. For each user i, the payoff
at NE will be

ui(m∗) = vi(x̂i(m∗))

−
T∑

t=1

(
pt +RPi

t(s, ζ
−i) +

∑
l∈Li

q−i,lai,lt

)
︸ ︷︷ ︸

Aggregated unit price for x̂i
t

x̂i
t(m

∗).

(15)

In other words, the users pay for their own demands by the
aggregated unit prices given by the consensus at NE. By
counting the planner as a participant of the mechanism with

utility
∑

i∈N t̂i(m∗)−J(x∗), a strong budget balance is au-
tomatically achieved. However, there are still two questions
remaining. Are the users willing to follow this mechanism or
would they rather not participate? Will the planner have to
pay extra money for implementing such a mechanism? The
two theorems below answer these questions.

Theorem 3 (Individual Rationality for Users): Assume
agent i gets xi = 0 and pays nothing if she chooses to not
participate in the mechanism. Then, at NE, participating in
the mechanism is weakly better than not participating, i.e.,

ui(m∗) ≥ vi(0).
Proof: The main idea for the proof of Theorem 3 is to

find a message profile with m−i∗, in which user i’s payoff
is vi(0), and then we can argue that following NE won’t be
worse since m∗ is a best response to m−i∗. The details are
presented in Appendix B.

Theorem 4 (Individual Rationality for the Planner): At
NE, the planner does not need to pay extra money for the
mechanism: ∑

i∈N
t̂i(m∗)− J(x̂(m∗)) ≥ 0. (16)

Moreover, by a slight modification of the tax functions
defined in (7), the total payment of users and the energy
cost achieve a balance at NE:∑

i∈N
t̃i(m∗)− J(x̂(m∗)) = 0. (17)

Proof: The verification of individual rationality of the
planner can be done by substituting m∗ in (16) directly.
By giving the income of the planner back to the users in a
certain way, the total payment of users is exactly J(x̂(m∗))
and consequently no money is left after paying the energy
company. The details are presented in Appendix C.

V. DISTRIBUTED MECHANISM

In the previous mechanism, allocation functions and tax
functions of users depend on the global message profile.
If one wants to compute ti for certain user i, mj for all
j ∈ N are needed. Such mechanisms won’t work under
environments with communication constraints, where such
global message exchanges are restricted. To tackle this
problem, we provide a distributed mechanism, in which
the calculation of the allocation and tax of a certain user
depends only on the messages from the “available” users,
and therefore satisfies the communication constraints. In this
section, we will first introduce communication constraints
using a message exchange network model. We then develop
a distributed mechanism, which accommodates the commu-
nication constraints and preserves the desirable properties of
the centralized mechanism.

A. Message Exchange Network

In an environment with communication constraints, all the
users are organized in an undirected graph GR = (N , E),
where the set of nodes N is the set of users, and the set of
edges E indicates the accessibility to the message for each
user. If (i, j) ∈ E , user i can access the message of user j,
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i.e., the message of j is available for user i when computing
the allocation and tax of user i, and vice versa. Here we state
an assumption for the message exchange network:

Assumption 3: The graph GR is a connected graph.
Notice that in the previous mechanism, user i is expected

to announce a βi
t equal to the demand of the next user (i+1),

but here it is possible that (i, i + 1) /∈ E , and owing to the
communication constraint, user i is not able to compare βi

t

with yi+1
t . Instead, βi

t should be a proxy of the demand
of user i’s direct neighbor. This motivates us to define the
function ϕ(i), where ϕ(i) ∈ N (i), N (i) is the set of user i’s
neighbors, and ϕ(i) = j denotes that in user i’s tax function,
the proxy variable β is provided by user j.

In the next part we are going to use the summaries of
the demands to deal with the distributed issue. For the sake
of convenience, we define n(i, k) as the nearest user among
the neighbors of user i and user i itself to user k. n(i, k) is
well-defined because one can show that n(i, k) = j provides
a partition for all the users. The proof is omitted here. The
details can be found in [18, Ch. 4, Sec. 7.1].

B. The Message Space

In the distributed mechanism, the message mi in user i’s
message space Mi is defined as

mi =

({
yit
}T
t=1

,
{
qi,l
}
l∈L ,

{
sit
}T
t=1

,
{
βi,j
t : ϕ(j) = i

}T

t=1
,

{
ni,j,l : j ∈ N (i)

}
l∈L ,

{
νi,jt : j ∈ N (i)

}T

t=1

)
.

Here ni,j,l is a summary for demands of users related to
constraint l and connected to user i via j. Message νi,jt serves
a similar role for the peak demand.

C. Allocation and Tax Functions

The allocation functions x̂i
t(m) = yit are still straightfor-

ward. There are some modifications on tax functions, includ-
ing adjustments on prices, the consensus of new variables,
and terms for complementary slackness.

t̂i(m) = costi(m) +
∑

l
(prni,l(m) + coni,l(m))

+
∑

t
(prβi

t(m) + prνi
t(m) + conit(m)),

(18)

where

costi(m) =
T∑

t=1

(pt +RP−i
t (s−i, ζ−i))x̂i

t(m)

+
∑
l∈Li

q−i,lai,lx̂i(m),

coni,l(m) = (qi,l − q−i,l)2

+ qi,l(bl − ai,lβϕ(i),i −
∑

j∈N (i)

f i,j,l),

conit(m) = (sit − s−i
t )2 + sit(z

−i − ζ−i
t ),

prni,l(m) =
∑

j∈N (i)

(
ni,j,l − f i,j,l

)2
,

prβi
t(m) =

∑
j:ϕ(j)=i

(βi,j
t − yjt )

2,

prνi
t(m) =

∑
j∈N (i)

(
νi,jt − f i,j

t

)2
f i,j,l = aj,lyj +

∑
h∈N (j)\{i}

nj,h,l,

f i,j
t = yjt +

∑
h∈N (j)\{i}

νj,ht .

and

s−i
t =

1

|N (i)|
∑

j∈N (i)

sjt ∀i ∀t,

q−i,l =
1

|N (i)|
∑

j∈N (i)

qj,l ∀i ∀l,

ζ−i
t =

∑
j∈N (i)

f i,j
t + β

ϕ(i),i
t , ∀i ∀t,

z−i = max
t

{
ζ−i
t

}
∀i.

D. Properties

This mechanism is distributed because all the messsages
needed for the allocation and tax functions of user i come
from her neighborhood N (i) and herself. The mechanism
satisfies properties similar to those in Lemmas 2, 3, and con-
sequently Theorems 1, 2. The reason is that the components
n and ν behave the same as the absent yh, h /∈ N (i) in
the user i’s functions at NE, which renders the proofs of the
lemmas applicable here as well. These are summarized in
Lemmas 4, 5.

Lemma 4: At any NE, we have the following results
regarding the proxies:

βi,j
t =yjt , ∀j : ϕ(j) = i, (19)

ni,j,l =aj,lyj (20)

+
∑

h∈N (j)\{i}

nj,h,l, ∀i, j ∈ N (i), ∀l ∈ L,

νi,jt =yjt +
∑

h∈N (j)\{i}

νj,ht , ∀t, ∀i, ∀j ∈ N (i). (21)

Proof: βi,j , ni,j,l and νi,jt only appear in the quadratic
penalty terms of user i’s tax function. Therefore, for any user
i, the only choice to minimize the tax is to bid βi,j , ni,j,l

and νi,jt by (19)-(21).
Then, with the help of the structure of the message

exchange network, we have
Lemma 5: At any NE, ni,j,l and νi,jt satisfies

ni,j,l =
T∑

t=1

∑
h:n(i,h)=j

ah,lt yht , (22)

∀i ∈ N , ∀j ∈ N (i), ∀l ∈ L,

νi,jt =
∑

h:n(i,h)=j

yht , ∀i ∈ N , ∀j ∈ N (i), ∀t. (23)
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Proof: The proof can be found in Appendix G in [17].

With this lemma, we immediately get the following.
Corollary 1: At any NE, for all user i, we have∑

j∈N (i)

f i,j,l =
∑

j∈N\{i}

aj,lyj , ∀l ∈ Li, (24)

∑
j∈N (i)

f i,j
t =

∑
j∈N\{i}

yjt , ∀t. (25)

This corollary plays a similar role as Lemma 1. With
this corollary, the properties in Lemmas 2 and 3 can be
reproduced in the distributed mechanism. We then obtain the
following theorem.

Theorem 5: For the mechanism-induced game G, NE ex-
ists. Furthermore, any NE of game G induces the optimal
allocation.

Proof: By substituting (24), (25) in (18), we obtain
exactly the same form of the tax function in centralized
mechanism on equilibrium, which yields the desirable results
as we show in Lemmas 2, 3. Then we can conclude that any
NE induces the optimal allocation. The existence of NE can
be proved by a construction similar to that of Theorem 2.
In the distributed case, the planner may also have concerns

about whether the users have an incentive to participate, and
whether the mechanism requires an external source of money
to maintain the balance. The good news is, Theorems 3
and 4 still hold here. As a result, users would rather join
the mechanism-induced game, and the mechanism results
in a balanced budget. The proofs and the construction of
the subsidies follow those for the centralized case and are
therefore omitted.

VI. CONCLUSIONS

In this paper, we propose two indirect mechanisms to
address the demand management problem in energy com-
munities with private utilities. Such mechanisms can be
applied to any market with a similar structure. The proposed
mechanisms possess desirable properties including full im-
plementation, individual rationality, and budget balance.

It is worth noting that although NEs induced by the
mechanisms lead the allocation to the optimal solution, how
users get to learn an equilibrium still remains a problem.
Without the information of others’ utilities, one user is not
able to evaluate the equilibrium point offline. Therefore,
designing an online learning algorithm is one of the future
research directions.

Furthermore, some questions relating to generalizations
of the proposed mechanism are of interest. For example,
whether it is possible to extend the mechanism to more
general environments, such as an environment with a general
convex feasible set or utilities with fewer restrictions, and
whether there exists a strategy-proof modification of the
mechanism, are open problems for future research.

APPENDIX

A. Proof of Lemma 2
Proof: Here we only present the proof for (8) and (13).

The details can be found in Appendix B in [17].

At NE m∗, for l ∈ L, consider the message components
qi,l for each user i. In user i’s tax function, denote the part
relative to qi,l by t̂i,lq . We have

t̂i,lq (mi,m−i∗) = (qi,l − q−i,l∗)2 + qi,l

bl −
∑
j

aj,lyj∗


︸ ︷︷ ︸

denoted by el(y∗)

(βi−1 = yi by Lemma 1)

For any user i, if we fix m−i∗ and all the message compo-
nents of mi∗ except qi,l, a necessary condition for NE is that
user i cannot find a better response than qi,l∗.
Consider the best response of qi,l for different el(y∗).
Case 1. el(y∗) > 0, i.e., the constraint l is inactive at NE.

Note that t̂i,lq is a quadratic function of qi,l:

t̂i,lq = (qi,l)2 − (2q−i,l∗ − el(y∗))qi,l + (q−i,l∗)2.

Therefore, the best response is

qi,l∗ = (q−i,l∗ − el(y∗)/2)+.

Observe that (q−i,l∗ − el(y∗)/2)+ ≤ (q−i,l∗)+ = q−i,l∗.
Equality holds only if q−i,l∗ ≤ el(y∗)/2 and q−i,l∗ = 0.
Thus, for all i, qi,l∗ ≤ q−i,l∗, equality holds only if qi,l∗ = 0
and q−i,l∗ = 0. In other words, if for one user i we have
qi,l∗ = q−i,l∗, then all the qi,l∗ = 0.
Notice that qi,l∗ < q−i,l∗ implies qi,l is smaller than one

of the qj,l among user j ̸= i, which means qi,l is not the
largest. Assume that qi,l∗ < q−i,l∗ for all i, then no qi,l

can be the largest among {qi,l}i∈N , but {qi,l}i∈N is a finite
set and therefore it must have a maximum. Here comes the
contradiction. As a result, there must exist at least one i,
such that qi,l∗ = q−i,l∗, which implies that all the qi,l∗ = 0.
Case 2. el(y∗) = 0, i.e., the constraint l is active at NE. In

this case, t̂i,lq = (qi,l−q−i,l∗)2, so every user’s best response
is to make her own price align with the average of the others.
Consequently, qi,l∗ = qj,l∗ for all i, j ∈ N .
Case 3. el(y∗) < 0, i.e., the constraint l is violated at NE.

In this case,

t̂i,lq = (qi,l)2 − (2q−i,l∗ − el(y∗))qi,l + (q−i,l∗)2,

which leads to a condition for all users i as

qi,l∗ = q−i,l∗ + (−el(y∗)/2) > q−i,l∗.

However, if this condition is true for all users, it means
there is no smallest qi,l among (qi,l)Ni=1, which is impossible.
Therefore, Case 3 won’t happen at NE.

In summary, at NE, we always have el(y∗) ≥ 0, and
qi,l’s are equal. Moreover, qi,l∗el(y∗) = 0. These prove the
primal feasibility, equal prices and complementary slackness
on prices q in the Lemma 2.
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B. Proof of Theorem 3

Proof: For any user i, if she chooses to participate with
other users when everyone anticipates the NE, user i’s payoff
is of the form (15) if she only considers modifying yi and
keeps other components unchanged. Thus, user i is facing
the following optimization problem

yi = arg max
yi∈RT

{
vi(yi)−

T∑
t=1

(
pt +RPi

t(s, ζ
−i)
)
yit

−
∑
l∈Li

q−i,l
T∑

t=1

ai,lt yit

}
.

By the definition of NE, yi∗ is one of the best solutions,
which yields a payoff ui(m∗). User i can also choose ỹi = 0.
Denote the corresponding message by m̃i. Then, the payoff
value becomes ui(m̃i,m−i∗) = vi(0), which coincides with
the payoff for not to participate. Since mi∗ is the best
response to m−i∗, we have ui(m∗) ≥ ui(m̃i,m−i∗) =
vi(0). In other words, if every one anticipates the NE as
the outcome, to participate is at least no worse than not to
participate.

C. Proof of Theorem 4

Proof: Suppose the optimal solution for the original
problem given by NE is (x∗,λ∗,µ∗), then

t̂i(m∗)− J(x̂i
t(m

∗)) =
T∑

t=1

(pt + µ∗
t )x

i∗
t

+
∑
l∈Li

λl∗
T∑

t=1

ai,lt xi∗
t − J(xi∗).

The total amount of tax is∑
i∈N

t̂i(m∗)− J(xi∗)

=
∑
i∈N

T∑
t=1

(pt + µ∗
t )x

i∗
t +

∑
i∈N

∑
l∈Li

λl∗
T∑

t=1

ai,lt xi∗
t − J(xi∗)

=
∑
l∈L

λl∗
T∑

t=1

∑
i∈N

ai,lt xi∗
t .

For each constraint l, by the complementary slackness, we
have

λl∗

(
bl −

T∑
t=1

∑
i∈N

ai,lt xi∗
t

)
= 0.

Therefore,∑
i∈N

t̂i(m∗)− J(xi∗) =
∑
l∈L

λl∗bl ≥ 0,

which shows that at NE, the planner’s payoff is nonnegative.
Furthermore, to save unnecessary expenses on the planner,

the energy community can adopt the mechanism with the
following tax function t̃i(m) instead

t̃i(m) = t̂i(m)−
∑
l∈L

q−i,lbl/N.

Note that user i has no control on the additional term because
no components of mi are in that term, and thus the additional
term won’t change NE. Since the prices are equal at NE, so
the planner gives

∑
l∈L λl∗bl back to the users. Hence,∑

i∈N
t̃i(m∗)− J(xi∗) = 0,

As a side comment, the choice of t̃i(m) is not unique. Any
adjustment works here as long as it does not depend on mi

for each ti(·), and sums up to
∑

l∈L λl∗bl at NE.
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