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With the rapid developments of advanced manufacturing and its ability to manufacture 

microscale features, architected materials are receiving ever increasing attention in 

many physics fields. Such a design problem can be treated in topology optimization as 

architected material with repeated unit cells using the homogenization theory with the 

periodic boundary condition. When multiple architected materials with spatial 

variations in a structure are considered, a challenge arises in topological solutions 

which may not be connected between adjacent material architecture. This paper 

introduces a new measure, Connectivity Index (CI) to quantify the topological 

connectivity and adds it as a constraint in multiscale topology optimization to achieve 

connected architected materials. Numerical investigations reveal that the additional 

constraints lead to microstructural topologies which are well connected and do not 

substantially compromise their optimalities.  
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1 Introduction 

Materials/structures with well-designed microstructures showing excellent 

properties are ubiquitous in nature, e.g., both high stiffness and toughness of the nacre 

[1], remarkable bending stiffness of bamboo [2], fascinating colors of the butterfly 

wings [3]. Furthermore, an increasing attention is seen in design of the metamaterials 

possessing extraordinary properties that are not commonly found in nature [4-5]. By 

taking an advantage of the modern manufacturing technology, complex designs of 

microstructures can be fabricated conveniently [6-8].  

Inspired by the inverse homogenization approach [9], many works devoted to 

design microstructures to tailor properties of architected materials [6-10]. Taking this 

to the next step, multiscale topology optimization has been developed to simultaneously 

design a macroscopic structure and the associated material microstructure(s). Rodrigues 

et al. [11] obtained a hierarchical design by optimizing the periodic microstructures in 

every macroscale finite element. This method, however, would lead to a very high 

computational cost particularly for three dimensional cases [12]. As a more 

computational tractable strategy, Liu et al. [13] proposed the Porous Anisotropic 

Material with Penalization (PAMP) model to obtain a multiscale structure with a 

uniform microstructure. This approach has been extended to consider dynamic and 

thermomechanical effects [14, 15]. Sivapuram et al. [16] recently proposed a more 

generalized simultaneous structure and material optimization formulation where any 

number of microstructures can be obtained. They proposed a linearization formulation 

to decompose the macroscale and microscale optimizations, thereby parallel and 

distributed computing can be adopted easily. 

In majority of the multiscale optimization studies, the asymptotic homogenization 

theory has been used to obtain the effective material property of a periodic 

microstructure. The assumption of the scale separation and the periodicity in the 

homogenization theory [17] ignores the connectivity of the adjacent microstructures 

[11, 12, 16]. It should be noted that, besides poor manufacturability, more importantly, 
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poor microstructural connectivity would lead to load transition issue as well as the 

deviation of effective property estimated by homogenization method. In order to obtain 

the optimal sizes of microstructures, consider boundary effect as well as guarantee the 

connectivity between different microstructures, Alexandersen and Lazarov [18] 

abandoned the homogenization theory and directly optimized the micro-structures with 

an extremely fine mesh. Even though the authors tried to reduce the computational 

resource requirements, the computation cost is substantially higher than the 

homogenization-based approaches. It has been shown that the optimal solution of a unit 

cell converges rapidly to that obtained by inverse homogenization as the number of 

repetitive cells increases (beyond five or six in the case of mechanical properties) [19, 

20]. In addition, for boundary effect, as shown in [21], the thickness of boundary layer 

has the same scale of the unit cell. Results in [19-21] suggested that the homogenization 

method can efficiently offer a reasonable approximation for a large number of repeated 

unit cells, when some global measures, e.g., mean compliance, are taken into 

consideration. Liu et al. [22] divided the structural domain into several subdomains and 

boundary layers. The optimum subdomain periodic microstructures were obtained by 

inverse homogenization and direct optimization was applied to the boundary layers 

with an extremely fine mesh to obtain the smooth transitions between different 

microstructures.  

For microstructures with graded properties, the connectivity has been enforced 

implicitly via fixing some connective elements or applying a pseudo load or adding 

nonlinear diffusion term to the objective function, [23-25]. Whilst such implicit 

controls have been shown to be effective in many cases, they cannot guarantee the 

connectivity (Fig. 1(a)). It may also have an effect of over-constraining the design space. 

Another approach for connecting microstructures is to apply a post-processing 

based on the metamorphosis technique. Wang et al. [26] generated a series of self-

similar and connected microstructures by interpolating between a prototype cell and a 

solid cell. Such an interpolation technique is a well-established practice for the level set 

method in the field of image processing. However, it can create discontinuous member 

sizes such as shown in Fig. 1(b) which can lead to stress concentrations. Furthermore, 
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such an interpolation method may lead to a floating topology that is no longer physical 

when applied to two cells with distinct topologies, e.g. Fig. 1(c).  

 

 
Fig. 1 Challenges seen in the existing methods for connectivity of 

microstructures: (a) imperfect connection by implicit control method [24], 

(b) interface mismatch by shape metamorphosis [26] and (c) floating 

microstructure by shape metamorphosis method 

 

This paper presents a new formulation of multiscale topology optimization with 

connected microstructures. An explicit Connectivity Index (CI) is introduced as a 

measure for the connectivity between two adjacent topologies and this quantity is added 

to the multiscale topology optimization problem. The multiscale optimization 

formulation introduced by Sivapuram et al. [16] is employed for numerical 

demonstrations and the level set topology optimization method of Dunning and Kim 

[27] is used for topology optimization at both macro and microscale.  

The remainder of the paper is organized as follows. In Sections 2 and 3, the level 

set topology optimization method and the multiscale optimization formulations are 

outlined for completeness. To connect microstructures in multiscale design problems 

illustrated in Section 3, an explicit CI is proposed in Section 4 and applied to control 

the microstructural connectivity in Section 5. The CI-constrained optimization 

approach is applied to obtain optimal multiscale designs with well-connected 

microstructures in Section 6, followed by some concluding remarks.     

 

(a) (b) (c) 

Cell 1 Cell 2 
Interpolation of 

cell 1 and 2 
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2 Level Set Topology Optimization Method 

The level set topology optimization method used in this paper follows Dunning and 

Kim [27] and is briefly summarized in this section. 

In the level set method, a structure is implicitly represented by a level function 

𝜙𝜙(𝒙𝒙), (1) and the Hamilton-Jacobi equation expressed by (2) advances the structural 

interface or boundary,  

� 
𝜙𝜙(𝒙𝒙) > 0,            for 𝒙𝒙 ∈ Ω
𝜙𝜙(𝒙𝒙) = 0,      for 𝒙𝒙 ∈ Γ⋂D
𝜙𝜙(𝒙𝒙) < 0,       for 𝒙𝒙 ∈ D\Ω�

                                               (1) 

where D  is the design domain, Ω  is the structural domain, Γ  is the structural 

boundary and Ω� is the closure of Ω.  
∂𝜙𝜙
𝜕𝜕𝜕𝜕

(𝒙𝒙, 𝑡𝑡) + 𝑉𝑉𝑛𝑛|∇𝜙𝜙|(𝒙𝒙, 𝑡𝑡) = 0, for 𝒙𝒙 ∈ Γ⋂D                                (2) 

with 𝑉𝑉𝑛𝑛 denoting the normal inward velocity of structural boundary and 𝑡𝑡 a pseudo 

time. The forward Euler scheme is typically used to solve (2) numerically,  

𝜙𝜙𝑖𝑖𝑘𝑘+1 = 𝜙𝜙𝑖𝑖𝑘𝑘 − Δ𝑡𝑡�∇𝜙𝜙𝑖𝑖𝑘𝑘�𝑉𝑉𝑛𝑛,𝑖𝑖 = 𝜙𝜙𝑖𝑖𝑘𝑘 − �∇𝜙𝜙𝑖𝑖𝑘𝑘�𝑍𝑍𝑛𝑛,𝑖𝑖                                 (3) 

where 𝑘𝑘 is the iteration number, Δ𝑡𝑡 is the time step, 𝑉𝑉𝑛𝑛,𝑖𝑖 is the normal velocity of 

the boundary point 𝑖𝑖 and 𝑍𝑍𝑛𝑛,𝑖𝑖 is the distance of the associated normal movement.  

A general topology optimization problem can be written as 

min
Ω(𝜙𝜙)

  𝑓𝑓(Ω) 

  s. t.    𝑔𝑔𝑗𝑗(Ω) ≤ 0, 𝑗𝑗 = 1, … ,𝑚𝑚                                             (4) 

where 𝑓𝑓 is the objective functional and 𝑔𝑔𝑗𝑗 denotes a constraint functional. With the 

help of shape derivative, linearizing (4) gives, 

⎩
⎪
⎨

⎪
⎧ Δ𝑓𝑓�ΔΩ(𝒁𝒁𝑛𝑛)� = �𝑠𝑠𝑓𝑓𝑍𝑍𝑛𝑛𝑑𝑑Γ

 

Γ
+ 𝑜𝑜(𝑍𝑍𝑛𝑛) ≈�𝑠𝑠𝑓𝑓𝑍𝑍𝑛𝑛𝐿𝐿

 

 

= 𝑪𝑪𝑓𝑓 ⋅ 𝒁𝒁𝑛𝑛

Δ𝑔𝑔𝑖𝑖�ΔΩ(𝒁𝒁𝑛𝑛)� = �𝑠𝑠𝑔𝑔,𝑗𝑗
 𝑍𝑍𝑛𝑛𝑑𝑑Γ

 

Γ
+ 𝑜𝑜(𝑍𝑍𝑛𝑛) ≈�𝑠𝑠𝑔𝑔,𝑗𝑗

 𝑍𝑍𝑛𝑛𝐿𝐿
 

 

= 𝑪𝑪𝑔𝑔,𝑗𝑗
 ⋅ 𝒁𝒁𝑛𝑛

                (5) 

where 𝑠𝑠𝑓𝑓  and 𝑠𝑠𝑔𝑔,𝑗𝑗
  are the shape sensitivities of the objective and 𝑗𝑗-th constraint 

functionals, respectively, and 𝐿𝐿 is the length of a discretized boundary segment. 𝑪𝑪𝑓𝑓 

and 𝑪𝑪𝑔𝑔,𝑗𝑗
  are the scaled sensitivity vectors of the objective function and 𝑗𝑗-th constraint 



7 
 

functionals. 𝒁𝒁𝑛𝑛  is the vector of boundary movement distance. With further 

manipulations [16, 27], the optimization problem of (4) at the k-th iteration can be 

transformed to, 

min
𝛼𝛼,𝝀𝝀

𝑪𝑪𝑓𝑓𝑘𝑘 ⋅ 𝒁𝒁𝑛𝑛𝑘𝑘(𝛼𝛼,𝝀𝝀) 

s. t.    𝑪𝑪𝑔𝑔,𝑗𝑗
𝑘𝑘 ⋅ 𝒁𝒁𝑛𝑛𝑘𝑘 ≤ −𝑔̅𝑔𝑗𝑗𝑘𝑘, 𝑗𝑗 = 1, … ,𝑚𝑚                                    (6) 

𝒁𝒁𝑛𝑛,min
𝑘𝑘 ≤ 𝒁𝒁𝑛𝑛𝑘𝑘 ≤ 𝒁𝒁𝑛𝑛,max

𝑘𝑘  

where 𝒁𝒁𝑛𝑛𝑘𝑘(𝛼𝛼, 𝝀𝝀) = 𝛼𝛼�𝑪𝑪𝑓𝑓𝑘𝑘 + ∑ 𝜆𝜆𝑗𝑗𝑪𝑪𝑔𝑔,𝑗𝑗
𝑘𝑘𝑚𝑚

𝑗𝑗=1 � . The upper and lower bounds, 𝒁𝒁𝑛𝑛,min
𝑘𝑘  and 

𝒁𝒁𝑛𝑛,max
𝑘𝑘  are determined by the CFL condition or the limits of the design domain. 𝑔̅𝑔𝑗𝑗𝑘𝑘 is 

the residual of the 𝑗𝑗-th constraint at 𝑘𝑘-th step. The optimization problem of (6) is 

solved using the open source optimizer NLopt [28] and the solution gives the boundary 

movement distance 𝒁𝒁𝑛𝑛𝑘𝑘 . This is then substituted into (3) to optimize structural 

boundaries.  

 

3 Multiscale Optimization 

In the multiscale topology optimization framework [16], the design domain D is 

first divided to a certain number of subregions (i.e., D1, … , D𝑁𝑁  with ⋃ D𝑒𝑒
𝑁𝑁
𝑒𝑒=1 = D 

and ∀ D𝑒𝑒⋂D𝑙𝑙 = ∅, 𝑒𝑒 ≠ 𝑙𝑙; 𝑒𝑒, 𝑙𝑙 = 1, … ,𝑁𝑁). An illustrative example is shown in Fig. 2. 

It is also assumed that uniform microstructures are distributed in each subregion and 

can be analyzed by the asymptotic homogenization theory. By simultaneously 

optimizing the macroscopic structure and microscopic unit cells, the design space is 

greatly extended to improve the functional performance.  
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Fig. 2 An illustration of multiscale topology optimization without 

connectivity 

 

3.1 Formulation 

For the case of the compliance minimization, the multiscale topology optimization 

problem is formulated as follows  

find  𝜙𝜙𝑀𝑀(𝒙𝒙) ∈ 𝐿𝐿∞(D),𝜙𝜙𝑚𝑚𝑚𝑚(𝒚𝒚) ∈ 𝐿𝐿∞(Y),𝒖𝒖(𝒙𝒙) ∈ 𝐇𝐇1(D),𝝌𝝌𝑒𝑒
𝑝𝑝𝑝𝑝(𝒚𝒚) ∈ 𝑈𝑈Y 

(𝑒𝑒 = 1, … ,𝑁𝑁,𝑝𝑝, 𝑞𝑞 = 1,2,3) 

min  �𝐻𝐻(𝜙𝜙𝑀𝑀)𝑓𝑓𝑖𝑖𝑢𝑢𝑖𝑖𝑑𝑑Ω
 

D
+ � 𝑡𝑡𝑖̅𝑖𝑢𝑢𝑖𝑖𝑑𝑑Γ

 

Γt
 

s. t. 

� 𝐻𝐻(𝜙𝜙𝑚𝑚𝑚𝑚)𝔼𝔼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕𝜒𝜒𝑒𝑒,𝑝𝑝

𝑘𝑘𝑘𝑘

𝜕𝜕𝑦𝑦𝑞𝑞
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑦𝑦𝑗𝑗

𝑑𝑑Y
 

Y
= � 𝐻𝐻(𝜙𝜙𝑚𝑚𝑚𝑚)𝔼𝔼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑦𝑦𝑗𝑗

𝑑𝑑Y
 

Y
,∀ 𝒗𝒗 ∈ 𝑈𝑈Y            (7) 

𝔼𝔼𝑒𝑒,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
H =

1
|Y|� �𝔼𝔼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝔼𝔼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝜒𝜒𝑒𝑒,𝑝𝑝
𝑘𝑘𝑘𝑘

𝜕𝜕𝑦𝑦𝑞𝑞
�

Y
𝑑𝑑Y 

  

The macroscale structure 

 

D1 

D2 

D𝑁𝑁 

D3 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Unit cell 1 

Unit cell N 
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� 𝐻𝐻(𝜙𝜙𝑀𝑀)𝔼𝔼𝑒𝑒,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
H 𝜕𝜕𝑢𝑢𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗
𝜕𝜕𝑣𝑣𝑘𝑘
𝜕𝜕𝑥𝑥𝑙𝑙

𝑑𝑑Ω
 

⋃ D𝑒𝑒𝑁𝑁
𝑒𝑒=1

= �𝐻𝐻(𝜙𝜙𝑀𝑀)𝑓𝑓𝑖𝑖𝑣𝑣𝑖𝑖𝑑𝑑Ω
 

D
+ � 𝑡𝑡𝑖̅𝑖𝑣𝑣𝑖𝑖𝑑𝑑Γ

 

Γt
,∀ 𝒗𝒗 ∈ 𝑈𝑈ad0  

�𝐻𝐻(𝜙𝜙𝑀𝑀)𝑑𝑑Ω
 

D
− 𝑤𝑤𝑀𝑀|D| ≤ 0 

�𝐻𝐻(𝜙𝜙𝑚𝑚𝑚𝑚)𝑑𝑑Y
 

Y
− 𝑤𝑤𝑚𝑚𝑒𝑒|Y| ≤ 0 

where 𝜙𝜙𝑀𝑀 is the macroscopic level set function defined on domain D; 𝜙𝜙𝑚𝑚𝑚𝑚 is the 𝑒𝑒-

th microscopic level set function on domain Y; 𝒇𝒇 is the body force density; 𝒕̅𝒕 is the 

surface traction applied on the Neumann boundary Γt; 𝒖𝒖 is the displacement field with 

the prescribed value 𝒖𝒖 = 𝒖𝒖� on the Dirichlet boundary Γu; 𝔼𝔼 denotes the elasticity 

tensor of the base material; 𝔼𝔼𝑒𝑒,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
H  denote the components of the homogenized 

elasticity tensor in the subdomain D𝑒𝑒; 𝝌𝝌𝑒𝑒𝑘𝑘𝑘𝑘 are the characteristic displacement fields 

in e-th unit cell; 𝑈𝑈Y = {𝒗𝒗(𝒚𝒚),𝒚𝒚 ∈ Y|𝒗𝒗(𝒚𝒚) is Y− periodic;𝒗𝒗 is smooth enough}  is 

the space of the Y-periodic solutions of the characteristic displacement field; while 

𝑈𝑈ad0 = {𝒗𝒗(𝒙𝒙),𝒚𝒚 ∈ D|𝒗𝒗(𝒙𝒙) ∈ 𝐇𝐇1(D),𝒗𝒗 = 𝟎𝟎 on Γu}  denotes the space of virtual 

displacement field of the homogenized structure. Instead of using an integrated volume 

constraint, 𝑤𝑤𝑀𝑀 and 𝑤𝑤𝑚𝑚𝑒𝑒 are the volume fraction upper bounds of the macrostructure 

and e-th unit cell. 

For the multiscale topology optimization problems, Sivapuram et al. [16] suggested 

to linearize first both the objective function and constraints with the use of their 

sensitivities with respect to the macro level set function and 𝑁𝑁  micro level set 

functions. Then the linearized program is decoupled into 𝑁𝑁 + 1 parallel optimization 

problems which are involved with either the macro level set function or a single micro 

level set function. For constraints coupled with both macro and micro level set functions, 

an inner level program needs to be solved to determine the optimal constraint bounds 

for the 𝑁𝑁 + 1  problems. In this problem formulation Eq. (7), since the volume 

constraints are separately applied on the macroscopic level set function and each 

microscale level set function, the original formulation can be solved in parallel at each 
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iteration step. To be specific, in 𝑘𝑘-th iteration, the macroscale level set function is 

updated by solving the following sub-level optimization problem: 

min
𝛼𝛼,𝝀𝝀

𝑪𝑪𝑓𝑓,𝑀𝑀
𝑘𝑘 ⋅ 𝒁𝒁𝑛𝑛𝑘𝑘(𝛼𝛼,𝝀𝝀) 

s. t.    𝑪𝑪𝑀𝑀𝑘𝑘 ⋅ 𝒁𝒁𝑛𝑛𝑘𝑘 ≤ −𝑔̅𝑔𝑀𝑀𝑘𝑘 ,                                                           (8) 

𝒁𝒁𝑛𝑛,min
𝑘𝑘 ≤ 𝒁𝒁𝑛𝑛𝑘𝑘 ≤ 𝒁𝒁𝑛𝑛,max

𝑘𝑘  

where 𝑪𝑪𝑓𝑓,𝑀𝑀
𝑘𝑘  and 𝑪𝑪𝑀𝑀𝑘𝑘  are the sensitivity vectors of the macro level set function 

associated with the objective function and volume constraint, 𝒁𝒁𝑛𝑛𝑘𝑘 = 𝛼𝛼�𝑪𝑪𝑓𝑓,𝑀𝑀
𝑘𝑘 + 𝜆𝜆𝑪𝑪𝑀𝑀𝑘𝑘 �, 

𝑔̅𝑔𝑀𝑀𝑘𝑘  is the residual of macroscale volume constraint and the related shape sensitivities 

are 

�
𝑪𝑪𝑓𝑓,𝑀𝑀
𝑘𝑘 (𝒙𝒙𝐵𝐵) = −�𝐿𝐿𝔼𝔼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖H 𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘 𝜀𝜀𝑘𝑘𝑘𝑘𝑘𝑘 �(𝒙𝒙𝐵𝐵)

𝑪𝑪𝑀𝑀𝑘𝑘 (𝒙𝒙𝐵𝐵) = 𝐿𝐿(𝒙𝒙𝐵𝐵)
                                         (9) 

with 𝛆𝛆𝑘𝑘(𝒙𝒙𝐵𝐵)  denoting the strain tensor and 𝐿𝐿(𝒙𝒙𝐵𝐵)  denoting the corresponding 

weighted length of boundary point 𝒙𝒙𝐵𝐵.  

The optimal boundary movement of the level set function of the 𝑒𝑒-th unit cell is 

determined by the following program: 

min
𝛼𝛼,𝝀𝝀

𝑪𝑪𝑓𝑓,𝑚𝑚𝑚𝑚
𝑘𝑘 ⋅ 𝒁𝒁𝑛𝑛𝑘𝑘(𝛼𝛼, 𝝀𝝀) 

s. t.  𝑪𝑪𝑚𝑚𝑚𝑚𝑘𝑘 ⋅ 𝒁𝒁𝑛𝑛𝑘𝑘 ≤ −𝑔̅𝑔𝑚𝑚𝑚𝑚𝑘𝑘 ,                                                      (10) 

𝒁𝒁𝑛𝑛,min
𝑘𝑘 ≤ 𝒁𝒁𝑛𝑛𝑘𝑘 ≤ 𝒁𝒁𝑛𝑛,max

𝑘𝑘  

where 𝑪𝑪𝑓𝑓,𝑚𝑚𝑚𝑚
𝑘𝑘  and 𝑪𝑪𝑚𝑚𝑚𝑚𝑘𝑘  are the sensitivity vectors of 𝑒𝑒-th micro level set function 

associated with the objective function and volume constraint, 𝒁𝒁𝑛𝑛𝑘𝑘 = 𝛼𝛼�𝑪𝑪𝑓𝑓,𝑚𝑚𝑚𝑚
𝑘𝑘 + 𝜆𝜆𝑪𝑪𝑚𝑚𝑚𝑚𝑘𝑘 �, 

𝑔̅𝑔𝑚𝑚𝑚𝑚𝑘𝑘  is the residual of 𝑒𝑒 -the microscale volume constraint and the related shape 

sensitives are 

⎩
⎪
⎨

⎪
⎧
𝑪𝑪𝑓𝑓,𝑚𝑚𝑚𝑚
𝑘𝑘 (𝒚𝒚𝐵𝐵) = −�� 𝐻𝐻(𝜙𝜙𝑀𝑀)𝜀𝜀𝑖𝑖𝑖𝑖𝑘𝑘 𝜀𝜀𝑘𝑘𝑘𝑘𝑘𝑘 (𝒙𝒙)𝑑𝑑V

 

D𝑒𝑒
��𝐿𝐿𝔼𝔼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝜀𝜀𝑟𝑟𝑟𝑟0 −

𝜕𝜕𝜒𝜒𝑒𝑒,𝑟𝑟
𝑖𝑖𝑖𝑖

𝜕𝜕𝑦𝑦𝑠𝑠
��𝜀𝜀𝑝𝑝𝑝𝑝0 −

𝜕𝜕𝜒𝜒𝑒𝑒,𝑝𝑝
𝑘𝑘𝑘𝑘

𝜕𝜕𝑦𝑦𝑞𝑞
�� (𝒚𝒚𝐵𝐵)

𝑪𝑪𝑚𝑚𝑚𝑚𝑘𝑘 (𝒚𝒚𝐵𝐵) = 𝐿𝐿(𝒚𝒚𝐵𝐵)
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(11) 

with 𝜀𝜀𝑟𝑟𝑟𝑟0  denoting the unit strain tensors and 𝒚𝒚𝐵𝐵 denoting associated boundary point.  

With use of the optimal boundary movements, the macroscopic and microscopic 

structures can be obtained via (3). It should be noted that, on one hand, the optimal 

microstructures are affected by the macroscopic strain through (11); on the other hand, 

the macroscopic strain is determined by the macroscopic structure and the effective 

properties of microstructures. The optimal macrostructure and microstructures are 

inherently coupled [29]. With such coupling being ignored, the effective properties of 

the optimal microstructures may not be consistent in optimality with respect to the 

current macroscopic structure at intermediate iterations. However, as discussed in [29], 

it was observed that the inconsistency would vanish as a solution converges and has 

little effects on the final solution. 

 

3.2 Connectivity of multiple microstructures 

The L-beam example in Fig. 3(a) is considered to illustrate the multiscale 

optimization. The solid material is isotropic with Young’s modulus 𝐸𝐸 = 1  and 

Poisson’s ratio 𝜈𝜈 = 0.3 . The structural domain is divided into 3 subregions with 

uniform microstructures distributed in each region. The upper bounds of volume 

fractions are 𝑤𝑤𝑀𝑀 = 𝑤𝑤𝑚𝑚𝑒𝑒 = 40%, 𝑒𝑒 = 1, … ,3, respectively.  

 
40 60 

40 

60 

𝐹𝐹 =  3  

Uniform 
cell 1 in 
region 1 

Uniform 
cell 2 in 
region 2 

Uniform cell 
3 in region 3 

(a) (b) (c) 
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Fig. 3 An L-beam example with (a) the design domain, (b) the initial 

macroscale structure and (c) the initial microstructure 

 

With the initial designs shown in Fig. 3 (b) and (c), we obtain the optimized 

multiscale structure shown in Fig. 4 with the optimal structural mean compliance 7295. 

The obtained macroscale structure is very similar as the single scale design result [30], 

which is reasonable. The three optimized microstructures, however, are not well-

connected. In addition, they cannot transfer loads well in reality as expected by the 

homogenization theory. The multiscale structures are analyzed in the structural scale 

using the effective properties of microscopic unit cells and the scale separation 

assumption makes the structure unware of microstructural topologies. As a result, the 

effects of the connectivity between spatially varying microstructures cannot be 

considered in analysis hence, cannot be considered in design optimization.  

In order to address this challenge in the multiscale design optimization framework, 

we introduce a quantity to measure the microstructural connectivity.  

 

Fig. 4 Multiscale optimization solution of the L beam example (a) 

optimized macroscale structure and (b) optimized microstructures 

illustrating the connectivity challenges 

(b) (a) 

cell 1 

cell 2 cell 3 

Not well-connected 
interfaces 

cell 3 cell 2 

cell 1 

𝜙𝜙𝑚𝑚1 

𝜙𝜙𝑚𝑚2 

𝜙𝜙𝑚𝑚3 
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4 Connectivity Index: Explicit Index to Quantify Connectivity 

between Two Unit Cells  

Connectivity Index (CI) is defined using a local interface region of the mutual 

boundary, as shown Fig. 5. Considering the two strips from each unit cell, the following 

normalized parameter, CI can be defined: 

𝐶𝐶𝐶𝐶 ≜
∑ ∫ 𝐻𝐻�𝜙𝜙𝑖𝑖(𝒚𝒚)� �1 − 𝐻𝐻 �𝜙𝜙𝑗𝑗(𝐑𝐑𝒚𝒚)��𝑑𝑑Y 

Y𝑖𝑖
s

2
𝑖𝑖=1

∑ ∫ 𝐻𝐻�𝜙𝜙𝑖𝑖(𝒚𝒚)�𝑑𝑑Y 
Y𝑖𝑖
s

2
𝑖𝑖=1

,   𝑖𝑖 ≠ 𝑗𝑗; 𝑖𝑖, 𝑗𝑗 = 1,2          (12) 

where Y𝑖𝑖s  is the strip region colored in light red near the adjacent cell of 𝑖𝑖 -th 

microstructure. 𝐑𝐑 denotes the mirror reflection operator, which maps a point 𝒚𝒚 to its 

symmetric counterpart 𝐑𝐑𝒚𝒚 in the adjacent cell. CI is actually a symmetry measure of 

the material distribution in the interface region. Two unit cells are perfectly connected 

when 𝐶𝐶𝐶𝐶 = 0, which implies that their connection regions are symmetric about the 

interface, while 𝐶𝐶𝐶𝐶 = 1 is completely disconnected.  

 
Fig. 5 An illustration of the proposed connectivity measure, where yellow 

structure on the left represents one-unit cell and the green structure on 

the right represents the adjacent unit cell, and the light red strips 

represent the interface regions used to quantify the connectivity between 

the two cells  

 

Y1s 

Y2s 

𝐻𝐻�𝜙𝜙2(𝒚𝒚)� = 1 
𝐻𝐻�𝜙𝜙1(𝐑𝐑𝒚𝒚)� = 1 𝒚𝒚 

𝐑𝐑𝒚𝒚 
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In numerical implementation, CI can be calculated as 

𝐶𝐶𝐶𝐶 = 1 −
∑ ∫ 𝐻𝐻�𝜙𝜙𝑖𝑖(𝒚𝒚)�𝐻𝐻 �𝜙𝜙𝑗𝑗(𝐑𝐑𝒚𝒚)�𝑑𝑑Y 

Y𝑖𝑖
s

2
𝑖𝑖=1

∑ ∫ 𝐻𝐻�𝜙𝜙𝑖𝑖(𝒚𝒚)�𝑑𝑑Y 
Y𝑖𝑖
s

2
𝑖𝑖=1

≜ 1−
𝐴𝐴sum2
𝐴𝐴sum1

, (𝑖𝑖, 𝑗𝑗 = 1,2; 𝑖𝑖 ≠ 𝑗𝑗)     (13) 

with 𝐴𝐴sum1 = ∑ ∫ 𝐻𝐻�𝜙𝜙𝑖𝑖(𝒚𝒚)�𝑑𝑑Y 
Y𝑖𝑖
s

2
𝑖𝑖=1  and 𝐴𝐴sum2 =

∑ ∫ 𝐻𝐻�𝜙𝜙𝑖𝑖(𝒚𝒚)�𝐻𝐻 �𝜙𝜙𝑗𝑗(𝐑𝐑𝒚𝒚)�𝑑𝑑Y 
Y𝑖𝑖
s

2
𝑖𝑖=1 . Furthermore, the corresponding shape derivative 

with respect to the 𝑖𝑖-th microstructure can be written as: 

𝐶𝐶𝐼𝐼′(Y𝑖𝑖s)�𝒁𝒁𝑛𝑛𝑖𝑖 � =
𝐴𝐴sum2 ∫ 𝑍𝑍𝑛𝑛𝑖𝑖 𝑑𝑑S 

Γ𝑖𝑖
s − 2𝐴𝐴sum1 ∫ 𝐻𝐻�𝜙𝜙𝑖𝑖(𝒚𝒚)�𝐻𝐻 �𝜙𝜙𝑗𝑗(𝐑𝐑𝒚𝒚)�𝑍𝑍𝑛𝑛𝑖𝑖 𝑑𝑑Γ

 
Γ𝑖𝑖
s

𝐴𝐴sum12         (14) 

where Γ𝑖𝑖s denotes the microstructural boundary in the strip region Y𝑖𝑖s.  

For the proposed CI, one is required to select a suitable width of strip region. 

Generally, for a smaller width of the strip region, CI is more sensitive to the boundary 

movement; once the structural boundary moves out of the strip region Y𝑖𝑖s , the 

sensitivity (14) would have no effect. A larger width would be numerically more stable 

and effective; however, it can potentially reduce the objective function to a greater 

extent. This will be discussed further in the numerical investigation.  

We apply this with the level set topology optimization method for structural 

mechanics in this paper for illustration. However, we note that the proposed CI 

formulation is only a function of the material distribution and is independent of the 

physics of the problem. This means this constraint is applicable potentially to any 

topology optimization problems. Since we are introducing an additional constraint 

function into the problem formulation, this approach would be applicable with any 

topology optimization methods such as SIMP [30], ESO [31, 32] and MMC/MMV 

methods [33-36]. 
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5 Connecting Microstructures in Homogenization-based 

Optimization 

In this section, we investigate the use of CI in connecting two or more 

microstructures using homogenization-based topology optimization. Two formulations 

are investigated: (i) adding penalized CI to the objective function (ii) adding CI as a 

constraint. The following section first details the two formulations, followed by 

numerical examples.  

5.1 Problem formulations  

a) Penalization formulation  

In this method, CI is added to the objective function of (10), i.e., 

𝑓𝑓 = 𝑓𝑓 + 𝑀𝑀�(1− exp(−𝑆𝑆̅𝑘𝑘))𝐶𝐶𝐶𝐶                                  (15) 

where 𝑀𝑀�  is a weighting factor, 𝑆𝑆̅ denotes the average of the sensitivity of 𝑓𝑓 and 𝑘𝑘 

is the iteration number. In this way, the penalization term of CI is applied to the 

objective function gradually in order to not over-restrict the microstructures at the initial 

steps.  

b) Constrained optimization formulation  

The second formulation is to add CI as a constraint, i.e., 𝐶𝐶𝐶𝐶 ≤ 𝐶𝐶𝐶𝐶��� in (10) to enforce 

the microstructural connectivity. When determining the optimal boundary movements 

of the e-th microstructure, the CI-related constraint reads 

𝑪𝑪 
𝑘𝑘,𝑚𝑚𝑚𝑚 ⋅ 𝒁𝒁𝑛𝑛𝑘𝑘 ≤ −𝐶𝐶𝐶𝐶���𝑘𝑘,𝑚𝑚𝑚𝑚                                                (16) 

where 𝐶𝐶𝐶𝐶���𝑘𝑘,𝑚𝑚𝑚𝑚 = 1 − 𝐴𝐴sum2
𝑘𝑘

𝐴𝐴sum1
𝑘𝑘 − 𝐶𝐶𝐶𝐶��� and  

𝑪𝑪 
𝑘𝑘,𝑚𝑚𝑚𝑚(𝒚𝒚𝐵𝐵) = �

𝐴𝐴sum2𝑘𝑘 − 2𝐴𝐴sum1𝑘𝑘 𝐻𝐻�𝜙𝜙𝑘𝑘(𝐑𝐑𝒚𝒚𝐵𝐵)�

�𝐴𝐴sum1𝑘𝑘 �
2 ,      if  𝒚𝒚𝐵𝐵 ∈ Y𝑖𝑖s

0,                                                            otherwise

  (𝑖𝑖, 𝑗𝑗 = 1,2; 𝑖𝑖 ≠ 𝑗𝑗) 

   (17) 
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5.2 Numerical example for single interface  

The purpose of this section is to numerically investigate the connectivity index 

function within microstructure optimization and compare the two formulations of 

Section 5.1. We therefore, first construct particularly challenging two cell optimization 

problems with a single interface, where the optimized topologies of the two adjacent 

cells are completely disconnected. They are shown in Fig. 6. The first problem, Fig. 

6(a) optimizes the left hand side cell for the maximum shear modulus and the right hand 

side cell for the maximum bulk modulus, i.e., 𝑓𝑓1(𝔼𝔼H) = −𝐷𝐷33H  and 𝑓𝑓2(𝔼𝔼H) =

−(𝐷𝐷11H + 𝐷𝐷22H + 𝐷𝐷12H + 𝐷𝐷21H )/4. The second problem, Fig. 6(b), optimizes each cell for 

the maximum stiffness in the direction orthogonal to each other, i.e., 𝑓𝑓1(𝔼𝔼H) = −𝐷𝐷11H  

and 𝑓𝑓2(𝔼𝔼H) = −𝐷𝐷22H  in the 3 × 3 effective elasticity constitutive matrix 𝐃𝐃H.  

These solutions are obtained by applying level set topology optimization with 

homogenization starting from a square domain with a circular hole in the center. For a 

general objective function related to the macroscopic effective property, 𝑓𝑓(𝔼𝔼H), the 

shape sensitivities for a boundary point 𝒚𝒚𝐵𝐵 of a microstructure at the 𝑘𝑘-th iteration 

can be written as  

𝐶𝐶𝑓𝑓𝑘𝑘(𝒚𝒚𝐵𝐵) = −
𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 �𝐿𝐿𝔼𝔼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝜀𝜀𝑟𝑟𝑟𝑟0 −
𝜕𝜕𝜒𝜒𝑒𝑒,𝑟𝑟

𝑖𝑖𝑖𝑖

𝜕𝜕𝑦𝑦𝑠𝑠
��𝜀𝜀𝑝𝑝𝑝𝑝0 −

𝜕𝜕𝜒𝜒𝑒𝑒,𝑝𝑝
𝑘𝑘𝑘𝑘

𝜕𝜕𝑦𝑦𝑞𝑞
�� (𝒚𝒚𝐵𝐵)           (18) 

Following the procedure outlined in Section 2, optimal microstructures can be obtained. 

 Due to the periodic boundary condition, each cell optimization is unaware of its 

adjacent cell and the resulting topologies are completely disconnected (the interface 

regions are highlighted with dotted lines). In practice, these solutions cannot transfer 

loads between two adjacent cells and are only fictitious designs. For all solutions, 𝐸𝐸 =

1 and 𝜈𝜈 = 0.3 with 𝑤𝑤1 = 𝑤𝑤2 = 40% were used.  
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Fig. 6 Two test cases obtained by microstructural optimization via 

homogenization, (a) maximum shear modulus and bulk modulus 

solutions and (b) maximum 𝐷𝐷11H  and 𝐷𝐷22H  solutions 

  

5.2.1 Application of the penalization approach 

Tables 1 and 2 summarize the optimized solutions obtained by adding CI as a 

penalized objective with a range of weighting factors, 𝑀𝑀� . The design domains were 

discretized by 50 × 50 bilinear elements and the widths of strip regions Y𝑖𝑖s are set as 

1 element-width. It is observed that as the weighting factor increased, the resulting 

topological solutions connected at the interface. It is anticipated that the effects of CI 

would reduce the moduli of the optimal solutions. As seen in Table 1, the reduction of 

the optimal objective function relative to those of the optimized solutions without CI is 

less than 2%. However, for inappropriate weight factors, step changing similar as Fig. 

1(b) still exists. This is due to the fact that the penalization approach comes from the 

multi-objective optimization, and selecting appropriate weighting factor for converting 

it to a single-objective optimization is a trivial task and would be very difficult when 

multiple interfaces are involved.  

 

(a) 

(b) 
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Table 1 Optimized solutions for the maximum shear and bulk moduli 

cases by the penalization approach 

𝑀𝑀�  𝐶𝐶𝐶𝐶 Optimal solutions 
Shear 

modulus 

Bulk 

modulus 

Decrease in 

modulus 

relative to 

𝑀𝑀� = 0 

0 1.00 

 

0.109 0.137 - - 

0.03 0.69 

 

0.109 0.137 0.0% 0.0% 

0.43 0.08 

 

0.109 0.136 0.0% 0.73% 

2.5 0.04 

 

0.106 0.135 2.75% 1.46% 

 

Table 2 Optimized solutions for the maximum 𝐷𝐷11H  and 𝐷𝐷22H  cases by the 

penalization approach  

𝑀𝑀�  𝐶𝐶𝐶𝐶 Optimal solutions 𝐷𝐷11H  𝐷𝐷22H  

Decrease in 

modulus 

relative to 

𝑀𝑀� = 0 

0 1.00 

 

0.400 0.400 - - 
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0.10 1.00 

 

0.400 0.400 0.0% 0.0% 

0.97 0.19 

 

0.400 0.399 0.0% 0.25% 

4.6 0.00 

 

0.356 0.398 11.0% 0.25% 

 

5.2.2 Application of the constraint approach 

Tables 3 and 4 summarize the optimized solutions obtained by adding CI as a 

constraint with different upper bounds on CI and the widths of strip region (number of 

elements 𝑛𝑛𝑤𝑤 in strip region). The optimized topologies show improved connectivities. 

It is observed that: (1) by adding different upper bounds of CI, the connectivity can be 

controlled quantitatively and explicitly during inverse homogenization; (2) as the CI 

constraint reduces, the connectivity improves and this is at the expense of the objective 

function values; (3) the maximum relative reduction of the optimal objective function 

values is no more than 3% as compared to their disconnected counterpart. Experiences 

with a range of numerical investigations indicate that a reasonably good connectivity is 

usually achieved with 𝐶𝐶𝐶𝐶��� = 0.10, which may need to be smaller for a wider interface 

region. 

 

Table 3 Optimized solutions for the maximum shear and bulk moduli 

cases by the constraint approach  

 𝑛𝑛𝑤𝑤 𝐶𝐶𝐶𝐶��� Optimal designs 
Shear 

modulus 

Bulk 

modulus 
Decrease in 

modulus 
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relative to 

𝑛𝑛𝑤𝑤 = 0 

(a) 1 0.83 
 

0.109 0.136 0.0% 0.73% 

(b) 1 0.50 
 

0.109 0.135 0.0% 1.46% 

(c) 1 0.25 
 

0.109 0.135 0.0% 1.46% 

(d) 1 0.05 
 

0.109 0.134 0.0% 2.19% 

(e) 2 0.10 

 

0.109 0.133 0.0% 2.92% 

(f) 6 0.10 

 

0.109 0.133 0.0% 2.92% 

 

Table 4 Optimized solutions for the maximum 𝐷𝐷11H  and 𝐷𝐷22H  cases by the 

constraint approach 

 𝑛𝑛𝑤𝑤 𝐶𝐶𝐶𝐶��� Optimal designs 𝐷𝐷11H  𝐷𝐷22H  

Decrease in 

modulus 

relative to 

𝑛𝑛𝑤𝑤 = 0 
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(a) 1 0.70 
 

0.400 0.400 0.0% 0.0% 

(b) 1 0.35 
 

0.398 0.400 0.5% 0.0% 

(c) 1 0.10 
 

0.400 0.398 0% 0.5% 

 

5.3 Numerical example for multiple interfaces 

5.3.1 Multiple interfaces 

We now apply the CI constraint to multiple interfaces. Three microstructural 

optimized solutions with a 40% volume constraint are used in this study: (1) maximum 

shear modulus, (2) maximum bulk modulus and (3) maximum 𝐷𝐷22H . For these results, 

we use the initial design with five circular holes, Fig. 7(a). As a result, the resulting 

optimal topologies of Fig. 7(b)-(d) are slightly different from those using the one-hole 

initial solution (Fig. 6) reflecting the non-convex nature of microstructural optimization 

[7, 29]; however, the objective functions of these solutions are different only by around 

1% (0.110 (maximum shear modulus), 0.138 (maximum bulk modulus) and 0.400 

(maximum 𝐷𝐷22H ) for the five-hole initial solution in comparison with 0.109, 0.136 and 

0.400 for the one-hole initial solution). These provide additional optimized topologies 

to challenge the CI function.   
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Fig. 7 (a) Initial design with five circular holes, (b) optimal unit cell with 

maximum shear modulus, (c) optimal unit cell with maximum bulk 

modulus and (d) optimal unit cell with maximum 𝐷𝐷22H  

 

Table 5 presents 1 × 3 and 2 × 2 microstructures optimized for the maximum 

shear modulus, maximum bulk modulus and maximum 𝐷𝐷22H  from different initial 

designs. In the 1 × 3 microstructures examples, the unit cells in the left and right side 

are added by one CI constraint, the middle unit cells are constrained by two CIs. Two 

CI constraints are added to each cell in the 2 × 2  case during the inverse 

homogenization. With 𝐶𝐶𝐶𝐶��� = 0.10  and 𝑛𝑛𝑤𝑤 = 1 , Table 5 demonstrates that the 

connectivities are improved substantially. For all cases, the maximum moduli were 

reduced by no more than 3%.  

 

Table 5 Optimized microstructures with and without connectivity 

constraints  

Without considering connectivity With connectivity constraints 

  

  

(a) (b) (c) (d) 
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5.3.2 Self-connectivity  

The efforts above focused on improving the connectivity between two adjacent 

microstructures. By applying the connectivity constraint, the connection between 

different cells will be greatly improved while the symmetry of unit cells can be broken. 

Subsequently, the connectivity (i.e., symmetry of the interface region) between the 

same unit cells (e.g., the connection of the right-side unit cells in Fig. 8) may not as 

perfect as the connectivity of different unit cells.  

 

Fig. 8 The maximum shear and bulk microstructure design 

 

If one wants to further improve the self-connectivity of the microstructures, the CI 

constraint can also be applied to each cell as shown in Fig. 9(a), i.e.,  

𝐶𝐶𝐶𝐶self = 1−
∫ 𝐻𝐻�𝜙𝜙(𝒚𝒚)�𝐻𝐻�𝜙𝜙(𝐑𝐑′𝒚𝒚)�𝑑𝑑Y 
YS⋃𝐑𝐑′YS

∫ 𝐻𝐻�𝜙𝜙(𝒚𝒚)�𝑑𝑑Y 
YS⋃𝐑𝐑′YS

≤ 𝐶𝐶𝐶𝐶���self                      (19) 
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with 𝐑𝐑′𝒚𝒚 denoting the symmetric point of 𝒚𝒚 in the same unit cell and 𝐑𝐑′YS is the 

symmetric strip region of YS. By adding the CI constraint to the maximum shear and 

bulk microstructure design problem with 𝐶𝐶𝐶𝐶���self = 0.10  and 𝑛𝑛𝑤𝑤 = 1 , the self-

connectivity property of cells can be improved, contrast Fig. 9(b) with Fig. 8.  

 

Fig. 9 (a) Illustration of the self-connectivity index and (b) maximum shear 

and bulk modulus microstructure designs with self-connectivity 

constraints  

 

It should be noted that, due to numerical errors and limitation of optimizer, the 

obtained designs can hardly achieve a perfect connection (i.e. 𝐶𝐶𝐶𝐶 = 0). However, it is 

expected that, only a ‘minor’ postprocessing is required to smooth the part in the 

interface region to finally improve the connectivity, and such treatment would have 

very small influence on the optimality of the microstructures.  

 

6 Multiscale Topology Optimization with Connectivity 

We return to multiscale optimization in Section 3 and apply additional CI 

constraints to enforce connectivity between the microstructural regions. This is 

achieved by adding the CI constraints only at the microstructural scale in the 

decomposed optimization problem. For the 𝑒𝑒-th microstructure with a number of 𝑇𝑇 

boundaries interfacing different microstructures, (20) is added to obtain the optimal 

boundary movement at 𝑘𝑘-th step: 

(a) (b) 

YS 

𝐻𝐻�𝜙𝜙(𝒚𝒚)� = 1 
𝒚𝒚 𝐑𝐑′𝒚𝒚 

𝐑𝐑′YS 

𝐻𝐻 �𝜙𝜙 �𝐑𝐑′𝒚𝒚�� = 0 



25 
 

 𝑪𝑪𝑙𝑙
𝑘𝑘,𝑚𝑚𝑚𝑚 ⋅ 𝒁𝒁𝑛𝑛

𝑘𝑘,𝑚𝑚𝑚𝑚 ≤ −𝐶𝐶𝐶𝐶���𝑙𝑙
𝑘𝑘,𝑚𝑚𝑚𝑚 , 𝑙𝑙 = 1, . . ,𝑇𝑇                                       (20) 

It is noted that the CI constraint of the 𝑒𝑒-th microstructure is dependent on its 

adjacent cells, in other words, the connectivity constraint couples the adjacent 

microstructures together. In the current investigation, such a coupling is ignored for 

simplicity and CI is updated iteratively, i.e., 𝐶𝐶𝐶𝐶���𝑙𝑙
𝑘𝑘,𝑚𝑚𝑚𝑚 = 1− 𝐴𝐴sum2

𝑘𝑘

𝐴𝐴sum1
𝑘𝑘 �𝜙𝜙𝑒𝑒𝑘𝑘,𝜙𝜙𝑛𝑛𝑙𝑙

𝑘𝑘 � − 𝐶𝐶𝐶𝐶���𝑙𝑙𝑚𝑚𝑚𝑚 

with 𝐶𝐶𝐶𝐶���𝑙𝑙𝑚𝑚𝑚𝑚 denoting the CI upper bound for the connectivity between 𝑒𝑒-th and 𝑛𝑛𝑙𝑙-th 

unit cells. The following numerical results indicate that this approximation is 

reasonable.  

6.1 Cantilevered beam 

The first example considers two cantilevered beams shown in Fig. 10. The beams 

are divided into two regions each of which can take different microstructures and the 

microstructure within a region is uniform. Here only the microstructures are optimized 

for the minimum compliance computed at the macroscopic scale and the macroscopic 

topology is fixed to be solid. The upper bound for the microscopic volume fraction is 

set at 40% and the CI constraint at 0.10. The Young’s modulus is set to be 1 and 

Poisson’s ratio 0.3. The unit cell is discretized by 100 × 100 bilinear plane stress 

elements and the initial design contained a hole of radius 25 at the center.    

 
Fig. 10 Cantilevered beam (a) design domain 1:3 and (b) design domain 

2:3 
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The optimized solutions are summarized in Tables 6 and 7 for a range of the strip 

width, 𝑛𝑛𝑤𝑤. As can be observed, all microstructures are connected and in that sense they 

are manufacturable and realistic. However, the discrete member size changes in lower 

𝑛𝑛𝑤𝑤 would lead to poor load transfer between different type of cells and reduce the 

mechanical performance of optimal designs. The member size changes become more 

continuous as 𝑛𝑛𝑤𝑤 increases. As would be expected, this has an effect of increasing the 

objective function however, the increases are observed to be small (less than 2%). 

Figure 11 illustrates an example of the repeated cellular materials in the cantilevered 

beams. 

 

Table 6 Optimized solutions for cantilevered beam 1:3 

𝑛𝑛𝑤𝑤 Optimal microstructures CI 
Mean 

compliance 

Increase in 

compliance 

relative to 

𝑛𝑛𝑤𝑤 = 0 

0 

 

0.44 474 - 

1 

 

0.21 476 0.42% 

5 

 

0.10 477 0.63% 

 

Table 7 Optimized solutions for cantilevered beam 2:3 
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𝑛𝑛𝑤𝑤 Optimal microstructures CI 
Mean 

compliance 

Increase in 

compliance 

relative to 

𝑛𝑛𝑤𝑤 = 0 

0 

 

0.42 130 - 

1 

 

0.23 131 0.77% 

5 

 

0.10 132 1.54% 

 

 

Fig. 11 Illustrations of the connected cellular materials of the cantilevered 

beams (a) design domain 1:3 and (b) design domain 2:3 

 

We note that the constraints are not satisfied in some solutions shown in Tables 6 

and 7. In order to investigate this, we examine the optimization history of the 

cantilevered beam of 2:3, Fig. 12 which is representative of both of the cantilevered 

beams. It can be seen that the structural mean compliances converge smoothly for all 

cases and the strip width 𝑛𝑛𝑤𝑤 does not have a significant influence. The 𝑛𝑛𝑤𝑤  constraint 

(a) (b) 
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oscillates particularly when 𝑛𝑛𝑤𝑤 is small, e.g., 𝑛𝑛𝑤𝑤 = 1. This is because when 𝑛𝑛𝑤𝑤 is 

small, even a small perturbation of the boundary can have a significant influence on the 

CI value. Increasing the strip width, e.g., 𝑛𝑛𝑤𝑤 =  5 , has an effect of relaxing the 

constraint and the oscillation reduces leading to a more stable convergence and meeting 

the specified constraint. It can be deduced from this that an adaptive CI constraint may 

lead to a stable convergence and this will be investigated further in the following section.  

 

 
Fig. 12 Optimization history of cantilevered beam 2:3  

 

6.2 L-beam 

We now consider the L-beam shown in Section 3 to minimize the overall structural 

compliance with three regions are specified to have different material architectures. In 

this case, the topologies are optimized both at the macroscopic and the microscopic 

scales. Since there are three material microstructures, two CI constraints are added to 

the microscale optimization (to get a better connection as well as preserving the original 

optimality, the CI bounds are set as 0.08 for this example). Three cases are considered 

using the following parameters with the last case adopting the adaptive CI constraints: 

1. 𝑛𝑛𝑤𝑤 = 2, 𝐶𝐶𝐶𝐶���1 = 𝐶𝐶𝐶𝐶���2 = 0.08; 
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2. 𝑛𝑛𝑤𝑤 = 10, 𝐶𝐶𝐶𝐶���1 = 𝐶𝐶𝐶𝐶���2 = 0.08; 

3. 𝑛𝑛𝑤𝑤 = 10, 𝐶𝐶𝐶𝐶���1 = 𝐶𝐶𝐶𝐶���2 = max{0.08,1− 0.01𝑘𝑘}. 

The multiscale optimized solutions are shown in Figs. 13-15 with the objective 

function and CI values in Table 8. Fig. 13 with a small strip region, 𝑛𝑛𝑤𝑤 = 2, shows 

that the microstructures at interface 1 is not well connected (𝐶𝐶𝐼𝐼1 = 0.24 and 𝐶𝐶𝐼𝐼2 =

0.10). As seen in the previous example in Section 6.1, for Case 2, increasing the strip 

width to 𝑛𝑛𝑤𝑤 = 10 leads to a solution that satisfy both of the CI constraints, i.e. 𝐶𝐶𝐼𝐼1 =

0.08 and 𝐶𝐶𝐼𝐼2 = 0.07, with relative increase of objective function value by 2.97%. 

However, an additional horizontal bar (marked by dash-dotted circle) is generated to 

satisfy the CI constraint. Furthermore, the iteration history of Case 2 illustrated in Fig. 

15 reveals that the optimizer tried to satisfy the CI constraints every step and this may 

be overly restricting the search space for the microstructure.  

The adaptive constraint in Case 3 is introduced to avoid such issues as the CI 

constraints are not strictly enforced from the beginning. This offers a greater level of 

design freedom for the microstructures during the early stages of optimization. Fig. 16 

shows the microstructural solutions that are well-connected at the interfaces with 

𝐶𝐶𝐼𝐼1 = 0.08 and 𝐶𝐶𝐼𝐼1 = 0.04. Moreover, the overall compliance increase is only 0.77%. 

Fig. 17 shows the optimization history of the L-beam Case 3 with the adaptive CI 

constraints. The CI constraints are inactive at the beginning and the CI values grow 

quickly. After about 30 iterations, both of the CI values start to decrease and stabilize 

around 120 iterations. It should be point out that, due to the connectivity constraint 

which requires the material distribute symmetrically in the interface region, the material 

distribution in the interface region (e.g., variable thickness of unit cell 1) is not optimal 

from a point of view on pure-stiffness. This will be considered in the future work.  
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Fig. 13 Optimized solution for Case 1 (a) macrostructure and (b) 

microstructure 

 

 
Fig. 14 The optimized multiscale structure of case (3) with (a) the optimal 

macrostructure and (b) the optimal microstructures 
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(b) (a) 
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cell 1 

𝐶𝐶𝐶𝐶1 
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Fig. 15 Optimization history of L-beam Case 2 
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Fig. 16 Optimized solution for Case 3 (a) macrostructure and (b) 

microstructure and (c) an illustration of the optimized structure-material 

system 

 

Table 8 Objective and constraint function values for L-beam solutions 

𝑛𝑛𝑤𝑤 𝐶𝐶𝐶𝐶���1 = 𝐶𝐶𝐶𝐶���2 Compliance 

Increase in 

compliance relative 

to 𝑛𝑛𝑤𝑤=0 

𝐶𝐶𝐶𝐶1 𝐶𝐶𝐶𝐶2 

0 - 7295 - 0.47 0.41 

2 0.08 7338 0.59% 0.24 0.10 

(c) 

(b) (a) 

cell 1 

cell 2 cell 3 

cell 3 cell 2 

cell 1 

𝐶𝐶𝐶𝐶1 

𝐶𝐶𝐶𝐶2 
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10 0.08 7518 2.97% 0.08 0.07 

10 max{0.08,1− 0.01𝑘𝑘} 7351 0.77% 0.08 0.04 

 

 

Fig. 17 Optimization history of L-beam Case 3 

 

7 Concluding remarks 

Connectivity Index (CI) is formulated as a quantified measure of the connectivity 

between two adjacent microstructures. The CI function was introduced to the 

optimization problem, firstly into the objective function and secondly as an explicit 

constraint. The numerical investigations were conducted to explore the effects of the 

two different formulations as well as the interface region widths for a range of problems 

in which the microstructures are optimized via the homogenization approach. The 

introduction of the CI functions was demonstrated to improve the connectivity at the 

interfaces substantially. As an additional constraint can reduce the design space and 

restrict the search, the objective function values of the final solutions are expected to 

be compromised. The numerical investigations show, however, that the increase is 

minimal, mostly in the order of 1%. It was observed there were cases that a solution 
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that satisfied the strict CI constraint could not be found or the optimizer found a trivial 

solution where the connectivity is achieved by making the interface region solid. In 

such cases, an adaptive strategy where the CI constraint was relaxed in the early stages 

of optimization and this gave the optimizer the freedom required to find good 

microstructure topologies. As optimization progresses and the number of iteration 

increases, the CI constraint is enforced more strictly yielding a satisfactory solution 

with the minimal increase in the objective function. It is noted that the CI function is 

completely geometry dependent and independent of the physics of the environment, 

therefore, the CI function approach is applicable to multiphysics topology optimization 

and this will be explored in our follow up study.  
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