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With the rapid developments of advanced manufacturing and its ability to manufacture
microscale features, architected materials are receiving ever increasing attention in
many physics fields. Such a design problem can be treated in topology optimization as
architected material with repeated unit cells using the homogenization theory with the
periodic boundary condition. When multiple architected materials with spatial
variations in a structure are considered, a challenge arises in topological solutions
which may not be connected between adjacent material architecture. This paper
introduces a new measure, Connectivity Index (CI) to quantify the topological
connectivity and adds it as a constraint in multiscale topology optimization to achieve
connected architected materials. Numerical investigations reveal that the additional
constraints lead to microstructural topologies which are well connected and do not

substantially compromise their optimalities.



1 Introduction

Materials/structures with well-designed microstructures showing excellent
properties are ubiquitous in nature, e.g., both high stiffness and toughness of the nacre
[1], remarkable bending stiffness of bamboo [2], fascinating colors of the butterfly
wings [3]. Furthermore, an increasing attention is seen in design of the metamaterials
possessing extraordinary properties that are not commonly found in nature [4-5]. By
taking an advantage of the modern manufacturing technology, complex designs of
microstructures can be fabricated conveniently [6-8].

Inspired by the inverse homogenization approach [9], many works devoted to
design microstructures to tailor properties of architected materials [6-10]. Taking this
to the next step, multiscale topology optimization has been developed to simultaneously
design a macroscopic structure and the associated material microstructure(s). Rodrigues
et al. [11] obtained a hierarchical design by optimizing the periodic microstructures in
every macroscale finite element. This method, however, would lead to a very high
computational cost particularly for three dimensional cases [12]. As a more
computational tractable strategy, Liu et al. [13] proposed the Porous Anisotropic
Material with Penalization (PAMP) model to obtain a multiscale structure with a
uniform microstructure. This approach has been extended to consider dynamic and
thermomechanical effects [14, 15]. Sivapuram et al. [16] recently proposed a more
generalized simultaneous structure and material optimization formulation where any
number of microstructures can be obtained. They proposed a linearization formulation
to decompose the macroscale and microscale optimizations, thereby parallel and
distributed computing can be adopted easily.

In majority of the multiscale optimization studies, the asymptotic homogenization
theory has been used to obtain the effective material property of a periodic
microstructure. The assumption of the scale separation and the periodicity in the
homogenization theory [17] ignores the connectivity of the adjacent microstructures

[11, 12, 16]. It should be noted that, besides poor manufacturability, more importantly,



poor microstructural connectivity would lead to load transition issue as well as the
deviation of effective property estimated by homogenization method. In order to obtain
the optimal sizes of microstructures, consider boundary effect as well as guarantee the
connectivity between different microstructures, Alexandersen and Lazarov [18]
abandoned the homogenization theory and directly optimized the micro-structures with
an extremely fine mesh. Even though the authors tried to reduce the computational
resource requirements, the computation cost is substantially higher than the
homogenization-based approaches. It has been shown that the optimal solution of a unit
cell converges rapidly to that obtained by inverse homogenization as the number of
repetitive cells increases (beyond five or six in the case of mechanical properties) [19,
20]. In addition, for boundary effect, as shown in [21], the thickness of boundary layer
has the same scale of the unit cell. Results in [19-21] suggested that the homogenization
method can efficiently offer a reasonable approximation for a large number of repeated
unit cells, when some global measures, e.g., mean compliance, are taken into
consideration. Liu et al. [22] divided the structural domain into several subdomains and
boundary layers. The optimum subdomain periodic microstructures were obtained by
inverse homogenization and direct optimization was applied to the boundary layers
with an extremely fine mesh to obtain the smooth transitions between different
microstructures.

For microstructures with graded properties, the connectivity has been enforced
implicitly via fixing some connective elements or applying a pseudo load or adding
nonlinear diffusion term to the objective function, [23-25]. Whilst such implicit
controls have been shown to be effective in many cases, they cannot guarantee the
connectivity (Fig. 1(a)). It may also have an effect of over-constraining the design space.

Another approach for connecting microstructures is to apply a post-processing
based on the metamorphosis technique. Wang et al. [26] generated a series of self-
similar and connected microstructures by interpolating between a prototype cell and a
solid cell. Such an interpolation technique is a well-established practice for the level set
method in the field of image processing. However, it can create discontinuous member

sizes such as shown in Fig. 1(b) which can lead to stress concentrations. Furthermore,
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such an interpolation method may lead to a floating topology that is no longer physical

when applied to two cells with distinct topologies, e.g. Fig. 1(c).

Interpolation of
Cell 1 cell 1 and 2 Cell 2

(a) (b) (c)
Fig. 1 Challenges seen in the existing methods for connectivity of
microstructures: (a) imperfect connection by implicit control method [24],
(b) interface mismatch by shape metamorphosis [26] and (c) floating

microstructure by shape metamorphosis method

This paper presents a new formulation of multiscale topology optimization with
connected microstructures. An explicit Connectivity Index (CI) is introduced as a
measure for the connectivity between two adjacent topologies and this quantity is added
to the multiscale topology optimization problem. The multiscale optimization
formulation introduced by Sivapuram et al. [16] is employed for numerical
demonstrations and the level set topology optimization method of Dunning and Kim
[27] 1s used for topology optimization at both macro and microscale.

The remainder of the paper is organized as follows. In Sections 2 and 3, the level
set topology optimization method and the multiscale optimization formulations are
outlined for completeness. To connect microstructures in multiscale design problems
illustrated in Section 3, an explicit CI is proposed in Section 4 and applied to control
the microstructural connectivity in Section 5. The Cl-constrained optimization
approach is applied to obtain optimal multiscale designs with well-connected

microstructures in Section 6, followed by some concluding remarks.



2 Level Set Topology Optimization Method

The level set topology optimization method used in this paper follows Dunning and
Kim [27] and is briefly summarized in this section.

In the level set method, a structure is implicitly represented by a level function
¢(x), (1) and the Hamilton-Jacobi equation expressed by (2) advances the structural

interface or boundary,

¢(x) >0, forx € O
¢(x) =0, forxeTl'ND (D
¢(x) <0, forxeD\O

where D is the design domain, Q is the structural domain, I' is the structural

boundary and Q is the closure of Q.

9
a—f(x, ) +,|Vo|(x,t) =0,  forx € TND 2)

with V;, denoting the normal inward velocity of structural boundary and t a pseudo

time. The forward Euler scheme is typically used to solve (2) numerically,

(= of = AV |V = ¢ — |V | Zn, (3)
where k is the iteration number, At is the time step, V,,; is the normal velocity of
the boundary point i and Z,,; is the distance of the associated normal movement.

A general topology optimization problem can be written as

i SO

s.t. g (@) <0,j=1,...m 4
where f is the objective functional and g; denotes a constraint functional. With the

help of shape derivative, linearizing (4) gives,

( Af(AQ(Z,)) = f spZpdl + 0(Zy,) = Z spZnl = C; - Z,
r
(5)
Agi(AQ(Z,)) = f Sg.;Zndl +0(Z,) = Z SgZnl = Cyj - Zy
r

where sy and s;; are the shape sensitivities of the objective and j-th constraint

j
functionals, respectively, and L is the length of a discretized boundary segment. Cr

and C,; are the scaled sensitivity vectors of the objective function and j-th constraint
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functionals. Z, is the vector of boundary movement distance. With further
manipulations [16, 27], the optimization problem of (4) at the k-th iteration can be
transformed to,

.k gk
rall{l Cf-Zn(a, )
s.t. € ZE<—gfj=1,..m (6)

k k k
Zn,min < Zn < Zn,max

k

n,min and

where ZK(a,A) = a(C]’f + Z;-”zllek

P j). The upper and lower bounds, Z

Z ﬁ,max are determined by the CFL condition or the limits of the design domain. g}‘ is

the residual of the j-th constraint at k-th step. The optimization problem of (6) is
solved using the open source optimizer NLopt [28] and the solution gives the boundary
movement distance ZX . This is then substituted into (3) to optimize structural

boundaries.

3 Multiscale Optimization

In the multiscale topology optimization framework [16], the design domain D is
first divided to a certain number of subregions (i.e., Dy,..,Dy with UY_;D, =D
and VD,ND; =@, e # l;e,l = 1,...,N). An illustrative example is shown in Fig. 2.
It is also assumed that uniform microstructures are distributed in each subregion and
can be analyzed by the asymptotic homogenization theory. By simultaneously
optimizing the macroscopic structure and microscopic unit cells, the design space is

greatly extended to improve the functional performance.
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Fig. 2 An illustration of multiscale topology optimization without

connectivity

3.1 Formulation

For the case of the compliance minimization, the multiscale topology optimization

problem is formulated as follows

find ¢y (x) € L”(D), pme(¥) € L(Y), u(x) € H'(D), x27 (¥) € Uy
(e=1,..,N,p,q =123)
mlnfD (pm)fiu +f tiu

I

S.t.

axep av; av;
f H(¢me)Eiqu a a dY f H(¢me)]Eijkla_dYrvv € UY (7)
Y Y Yj

ax&y
el]kl IYlf( ijkl — lqu ay >dY



gy Oy 0vg _ 0
fu” ) H(¢M)Ee,ijkla_xja_xldﬂ = fDH(¢M)fividQ+frtividF;Vv € Uaq
e=1"e t

fH(cpM)dn— wy|D] < 0
D

f H( o) dY — win[Y] < 0
Y

where ¢, is the macroscopic level set function defined on domain D; ¢,,, isthe e-
th microscopic level set function on domain Y; f is the body force density; t is the
surface traction applied on the Neumann boundary [}; u is the displacement field with

the prescribed value u = u on the Dirichlet boundary I; E denotes the elasticity
tensor of the base material; Egi jki denote the components of the homogenized

elasticity tensor in the subdomain D,; yX' are the characteristic displacement fields
in e-th unit cell; Uy = {v(y),y € Y|v(y) is Y — periodic; v is smooth enough} is
the space of the Y-periodic solutions of the characteristic displacement field; while
U = {v(x),y € D|lv(x) € HY(D),v = 00onT,} denotes the space of virtual
displacement field of the homogenized structure. Instead of using an integrated volume
constraint, wy, and wp,, are the volume fraction upper bounds of the macrostructure

and e-th unit cell.

For the multiscale topology optimization problems, Sivapuram et al. [16] suggested
to linearize first both the objective function and constraints with the use of their
sensitivities with respect to the macro level set function and N micro level set
functions. Then the linearized program is decoupled into N + 1 parallel optimization
problems which are involved with either the macro level set function or a single micro
level set function. For constraints coupled with both macro and micro level set functions,
an inner level program needs to be solved to determine the optimal constraint bounds
for the N + 1 problems. In this problem formulation Eq. (7), since the volume
constraints are separately applied on the macroscopic level set function and each

microscale level set function, the original formulation can be solved in parallel at each



iteration step. To be specific, in k-th iteration, the macroscale level set function is
updated by solving the following sub-level optimization problem:
min Cf y - Z(a, 4)
s.t. €K -7k < —gk, )
Zymin < Z5, < Z7 max

n,min =

where C}“M and C¥ are the sensitivity vectors of the macro level set function

associated with the objective function and volume constraint, ZX = a(C }"M + AC ,’ﬁ,),

g is the residual of macroscale volume constraint and the related shape sensitivities

arc

{C},S,M(xB) = —(LEfuefjein) (x™) 9

Ci(x®) = L(x")

with €¥(xB) denoting the strain tensor and L(xB) denoting the corresponding

weighted length of boundary point x5,

The optimal boundary movement of the level set function of the e-th unit cell is
determined by the following program:
min Cf e Z5(a, )
s.t. CK,-Zk < —gk,, (10)
Z3 min < Z5 < Z§ max

n,min —

where C]’f’me and C¥, are the sensitivity vectors of e-th micro level set function

associated with the objective function and volume constraint, Z& = oc(C ]’f‘me + AC i‘ne),

gk, is the residual of e-the microscale volume constraint and the related shape

sensitives are

q

( k B k .k 0 0X ol o _ Oxep B
Cf,me(y ) = - f H(d)M)Sijgkl(x)dV L]qurs Ers — 0 €pq — 0 (y )
D¢ Vs B/

Ck.(y®) = L(y®)
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(11)
with €2 denoting the unit strain tensors and y® denoting associated boundary point.

With use of the optimal boundary movements, the macroscopic and microscopic
structures can be obtained via (3). It should be noted that, on one hand, the optimal
microstructures are affected by the macroscopic strain through (11); on the other hand,
the macroscopic strain is determined by the macroscopic structure and the effective
properties of microstructures. The optimal macrostructure and microstructures are
inherently coupled [29]. With such coupling being ignored, the effective properties of
the optimal microstructures may not be consistent in optimality with respect to the
current macroscopic structure at intermediate iterations. However, as discussed in [29],
it was observed that the inconsistency would vanish as a solution converges and has

little effects on the final solution.

3.2 Connectivity of multiple microstructures

The L-beam example in Fig. 3(a) is considered to illustrate the multiscale
optimization. The solid material is isotropic with Young’s modulus E =1 and
Poisson’s ratio v = 0.3. The structural domain is divided into 3 subregions with
uniform microstructures distributed in each region. The upper bounds of volume

fractions are wy = wy,, = 40%, e = 1, ...,3, respectively.

Uniform
60[ | cell 1in
region 1
F =3
Uniform | Unif "
40| | cetl2in r.n Om} ¢
. I 3 inregion 3
region 2 !
40 60

(@) (b) (©)
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Fig. 3 An L-beam example with (a) the design domain, (b) the initial

macroscale structure and (c) the initial microstructure

With the initial designs shown in Fig. 3 (b) and (c), we obtain the optimized
multiscale structure shown in Fig. 4 with the optimal structural mean compliance 7295.
The obtained macroscale structure is very similar as the single scale design result [30],
which is reasonable. The three optimized microstructures, however, are not well-
connected. In addition, they cannot transfer loads well in reality as expected by the
homogenization theory. The multiscale structures are analyzed in the structural scale
using the effective properties of microscopic unit cells and the scale separation
assumption makes the structure unware of microstructural topologies. As a result, the
effects of the connectivity between spatially varying microstructures cannot be

considered in analysis hence, cannot be considered in design optimization.

In order to address this challenge in the multiscale design optimization framework,

we introduce a quantity to measure the microstructural connectivity.

Not well-connected
interfaces

Fig. 4 Multiscale optimization solution of the L beam example (a)
optimized macroscale structure and (b) optimized microstructures

illustrating the connectivity challenges
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4 Connectivity Index: Explicit Index to Quantify Connectivity

between Two Unit Cells

Connectivity Index (CI) is defined using a local interface region of the mutual
boundary, as shown Fig. 5. Considering the two strips from each unit cell, the following

normalized parameter, CI can be defined:

f=1 les H(¢i(}’)) (1 —-H (cp](Ry))) dy
Cl £
1 le$ H(¢:(y))dY

, L#£J;L,j=1.2 (12)

where Y is the strip region colored in light red near the adjacent cell of i-th
microstructure. R denotes the mirror reflection operator, which maps a point y to its
symmetric counterpart Ry in the adjacent cell. CI is actually a symmetry measure of
the material distribution in the interface region. Two unit cells are perfectly connected
when CI = 0, which implies that their connection regions are symmetric about the

interface, while CI = 1 is completely disconnected.

Y;

N\

H(¢:(Ry)) =1 ‘

6

Fig. 5 An illustration of the proposed connectivity measure, where yellow
structure on the left represents one-unit cell and the green structure on
the right represents the adjacent unit cell, and the light red strips
represent the interface regions used to quantify the connectivity between

the two cells
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In numerical implementation, CI can be calculated as
s HO)H (0, RW) dY g
L'2=1 fo H(¢i(y))dY B Asuml

with Asym1 = lezl fo H(¢i (Y))dY and Asumz =

Cl=1

L@, j=12i+#j) (13)

2 fo H(p;(y))H (d) i (Ry)) dY. Furthermore, the corresponding shape derivative
with respect to the i-th microstructure can be written as:

Asum [ Z4dS = 2Aqums Jys H($:0))H (¢ (Ry)) Zhar
AZ

suml

cr(ys)(zi) = (14)

where T denotes the microstructural boundary in the strip region Y;.

For the proposed CI, one is required to select a suitable width of strip region.
Generally, for a smaller width of the strip region, CI is more sensitive to the boundary
movement; once the structural boundary moves out of the strip region Y7, the
sensitivity (14) would have no effect. A larger width would be numerically more stable
and effective; however, it can potentially reduce the objective function to a greater
extent. This will be discussed further in the numerical investigation.

We apply this with the level set topology optimization method for structural
mechanics in this paper for illustration. However, we note that the proposed CI
formulation is only a function of the material distribution and is independent of the
physics of the problem. This means this constraint is applicable potentially to any
topology optimization problems. Since we are introducing an additional constraint
function into the problem formulation, this approach would be applicable with any
topology optimization methods such as SIMP [30], ESO [31, 32] and MMC/MMV
methods [33-36].

14



S Connecting Microstructures in Homogenization-based

Optimization

In this section, we investigate the use of CI in connecting two or more
microstructures using homogenization-based topology optimization. Two formulations
are investigated: (i) adding penalized CI to the objective function (ii) adding CI as a
constraint. The following section first details the two formulations, followed by

numerical examples.

5.1 Problem formulations

a) Penalization formulation

In this method, CI is added to the objective function of (10), i.e.,
f=f+M(®Q1—exp(=Sk))CI (15)
where M is a weighting factor, S denotes the average of the sensitivity of f and k
is the iteration number. In this way, the penalization term of CI is applied to the
objective function gradually in order to not over-restrict the microstructures at the initial

steps.
b) Constrained optimization formulation

The second formulation is to add CI as a constraint, i.e., CI < CI in (10) to enforce
the microstructural connectivity. When determining the optimal boundary movements
of the e-th microstructure, the Cl-related constraint reads

Ck,me . Z;cl < _ﬁk,me (16)

_ k _
where Cme =1 —4sumz _ T7 apnd

sumil

Az — 2481 H($*(RY))
Ck’me (yB) = (Ak 2

suml
0, otherwise

; B S
 HYREYE =120 %))

(17)
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5.2 Numerical example for single interface

The purpose of this section is to numerically investigate the connectivity index
function within microstructure optimization and compare the two formulations of
Section 5.1. We therefore, first construct particularly challenging two cell optimization
problems with a single interface, where the optimized topologies of the two adjacent
cells are completely disconnected. They are shown in Fig. 6. The first problem, Fig.
6(a) optimizes the left hand side cell for the maximum shear modulus and the right hand
side cell for the maximum bulk modulus, ie., fi(E")=-DY and f,(E") =
—(Di, + DL, + DB + DY) /4. The second problem, Fig. 6(b), optimizes each cell for
the maximum stiffness in the direction orthogonal to each other, i.e., f;(EH) = —DlH1
and f5(E") = —DL, inthe 3 X 3 effective elasticity constitutive matrix D,

These solutions are obtained by applying level set topology optimization with
homogenization starting from a square domain with a circular hole in the center. For a
general objective function related to the macroscopic effective property, f(EM), the
shape sensitivities for a boundary point y® of a microstructure at the k-th iteration
can be written as

of xs ax
C]l{(yB) = - Lqurs (5795 - ;,r qu - % (yB) (18)

H
aEijkl q

Following the procedure outlined in Section 2, optimal microstructures can be obtained.

Due to the periodic boundary condition, each cell optimization is unaware of its
adjacent cell and the resulting topologies are completely disconnected (the interface
regions are highlighted with dotted lines). In practice, these solutions cannot transfer
loads between two adjacent cells and are only fictitious designs. For all solutions, E =

1 and v = 0.3 with w; = w, = 40% were used.

16



(a)

(b)

Fig. 6 Two test cases obtained by microstructural optimization via
homogenization, (a) maximum shear modulus and bulk modulus

solutions and (b) maximum D} and D}, solutions

5.2.1 Application of the penalization approach

Tables 1 and 2 summarize the optimized solutions obtained by adding CI as a
penalized objective with a range of weighting factors, M. The design domains were
discretized by 50 X 50 bilinear elements and the widths of strip regions Y; are set as
1 element-width. It is observed that as the weighting factor increased, the resulting
topological solutions connected at the interface. It is anticipated that the effects of CI
would reduce the moduli of the optimal solutions. As seen in Table 1, the reduction of
the optimal objective function relative to those of the optimized solutions without CI is
less than 2%. However, for inappropriate weight factors, step changing similar as Fig.
1(b) still exists. This is due to the fact that the penalization approach comes from the
multi-objective optimization, and selecting appropriate weighting factor for converting
it to a single-objective optimization is a trivial task and would be very difficult when

multiple interfaces are involved.
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Table 1 Optimized solutions for the maximum shear and bulk moduli

cases by the penalization approach

Decrease in

_ i ) Shear Bulk modulus
M (I Optimal solutions .
modulus modulus relative to
M=0
0 1.00 0.109 0.137 - -
0.03 0.69 0.109 0.137 0.0% 0.0%
0.43 0.08 0.109 0.136 0.0% 0.73%
2.5 0.04 0.106 0.135 2.75% 1.46%

Table 2 Optimized solutions for the maximum D} and D}, cases by the

penalization approach

Decrease in

_ . . modulus
M cI Optimal solutions pH DL, .
relative to
M=0
0 1.00 0.400 0.400 - -

Il



0.10 1.00 0.400 0400  0.0% 0.0%

0.97 0.19 0.400 0399  0.0% 0.25%

4.6 0.00 0.356 0.398 11.0% 0.25%

5.2.2 Application of the constraint approach

Tables 3 and 4 summarize the optimized solutions obtained by adding CI as a
constraint with different upper bounds on CI and the widths of strip region (number of
elements n,, in strip region). The optimized topologies show improved connectivities.
It is observed that: (1) by adding different upper bounds of CI, the connectivity can be
controlled quantitatively and explicitly during inverse homogenization; (2) as the CI
constraint reduces, the connectivity improves and this is at the expense of the objective
function values; (3) the maximum relative reduction of the optimal objective function
values is no more than 3% as compared to their disconnected counterpart. Experiences
with a range of numerical investigations indicate that a reasonably good connectivity is
usually achieved with CI = 0.10, which may need to be smaller for a wider interface

region.

Table 3 Optimized solutions for the maximum shear and bulk moduli

cases by the constraint approach

Shear Bulk Decrease in

n, CI Optimal designs

modulus modulus modulus

19



relative to

n, =0
(@ 1 033 w 0.109 0.136  0.0% 0.73%
b 1 050 w 0.109 0.135  0.0% 1.46%
() 1 025 w 0.109 0.135  0.0% 1.46%
(d 1 0.05 w 0.109 0.134  0.0% 2.19%
(e) 2 m 0.109 0.133  0.0% 2.92%
H o 0.109 0.133  0.0% 2.92%

Table 4 Optimized solutions for the maximum DI} and D!, cases by the

constraint approach

Optimal designs

H
D11

H
D22

Decrease in

modulus

relative to

n, =0

20



(@ 1 070 m [ 0.400 0.400 0.0% 0.0%
(b) 1 035 m [ 0.398 0.400 0.5% 0.0%
(c) 1 0.10 m [ 0.400 0.398 0%  0.5%

5.3 Numerical example for multiple interfaces

5.3.1 Multiple interfaces

We now apply the CI constraint to multiple interfaces. Three microstructural
optimized solutions with a 40% volume constraint are used in this study: (1) maximum
shear modulus, (2) maximum bulk modulus and (3) maximum DZ,. For these results,
we use the initial design with five circular holes, Fig. 7(a). As a result, the resulting
optimal topologies of Fig. 7(b)-(d) are slightly different from those using the one-hole
initial solution (Fig. 6) reflecting the non-convex nature of microstructural optimization
[7,29]; however, the objective functions of these solutions are different only by around
1% (0.110 (maximum shear modulus), 0.138 (maximum bulk modulus) and 0.400
(maximum D3.) for the five-hole initial solution in comparison with 0.109, 0.136 and
0.400 for the one-hole initial solution). These provide additional optimized topologies

to challenge the CI function.
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(@ (b) (©) (d)

Fig. 7 (a) Initial design with five circular holes, (b) optimal unit cell with
maximum shear modulus, (c) optimal unit cell with maximum bulk

modulus and (d) optimal unit cell with maximum D.,

Table 5 presents 1 X 3 and 2 X 2 microstructures optimized for the maximum
shear modulus, maximum bulk modulus and maximum DL, from different initial
designs. In the 1 X 3 microstructures examples, the unit cells in the left and right side
are added by one CI constraint, the middle unit cells are constrained by two CIs. Two
CI constraints are added to each cell in the 2 X 2 case during the inverse
homogenization. With CI = 0.10 and n, =1, Table 5 demonstrates that the
connectivities are improved substantially. For all cases, the maximum moduli were

reduced by no more than 3%.

Table 5 Optimized microstructures with and without connectivity

constraints

Without considering connectivity With connectivity constraints

O O |
sl [Re =11

22
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¥ 8

5.3.2 Self-connectivity

The efforts above focused on improving the connectivity between two adjacent
microstructures. By applying the connectivity constraint, the connection between
different cells will be greatly improved while the symmetry of unit cells can be broken.
Subsequently, the connectivity (i.e., symmetry of the interface region) between the
same unit cells (e.g., the connection of the right-side unit cells in Fig. 8) may not as

perfect as the connectivity of different unit cells.

8.8 e

Fig. 8 The maximum shear and bulk microstructure design

If one wants to further improve the self-connectivity of the microstructures, the CI

constraint can also be applied to each cell as shown in Fig. 9(a), i.e.,

Jysurrys H@ON)H(p(R'y))dY . (19)
Fspmys H@O))ay = 7=

Clseip =1—

23



with R’y denoting the symmetric point of y in the same unit cell and R'YS is the
symmetric strip region of YS. By adding the CI constraint to the maximum shear and
bulk microstructure design problem with Clgg e = 0.10 and n, =1, the self-

connectivity property of cells can be improved, contrast Fig. 9(b) with Fig. 8.

Fig. 9 (a) lllustration of the self-connectivity index and (b) maximum shear
and bulk modulus microstructure designs with self-connectivity

constraints

It should be noted that, due to numerical errors and limitation of optimizer, the
obtained designs can hardly achieve a perfect connection (i.e. CI = 0). However, it is
expected that, only a ‘minor’ postprocessing is required to smooth the part in the
interface region to finally improve the connectivity, and such treatment would have

very small influence on the optimality of the microstructures.

6 Multiscale Topology Optimization with Connectivity

We return to multiscale optimization in Section 3 and apply additional CI
constraints to enforce connectivity between the microstructural regions. This is
achieved by adding the CI constraints only at the microstructural scale in the
decomposed optimization problem. For the e-th microstructure with a number of T
boundaries interfacing different microstructures, (20) is added to obtain the optimal

boundary movement at k-th step:
24



cyme . zi™me < 1™ l=1,..,T (20)
It is noted that the CI constraint of the e-th microstructure is dependent on its

adjacent cells, in other words, the connectivity constraint couples the adjacent

microstructures together. In the current investigation, such a coupling is ignored for
— k —
simplicity and CI is updated iteratively, i.e., CI"™ =1 — j;“—mz(¢§, b)) —CI™e
sumi1
with CI™® denoting the CI upper bound for the connectivity between e-th and n;-th

unit cells. The following numerical results indicate that this approximation is

reasonable.

6.1 Cantilevered beam

The first example considers two cantilevered beams shown in Fig. 10. The beams
are divided into two regions each of which can take different microstructures and the
microstructure within a region is uniform. Here only the microstructures are optimized
for the minimum compliance computed at the macroscopic scale and the macroscopic
topology is fixed to be solid. The upper bound for the microscopic volume fraction is
set at 40% and the CI constraint at 0.10. The Young’s modulus is set to be 1 and
Poisson’s ratio 0.3. The unit cell is discretized by 100 X 100 bilinear plane stress

elements and the initial design contained a hole of radius 25 at the center.
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cell 2

—
[\

A

B 4

F
y Y
Periodic Periodic Periodic
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A
A 4

3 Vi
(a) (b)

Fig. 10 Cantilevered beam (a) design domain 1:3 and (b) design domain

2:3
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The optimized solutions are summarized in Tables 6 and 7 for a range of the strip
width, n,,. As can be observed, all microstructures are connected and in that sense they
are manufacturable and realistic. However, the discrete member size changes in lower
n,, would lead to poor load transfer between different type of cells and reduce the
mechanical performance of optimal designs. The member size changes become more
continuous as n,, increases. As would be expected, this has an effect of increasing the
objective function however, the increases are observed to be small (less than 2%).
Figure 11 illustrates an example of the repeated cellular materials in the cantilevered

beams.

Table 6 Optimized solutions for cantilevered beam 1:3

Increase in

' . Mean compliance
Ny, Optimal microstructures CI ] )
compliance relative to
n, =0
0 0.44 474 -
1 0.21 476 0.42%
5 0.10 477 0.63%

Table 7 Optimized solutions for cantilevered beam 2:3
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Increase in

) ) Mean compliance
ny, Optimal microstructures CI ) )
compliance relative to
n, =0
0 0.42 130 -
1 0.23 131 0.77%
5 0.10 132 1.54%

.'.'.‘.‘.‘.
PEHBDSEHD S
.'.'.‘.‘.‘.
L O.anr.an B S B B S -l e
CX X ANYS ITXXANN

(a) (b)

Fig. 11 lllustrations of the connected cellular materials of the cantilevered

beams (a) design domain 1:3 and (b) design domain 2:3

We note that the constraints are not satisfied in some solutions shown in Tables 6
and 7. In order to investigate this, we examine the optimization history of the
cantilevered beam of 2:3, Fig. 12 which is representative of both of the cantilevered
beams. It can be seen that the structural mean compliances converge smoothly for all

cases and the strip width n,, does not have a significant influence. The n,, constraint
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oscillates particularly when n,, is small, e.g., n,, = 1. This is because when n,, is
small, even a small perturbation of the boundary can have a significant influence on the
CI value. Increasing the strip width, e.g., n,, = 5, has an effect of relaxing the
constraint and the oscillation reduces leading to a more stable convergence and meeting
the specified constraint. It can be deduced from this that an adaptive CI constraint may

lead to a stable convergence and this will be investigated further in the following section.

250 — 1.0
== Complaince value of nw = 0
[ — Complaince value of nw = 1

o 200 == Complaince value of nw = 5 - 0.8
= [ Connectivity index of nw = 0
5 Connectivity index of nw = 1 o
=y [« sctivity index of nw =5
g_ onnectivity index of nw _:\é
5 150 | d06 .E
o =
g =
w =
E . 5]
= 100 04 =
s 2
5 o
3
“ s0 b 0.2

0 - - 1 . - L . . . - - ! - . 0.0

0 40 80 120 160 200
Iteration number
Fig. 12 Optimization history of cantilevered beam 2:3
6.2 L-beam

We now consider the L-beam shown in Section 3 to minimize the overall structural
compliance with three regions are specified to have different material architectures. In
this case, the topologies are optimized both at the macroscopic and the microscopic
scales. Since there are three material microstructures, two CI constraints are added to
the microscale optimization (to get a better connection as well as preserving the original
optimality, the CI bounds are set as 0.08 for this example). Three cases are considered
using the following parameters with the last case adopting the adaptive CI constraints:

1. n, =2, CI, =CI, = 0.08;
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2. n, =10, CI; = CI, = 0.08;

3. n, =10, CI; = CI, = max{0.08,1 — 0.01k}.

The multiscale optimized solutions are shown in Figs. 13-15 with the objective
function and CI values in Table 8. Fig. 13 with a small strip region, n,, = 2, shows
that the microstructures at interface 1 is not well connected (CI; = 0.24 and CI, =
0.10). As seen in the previous example in Section 6.1, for Case 2, increasing the strip
width to n,, = 10 leads to a solution that satisfy both of the CI constraints, i.e. CI; =
0.08 and CI, = 0.07, with relative increase of objective function value by 2.97%.
However, an additional horizontal bar (marked by dash-dotted circle) is generated to
satisfy the CI constraint. Furthermore, the iteration history of Case 2 illustrated in Fig.
15 reveals that the optimizer tried to satisfy the CI constraints every step and this may
be overly restricting the search space for the microstructure.

The adaptive constraint in Case 3 is introduced to avoid such issues as the CI
constraints are not strictly enforced from the beginning. This offers a greater level of
design freedom for the microstructures during the early stages of optimization. Fig. 16
shows the microstructural solutions that are well-connected at the interfaces with
Cl; = 0.08 and CI; = 0.04. Moreover, the overall compliance increase is only 0.77%.
Fig. 17 shows the optimization history of the L-beam Case 3 with the adaptive CI
constraints. The CI constraints are inactive at the beginning and the CI values grow
quickly. After about 30 iterations, both of the CI values start to decrease and stabilize
around 120 iterations. It should be point out that, due to the connectivity constraint
which requires the material distribute symmetrically in the interface region, the material
distribution in the interface region (e.g., variable thickness of unit cell 1) is not optimal

from a point of view on pure-stiffness. This will be considered in the future work.
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Fig. 13 Optimized solution for Case 1 (a) macrostructure and (b)

microstructure

(@) (b)

Fig. 14 The optimized multiscale structure of case (3) with (a) the optimal

macrostructure and (b) the optimal microstructures
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Fig. 15 Optimization history of L-beam Case 2
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(©)

Fig. 16 Optimized solution for Case 3 (a) macrostructure and (b)
microstructure and (c) an illustration of the optimized structure-material

system

Table 8 Objective and constraint function values for L-beam solutions

Increase in
Ny Cl, = CI, Compliance ~ compliance relative  CI;  CI,
to n,,=0

0 - 7295 - 047 041

2 0.08 7338 0.59% 0.24 0.10
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10 0.08 7518 2.97% 0.08 0.07
10 max{0.08,1 — 0.01k} 7351 0.77% 0.08 0.04
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Fig. 17 Optimization history of L-beam Case 3

7 Concluding remarks

Connectivity Index (CI) is formulated as a quantified measure of the connectivity
between two adjacent microstructures. The CI function was introduced to the
optimization problem, firstly into the objective function and secondly as an explicit
constraint. The numerical investigations were conducted to explore the effects of the
two different formulations as well as the interface region widths for a range of problems
in which the microstructures are optimized via the homogenization approach. The
introduction of the CI functions was demonstrated to improve the connectivity at the
interfaces substantially. As an additional constraint can reduce the design space and
restrict the search, the objective function values of the final solutions are expected to
be compromised. The numerical investigations show, however, that the increase is

minimal, mostly in the order of 1%. It was observed there were cases that a solution
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that satisfied the strict CI constraint could not be found or the optimizer found a trivial
solution where the connectivity is achieved by making the interface region solid. In
such cases, an adaptive strategy where the CI constraint was relaxed in the early stages
of optimization and this gave the optimizer the freedom required to find good
microstructure topologies. As optimization progresses and the number of iteration
increases, the CI constraint is enforced more strictly yielding a satisfactory solution
with the minimal increase in the objective function. It is noted that the CI function is
completely geometry dependent and independent of the physics of the environment,
therefore, the CI function approach is applicable to multiphysics topology optimization

and this will be explored in our follow up study.
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