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Abstract

At elevated temperature environments, elastic structures experience a change of
the stress-free state of the body that can strongly influence the optimal topology
of the structure. This work presents level-set based topology optimization of
structures undergoing large deformations due to thermal and mechanical loads.
The nonlinear analysis model is constructed by multiplicatively decomposing
thermal and mechanical effects and introducing an intermediate stress-free state
between the undeformed and deformed coordinates. By incorporating the ther-
moelastic nonlinearity into the level-set topology optimization scheme, wider
design spaces can be explored with the consideration of both mechanical and
thermal loads. Four numerical examples are presented that demonstrate how
temperature changes affect the optimal design of large-deforming structures. In
particular, we show how optimization can manipulate the material layout in
order to create a counteracting effect between thermal and mechanical loads,
even up to a degree that buckling and snap-through are suppressed. Hence the
consideration of large deformations in conjunction with thermoelasticity opens

many new possibilities for controlling and manipulating the thermo-mechanical
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1. Introduction

Thermoelasticity broadly refers to a coupled phenomenon where the elastic
responses of a structure are affected by a temperature change. The phenomenon
is widely considered in diverse engineering disciplines in association with various
structural responses, ranging from elastic behaviors such as classical volumetric
expansion to the deterioration of the structural integrity such as thermal buck-
ling, delamination, and fracture. Recently, thermoelastic behaviors have also
been employed to realize non-conventional behavior ofmaterials, e.g., metama-
terials [1, 2], and phase-changing smart materials [3, 4].

Topology optimization of structures experiencing thermoelastic load was first
studied by Rodrigues and Fernandes [5], where the classical compliance objec-
tive was extended to accomodate thermal load combined with mechanical loads.
Therein, a design scheme that follows the material distribution approach with
homogenization was presented. Such a coupled load was later considered also
with other approaches, such as Evolutionary Structural Optimization, or ESO
[6]; and the level-set method [7]. By solving the thermo-compliance minimiza-
tion problem, these schemes demonstrated how optimized structures accommo-
date a uniform temperature change. Due to its simplicity and analogy with the
classical structural compliance minimization problem, thermo-compliance mini-
mization has been widely adopted in later works, including design that involves
multi-material [8] and coupled physics [9].

To further discuss structural resistance to thermoelastic loads, Pedersen and
Pedersen [10] presented topology optimization considering mechanical strength,
where they identified that different ratios between mechanical and thermal loads
lead to different designs. In the same line of thought, Deaton and Grandhi [11]

examined the difference between optimized layouts that are derived based on
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the different definitions of the compliance. Therein thermal and mechanical
compliances are defined as u"? £ and w™7 f™, where u and f represent the
nodal displacement and the load vector, respectively. Superscripts th and m
indicate that the terms are either thermal or mechanical. Comparative studies
were also conducted by Zhang et al., [12], where the topological layouts resulting
either from strain energy minimization or mean compliance minimization are
compared and discussed. These lead to a search of alternative thermoelastic
merit functions, such as a constraint on local stress concentration [13, 14], and
a thermoelastic buckling constraint [15].

Multifunctional actuators and metamaterials, which are created by meticu-
lously distributed materials hence directions of thermal expansions, are another
class of applications of topology optimization considering thermoelasticity. In
the seminal works by Sigmund and Torquato [16], and Sigmund [17, 18], meta-
materials of negative thermal expansion that leverages multi-phase topology
optimization and micro-electromechanical actuators are designed, respectively.
The idea of thermally driven actuation and multiphysical coupling has been
widely explored thereafter, leading to the works including the extensions to
different topology optimization approaches [19, 20], designs of piezo-electric ac-
tuators [21, 22, 23, 24|, and designs of recent 4D printed structures that exhibit
self-morphing behavior [25, 26].

Structures may experience thermoelastic loads that induce a large deflec-
tion of the structure, e.g., kinetic heating in aerostructures [27]. In such cases,
nonlinear thermoelasticity must be considered, meaning that the infinitesimal
strain should be replaced with nonlinear strain; otherwise, displacement and
stress states obtained by structural analysis are highly overestimated due to
the neglected stress-stiffening effect and this potentially leads to non-optimal
structures [28]. Such an inaccuracy is exacerbated when temperature change is
involved [27, 29] as the thermoelastic behavior incorporates the temperature-
induced deformation that in effect changes the stress-free state with respect to
the undeformed state [30]. This has been addressed in the pioneering works on

designing thermally-driven complaint mechanisms by [17, 18, 21], where non-
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linear elasticity is successfully incorporated and shown to significantly influence
the optimized layouts.

However, when the design considers structures that experience both me-
chanical and thermal load, incorporating nonlinearity into the thermoelastic
topology optimization has not been addressed so far, except in an early work by
Jog [31]. Investigating the effect of such a combined load is intriguing because
the effect of fixed mechanical load is on the contrary to that of thermal load. De-
creasing volume of the material during the optimization, for example, increases
the effect of the mechanical load whereas decreases the amount of the thermal
load [12]; therefore the optimized material layouts are expected to consider such
contradicting effect of combined loads. In the early work [31], it is shown that
the incorporated nonlinearity does influence the material distribution; at the
same time, the scope of the results is limited as the nonlinearity is mild and the
resulting layout is populated with the intermediate densities. In this work, we
present a level-set based topology optimization framework that is able to design
thermoelastic structures undergoing large mechanical and temperature loads,
while attaining crisp solid-void topologies.

In this respect, the present work is also largely indebted to early works on
the optimization with nonlinear elasticity under mechanical loading only, which
was first considered by Buhl et al. [32]. The resulting material layouts are
shown to deviate from the linear solution as the external load increases. A
difference between the compliance and complementary work objectives is also
evident and the corresponding layout changes are discussed. Jung and Gea
[33] further discussed the layout change by examining the separate influence of
material and geometric nonlinearities on the optimum layouts. A recent work
by Li et al., [34] further expands the usage of nonlinear elasticity in topology
optimization, to shape preserving design by constraining warpage. Allaire [35]
and Kwak and Cho [36] extended nonlinear topology optimization by using a
level-set method. Recently, optimum layouts obtained by the nonlinear elastic
level-set topology optimization were discussed also in terms of attenuation of

local buckling [37].
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Numerous works were dedicated to topological design of structures devoid
of structural instabilities. Bruns et al. [38] proposed a combination of the arc-
length scheme with the classical Newton-Raphson solver, in order to robustly
converge to a structure that undergoes snap-through. Kemmler [39] identified
the snap-through phenomenon and loss of stability of the intermediate layouts
found during the optimization. These understandings are later applied to op-
timizing buckling stiffness [40, 41|, and designing snapping mechanisms [42].
Recently, Wallin et al. [43] addressed the structural stability of the optimum
layouts depending on the choice of objective function that in effect optimizes
different types of stiffness.

In this work, we formulate and develop nonlinear thermoelastic level-set
topology optimization. In particular, we investigate the intertwined effects of
the nonlinearity and thermal loads on optimized structural designs. Both geo-
metric and material nonlinearities are considered in the analysis and sensitivity
calculation. A thermally induced change of the natural state, which significantly
affects the stress state, is identified by the multiplicative decomposition of the
strain tensor [44, 30, 26]. These nonlinear thermoelastic considerations enhance
the accuracy in estimating internal states for higher loading conditions, hence
extend the range of both mechanical and thermal loads to the extent where the
structure deforms by the same order as its own characteristic dimension. The
temperature range, for example, roughly coincides with what aero-structures
experience under high-temperature operating conditions [27]. To demonstrate
such nonlinear effects, bending-dominant and buckling-dominant structures are
examined as a basis for discussing how temperature changes affect the optimum
designs.

The remainder of the paper is organized as follows. Section 2 describes the
thermoelastic formulation and its corresponding finite element analysis model.
The Total Lagrangian approach is implemented based on the deformation gra-
dient that is multiplicatively decomposed into its mechanical and thermal parts.
The optimization problem and the corresponding shape sensitivity used in the

level-set topology optimization are presented in Section 3. In Section 4 we
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present four demonstrative examples of which material layouts are discussed in
detail, and investigate the combined effect of the nonlinearity and the thermal

loads. Finally, the conclusion is given in Section 5.

2. Nonlinear Thermoelastic Finite Element Model

In this section, the finite element model for the nonlinear thermoelastic
problem used in this study is outlined. First of all, nonlinear kinematics of
the thermoelastic deformation is presented. For describing large deformations,
multiplicative decomposition is used and the consistent Green-Lagrange strain
is formulated. Then the finite element model that uses a standard Galerkin
method is briefly discussed, where the equilibrium equations in the discretized
functional space and the iterative solvers are shown. Lastly, the modified hy-
perelastic model, which accounts not only for a constitutive relation but also

for preventing distorted elements, is addressed.

2.1. Kinematics of the thermoelastic structure

Kinematics of the thermoelastic large deformation is briefly introduced in
the context of finite elasticity. To understand responses of a structure experi-
encing thermoelastic loads, the displacement of the structure is decomposed into
purely elastic and thermal parts. A multiplicative decomposition of the defor-
mation gradient F' is adopted herein, which is a general approach when inelastic
deformation is incorporated within the structural behavior [44, 45]. Such a de-
composition method is also addressed in [30, 46, 45] in the context of reversible
thermoelastic deformation. Figure 1 illustrates the material configurations of
the deforming body and the associated displacements.

Between the deformed () and undeformed configuration (Q°), the interme-
diate material configuration Q" is introduced. This is a virtual state that is
conceptually introduced by isothermal elastic destressing of the deformed con-
figuration to a stress-free state (o = 0). A deformation gradient F' = Vx,

which linearly maps the displacement of the initial material point X € Q° to
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Figure 1: Kinematic representation of the deforming body. The intermediate configuration

Q" is introduced between the deformed € and the undeformed Q° ones

x € €, is thereby decomposed as follows:
F=Fm.F" (1)

where F' and F™ each refers to thermal and mechanical part, respectively.
The change of the metric between Q9 to Q" is associated with F'" = ¥V x X*,
whereas the isotropic elastic deformation between Q" to € is represented by
F™ = Vx+x. The increase of the strain energy, and the elastic constitutive
relation are assumed to be dependent on F™ only. This formulation accounts
for the origin of the thermally-induced mechanical stress. Given that there is
no observable deformation (i.e. F' = I) in the elevated temperature condition
Fth £ I, the mechanical energy changes due to the mechanical deformation,
which is calculated via F™ = F . F™"~! £ I Without loss of generality, the

elastic Green-Lagrange strain E™ is computed by,
2E™ = (F™)TF™
= (F") " T(FTF)(F™") ™ (2)
— 2(F"")~T(E — E™")(Fth)~1

where the thermal strain E'" = L((F"™TF™ — I).

1
2
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The thermally induced gradient F' is assumed to be dependent upon the
temperature change AT and thermal expansion coefficient . When the thermal
expansion is isotropic and linear with respect to a temperature change, F s
specified by

F'" = (1+aAT)I (3)

where I refers to an identity tensor.

By the isotropy assumption (3) the Green-Lagrange strain calculation in (2)
reduces the additive decomposition of elastic strain and thermal strain. This
decouples the strains and simplifies the finite element formulation. However,
for generality, we employ the multiplicative decomposition in this paper as such
an equivalence is not valid in anisotropic non-elastic expansion. The discussion

regarding additive decomposition can be found in [46].

2.2. Discretized force equilibrium

The finite element formulation used herein employs the standard Galerkin
method and Total Lagrangian approach. For details, the readers are referred
to the textbooks on nonlinear finite element methods and continuum mechanics
[44, 45].

Assuming that the body force is negligible, the equilibrium equation becomes

V(P)=V(SF")=0 in Q°
(4)
P(F)-n=t in 09Q%
where P and S denote the first and second Piola-Kirchhoff total stress, respec-
tively, evaluated in the undeformed configuration. n is a normal vector of the

Neumann boundary 999, and ¢ is a surface traction. P is computed as the

derivative of the strain energy W with respect to its work conjugate F',

ow oW OF™
= —— = — = Fth -1, Pm 5

OF OF™ OF (F) (5)
where P™ refers to the mechanical part of P.

Isoparametric polynomial shape function N is employed for the finite element

discretization, i.e., u; = N(X)'ul. THe capitalized superscripts indicate the
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index for node, whereas the subscripts denotes a degree of freedom. Based on
Eqn. (1) and (5), the internal force vector ™ of a given temperature change
AT and the displacement u is derived:
FM (u, AT) = | BIS(u, AT) Fyp(u) (6)
Qo
where BJI» indicates the gradient of the shape function, i.e. B]l = Vx, NT(X).
By perturbing terms found in Eqn. (6) by wu, the tangent stiffness KZ-I]-J as a

summation of the material term K inJ’M and the geometric term K inJ’G is derived:

1M he1 o \ s L -
Kij K)O< lgFlil 1ﬂ7rz)clm€ib(B}7F;d ! jb>d€t(Fth) 1

1J,G _ m _ _
ki = [ (Bire) s (BURG )asden

where the Einstein summation notation is used for both subscript and super-

(7)

script. C°F is a material modulus of S with respect to E introduced by using

Voigt notation.

Based on Equs. (6)-(7), the zero-residual condition at the equilibrium r(u, AT) =

fmt — f™ = 0 is obtained by the conventional Newton-Raphson algorithm.
Without loss of generality, either a fixed external load (load-control) scheme
or a displacement (displacement-control) scheme is adopted in this work. The
choice of the control parameter depends on the stability of the intermediate
solutions, which are obtained during optimization. If the quadratic convergence
of the Newton-Raphson solver is maintained at every iteration, a load-control
scheme is used for simplicity. Otherwise, a displacement-control scheme is em-
ployed in calculating the static equilibrium. The solution space is assumed to
contain multiple configurations with structural instability. In both cases, the
size of the increment parameter is adaptively controlled. First, the increment
size is changed based on the powered ratio between the number of iterations
required at the previous increment step and the desired number of iterations
[47, 48], which is set to 4 in this study. Additionally, the increment size is re-
duced by a half whenever a convergence is not achieved within the maximum

number of iterations, which typically originates from an ill-conditioned tangent
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stiffness matrix. Throughout the iterative search, AT is assumed to be constant

as for both the the displacement and load control schemes.

2.8. Hyperelastic constitutive model

A hyperelastic material is employed to model the nonlinear constitutive re-
lation. The stress-strain constitutive relationship is derived based on the strain
energy function W which is independent of strain rate and its history. In this

work, a neo-Hookean model for a compressible material is employed:

w= [ 2an?+ %(tr(C) —3) — u(lnJ) (8)

520 2

where C is a Green deformation tensor, i.e., C = FTF, and J refers to the
Jacobian of the deformation gradient. A and p are Lamé constants in the limit
of small strains. For simplicity, we set (A, p) to (1.0, 0.4).

The ersatz material model [35] is used to represent the structural layout
of Q0 where the cut elements are represented by a fraction of the material
volume within the element. When the design domain is discretized by N, finite

elements, the corresponding energy is calculated by

W= 3 W.(F)p, 9)

where p. and W, indicate a material density and strain energy found in a cut el-
ement e, respectively. The numerical singularity of the tangent stiffness matrix
in (7) originating from zero-material elements is avoided by imposing fictitious
weak material that has 107 modulus of the solid material. The elastic de-
formation gradient and energy are evaluated at the Gauss points within each
element.

The cut elements with the weaker material stiffness are populated near the
boundary of a structure, and these elements often distort excessively. This
phenomenon can cause difficulties in convergence during the search of an elastic
equilibrium. Numerical manipulations are thereby required to regularize the ex-
cessive mesh distortion. In this work, the linear interpolation method suggested

by Wang et al. [49] is implemented, which adds a fictitious linear strain energy

10
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to near-void elements. The interpolation method replaces the strain energy of
the element by adding an auxiliary strain energy W’ depending on the param-
eterized material density v, found in the element. For a given displacement in
an element wu,, the original hyperelastic energy W, of element e is replaced by
W,:

We(F(I + Vue)) = We(vette) — WL(’Yeue) +wt (ue)
1 (10)
WLZQGL:CL:EL

where €® is linear strain computed as (Ve + Vue”)/2, and C is a stiffness
tensor computed based on prescribed Lamé constants, A and pu. Notably, W,
is still a function of displacement u. and ersatz material density p, as W, is
likewise. Therefore, the accompanied changes in computing the derivatives due

to the modification of the strain energy is straightforward. -, parameterizes the

projected density p via a smooth Heaviside function:

v = tanh(Bpo) + tanh(B(p — po))
tanh(Bpo) + tanh(B(1 — po))

where the smoothing parameters g and py are set to be 500, and 0.01, respec-

(11)

tively. The interpolated strain energy W, becomes the original hyperelastic
energy W, (ue) when 7, = 1 and the linear energy W' (u.) when 7, = 0. This
method adds a fictitious energy to the structure and changes the deformation
found in low-density materials. However, the effects on the overall optimum

layouts is observed to be negligible [49].

3. Topology Optimization

In this section, the topology optimization problems and their design sensi-
tivities are presented. First the compliance minimization problem is redefined
in the context of thermoelastic nonlinear response. The level-set topology op-
timization method is then introduced, followed by a derivation of the shape

sensitivities defined at the boundary of the domain.

11
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8.1. Problem formulation

The problem is formulated to minimize the thermoelastic compliance for a
specified volume constraint. The definition of the thermoelastic compliance is
not unique [12, 13, 7, 11] as the response of the structures are attributed to
either temperature change or mechanical loading. In this work, we optimize a
compliance measure that comprises of the total displacement and the mechani-
cal loading at the final equilibrium point. In the context of nonlinear elasticity
without thermal loads, this is typically referred to as the end-compliance [32].
When the load-control scheme is used, the objective can be interpreted as min-
imizing the observable displacement of the structure at the point of the applied

mechanical loading,

minimize u? f™
subject to [|Q] < ||| (12)
r(u) = f"(u) - f™ =0

where ||Q*]| refers to the material volume constraint, r is a residual between

int m

internal f*"" and external load f™. As the objective function depends only
on the overall displacement obtained at the end of the iteration of the Newton
solver, the optimized design is expected to have maximum secant stiffness of
the global load-displacement curve [43]. In the thermoelastic context, the given
objective essentially penalizes the displacement to the mechanical direction by
leveraging a thermally induced shape change; depending on the material layout
that changes the way the structure deforms by thermal expansion, the structure
can deflect in the opposite direction of the mechanical load, hence the objective
function can be negative in the contrary to the mechanical-only case. As a
result, although the objective function found in Eqn. (12) is still to be referred
to as the end-compliance, it is not the mechanically stiffest structure that is
optimal in the current problem formulation.

As noted by Wallin et al. [43], the minimization of the end-compliance as

in (12) essentially considers the secant stiffness hence unstable intermediate

equilibrium points may exist within the solution path. In such cases, it can

12
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be difficult or even impossible to find a viable equilibrium at the specified load
magnitude f™ using a load-controlled scheme. In such cases, displacement
control should be used and the problem formulation is altered accordingly. The
optimum structure is now expected to sustain the largest force f™* for the given

controlled displacement wu:

minimize —ul,,f" = _g(uz;rlfref)
subject to ||Q]] < ||| (13)

r(u) _ fv',ut(u) . Hf’;(if -0

where the load f™ is computed based on the scalar load multiplication factor

6, which is now a state variable. The reference load vector ¢/ is constant

throughout the analysis. While u,, is specified at a controlled node, f;‘zf can be
distributed to multiple nodes. For convenience in notation, constant controlled
displacement vector w.; has only one nonzero value u,, at the controlled node.
This objective, Eqn. (13) was recently used in the context of nonlinear elasticity
and hyperelasticity to achieve buckling-resistant topological layouts of trusses

and frame structures [50, 51].

8.2. Level-set topology optimization

Level-set topology optimization (LSTO) is used to solve the problems shown
in Eqn. (12) and (13). The topology of a structure Q° is represented by its
enclosing boundary 9Q°, which is defined as a zero hypersurface of the signed
distance function ¢(zx) on the design domain, i.e., Q° = {z : ¢(x) > 0}. The
structure is updated by solving the Hamilton-Jacobi equation,
ox

4

b+ Vo = b+ Vo[ Vel =0 (14)

where V,, is the advection velocity normal to the boundary, and ¢ is the pseudo
time step of the advection problem. Due to the implicit boundary represen-
tation and update scheme, a smooth and well-defined boundary is guaranteed
during topological changes, such as a merge of the voids. The level-set topol-

ogy optimization [52, 53] does not require a filtering scheme or a length scale

13
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control. Nevertheless, the characteristic size of the structural features found in
the optimized design is limited with the size of the element as it is not possi-
ble to represent many boundaries cutting a level set element. The parameter
V,, which is critical in updating the layout towards its optimum, is determined
by solving a linearized optimization subproblem. In this paper, the numerical
scheme is briefly outlined. Interested readers are referred to Picelli et al. [54]
and Sivapuram et al. [53] for further details.
A topology optimization problem is stated as,
minimize ¢(2,u)
(15)
subject to g(Q,u) <0
The change of the objective function ¢ and constraint function g can be

written as

Ale,g} = {gé,gé}m (16)

after linearizing (15) with respect to 2. The boundary is then discretized by B

number of line segments and (16) is reduced to

dc B
- . = SN
g A=Al §j Visit
dg N (17)
og AR =AY Vs

J

where SJ and Sg refer to the design sensitivities evaluated at the discretized
boundary point, and [ is a length segment found in the boundary point whose
index is j. VAt is assumed to be ad’, where « is a distance that the boundary

travels along the unit direction d. According to Ref. [54], (17) is further reduced

14
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to searching an optimal a and A as follows,

B
minimize At Z {S’leV,{ (a, A) }
J

B
subject to Atz {S’gle,{ (v, )\)} <-g

J

Zinzn S Oédj S Z%aw
1987 + A7 S
11952 + A3 S5 ||

where g is the change of the constraint function, and z,,;, and 2,4, are limits of

where &/ =

the movement, i.e. V,,At, that is calculated based on the geometric consideration
of the boundary movement limitation and the CFL (Courant-Frederich-Lewy)

condition.

3.3. Shape sensitivity

As evident from (18), the consistent design sensitivities S, and S, are impor-
tant parameters in solving the optimization problem. We follow the variational
approach of boundary perturbation suggested by Allaire [35] to calculate the
consistent shape sensitivities.

For the minimization problems (12, 13), an objective ¢ and material volume

constraint g functions are generalized to

C OU: u
@ = [ 1w

9@ = [ H(9)
Qo

(19)

where [(u) stands for the generalized compliance computation regardless of the
displacement or load control scheme, and H(x) is a Heaviside function. The
augmented Lagrangian L considering equation (19) and the static equilibrium
equation (4) is proposed as following:
L(Q% u, q) =c(Q°,u) + P(F):Vq - / t-q
0%,

(20)

—/ qg-P(F) n+u-PI+Vq)-n
JoQy,

15
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where q is an adjoint parameter. The Lagrangian is equivalent to the objective
function in the static equilibrium, and the shape sensitivity is derived by eval-
uating a stationary point with repect to Q0. The partial derivative of L with
respect to Q° to the direction 9 is:

(P(F): Vq)19~n+/ (ﬁ + kl(w))Y -n

oL :
I R 19 —
< o @)V > / o O

o000
ot -
- X E 9y sa- ) n (1)

/ O(u-P(I+Vq)+q-P(F)-n)
- 0 ( on )19
J 09,

where k refers a curvature of the boundary. Shape derivatives of the boundary
integrated term is referred to Ref. [35].

Equation (21) is further reduced by assuming the fixed Neumann boundary
(i.e., ¥ = 0 at 9Q%) and the definition of the descent direction ¥ = —V,,n that

ensures a decrease of the objective function during an iterative design update:

c = —/ (P:Vq)V, = SV,

gl = - H(¢)Vn = SgVn
oo o000

where ¢ is an adjoint parameter calculated via solving a set of linear adjoint

equations, which is derived by stationary condition of L with respect to u:

V- (C8Vg)=0 in Q°

qg=0 on 009 (23)

(C%EVq) - n= —% on 9%

where 9Qp and 02y each refers to Dirichlet and Neumann boundary.

In contrast to the classical linear compliance minimization that is self-adjoint,
two additional computational steps must be added. The first is to evaluate the
effective adjoint force based on the definition !’(w) in (19). Another is to com-
pute the consistent adjoint based on (23) at equilibrium. When the load-control
scheme is employed, the computational cost of these additional steps are neg-

ligible as the same pre-factorized tangent stiffness matrix K is reused after

16
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the equilibrium is searched [35]. In the displacement-control scheme, a slight
modification must be accompanied as one displacement variable is fixed. The
coupled system of adjoint equations becomes:

Kr f ref q 0

LT = - (24)

Felo | \g —ug, f
where ¢ is a Lagrange multiplier to impose a constraint equation fmf -q =
—ul, frAef . If a fixed mechanical reference load frAef is applied to a single
degree of freedom where u,, is applied to, the adjoint parameter g has only non-
zero element —u, at the displacement-prescribed degree of freedom. Further
details regarding the adjoint sensitivity in the displacement-control scheme can

be found in Ref. [55].

3.4. Computational implementation

The Hamilton-Jacobi equation (14) and the consistent sensitivities based
on the static equilibrium (4) are computed in every iterations. The overall
optimization algorithm is summarized in Fig. 2.

Fig. 2(a) illustrates the overall nonlinear optimization scheme used herein.
At the beginning of the optimization, an initial design €2y and an assumed
equilibrium state ug are specified. The static equilibrium of the structure is
searched through nonlinear finite element analysis as presented in Section 2.
The convergence of the design is checked after every update, i.e., the relative
difference of the objective values in the last 5 iterations is less than 10~%, and
the constraint are satisfied. For computing the optimal boundary movement
vector V, At (18), we employ an SLSQP (sequential least-squares quadratic
programming) algorithm in the NLopt package [56].

Fig. 2(b) presents the numerical scheme used to determine an equilibrium.
We primarily adopted the Newton-Raphson solver that determines the equilib-
rium incrementally at increased load parameters £ € [0, 1]. The tangent stiffness
K7 computed based on Eqn. 7 is utilized to find w that induces zero residual

r(u,aAT) = 0. The equilibrium is assumed to be achieved when |r| < 107°.

17
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(a) Initial domain (b) | Q,, ug, aAT, & |
Q,, ug, aAT T
k2

Compute fé*t = £fm ]-7

l Newton-Raphson on f™

Compute f™, Ky, 1
based on (ug, @AT)

Static Equilibrium (b)
uon Oy, aAT

| w asT

Boundary sensitivity S¢, S

k 2

Solve Au = K7'r ] Update &
y

Solution update to Update u

]
[ )
[ J

Optimized
design Q

| Equilibrium u for f™ | | Equilibrium u; for £f™

Figure 2: Diagram of the optimization scheme with load-control. (a) Overall scheme where fi-
nite element analysis and level-set topology optimization are presented; (b) Detailed procedure

for computing the equilibrium at a given load f™.

However, as noted by several authors [49, 39, 38, 32], computation of the equilib-
rium is not always straightforward in the nonlinear elastic problem. The main
challenges are an efficiency of the computation, and non-feasible solution for a
given load.

We adopted two techniques that alleviate these problems. First of all, we
reuse a displacement vector u, from the previous design iteration, by setting
it as the initial guess ug with £ = 1. Such a reusing technique is widely em-
ployed in topology optimization to expedite a search of the static equilibrium.
In general it effectively reduces the number of iterations, partly because of the
gradual update of the material layout thanks to the advection method based
on the Hamilton-Jacobi equation. Although it may negate some of the detailed
responses (i.e. new bifurcation point), we found its effect on optimization was
negligible. However, we noted that there are some cases where the static equilib-
rium of the current design is largely deviated from the initial guess ug, causing

the solution to diverge. In these cases, ug is reset to zero vector and a typical
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Newton iteration is restarted.

The second technique applies to when A¢ < 10~°, which indicates that it is
not possible to increase the load parameter ¢ for some reason, such as a newly
induced structural instability. In such cases, we stop the solution search and
set the last displacement vector u¢ as an equilibrium for the given £ f™. Hence-
forth, the computation of the boundary sensitivity is based on an intermediate
equilibrium, which is used in updating the solution. As the optimization work-
flow is not halted even in the case when the true equilibrium is not attained, the
present remedy helps continuing iterations seamlessly. An occurrence of such
events is found to be correlated with the convergence speed during optimization,
which is partly controlled by the CFL condition. In this work, we set the CFL
condition to be 0.3, so that in the numerical experiments the number of oc-
currences of intermediate equilibrium was lower or equal to 5. Considering the
overall optimization typically converged after 200 to 300 iterations, the event is

still considered to be rare.

4. Numerical Results

This section presents four examples that clearly demonstrate how the ther-
mal effect influences the optimum solutions when nonlinearity is considered.
The first three examples arestatically indeterminate. They are affected by the
boundary conditions that constrain free thermal expansion; reaction forces that
are created by such constraints are attained throughout the optimization. The
first two examples show a bending-dominant configuration, while the last two
examples consider a compressed beam. In these examples, geometric nonlinear-
ity of a structure that can consider a large rigid body rotation and structural
instability (e.g. snap-through) is significant. In all cases, the isolated influences
of the nonlinearity due to the mechanical load on the optimized layouts are first
discussed. The design is optimized for a varying magnitude of the mechanical
loads. The optimized layouts are shown to accommodate change of both direc-

tion and magnitudes of loads, in contrast to the linear based designs. These
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results serve as the reference for the subsequent optimization with additional
thermal loads. The thermal effect is then examined by varying the combination
of temperature and mechanical loads. The solutions demonstrate the intricate
effect of the temperature change that goes beyond results in the literature that

are limited to small displacements.

4.1. Bi-clamped beam

The first example considers a bi-clamped beam with a concentrated load at
the center of its lower side, Fig. 3(a). The change of temperature AT is as-
sumed to be distributed within the structure. Hence reaction forces are created
at the clamped boundaries where the temperature-induced volumetric changes
are inhibited. Being a statically indeterminate structure, the current problem
configuration is widely used, typically with the uniform temperature assumption
[12, 7, 11, 10]. This problem is widely used in investigating structural design
considering thermoelasticity [7, 12, 13]. However, only linear elasticity has been
considered therein, which limits the design capability of the methods within a
small range of both thermal expansions and mechanical loads. To increase the
nonlinear effect, a beam of higher aspect ratio that reduces the effective bend-
ing rigidity is adopted as shown in Ref. [33], where the geometric nonlinearity
is considered for the case of mechanical loading only. The problem specification

and the initial structure are shown in Fig. 3.

(@) . (b)

aAT 1
y
- =

Figure 3: Design configuration of the bi-clamped beam. (a) Dimensions and boundary condi-

tions of the problem; (b) Initial material distribution, where the void material is marked by

gray

Due to the symmetry, only the left half of the structure is modeled and de-

signed to expedite the solution search. However, it is widely known that exploit-
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ing the symmetry inhibits asymmetric buckling modes from being accounted for
during optimization hence potentially prevents the design from converging to
the actual optimum [40]. To consider the effect of exploiting symmetry, we
conducted optimization without the symmetry, i.e. modeling the full 8 x 1
bi-clamped beam for the selected thermoelastic loads. The load condition is
selected whenever the optimized layout obtained by symmetric topology op-
timization is expected to experience the structural instability. Although not
shown herein, the resulting optimized layouts, obtained with or without sym-
metry, agree well; thus the effect is found to be negligible for the specific bi-
clamped configuration considered herein. The design domain is discretized by
6400 quadrilateral elements, and the volume limit is set to 30% of the total
domain. The initial material layout is shown in the Fig. 3(b), where the void

area (gray) is contrasted to the material region (black).

4.1.1. Mechanical loading only

A mechanical design problem without temperature change is solved first.
The magnitude of the mechanical loads varies from 10~7 to 1072, to the extent
where the maximum displacement of the structure exceeds at least 50% of the
y-dimension of the domain. To prevent excessive mesh distortions in the loaded
elements, the nodal force is distributed to 5 neighboring nodes. These nodes are
considered to be non-designable, i.e. the level-set cannot move at these nodes.

The optimized material layouts for the range of the mechanical loads are
shown in Fig. 4. For clarity, the whole structural designs are plotted herein by
mirroring half of the symmetric design. Figure 4(a) shows that the optimum
solutions gradually change as the mechanical loads f™ vary. When the load
is small, i.e., [|f™] < 1077, the optimum topology is equivalent to the linear
optimum, independent of the load direction. This is because both compres-
sive and tensile internal forces induce the same design sensitivities in the small
displacement regime.

As the load magnitude increases, the optimum adapts to a larger deforma-

tion by removing slender members in compression, which in effect prevents the
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Figure 4: (a) Optimized material layouts for various prescribed external loads f™; (b) Con-
vergence plot of the case f™ = 1072, where the intermediate layouts during convergence are
plotted as insets; (c) The displacement u at the point of the applied load, calculated at the

final equilibrium for various prescribed f™

compression-induced buckling. When the load is positive (i.e., f™ > 0), mem-
bers at the upper corners are removed as the load increases because the overall
structure is pushed up to +y direction. On the contrary, members at the lower
edge are removed in the negative load case and the overall material layout grad-
ually changes to the V-shape as the load becomes more negative. Such a removal
of the material at the lower edge is a characteristic of the optimum layout of the
bi-clamped structure that experiences a negative mechanical loading of a large
magnitude [57, 33].

The convergence graph for the case £ = 1073 is illustrated in Figure 4(b).
The material is continuously removed until iteration 93 where the volume con-
straint is satisfied, while the end-compliance increases accordingly. The mate-
rials are rearranged since then, removing many slender members and creating
a number of oscillations that are found roughly between iteration 100 to 180.
The compliance peak, which is shown in iteration 118, is observed during the
removal of the compressed members at the center. The final convergence is
obtained at iteration 272.

The displacements at the loaded point of the optimum layouts for each load
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level f™ are shown in Fig. 4(c). The resulting displacements are related mono-
tonically to the given mechanical loading. This is expected because the displace-
ment is minimized for a given load level, and the optimum of an intermediate

load level should not attain a higher displacement than that of a high load level.

4.1.2. Thermal and mechanical loading

We now add a change in temperature, AT, which is uniform within the
structure. The effect is investigated by gradually alternating o AT within the
range of [—1072,1072]. Such a range roughly coincides with the amount of
thermal expansion that aerostructures experience in high-temperature operation
conditions [27]. The mechanical load cases are selected to be [-1073,1073],
where the given range of thermal loads can balance the mechanical load. If the
magnitude of the mechanical load || f™|| is higher, i.e. 1072, we found that the
material layouts converge to those displayed in Fig. 4, which are mechanically
dominant regardless of the temperature change. The optimum layouts for the

range of temperatures and mechanical loads are illustrated in Fig. 5.

-1073 1073

107 | iy,
201 NGO DN XN LK
e e S va

aAT

fm

Figure 5: Optimized material layouts considering temperature change and mechanical loads.

Mechanical loads have the same magnitude, but are applied at two opposite directions.

Examining the layouts in Fig. 5, it can be seem that contrary to the results in
Fig. 4, the mechanically compressed members are not always removed. One re-

markable example is the V-shaped optimized layout for f™ = 1073, when o AT =
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1072. In addition, the temperature change is shown to affect the design differ-
ently depending on the direction of mechanical loading. When a negative load is
imposed, the layouts changes from V-shape to the inverse-V-shape as the tem-
perature increases. The inverse phenomenon is observed when negative temper-
ature is given. These changes of optimized designs demonstrate that thermal
loading as a design-dependent body load is manipulated via optimization, so
that the deformation due to temperature change counteracts the mechanical
deformation.

To further demonstrate how the temperature change affects the overall struc-
tural responses, we study deformations of four designs that are optimized for
f™ = £1073 and aAT = £10~? conditions as shown in Fig. 6. The signs
of the mechanical loading f™ and temperature change AT are indicated by
a direction arrow and a color of text, respectively. For example, the layout
found in Fig. 6(i) was obtained from Fig. 5 where the loading condition is
f™ =10"3 > 0 and AT = 10~2 > 0. The deformations of each layout are
presented, for a mechanical loading only (Fig. 6(a)), a temperature change only
(Fig. 6(b)), and a combined thermoelastic loading (Fig. 6(c)). These deforma-
tions are precisely those that were considered during optimization. The dotted
line indicates the undeformed design domain.

By comparing the deformations due to pure mechanical load f™ to those
due to pure temperature change AT, it is shown that the layout change is driven
towards a result where thermally induced deflection of the tip counteracts the
mechanically induced one. This reduces the overall deflection hence the objec-
tive function. This demonstrates how the thermal effect can be exploited and
significantly manipulated in order to achieve a certain design goal. At an ele-
vated temperature, the tip node of the V-shape and the inverse-V-shape each
displaces to +y direction (Fig. 6(b)(i)), and —y direction (Fig. 6(b)(iii)). The
opposite phenomenon is observed when negative temperature change is imposed
(Fig. 6(b)(ii) and Fig. 6(b)(iv)). This in effect, counteracts the effect of mechan-
ical loads on the structures (Fig. 6(a)) hence minimizes overall displacements

(Fig. 6(c)). It is remarkable that even a mechanically induced snap-through be-
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Figure 6: Deformed shapes of four optimum structures found in f™ = 4103 and aAT =
+10~2. The signs of mechanical load and temperature change are marked either by arrows

and text color. (a) Mechanical load only; (b) Temperature change only; (c) Combined loads.

havior of the V-shape (Fig. 6(a)(i)) is suppressed by the temperature effect. This
s demonstrates that topology optimization considering thermoelastic nonlinearity
opens up many possibilities for controlling and manipulating large deformations

by inducing temperature changes.
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Figure 7: (a) Convergence graphs of the case f™ = 102 with negative and positive a AT}

(b) Optimum compliance values obtained in different temperature conditions.

The convergence graphs and the end objective values for f™ = 1072 and
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aAT = £0.01 are shown in Fig. 7 to shed more light on the way temperature
changes affect optimum results. When a nonzero temperature change is pre-
scribed, the convergence graphs (Fig. 7(a)) demonstrate a wide region where
the reduction of the material does not necessarily generate a higher displace-
ment. For example, the increase of the end compliance is not initiated until the
material reduced to approximately 70% of total domain achieved at iteration 56
(Fig. 7(a), AT = 0.01) and 43 (Fig. 7(a), «AT = —0.01). Such a negative
contribution of the material reduction is due to thermally-driven displacements
found in an early stage of the iterations. Such a temperature-driven suppressed
displacement when compared with the mechanical-only case, is a possible expla-
nation for attaining the same design regardless of the assumed symmetry. If an
instability is dominant in structural behavior, e.g., the bi-clamped beam with
an arc, the effect of the assumed symmetry is expected to be have a greater
influence on the optimum design.

The effect of thermal loads on topological design under large deformations
is further examined by a parametric study shown in Fig. 8. The analysis is
based on nonlinear thermoelastic finite element analysis of selected optimum
layouts. Four representative optimum layouts are selected among the opti-
mum layouts for the f™ = 1072 case: the layouts A, B, C, D correspond
to aAT = —0.01,—-0.005,0.005,0.01 cases. Each of these layouts has a dis-
tinctive topology to which the nonlinear finite element analysis is applied. For
a consistent comparison the mechanical load is fixed at f™ = 1073 and the
temperature condition is varied «AT = [—0.01,0.011] by increments of 1073.
The compliance values of these layouts are calculated based on the structural
response u for given f™ and aAT. The values are plotted with respect to
aAT as continuous lines, which are color-coded with the corresponding layouts
shown in the inset. As the compliance profile with respect to the temperature
changes depends upon the curvature direction of the layouts, which agrees with
the thermally induced displacement described by Fig. 6, a convex design en-
velope is created. The optimum compliances reported in Fig. 7(b) are marked

as black dots. This figure demonstrates that for any level of a AT, the design
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Figure 8: The thermomechanical responses of different material layouts analyzed by finite
element analysis for varying temperature condition aAT. The behaviors of the representative
layouts (A-D) are color-coded. The optimized results of these layouts are marked by the same
colored dots, and finite element analysis results are plotted as a line, where the temperature
effect aAT is incremented by 10~3. The black dots indicate the optimized value for additional

temperature quantities other than those that correspond to the given layouts.

optimized for a specific a AT outperforms the other designs, indicating that the
solutions obtained by the proposed method are optimum.

Fig. 8 also shows the significance of the design envelope in the context of the
nonlinear thermoelastic problem. The optimum compliance values that result
from optimizing at 13 different level of « AT are shown to be highly correlated
with the envelope created by the intersecting lines. The deviation between the
optimal value with the envelope is originated from a gradual transition between
layouts, e.g., AT = 0 case between B and C, but the maximum deviation is

found to be less than 10%. Notably, such a correlation holds even when there
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is a drastic switch between the layouts near AT = 0.003, where the analyzed
results of layouts B and C intersect. At the intersection, predominantly C-
like material layouts are obtained (see the inset of Fig. 8). It is clear that the
nonlinearity is well captured in the envelope even to the extent of the insta-
bility, as shown in the finite element results of layout D. This structure goes
through snap-through around aAT = 0.007, which is suppressed by a higher
temperature, AT > 0.007.

4.1.8. Effect of nonuniform temperature
The effect of non-uniform temperature change AT is investigated herein,

m

by spatially varying the strain aAT. The mechanical load f™ acts in the +y
direction with a magnitude of 107 as shown in Fig. 5. The strain aAT is
assumed to vary in the y-direction so that the induced thermal expansion is
expected to create a bending and thus affect the optimum layouts differently
than the constant temperature. To avoid any inconsistency between orders of
thermal and mechanical strain fields, « AT is assumed to be piecewise constant
in each finite element and is evaluated at the element centroid. The distribu-
tion of AT is assumed to be fixed throughout optimization. Five different
temperature gradients are examined as shown in Fig. 9.

Both increasing (Fig. 9(a,b)) or decreasing (Fig. 9(c,d)) aAT with respect
to the y coordinates are examined herein, as well as the effect of the gradient
of the linear change. To examine the effect of considering multiple thermal
load cases by which the optimum design is expected to accommodate different
thermal load scenarios, two temperature distribution cases are considered as
load cases, and their sensitivities are linearly superposed as in Fig. 9(e). The
optimum layouts for the various thermal distributions are illustrated in Fig. 10.

Examining the layouts in Fig. 10 and comparing them to the optimum de-
sign obtained with uniform temperature condition of « AT = 0.01 with the same
mechanical load (Fig. 16), it is clearly seen that the non-uniform temperature
affects the optimum layouts. All of the designs in Fig. 10 (a) through (d) pre-

dominantly consist of thin members and comparable with the V-shaped design
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Figure 9: A set of temperature distributions, where the numbers indicate a AT, which is an

effective thermal expansion ratio. (a-d) single temperature distribution case; (e) weighted

sum of two temperature distribution cases, which is analogous to multiple load cases.
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Figure 10: Optimized material layouts considering nonuniform distribution of temperature

change AT, which correspond to Fig. 9. The red dotted lines are drawn to highlight the

influence of the temperature gradients on the optimized structures.

found when o AT = 0.01 with the equivalent mechanical loading, shown Fig. 16.

s As the total amount of imposed thermal expansion decreases, for example, from

Fig. 10 (a) to (b), the width of V-shape region decreases.

In addition, the locations of the diagonal members within the structure are

shown to be a function of the sign of the gradient. With a positive gradient
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(Fig. 10(a) and (b)), the loaded region is directly connected to the thin diago-
nal members, which makes the structure prone to buckle when compared with
designs optimized for the negative gradients (Fig. 10(c) and (d)). When the
structure is optimized to the combined thermal load cases, i.e., Fig. 10(e), it
is shown that the topology of the optimum resembles the superposition of the

optima with separate load cases.

4.2. Square design domain with a central load

The square domain is considered as shown in Fig. 11(a), to further demon-
strate the counteraction between thermal and mechanical effects. The thermal
expansion ratio AT is assumed to be uniform in this case. A unit mechanical
force f™ is applied at the center of the square, and the final volume is set to 30%
of the initial material volume. The clamped boundary conditions are imposed
in the regions within a distance of 0.5 from the corners. The design domain is
discretized by 10,000 quadrilateral elements The initial material layout is shown
in Fig 11(b), where the void areas are shown in gray and the material region in

black.

(a) (b)
i1 0 N

aAT =0.0 or 0.01
10 ¢ m

L J

Figure 11: Design configuration of the square design domain with a central load. (a) dimen-
sions and boundary conditions of the design problem; (b) initial material distribution, where

the void regions are colored in gray.
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In the present example, both mechanical and thermal effects are investigated
by imposing two thermal expansionss, i.e., « AT = 0.0 or 0.01, while gradually
changing the magnitude of the mechanical loads f™ from 0.1 to 1.0. Figure 12(a)
presents the optimized material layouts for five thermoelastic loads, along with
the end-compliances u” f™ evaluated at the last iteration. As noted earlier, the
present objective function is employed to optimize the structure that minimally
deflects under the given thermoelastic loads, hence the optimizer is expected to
design a structure with the least possible deflection. The vertical displacements

at the loaded node are computed and listed in Fig. 12(b).

(@  aar Objective = uTf™
r 0.018 0.075 0.333 0.661 2.761
0.01
0.023 0.078 0.339 0.542 1.957
0.00
0.1 0.2 0.4 0.5 Lo ||
(b)
”fm” Ucenter ||U(m) - U(t)” (%)
(m) aAT = 0.0 () @AT = 0.01 Utm)
0.1 0.229 0.181 20.96
0.2 0.388 0373 3.866
0.4 0.848 0.833 1.769
0.5 1.084 1.322 21.96
1.0 1.957 2.761 41.08

Figure 12: Optimum results for the variation of temperature changes a AT and mechanical
loads f™. (a) optimized layouts for the thermoelastic loads and the objective values; (b)
central displacements and the normalized differences between the coupled case (t) and pure

mechanical case (m).

Both mechanical and thermal loads are found to significantly influence the
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optimized solutions. In the case of a mechanical loading problem with aAT =
0.0, the optimum layout changes from a X-shape to a V-shape as the mechanical
load increases. The X-shape which induces a deformation of roughly 2% of the
dimension, agrees well with a linear compliance minimization problem found in
Ref. [13]. The V-shape on the other hand, is obtained when the deformation
roughly exceeds 8%. In this nonlinear regime, the bottom members are removed
since they are prone to buckle as the load increases. These results are consistent
with the earlier numerical solutions in Fig. 6.

When a temperature change, « AT = 0.01, is imposed with the same range of
the mechanical loads, a thermally driven design, inverse-V-shape is obtained as
optima when the mechanical load is within the regime of small deformation, i.e.,
deflection being smaller than 5% of the dimension. By further increase ||| f™ |||,
to the degree where the layout optimized for the mechancial load becomes a V-
shape, the bottom members are reduced and hence X-shape is recovered to be
an optimum when the temperature change is introduced. Therein the bottom
members, of which thermally-induced expansion deflects the structure in the +y
direction (see Fig. 7 (iii)), effectively mitigates the mechanical deflection (i.e.,
Um) > Ugy). The degree of mitigation is gradually diminished as the thickness
of the bottom members are reduced, as the reducton ratio (i.e. |[/||U () —
U llll/U (m)) changes from 20.96 % to 1.769 % as ||| f™|||| changes from 0.1 to
0.4. When ||||f™]||| < 0.5, the V-shape is found to as the optimum as it avoids
snapping behavior induced by the increased ||| ]/|]. In this range, the design
is dominantly affected by mechanical loading, which is in the —y direction.
Therein, U ,,) < U ;) because thermally-induced deformation also deflects the

layout in the —y direction.

4.8. Uniazial beam under compressive load

We now examine thermoelastic structural design for the case of an inherent
instability. A simply supported beam under uniaxial compression is presented
in Fig. 13. A length of 0.3 of each edge is pinned, analogous to the Euler beam

buckling. The displacement-control scheme is used to find the equilibrium,
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because the intermediate solutions with reduced material volume are expected
to become unstable.

The problem (13) is solved with material volume limited up to 50% of the
total design domain. The controlled displacement u, is specified at the center
node on the right boundary, while the uniform reference force fh is distributed
over the length of 0.3. The support and loading regions are specified as non-
designable. To prevent a sharp singularity at the structural instability, a load
imperfection is imposed by uniformly translating the reference force in the +y
direction by 0.025. The domain is discretized by a 32000 square quadrilateral
finite element mesh. To simulate the buckling without loss of generality, symme-
try and a specific mode of buckling are not assumed during the analysis, whereas
double symmetry is imposed on the design domain. As shown in Fig. 13(b), 6

or 18 circular material voids are initially imposed along the centerline.

5

(@)

Figure 13: Design configuration of the uniaxial beam. (a) Dimensions and boundary conditions

of the problem; (b) Initial material distributions, where the void material is marked by gray.

4.8.1. Mechanical loading only

In order to obtain the reference results for the thermoelastic optimization
case, we first solve the mechanical design problems without temperature change.
In topology optimization under linear elasticity, the minimum compliance struc-
ture under compressive uniaxial loading is a simple straight beam whose thick-
ness is determined only by the volume constraint [58]. With nonlinearity, opti-
mization captures the buckling instability, where the load carrying capacity is

greatly reduced.
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Figure 14: Optimum layouts for various values of up. (a) Optimum soluions with 6-hole initial

configuration; (b) Optimum solutions with 18-hole initial configuration.

Figure 14 shows the optimum structures for a range of applied displacement
up starting with two different initial configurations of Fig. 13(b). The final
topologies are found to be similar, with objective function differences less then
1.5% in all cases, showing that the effects of the initial void configuration is not
significant for this investigation.

The changes between these layouts effectively demonstrate how the optimiza-
tion scheme produces the designs that are optimum for the increasing levels of
displacement. In case of the smallest displacement w, = 0.01, the optimum
layout is a solid beam, which has maximum compressive stiffness for the given
volume constraint. This layout agrees well with the linear solution in [58]. As
shown in the layouts obtained at u, = 0.04, increasing u, leads to materials to
be distributed further away from the neutral axis, hence the buckling resistance
of the solid beam is enhanced. Such solid topological layout is retained until
up < 0.06, which corresponds to 1.2% compressive strain. At that point, a slit
is created at the center of the structure, further enhancing buckling rigidity for
the given volume constraint. For u, > 0.1, additional struts are added such

that the region with higher cross-section moment of inertia is enlarged.
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Figure 15: Force-displacement responses of four optimum designs, showing their optimality of

a certain displacement level and their post-buckling response at a larger displacement.

We compare the mechanical responses of the optimum layouts under the
largest prescribed displacement u, = 0.2 as shown in Fig. 15. Four layouts
(obtained with w, = 0.01,0.06,0.1,0.2) in Fig. 14(a) are chosen for this inves-
tigation. The resulting force-displacement graphs that are obtained from the
finite element analyses are plotted. The results demonstrate that the solution
optimized for the higher w, avoids instabilities, while having a smaller load-
carrying capacity in low u,. The deformed shapes are shown in the inset of
Fig. 14(b). Up to u, < 0.06, the responses of the representative layouts are all
linear. Creating a slit when wu, > 0.06 delays the onset of buckling. Ultimately,
the layout obtained for u, = 0.2 is shown to be capable of sustaining 70% more
load than the solid beam structure at u, = 0.2. According to these results,
it can be therefore concluded that the proposed optimization method produces

the slit and struts, which are beneficial in maximizing buckling capacity for the
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given material volume. The study also helps to understand why slits and struts
are found in optimum structures when mechanical buckling load is considered
through a linear buckling constraint [59], or randomly imposed geometric im-
perfections [41]. When the present scheme is incorporated within the multiscale
optimization [53], hierarchical lattice-like structures are expected as optima in
the small-scale regime [60]. For example, beams under compressive loads are di-
vided into a set of struts and voids in order to further present the local buckling

therein.

4.3.2. Thermal and mechanical loading

We now apply a uniform thermal expansion, which induces the reactive axial
force. This creates more compressive stress within the structure hence induces
structural instability at a lower u, compared to the case with only mechanical
loads. The optimized solutions for a range of aAT at u, = 0.08 and 0.2 are
depicted in Fig. 16. The 6-hole initial configuration is employed herein. As
noted, the temperature increase is shown to have a similar effect on the material
layout as an increased force would have. With an increased temperature, the
material layout tends to have a higher second moment of area and an increasing
number of struts that reinforces the buckling capacity.

Figure 17 illustrates how the increasing number of struts achieves an in-
creased thermally-induced buckling capacity. We present the force-displacement
curves for the optimum layouts found with « AT = 1072 (4 struts) and aAT =
4 %1073 (2 struts) and u, = 0.2. The mechanical load f™ of these two represen-
tative layouts are computed by increasing u,, from 0.0 to 0.2, for two temperature
conditions: aAT = 0.0 and 0.01.

It is observed that the 2-strut solution has slightly higher stiffness in the
linear region for both aAT = 0 and 0.01. This is because 2-strut topologies
have more material along the longitudinal chords of the structure, which are the
primary load-carrying passage in compression. When wu, > 0.18 and oAT =
0.01, a local instability is induced by the thermal load as shown in the inset of

Fig. 17. Tt is clear from this illustration that optimization added the struts to
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Figure 16: Optimum material layouts under large deformations and temperature change. The

salient topology shift observed as aAT changes.

2.5 U T T
m— 1 struts, « A T=0
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20| @ 4struts, aAT=001
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Figure 17: Structural responses of the two layouts that have different topology. In contrast to
the mechanically-driven linear relation between force and displacement (solid lines), buckling
is observed in the elevated temperature, making the 4-strut configuration preferred in the

presence of the temperature change, as it restrains local buckling.
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prevent this local buckling.
The capability to optimize a topology while considering buckling induced by
thermal expansion is clearly demonstrated. This opens up a variety of practical

applications where buckling under high temperature needs to be suppressed.

4.4. Short cantilever beam

A short cantilever is considered as shown in Fig. 18. A controlled displace-
ment u, is specified at the center node on the right boundary and constrains a
nodal displacement in the x-direction. In contrast to the example with the uni-
axially compressed load with a small eccentricity, the present example considers
multiple loads composed of one horizontal load along the centerline }';ef, and
a vertical load };ef at the same node. The same load multiplication factor 6 is
used for these reference loads, although their magnitudes are treated indepen-
dent of each other. The selection of the ratio between the loads (i.e., }';ef / f;ef)
in part influences the optimization because it alternates the dominant deforma-
tion between in-plane compression to bending. We consider two cases, one as
a single load case where the horizontal and vertical loads are applied simulta-
neously, Fig. 18(a) and the other as two load cases as shown in Fig. 18(b). A
uniform temperature change is applied to both. The initial material layout is
shown in Fig. 18 (c), and rectangular design domain is discretized by 12,800
quadrilateral elements.

Two numerical values of u, are tested (0.05 and 0.15) for two different ratios
of f:;ef / fief , which are 0.01 and 1. Figure 19 shows optimum material layouts
for the set of problem configurations. The optimum values of 6 j";pf are given
in gray on the top right of each solution.

Figure 19 shows the optimum structures for a range of configurations. First
of all, the ratio between reference loads (fgef/fief) is set to be 0.01 as shown
in Fig 19(a). The structure deforms dominantly by in-plane contraction, as
explicitly shown in small u,. The designed layout optimized for u, = 0.05
shows that the horizontal compression is dominant with the additional small

bending due to the vertical force. These optimum layouts also agree well with
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Figure 18: Design configuration of the cantilever beam example. (a) dimensions and boundary
conditions of a single load case problem; (b) dimensions and boundary conditions of a multiple

load case problem; (c) initial material layouts, where voids are marked as gray.
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Figure 19: Optimum layouts for the cantilever beam. (a) 5/ /f5¢ = 0.01; (b) £/ /el =
1.

the layouts obtained via linear compliance minimization in which a cantilever
with only central axial load is considered [15]. Adding a temperature does not
change the optimum layout of u,, = 0.05, although the required mechanical load
0 ff;ef increases by 15% (to counteract the free thermal expansion).

When u,=0.15, the optimum topology changes to enhance the buckling rigid-
ity of the structure by adding additional vertical reinforcements when heated
(AT = 0.01). This agrees well with Fig. 14 (a). For the multiple load case,
symmetric material layouts are obtained although no symmetry is assumed in

the design space. Symmetric designs, however, are shown to have a lower load-
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carrying capacity as shown in the decreased 6 f:(f values when compared with
the single load cases.

When fie'f / fie'f = 1.0, Fig. 19(b), The reference load toward vertical direc-
tion induces a significant bending. As a result, the optima found in u, = 0.05
and u, = 0.15 are better configured to sustain the bending. Since structure
in bending loses a substantial in-plane load capacity, optimal fief is substan-
tially lower than for the equivalent in-plane, Fig. 19(a). Again, for the multiple
load case, the symmetric design layouts are obtained. The effect of the thermal
load on the optimum layouts is not salient in the present example, because the
boundary condition resembles a statically determinate beam. Nevertheless, this
example signifies the effect of considering simultaneous load and multiple load

cases when displacement-controlled scheme is used.

5. Conclusion

In this work, a level-set topology optimization formulation for nonlinear
thermoelasticity is presented. By introducing an intermediate state between the
undeformed and deformed domains, the temperature-induced volume change is
considered independent from the mechanical strain. Nonlinear finite element
analysis and its consistent sensitivities are formulated based on a nonlinear
strain measure along with multiplicative decomposition, hence the range of
thermoelastic loads and design space are expanded in comparison to existing
knowledge.

Four end-compliance minimization problems are employed to investigate the
nonlinear thermoelastic structure design capabilities of the proposed formula-
tion. The optimized layouts are observed to manipulate the thermal effect so
that the given temperature change can counteract the mechanical load, even to
the degree of suppressing buckling and nonlinear snap-through behavior. We
construct a convex envelope of optimum layouts which represent the different
ways that mechanical and thermal loads interact and influence the structural

behavior. Such finding contrasts linear elastic optimization where the compli-
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ance is proportional to the temperature. The optimum results are shown to
lie on the boundary of the envelope, which offer an effective means of under-
standing thermoelastic design solutions. Where a design is prone to buckle, the
optimized structures for higher thermoelastic loads have material layouts with
slits and struts, which in effect increase the buckling capacity.

The careful investigations reveal that nonlinear elasticity is significant in
thermoelastic topology optimization. The nonlinear coupled optimization method
presented in this paper enables exploring a wider design space where the me-
chanical and thermal loads interact such a way that a lighter design compared
to the mechanical or thermal load alone, may be present. We expect that more
non-intuitive designs can be discovered with this optimization method.

The present study suggests several new areas of future studies:The present
work limits the thermal expansion by up to 1%. Although such range is well
beyond the range that has been typically considered in the previous works, a
further study to investigate topology optimization for the thermal expansion
greater than 1% will offer a more in-depth understanding where thermally-
induced nonlinearity becomes dominant. The present study does not couple
thermoelasticity with heat conduction, hence a temperature distribution is as-
sumed to be known a priori. However, this is a restrictive assumption as linear
thermoelastic results considering design-dependent heat transfer demonstrated
[9, 61]. In addition, only a single type of the objective is considered in this work,
where the end-compliance is minimized for a given mechanical and thermal load-
ing conditions. Other types of objective functions such as complementary energy
which integrates the stored energy during the nonlinear loading path [32], may
need to be considered for a more comprehensive understanding. An extension
of the present 2D nonlinear thermoelastic topology optimization to 3D is the
natural next step of this study, possibly tackled by using the state-of-the-art

parallel computing [62] and an efficient data structure [63].
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