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Abstract

In this study, a level set topology optimization method is introduced and used to design op-
timized periodic architected materials for the maximum macrostructural stiffness considering ther-
moelasticity. The design variables are defined at the microscopic scale and updated by minimizing
the total structural compliance induced by mechanical and thermal expansion loads at the macro-
scopic scale. The two scales are coupled by the effective elasticity tensor calculated through the
homogenization theory. A decomposition method is constructed to formulate several sub-problems
from the original optimization problem thereby this otherwise computationally expensive problem
can be efficiently solved, especially when the number of material subdomains is large. The pro-
posed method is demonstrated through several numerical examples. It is shown that a macrostruc-
tural geometry and boundary conditions have a significant impact on the optimized material de-
signs when thermoelastic effects are considered. Porous material with well-designed microstruc-
ture is preferred over solid material when a thermal load is non-zero. Moreover, when a larger
number of material microstructures is allowed in optimization, the overall performance is im-

proved due to the expanded design space.
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1. Introduction

Cellular materials composed of periodically repeated porous unit cells with special microscale
architectures have shown a significant potential in various engineering applications [1,2] because
of their tailorable properties, such as high stiffness to density ratio, high permeability, low thermal
conductivity and other exotic properties that are usually unattained at the bulk scale [3,4]. The
properties of these architected materials not only rely on the basic material constituents, but also
strongly depend on the spatial arrangement of void and solids — that is, the configuration of the
cellular microarchitecture. Thanks to the recently emerging additive manufacturing (AM) technol-
ogies with the improving feature controls at small scales, great opportunities are opened up to
fabricate architected materials with unprecedentedly complex geometries and features [5,6]. As a
result, the purposeful design of materials with tailored microstructures to achieve desired proper-
ties for specific applications at macroscale is attracting ever-increasing attention.

Before AM became an active research field, design of architected materials using topology
optimization has already flourished, and the first attempt was made by Sigmund [7], in which the
homogenized material effective properties were optimized to the desired values. Based on the idea
of inverse homogenization proposed in [7], topology optimization has been applied for architected
material designs aiming to (a) achieve extremal material properties, such as maximum bulk or
shear moduli [8—12], minimum negative Poisson’s ratio [10], extremal thermal expansion [13],
maximum band-gaps [14] and energy dissipation capacity [15]; or (b) tailor material properties to
the target values, e.g. effective Young’s moduli [16], Poisson’s ratio [17-19]; or (¢) realize multi-
functionality, such as simultaneous heat and electricity transportation [20], permeability and stift-

ness [21], conductivity and stiffness [22], and viscoelastic damping and stiffness maximizations



[23]. Readers are referred to [24,25] and the references therein for more comprehensive reviews
on this topic.

Topology optimization is considered ideal for AM design due to its free-form formulation,
expanded design space, and flexibility [26]. The first AM of topologically optimized material can
be traced back to Sigmund [27], in which a microstructure with maximum piezoelectric charge
coefficient was fabricated by stereolithography. Later on, Hollister [28] used selective laser sin-
tering to build the optimized lattice scaffold in tissue engineering. With the advances of AM, more
topology-optimized architected materials have been realized by various processing techniques in
recent years. For example, negative Poisson’s ratio by metal electron beam melting [29], nylon
selective laser melting [30], and silicone direct ink writing [31]; tunable thermal expansion by
multi-material photopolymer AM [32,33]; stiffness by Ti-Al6-V4 alloy selective laser melting
[34,35]; high strength and low stiffness by Co-Cr-Mo alloy electron beam melting [36].

Despite the success of the abovementioned topology optimization studies in architected mate-
rial designs, it should be noted that although the material microstructures are optimized to achieve
the extremal or desirable material properties, they are not necessarily efficient or optimal to be
used in their composing macrostructure since the macroscopic performance was absent from the
material design process in these studies. It is usually unknown what the desired material properties
should be to attain the best macroscopic functional performance when used in a structure, not to
mention that the macrostructural geometry and boundary conditions are varied in practical use and
can significantly affect the optimized material design [37].

To address this deficiency of decoupled material design at only microscale, a hierarchical
method to optimize material microstructure and its macrostructure simultaneously was proposed

by Rodrigues et al. [38] and Coelho et al. [39] using one unified volume constraint. Later on, Liu
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et al. [40] proposed a porous anisotropic material with penalization (PAMP) method for concurrent
material and structural design with a single microstructural pattern and two separate volume con-
straints for both scales. Xia and Breitkopf [41] used the FE? approach for a nonlinear multiscale
analysis to closely couple microstructural properties to the macroscopic strain field at each opti-
mization iteration, and optimized the designs at both macro and microscale using separate volume
constraints. These multiscale design studies either considered uniform or a few [40,42] material
microstructures which may not fully explore the design space, or the element-wise material mi-
crostructures [39,41], which may be numerically expensive, especially when the number macro-
elements is large. Sivapuram et al. [43] introduced a generalized problem formulation to simulta-
neously design structure and any number of material microstructures with arbitrary number or type
of constraints. In this formulation, the integrated multiscale optimization problem is decomposed
into one macroscale optimization and multiple material microscale optimizations, which then can
be efficiently solved by distributed computing. Similar decomposition ideas were adopted in more
recent multiscale design studies using parameterized level set method [44,45]. Based on these ap-
proaches, various multiscale topology optimization was studied for both linear [46—52] and non-
linear [53—55] material properties.

It should be noted that a majority of the studies on multiscale topology optimization focused
on the problems only with mechanical loads. However, in aerospace engineering and advance
manufacturing, many structures are subjected to both mechanical and thermal loads simultane-
ously, such as the thermal protection system of a space shuttle, supporting structures for combus-
tion of jet engines and additively manufactured parts with repeated material heating and cooling.
Therefore, how to design optimum architected material for light weight, high thermal stiffness and

superior thermal-mechanical properties for these applications has become an active research topic.



With the consideration of thermoelasticity, several topology optimization studies were conducted
[56—60] to design structures at macroscale, and it was found that the thermal loads had a big impact
on the optimized design and the volume fraction constraint can be inactive when the thermoelastic
effect becomes prominent. Coupling the macroscopic thermal elastic properties with the micro-
scopic material distribution, Deng et al. [61] and Yan et al. [62] recently showed that under both
mechanical and thermal loads, structures composed of porous materials with well-designed micro-
structures can substantially enhance the structural stiffness. In these studies, however, only single
material microstructure was considered in the optimization with limited macrostructural geome-
tries, which might not have explored the full potential of the architected material design for ther-
moelastic effects.

In this study, a design method for architected materials considering thermoelasticity is pro-
posed based on the multiscale level set topology optimization framework introduced by Sivapuram
et al. [43]. The optimization problem is formulated in such a way that the design variables are
optimized at microscale by maximizing total structural stiffness at macroscale under the specified
mechanical and thermal loading. The homogenization method is used to compute the material ef-
fective properties that bridge the two scales. A decomposition approach is employed to efficiently
solve for multiple materials at various macroscopic regions simultaneously in a distributed but
coupled manner. Finally, numerical examples are presented to discover the new metamaterial for
thermoelasticity. The remainder of this paper is laid out as follows: Section 2 gives the problem
formulation for material design with thermoelasticity. Section 3 discusses the multiscale level set
topology optimization for solving the problem in Section 2 along with the sensitivity analysis.
Section 4 presents a number of optimized microstructure topologies obtained using the proposed

approach with the corresponding analyses, followed by the conclusions in Section 5.



2. Optimization problem formulation with thermoelasticity
A schematic illustration of the architected material design for a macrostructure is shown in

Figure 1, where the macrostructural domain Q € R (d = 2 or 3) is composed of N subdomains
N
Q= 191 Q; with N =2 in this figure). Each subdomain has a unique underlying material architec-

ture represented by the periodically repeated unit cell Y; with microstructure pattern Qy,. The
boundary of the macrostructure (I' = 9Q) is partitioned into two disjoint segments such that I' =
[, UT; and [, N [ = @. The macroscopic domain {1 is subjected to body forces b and temperature
change AT, the surface tractions t are imposed on I'; while the displacements are fixed on [,. The

boundary value problem for the thermoelastic structure is given as

V.o + IZ =0 in Q

on=t on Iy (D

u=20 on [},
where u is the macroscale displacement field and n is the outward normal to the structural bound-
ary, o denotes the stress tensor which reads

o =D":(g(u) — &) ()
where £(u) = Vu is the strain tensor with VSu denoting the symmetric gradient operator, & is
the thermal strain defined as £* = af AT £° for plane stress case where a is the effective thermal
expansion coefficient, elpj = §;j with i,j = 1,2 for 2D case and AT = T — T}, is the uniform tem-

perature change in the structure with respect to the reference temperature Tyof = 0, DH is the ef-

fective elasticity tensor that correlates the macroscale and the microscale.



Figure 1. A macrostructure composed of architected materials.

The weak form of Eq. (1) can be expressed as
a(u,v) = a(AT,v) + £(v), YV € Uy 3)
where v is the macroscale virtual displacement that satisfies the kinematically admissible displace-

ment U,y = {v € H(Q) | v = 0 on T}, } and

a(u,v) = f e(u):D: e(v) dQ

N
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By assuming that the material unit cell is sufficiently smaller than the macrostructure, D¥ for

unit cell Y; can be calculated using the asymptotic homogenization theory [63]
H 1 ) _ D (kD sCkD) .
Dlfj =157 | Dpars (852 - e07) (64" = 8P)ay, (Gjikl=1,2,...,d) (5)
Yy

where D,Pfi jki and Dy, g are the components of the homogenized elasticity tensor D# and the base

material elasticity tensor I, respectively, £(/) is the unit test strain tensor and £*%) is the charac-
teristic strain tensor with Y-periodicity that can be determined by solving the canonical equations

in the unit cell as



fY Dpgrsénd &5 (D) dY = fY Dpgrséng X ers (v D)y, vod e U, (6)
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where y is the characteristic displacement fields in the unit cell and v is the virtual displacement

field satisfying the kinematically admissible displacement space U,, = {v | vis Y - periodic}.

It has been mathematically proven that for porous material with a single base material, a¥ =
ar, where ar is the thermal expansion coefficient for the base material [61]. Thus, we do not
distinguish them in this study. To allow the use of a fixed and uniform mesh throughout optimiza-
tion, the ersatz material interpolation [64] is used in this work for an efficient approximation of
elements that are cut by the level set boundary, as they have been demonstrated to be effective
[43,65,66]. As the elemental Young’s modulus is interpolated by the element area fraction, same

ar is used for all the elements to avoid over penalization of thermal stress in the cut elements.

The design objective is to find the optimum microstructure for each subdomain such that re-
sulting macrostructure has the minimum structural compliance induced by both mechanical and
thermal loads with a specified amount of the base material. Thus, the optimization problem is

formulated at the macroscale level with regard to the design variables at the microscale level

Minimize  f(Qy,,Qy,, ..., Qy, ) = b-udQ+ff-udF+f arAT €°: DY e(u) dQ
Qy, . Qyy,yy ( 1 z N) U§V=1QI T¢ U§V=1QI T !
subjectto a(u,v) = a(AT,v) + £(v), Vv € Uy (7)
GQy) = | do-V, IV <0, [=12,.,N

Qy,;

where the objective f is defined as the total macrostructural compliance induced by mechanical

and thermal loads, g; is the volume fraction constraint for Y; unit cell and V¥, is the corresponding

prescribed volume fraction constraint, |Y;| is the volume of the unit cell Y;.

3. Level set topology optimization method



In this study, Hadamard’s boundary variation method is considered for shape optimization and
the level set function is used to represent the boundary of a material microstructure implicitly,
p(x) =0 X € Qy
d(x) =0 x €Ty ®)
p(x) <0 xeY\(QyUIy)
where ¢ (x) is the level set function at x in the unit cell Y, Qy is the material domain and Iy is its
boundary. The benefit of level set method is that a structure with smooth and well-defined bound-
ary is always guaranteed, which is not easily attained by the traditional density-based methods.
Thus, the optimized design can be directly additively manufactured without post-processing step
so that the possible performance loss can be avoided. The following Hamilton-Jacobi equation

[67—69] is solved to update the boundary described by ¢

dp(x,t)

St h@ITe 0] =0 ©)

where V,, denotes the normal inward velocity of the structural boundary point x and t is the pseudo
time. Eq. (9) can be written in a discrete form as

J = b = AtV |V, (10)
where k is the number of optimization iteration, At is the pseudo time step and V,, ; is the normal
velocity at boundary point j. Here V), ; are treated as the design variables updated by optimization.
As a periodical re-initialization of ¢ into the signed distance function is typically needed to regu-

larize the level set function, in this study, ¢ is reinitialized after every update in Eq. (10).

3.1. Multiscale optimization problem decomposition
Instead of solving the general optimization problem Eq. (7) directly, a variant of SLP method

proposed by [70] is used, in which Eq. (7) are linearized about each material design Q’;I at current

iteration k and then decomposed into N sub-problems [43] as follows



minimize ——- AQ{}I
AQYI Y,

a9, (1)

subject to EIAQ{({I <-gfk 1=12,..,.N
AQy, < AQY, < AQy,

where AQ¥ ; 18 the update for the current microscale design 0k ; Within the bounds AQy, and Aﬁyl,
which are further determined by the Courant-Friedrichs-Lewy (CFL) stability condition as detailed
later. g¥ denotes the constraint function change at the k" iteration. The decomposed sub-problem
for each unit cell can be solved independently and simultaneously. It is therefore, straight forward

to distribute the computation and take advantage of parallel computing [43].
The method proposed in [71] is reproduced herein to solve Eq. (11). For a specific unit cell,
the material level set boundary is first discretized into nb points. The element area fractions are
then computed and used to interpolate the equilibrium Eqns. (3) to (6) to obtain the displacement

field u and effective elasticity tensor D, The sub-problem in Eq. (11) can be further expressed in

a discrete form as (subscript I and superscript k are dropped for simplicity)

nb
of
T AQy = ZAt(Sf,jlj)Vn'j =At SV,
= (12)
P nb
o By Y At(5q,1,)Vnj = AL S, -V
Y =

where s¢ ; and s, ; are the objective and constraint function sensitivities on the boundary point j,
respectively, [; is the discrete boundary length for point j, S and S, are vectors collecting all the
sensitivity and discrete boundary length multiplication, and V,, is the vector containing the bound-
ary point normal velocities V;, ;. By replacing AtVE with ﬁk(Sj'f + /1"55)/”5}‘ + /1"5'5 ||2 [70], the

actual optimization problem to be solved at current iteration k can be expressed by

10



min AtSf - VE(BK, 2%)
st. ASE-VE(Bk,AK) < —gk (13)
Vimin S V5 S VE ax
where Vﬁ,mm and V¥ .. are the minimum and maximum velocities derived from the CFL con-

dition, respectively. The optimization problem Eq. (13) is solved by the sequential least square

SQP (SLSQP) method and the optimized £* and A* are substituted back to AtVE = ﬁk(S}‘ +
A<sK)/|sF + A"S’g‘”2 to obtain the optimum AtVX at iteration k. AtVX is finally substituted back

into Eq. (10) to update the level set function. For all examples in this paper, all boundary point

movements at each iteration are limited to a half of a level set grid size.

3.2. Sensitivity analysis
The shape sensitivities of the objective f and constraint function g; are needed to solve the
decomposed sub-problems in Eq. (13). Ignoring the body forces in our problem, the compliance

objective sensitivity can be derived as

f'(QY,) = _f (D}:Iijklgij(u)gkl(u) - ZaTATDII:IijkIE?jgkl(u)) dQ (14)
Qe

where according to Egs. (5) and (6), the shape sensitivity of Dfi jki can be written as
1 . .
! — (1)) @)\ ([ kD (kD)
Dfijra(Qy,) = 1) qurs(sp‘,; —&pg )(Ers — & )VndF (15)
Yy

The shape sensitivity for the volume fraction constraint can be easily written as

i) = j V,dr (16)

Ty,
After calculating the sensitivities at Gauss points, the least square method is used to interpolate

the sensitivities S and S, at a boundary point [71].
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4. Numerical examples

Several numerical examples are presented in this section to design material microstructures for
a macrostructure under both mechanical and thermal loads. For the sake of simplicity, all involved
quantities are dimensionless and normalized, and same mesh is used for the level set function and
finite element analysis. The design domains of all the macrostructures and microstructures are
discretized by 4-node quadrilateral bilinear elements with size 1x1, and the square unit cell with a
100x100 FE mesh is used for all the material microstructure design domains. It is assumed that
the isotropic base material has Young’s modulus E = 1, Poisson’s ratio v = 0.3 and thermal expan-
sion coefficient ar = 0.001. The void elements are assigned a weak Young’s modulus of E = 10"
6. The least square interpolation radius is set as 2. The optimization is terminated if the relative

difference of objective function values between two successive steps is less than 10,

4.1. Material design for a cantilever beam

The first example is to design material microstructures for a cantilever beam as shown in Figure
2(a). The beam is fixed on the left edge and a downward load F = 1 is applied at the center of the
right edge. The design domain experiences a uniform temperature change AT and the allowable
volume fraction of the solid phase for the microstructure is set to be 40% of the total unit cell

volume. Figure 2(b) shows the initial design used for the microstructure domain.

12
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(a) Design domian (b) Initial design

0.027 0.035 0

[0.354 0.027 0 ]
0 0 0.032

0.074 0.113 0

[0.255 0.074 0 ]
0 0 0.075

0.078 0.263 0

[0.097 0.078 0 ]
0 0 0.079

(e) LxH = 20x80, AT = 0, f = 15.99

Figure 2. Optimized material microstructures for the cantilever beam with different LxH
under AT = 0 (left: unit cell; middle: 3x3 array; right: effective elasticity matrix).

The optimized material designs with AT = 0 and various LxH are firstly generated as shown
in Figure 2(c)-(e), together with their optimized effective elasticity matrices. One can clearly see
from Figure 2 that the macrostructural geometry has a big impact on the optimized material mi-
crostructure. When a long cantilever beam (LxH = 80%20) is considered, material is designed with
a larger stiffness in the horizontal direction to improve the bending resistance, as shown in Figure
2(c). As the beam gets shorter, the material stiffness in the vertical direction gradually increases to
resist shearing, as indicated in Figure 2(d) and (e). It is worth noting that the designs of material

microstructure with AT = 0 are all orthotropic even though no orthotropy constraint is enforced.
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0.020 0.025 0.004
-0.001 0.004 0.029

0.026  0.037 -0.004
-0.002 -0.004 0.032

0.196 0.037 0.007
[0.037 0.083 0.004]
0.007 0.004 0.073

[0.342 0.026 -0.002} [0.340 0.020 -0.001]

=

-0.024 0.063 0.010

0.102 -0.024 0.001]
0.001 0.010 0.061

(b) LxH = 40x40, AT =200, f = 78.01 (€) LxH = 40%40, AT = 500, f = 132.51
44:°4:~
;5‘4;,04, 0.051 -0.005 0.006 0.045 -0.030 0.011
‘t 4‘ é -0.005 0.173  0.020 -0.030 0.109 0.010
NN
&4'&43&‘ 0.006  0.020 0.062 0.011 0.010 0.045
AR

(¢) LxH = 20x80, AT =200, f = 30.60 (f) LxH = 20x80, AT = 500, f = 55.31

Figure 3. Optimized material microstructures for the cantilever beam with various LxH
under AT =200 and AT = 500 (left: unit cell; middle: 3x3 array; right: effective elasticity
matrix).

Next, material designs with the same problem setting but non-zero temperature change AT =
200 and AT = 500 are generated in Figure 3 in which distinct differences in the designs can be
observed when compared to the results with AT = 0 in Figure 2. The effective elasticity matrices
indicate that the optimized material designs become anisotropic with an increasing AT and aniso-
tropic material can lead to a more minimum macrostructural compliance in the presence of the
thermal load. The material designs also reduce D, DY, D and DI values with an increas-
ing AT . An examination of Eq. (4) reveals that these four components are directly related to the
thermal expansion compliance therefore, reducing D, DE,| D} and D1, minimizes the thermal
compliance component. The Df, and D4, values become even negative when AT = 500 (see Fig-
ure 3(e) and (f)). Figure 4 depicts the iterative histories of the objective and constraint functions
for obtaining the design in Figure 3(b), along with the intermediate designs at various iterations. It

is observed that the structural compliance decreases rapidly during the first 100 iterations, due to
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the increasing porosity of the material design which reduces the thermal expansion compliance.
As the porosity increases, the mechanical load resistance of the design is weakened. The compli-
ance then increases until the volume fraction constraint becomes feasible at around iteration 200.
After that, the optimization converges smoothly to an optimized design that has a balanced re-

sistance between the mechanical and thermal loads.

120 1

Compliance
1o — B e Volume fraction
0.8

100

Compliance

80 |

Volume fraction

404

70 L

60 0.2

I I I I
0 200 400 600 800 1000

Iteration number

Figure 4. Convergence history of the objective function and volume fraction constraint
for cantilever beam with LxH = 40x40, AT = 200.

It is noted that the thermal loads are less influential in the long cantilever beam LxH = 80x%20
even when AT is high comparing the designs in Figure 3(a) and (d) to Figure 2(c). This is because
for the long beam, a small decrease in the material stiffness in horizontal direction substantially
reduces the beam bending resistance, resulting in a large increase in the mechanical component of
the compliance. In other words, the mechanical load is the dominant influence on the final design
over the thermal load in the long beam. As the beam gets shorter, the compliance contribution
from the mechanical load decreases and that the thermal contribution becomes more influential in
Figure 3(b), (¢), (e) and (f). These results demonstrate that the geometry of the macrostructural

design has a fundamental impact on the material design with non-zero thermal loads.
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The proposed approach can design multiple material subdomains at different locations of the
macrostructure and with different volume fraction constraints. To demonstrate this, a cantilever
beam with LxH = 80x50 and 4 subdomains is considered as shown in Figure 5(a), in which H; =
H, =10 and H, = H; = 15. The volume fraction constraints are set as 0.5 for ), and 3, and 1 for
Q, and Q,, i.e. no volume constraint is enforced for the top and bottom subdomains.

The optimized microstructures with AT = 0 and AT = 500 are shown in Figure 5(b) and (c),
respectively, along with the design details given in Table I. One can see from Figure 5(b) that the
optimized material designs are orthotropic and symmetric about the central horizontal axis when
AT = 0. However, the orthotropy and symmetry are broken down when the thermal load is non-
zero, i.e. AT = 500, in Figure 5(c). This is due to the fact that the thermal expansion load is a
pressure dependent load. The material designs would be different in the tensile region of the top
half of the beam from the compressive region in the bottom half.

One can see that although the allowable material for the top and bottom subdomains are 100%,
porous material designs are suggested for these two regions when AT = 500. This is because the
fully solid material can produce large thermal expansion compliance compared to the porous ma-
terial. Thus, instead of using up all the allowable material, it is better to have a porous design in
the presence of the non-zero thermal loads. To illustrate the results, Figure 5(b) and (c) array 16x10
optimized material unit cells. It should be noted that due to the assumption of length scale separa-
tion in the homogenization method, the optimum unit cell sizes should be infinitely small. Thus,
the selection of unit cell sizes can affect the final material design and its performance. Typically,
the more number of unit cells are considered, the better performance will be obtained. When the
unit cell sizes are sufficiently small, the optimized design and its performance would not change

significantly. This has been demonstrated in [52].
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(b) LxH = 80x50, AT = 0, f = 39.82

V'

(c) LxH =80x%50, AT =500, f =268.21

Figure 5. Optimized material microstructures for the cantilever beam with 4 material
subdomains and different AT.

Table I. Elasticity matrix and volume fraction of the microstructure designs in Figure

5.
) Figure 5(b) Figure 5(c)
Material
subdomain  pppective elasticity matrix Volum ©  Effective elasticity matrix Volum N
fraction fraction
[1.099 0.330 0 7 [0.274  -0.073 0.013]
Qy, 0.330 1.099 0 1 -0.073 0.116 -0.002 0.910
0 0 0.385. 10.013  0.002 0.126
[0.140 0.114 0 7 [0.042  -0.028 -0.023]
Qy, 0.114 0.278 0 0.5 -0.028 0.080 0 0.5
0 0 0.115] -0.023 0 0.068 |
[0.140 0.114 0 7 0.036 -0.021 0.019
Qy, 0.114 0.278 0 0.5 -0.021 0.066 0.014 0.5
0 0 0.115. 0.019 0.014 0.083
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0.330 1.099 0 -0.064 0.088 -0.003 0.865
0 0 0.385 0.029 -0.003 0.110

Qy

4

[1.099 0.330 0 l [0.293 -0.064 0.029
1

Additional parametric study is carried out to examine the influence of the number of material
subdomains and the temperature change on the optimized macrostructural objective function. To
this end, a LxH = 80x60 cantilever beam composed of uniformly sized subdomains are considered,
i.e. H; = H, = ... = Hy, in Figure 5(a) where nr indicates the number of subdomains. The results
are shown in Table II, which reveal that when the number of subdomain is set to 1, an increase of
AT leads to a design with a greater compliance due to the increasing thermal compliance associated
with the increasing temperature. When AT = 500, an increase in nr leads to a lower compliance.
This is due to the fact that when a larger number of subdomains is considered in the optimization,
a larger design space is explored by the optimizer hence, an improved design performance can be

expected.

Table II. Macrostructural compliance comparison with the optimized material micro-
structures with varying number of material subdomains and AT, LxH = 80%60.

nr=1 AT =500

AT Compliance nr Compliance

0 81.88 1 282.26
100 105.32 2 264.49
200 152.75 3 246.42
300 196.04 4 235.88
400 244.16 5 227.03
500 282.26 6 221.34

4.2. Material design for a simply supported beam
The second example is the material design for a simply supported beam in Figure 6. The beam

is subjected to AT and 3 downward loads are applied on the top surface of the beam. The allowable
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volume fraction of the solid phase for the material microstructure is set to be 40% of the total unit
cell volume. The initial design for the microstructure is the same as the one shown in Figure 2(b).

| L |
| |

TR IH

Figure 6. Simply supported beam with length L and height H.

The designs of the microstructures for the simply supported beam under a single loading case,
ie., F; =1 and F, = 0, are firstly generated, and the resulting topologies with a range of AT and
various LxH are given in Figure 7 along with the corresponding effective elasticity matrices. One
can see from comparing Figure 7(a) and (d) versus Figure 2(c) and Figure 3(d) that even when the
macrostructure geometries and AT are the same, the macrostructural boundary condition has a sig-
nificant influence on the optimized material design. Once again, orthotropic material designs are
optimum for the simply supported beam when AT = 0, while anisotropic microstructures with
lower DE,, DI, DX and DL, values are found to be optimum when AT = 500. The L/H ratio again
affects the material designs for both AT =0 and AT = 500 cases in terms of material horizontal and

vertical stiffness. Therefore, the optimum macroscale and microscale designs are tightly coupled.
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Figure 7. Optimized material microstructures for the simply supported beam with
different LxH under AT = 0 and AT = 500 (left: unit cell; middle: 3%3 array; right:
effective elasticity matrix).

Next, the simply supported beam under 3 symmetric loadings (i.e., F; = F, = 1) is optimized
and their results are presented in Figure 8. Comparing Figure 7 to Figure 8, it is seen that for both
AT = 0 and AT = 500 cases, the material microstructures with 3 loadings are generally different
from those with 1 loading, and have higher stiffness in both horizontal (D;4) and vertical directions
(Dy5). It is interesting to notice from the right half of Figure 8 that even with non-zero temperature
change AT =500, the optimized materials are completely or nearly orthotropic with 3 symmetric
loadings, which is usually anisotropic with 1 loading. This example demonstrates that the loading
cases of the macrostructure could also affect the anisotropy of the optimized material design even

if AT is non-zero.
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Figure 8. Optimized material microstructures for the 3 loadings simply supported
beam with different LxH under AT =0 and AT = 500 (left: unit cell; middle: 3%3 ar-
ray; right: effective elasticity matrix).

5. Conclusions

This paper introduces a level set topology optimization method to directly design architected
material microstructures tailored for a macrostructure under both mechanical and thermal loads,
based on the idea of multiscale topology optimization. The design variables are defined at the
material scale and updated by optimizing the objective function formulated at the structural mac-
roscale. The homogenization method is used to calculate the effective elastic matrix that bridges
these two scales and the inverse homogenization method is used to determine the optimum micro-
structures. The numerical results demonstrate the effectiveness of the method and show that the
optimized material designs for a thermoelastic macrostructure highly depends on the geometry,
temperature change, mechanical loading and boundary conditions of the macroscopic structural
design. In addition, the thermal loads can significantly influence the optimized material design in

terms of material orthotropy, symmetry and porosity. When an increasing number of the material
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subdomains is considered, a better overall performing and improved material designs is obtained.
By incorporating the actual properties of AM base materials (e.g. thermoplastics, metals, alloys)
and choosing the reasonable unit cell sizes, the proposed method can generate optimized archi-
tected material that is ready for AM. The current work can be naturally extended to simultaneously
design macrostructural geometry and microscale material for thermoelasticity, which will be in-

vestigated in our future works.
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