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 Design of architected materials for thermoelastic macrostructures 

using level set method 
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Abstract 

In this study, a level set topology optimization method is introduced and used to design op-

timized periodic architected materials for the maximum macrostructural stiffness considering ther-

moelasticity. The design variables are defined at the microscopic scale and updated by minimizing 

the total structural compliance induced by mechanical and thermal expansion loads at the macro-

scopic scale. The two scales are coupled by the effective elasticity tensor calculated through the 

homogenization theory. A decomposition method is constructed to formulate several sub-problems 

from the original optimization problem thereby this otherwise computationally expensive problem 

can be efficiently solved, especially when the number of material subdomains is large. The pro-

posed method is demonstrated through several numerical examples. It is shown that a macrostruc-

tural geometry and boundary conditions have a significant impact on the optimized material de-

signs when thermoelastic effects are considered. Porous material with well-designed microstruc-

ture is preferred over solid material when a thermal load is non-zero. Moreover, when a larger 

number of material microstructures is allowed in optimization, the overall performance is im-

proved due to the expanded design space. 
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1. Introduction 

Cellular materials composed of periodically repeated porous unit cells with special microscale 

architectures have shown a significant potential in various engineering applications [1,2] because 

of their tailorable properties, such as high stiffness to density ratio, high permeability, low thermal 

conductivity and other exotic properties that are usually unattained at the bulk scale [3,4]. The 

properties of these architected materials not only rely on the basic material constituents, but also 

strongly depend on the spatial arrangement of void and solids – that is, the configuration of the 

cellular microarchitecture. Thanks to the recently emerging additive manufacturing (AM) technol-

ogies with the improving feature controls at small scales, great opportunities are opened up to 

fabricate architected materials with unprecedentedly complex geometries and features [5,6]. As a 

result, the purposeful design of materials with tailored microstructures to achieve desired proper-

ties for specific applications at macroscale is attracting ever-increasing attention. 

Before AM became an active research field, design of architected materials using topology 

optimization has already flourished, and the first attempt was made by Sigmund [7], in which the 

homogenized material effective properties were optimized to the desired values. Based on the idea 

of inverse homogenization proposed in [7], topology optimization has been applied for architected 

material designs aiming to (a) achieve extremal material properties, such as maximum bulk or 

shear moduli [8–12], minimum negative Poisson’s ratio [10], extremal thermal expansion [13], 

maximum band-gaps [14] and energy dissipation capacity [15]; or (b) tailor material properties to 

the target values, e.g. effective Young’s moduli [16], Poisson’s ratio [17–19]; or (c) realize multi-

functionality, such as simultaneous heat and electricity transportation [20], permeability and stiff-

ness [21], conductivity and stiffness [22], and viscoelastic damping and stiffness maximizations 
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[23]. Readers are referred to [24,25] and the references therein for more comprehensive reviews 

on this topic. 

Topology optimization is considered ideal for AM design due to its free-form formulation, 

expanded design space, and flexibility [26]. The first AM of topologically optimized material can 

be traced back to Sigmund [27], in which a microstructure with maximum piezoelectric charge 

coefficient was fabricated by stereolithography. Later on, Hollister [28] used selective laser sin-

tering to build the optimized lattice scaffold in tissue engineering. With the advances of AM, more 

topology-optimized architected materials have been realized by various processing techniques in 

recent years. For example, negative Poisson’s ratio by metal electron beam melting [29], nylon 

selective laser melting [30], and silicone direct ink writing [31]; tunable thermal expansion by 

multi-material photopolymer AM [32,33]; stiffness by Ti-Al6-V4 alloy selective laser melting 

[34,35]; high strength and low stiffness by Co-Cr-Mo alloy electron beam melting [36].  

Despite the success of the abovementioned topology optimization studies in architected mate-

rial designs, it should be noted that although the material microstructures are optimized to achieve 

the extremal or desirable material properties, they are not necessarily efficient or optimal to be 

used in their composing macrostructure since the macroscopic performance was absent from the 

material design process in these studies. It is usually unknown what the desired material properties 

should be to attain the best macroscopic functional performance when used in a structure, not to 

mention that the macrostructural geometry and boundary conditions are varied in practical use and 

can significantly affect the optimized material design [37]. 

To address this deficiency of decoupled material design at only microscale, a hierarchical 

method to optimize material microstructure and its macrostructure simultaneously was proposed 

by Rodrigues et al. [38] and Coelho et al. [39] using one unified volume constraint. Later on, Liu 

https://www.sciencedirect.com/topics/engineering/electron-beam-melting
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et al. [40] proposed a porous anisotropic material with penalization (PAMP) method for concurrent 

material and structural design with a single microstructural pattern and two separate volume con-

straints for both scales. Xia and Breitkopf [41] used the FE2 approach for a nonlinear multiscale 

analysis to closely couple microstructural properties to the macroscopic strain field at each opti-

mization iteration, and optimized the designs at both macro and microscale using separate volume 

constraints. These multiscale design studies either considered uniform or a few [40,42] material 

microstructures which may not fully explore the design space, or the element-wise material mi-

crostructures [39,41], which may be numerically expensive, especially when the number macro-

elements is large. Sivapuram et al. [43] introduced a generalized problem formulation to simulta-

neously design structure and any number of material microstructures with arbitrary number or type 

of constraints. In this formulation, the integrated multiscale optimization problem is decomposed 

into one macroscale optimization and multiple material microscale optimizations, which then can 

be efficiently solved by distributed computing. Similar decomposition ideas were adopted in more 

recent multiscale design studies using parameterized level set method [44,45]. Based on these ap-

proaches, various multiscale topology optimization was studied for both linear [46–52] and non-

linear [53–55] material properties. 

It should be noted that a majority of the studies on multiscale topology optimization focused 

on the problems only with mechanical loads. However, in aerospace engineering and advance 

manufacturing, many structures are subjected to both mechanical and thermal loads simultane-

ously, such as the thermal protection system of a space shuttle, supporting structures for combus-

tion of jet engines and additively manufactured parts with repeated material heating and cooling. 

Therefore, how to design optimum architected material for light weight, high thermal stiffness and 

superior thermal-mechanical properties for these applications has become an active research topic. 
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With the consideration of thermoelasticity, several topology optimization studies were conducted 

[56–60] to design structures at macroscale, and it was found that the thermal loads had a big impact 

on the optimized design and the volume fraction constraint can be inactive when the thermoelastic 

effect becomes prominent. Coupling the macroscopic thermal elastic properties with the micro-

scopic material distribution, Deng et al. [61] and Yan et al. [62] recently showed that under both 

mechanical and thermal loads, structures composed of porous materials with well-designed micro-

structures can substantially enhance the structural stiffness. In these studies, however, only single 

material microstructure was considered in the optimization with limited macrostructural geome-

tries, which might not have explored the full potential of the architected material design for ther-

moelastic effects. 

In this study, a design method for architected materials considering thermoelasticity is pro-

posed based on the multiscale level set topology optimization framework introduced by Sivapuram 

et al. [43]. The optimization problem is formulated in such a way that the design variables are 

optimized at microscale by maximizing total structural stiffness at macroscale under the specified 

mechanical and thermal loading. The homogenization method is used to compute the material ef-

fective properties that bridge the two scales. A decomposition approach is employed to efficiently 

solve for multiple materials at various macroscopic regions simultaneously in a distributed but 

coupled manner. Finally, numerical examples are presented to discover the new metamaterial for 

thermoelasticity. The remainder of this paper is laid out as follows: Section 2 gives the problem 

formulation for material design with thermoelasticity. Section 3 discusses the multiscale level set 

topology optimization for solving the problem in Section 2 along with the sensitivity analysis. 

Section 4 presents a number of optimized microstructure topologies obtained using the proposed 

approach with the corresponding analyses, followed by the conclusions in Section 5. 
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2. Optimization problem formulation with thermoelasticity 

A schematic illustration of the architected material design for a macrostructure is shown in 

Figure 1, where the macrostructural domain Ω ∈ ℝ𝑑𝑑 (𝑑𝑑 = 2 or 3) is composed of 𝑁𝑁 subdomains 

(Ω = ∪
𝑁𝑁

𝐼𝐼=1
Ω𝐼𝐼 with 𝑁𝑁 = 2 in this figure). Each subdomain has a unique underlying material architec-

ture represented by the periodically repeated unit cell Y𝐼𝐼  with microstructure pattern ΩY𝐼𝐼 . The 

boundary of the macrostructure (Γ = 𝜕𝜕Ω) is partitioned into two disjoint segments such that Γ = 

Γ𝑢𝑢 ∪ Γ𝑡𝑡 and Γ𝑢𝑢 ∩ Γ𝑡𝑡 = ∅. The macroscopic domain Ω is subjected to body forces 𝒃𝒃 and temperature 

change Δ𝑇𝑇, the surface tractions 𝒕̅𝒕 are imposed on Γ𝑡𝑡 while the displacements are fixed on Γ𝑢𝑢. The 

boundary value problem for the thermoelastic structure is given as 

�
∇.𝝈𝝈 + 𝒃𝒃 = 𝟎𝟎      in   Ω 
𝝈𝝈.𝒏𝒏 = 𝒕̅𝒕              on   Γ𝑡𝑡
𝒖𝒖 = 𝟎𝟎                 on   Γ𝑢𝑢 

 (1) 

where 𝒖𝒖 is the macroscale displacement field and 𝒏𝒏 is the outward normal to the structural bound-

ary, 𝝈𝝈 denotes the stress tensor which reads 

𝝈𝝈 = 𝔻𝔻𝐻𝐻: (𝜺𝜺(𝒖𝒖)− 𝜺𝜺𝑡𝑡) (2) 

where 𝜺𝜺(𝒖𝒖) = ∇𝑠𝑠𝒖𝒖 is the strain tensor with ∇𝑠𝑠𝒖𝒖 denoting the symmetric gradient operator, 𝜺𝜺𝑡𝑡 is 

the thermal strain defined as 𝜺𝜺𝑡𝑡 = 𝛼𝛼𝑇𝑇𝐻𝐻Δ𝑇𝑇𝜺𝜺0 for plane stress case where 𝛼𝛼𝑇𝑇𝐻𝐻 is the effective thermal 

expansion coefficient, 𝜀𝜀𝑖𝑖𝑖𝑖0 = 𝛿𝛿𝑖𝑖𝑖𝑖 with 𝑖𝑖, 𝑗𝑗 = 1,2 for 2D case and Δ𝑇𝑇 = 𝑇𝑇 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 is the uniform tem-

perature change in the structure with respect to the reference temperature 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 = 0, 𝔻𝔻𝐻𝐻 is the ef-

fective elasticity tensor that correlates the macroscale and the microscale. 
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Figure 1. A macrostructure composed of architected materials. 

The weak form of Eq. (1) can be expressed as 

𝑎𝑎(𝒖𝒖,𝒗𝒗) = 𝑎𝑎�(Δ𝑇𝑇,𝒗𝒗) + ℓ(𝒗𝒗),   ∀𝒗𝒗 ∈ 𝑈𝑈𝑎𝑎𝑎𝑎 (3) 

where 𝒗𝒗 is the macroscale virtual displacement that satisfies the kinematically admissible displace-

ment 𝑈𝑈𝑎𝑎𝑎𝑎 = {𝒗𝒗 ∈ 𝐻𝐻1(Ω) | 𝒗𝒗 = 𝟎𝟎 on Γ𝑢𝑢} and 

𝑎𝑎(𝒖𝒖,𝒗𝒗) = � 𝜺𝜺(𝒖𝒖):𝔻𝔻𝐼𝐼
𝐻𝐻: 𝜺𝜺(𝒗𝒗) 𝑑𝑑Ω

 

∪𝐼𝐼=1
𝑁𝑁 Ω𝐼𝐼

 

𝑎𝑎�(Δ𝑇𝑇,𝒗𝒗) = � 𝜺𝜺𝑡𝑡:𝔻𝔻𝐼𝐼
𝐻𝐻: 𝜺𝜺(𝒗𝒗) 𝑑𝑑Ω

 

∪𝐼𝐼=1
𝑁𝑁 Ω𝐼𝐼

= � 𝛼𝛼𝑇𝑇𝐻𝐻Δ𝑇𝑇𝜺𝜺0:𝔻𝔻𝐼𝐼
𝐻𝐻: 𝜺𝜺(𝒗𝒗) 𝑑𝑑Ω

 

∪𝐼𝐼=1
𝑁𝑁 Ω𝐼𝐼

 

ℓ(𝒗𝒗) = � 𝒃𝒃 ∙ 𝒗𝒗 𝑑𝑑Ω
 

∪𝐼𝐼=1
𝑁𝑁 Ω𝐼𝐼

+ � 𝒕̅𝒕 ∙ 𝒗𝒗 𝑑𝑑Γ
 

Γ𝑡𝑡
 

(4) 

By assuming that the material unit cell is sufficiently smaller than the macrostructure, 𝔻𝔻𝐼𝐼
𝐻𝐻 for 

unit cell Y𝐼𝐼 can be calculated using the asymptotic homogenization theory [63]  

𝐷𝐷𝐼𝐼,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻 =
1

|Y𝐼𝐼|
� 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 �𝜀𝜀𝑝̅𝑝𝑝𝑝

(𝑖𝑖𝑖𝑖) − 𝜀𝜀𝑝𝑝𝑝𝑝
∗(𝑖𝑖𝑖𝑖)� �𝜀𝜀𝑟̅𝑟𝑟𝑟

(𝑘𝑘𝑘𝑘) − 𝜀𝜀𝑟𝑟𝑟𝑟
∗(𝑘𝑘𝑘𝑘)�𝑑𝑑Y

 

Y𝐼𝐼
,   (𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙 = 1, 2, … , 𝑑𝑑) (5) 

where 𝐷𝐷𝐼𝐼,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻  and 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are the components of the homogenized elasticity tensor 𝔻𝔻𝐼𝐼
𝐻𝐻 and the base 

material elasticity tensor 𝔻𝔻, respectively, 𝜀𝜀 (̅𝑖𝑖𝑖𝑖) is the unit test strain tensor and 𝜀𝜀∗(𝑖𝑖𝑖𝑖) is the charac-

teristic strain tensor with Y-periodicity that can be determined by solving the canonical equations 

in the unit cell as 
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� 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜀𝜀𝑝̅𝑝𝑝𝑝
(𝑖𝑖𝑖𝑖)𝜀𝜀𝑟𝑟𝑟𝑟�𝒗𝒗(𝑘𝑘𝑘𝑘)�𝑑𝑑Y

 

Y𝐼𝐼
= � 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜀𝜀𝑝𝑝𝑝𝑝∗ (𝝌𝝌(𝑖𝑖𝑖𝑖))𝜀𝜀𝑟𝑟𝑟𝑟�𝒗𝒗(𝑘𝑘𝑘𝑘)�𝑑𝑑Y

 

Y𝐼𝐼
,    ∀𝒗𝒗(𝑘𝑘𝑘𝑘) ∈ 𝑈𝑈𝝌𝝌 (6) 

where 𝝌𝝌 is the characteristic displacement fields in the unit cell and 𝒗𝒗 is the virtual displacement 

field satisfying the kinematically admissible displacement space 𝑈𝑈𝝌𝝌 = {𝒗𝒗 | 𝒗𝒗 is Y - periodic}. 

It has been mathematically proven that for porous material with a single base material, 𝛼𝛼𝑇𝑇𝐻𝐻 =

𝛼𝛼𝑇𝑇, where 𝛼𝛼𝑇𝑇 is the thermal expansion coefficient for the base material [61]. Thus, we do not 

distinguish them in this study. To allow the use of a fixed and uniform mesh throughout optimiza-

tion, the ersatz material interpolation [64] is used in this work for an efficient approximation of 

elements that are cut by the level set boundary, as they have been demonstrated to be effective 

[43,65,66]. As the elemental Young’s modulus is interpolated by the element area fraction, same 

𝛼𝛼𝑇𝑇 is used for all the elements to avoid over penalization of thermal stress in the cut elements. 

The design objective is to find the optimum microstructure for each subdomain such that re-

sulting macrostructure has the minimum structural compliance induced by both mechanical and 

thermal loads with a specified amount of the base material. Thus, the optimization problem is 

formulated at the macroscale level with regard to the design variables at the microscale level 

Minimize
ΩY1 ,ΩY2 ,…,ΩY𝑁𝑁

   𝑓𝑓�ΩY1 ,ΩY2 , … ,ΩY𝑁𝑁� = � 𝒃𝒃 ∙ 𝒖𝒖 𝑑𝑑Ω
 

∪𝐼𝐼=1
𝑁𝑁 Ω𝐼𝐼

+� 𝒕̅𝒕 ∙ 𝒖𝒖 𝑑𝑑Γ
 

Γ𝑡𝑡
+� 𝛼𝛼𝑇𝑇𝛥𝛥𝛥𝛥 𝜺𝜺0:𝔻𝔻𝐼𝐼

𝐻𝐻: 𝜺𝜺(𝒖𝒖) 𝑑𝑑Ω
 

∪𝐼𝐼=1
𝑁𝑁 Ω𝐼𝐼

 

subject to    𝑎𝑎(𝒖𝒖,𝒗𝒗) = 𝑎𝑎�(Δ𝑇𝑇,𝒗𝒗) + ℓ(𝒗𝒗),   ∀𝒗𝒗 ∈ 𝑈𝑈𝑎𝑎𝑎𝑎  

𝑔𝑔𝐼𝐼(ΩY𝐼𝐼) = � 𝑑𝑑Ω
 

ΩY𝐼𝐼

− 𝑉𝑉𝑓𝑓𝐼𝐼|Y𝐼𝐼| ≤ 0,   𝐼𝐼 = 1,2, … ,𝑁𝑁 

(7) 

where the objective 𝑓𝑓 is defined as the total macrostructural compliance induced by mechanical 

and thermal loads, 𝑔𝑔𝐼𝐼 is the volume fraction constraint for Y𝐼𝐼 unit cell and 𝑉𝑉𝑓𝑓𝐼𝐼 is the corresponding 

prescribed volume fraction constraint, |Y𝐼𝐼| is the volume of the unit cell Y𝐼𝐼. 

3. Level set topology optimization method 
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In this study, Hadamard’s boundary variation method is considered for shape optimization and 

the level set function is used to represent the boundary of a material microstructure implicitly, 

�
𝜙𝜙(𝒙𝒙) ≥ 0                      𝒙𝒙 ∈ ΩY
𝜙𝜙(𝒙𝒙) = 0                      𝒙𝒙 ∈ ΓY
𝜙𝜙(𝒙𝒙) < 0   𝒙𝒙 ∈ Y\ (ΩY ∪ ΓY)

 (8) 

where 𝜙𝜙(𝒙𝒙) is the level set function at 𝒙𝒙 in the unit cell Y, ΩY is the material domain and ΓY is its 

boundary. The benefit of level set method is that a structure with smooth and well-defined bound-

ary is always guaranteed, which is not easily attained by the traditional density-based methods. 

Thus, the optimized design can be directly additively manufactured without post-processing step 

so that the possible performance loss can be avoided. The following Hamilton-Jacobi equation 

[67–69] is solved to update the boundary described by 𝜙𝜙 

𝜕𝜕𝜕𝜕(𝒙𝒙, 𝑡𝑡)
𝜕𝜕𝜕𝜕

+ 𝑉𝑉𝑛𝑛(𝒙𝒙)|𝛻𝛻𝛻𝛻(𝒙𝒙, 𝑡𝑡)| = 0 (9) 

where 𝑉𝑉𝑛𝑛 denotes the normal inward velocity of the structural boundary point 𝒙𝒙 and 𝑡𝑡 is the pseudo 

time. Eq. (9) can be written in a discrete form as 

𝜙𝜙𝑗𝑗𝑘𝑘+1 = 𝜙𝜙𝑗𝑗𝑘𝑘 − Δ𝑡𝑡�∇𝜙𝜙𝑗𝑗𝑘𝑘�𝑉𝑉𝑛𝑛,𝑗𝑗 (10) 

where 𝑘𝑘 is the number of optimization iteration, Δ𝑡𝑡 is the pseudo time step and 𝑉𝑉𝑛𝑛,𝑗𝑗 is the normal 

velocity at boundary point 𝑗𝑗. Here 𝑉𝑉𝑛𝑛,𝑗𝑗 are treated as the design variables updated by optimization. 

As a periodical re-initialization of 𝜙𝜙 into the signed distance function is typically needed to regu-

larize the level set function, in this study, 𝜙𝜙 is reinitialized after every update in Eq. (10). 

3.1. Multiscale optimization problem decomposition 

Instead of solving the general optimization problem Eq. (7) directly, a variant of SLP method 

proposed by [70] is used, in which Eq. (7) are linearized about each material design Ω𝑌𝑌𝐼𝐼
𝑘𝑘  at current 

iteration 𝑘𝑘 and then decomposed into 𝑁𝑁 sub-problems [43] as follows 
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minimize
ΔΩY𝐼𝐼

   
𝜕𝜕𝜕𝜕
𝜕𝜕ΩY𝑘𝑘𝐼𝐼

∙ ΔΩY𝑘𝑘𝐼𝐼 

subject to   
𝜕𝜕𝑔𝑔𝐼𝐼
𝜕𝜕ΩY𝑘𝑘𝐼𝐼

∙ ΔΩY𝑘𝑘𝐼𝐼 ≤ −𝑔̅𝑔𝐼𝐼𝑘𝑘,   𝐼𝐼 = 1,2, … ,𝑁𝑁 

ΔΩY𝐼𝐼 ≤ ΔΩY𝑘𝑘𝐼𝐼 ≤ ΔΩY𝐼𝐼 

(11) 

where ΔΩY𝑘𝑘𝐼𝐼 is the update for the current microscale design ΩY𝑘𝑘𝐼𝐼 within the bounds ΔΩY𝐼𝐼 and ΔΩY𝐼𝐼, 

which are further determined by the Courant-Friedrichs-Lewy (CFL) stability condition as detailed 

later.  𝑔̅𝑔𝐼𝐼𝑘𝑘 denotes the constraint function change at the 𝑘𝑘𝑡𝑡ℎ iteration. The decomposed sub-problem 

for each unit cell can be solved independently and simultaneously. It is therefore, straight forward 

to distribute the computation and take advantage of parallel computing [43]. 

The method proposed in [71] is reproduced herein to solve Eq. (11). For a specific unit cell, 

the material level set boundary is first discretized into 𝑛𝑛𝑛𝑛 points. The element area fractions are 

then computed and used to interpolate the equilibrium Eqns. (3) to (6) to obtain the displacement 

field 𝒖𝒖 and effective elasticity tensor 𝔻𝔻𝐻𝐻. The sub-problem in Eq. (11) can be further expressed in 

a discrete form as (subscript 𝐼𝐼 and superscript 𝑘𝑘 are dropped for simplicity) 

𝜕𝜕𝜕𝜕
𝜕𝜕ΩY

∙ ΔΩY ≈�𝛥𝛥𝛥𝛥�𝑠𝑠𝑓𝑓,𝑗𝑗𝑙𝑙𝑗𝑗�𝑉𝑉𝑛𝑛,𝑗𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗=1

= 𝛥𝛥𝛥𝛥 𝑺𝑺𝑓𝑓 ∙ 𝑽𝑽𝑛𝑛 

𝜕𝜕𝜕𝜕
𝜕𝜕ΩY

∙ ΔΩY ≈�𝛥𝛥𝛥𝛥�𝑠𝑠𝑔𝑔,𝑗𝑗𝑙𝑙𝑗𝑗�𝑉𝑉𝑛𝑛,𝑗𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗=1

= 𝛥𝛥𝛥𝛥 𝑺𝑺𝑔𝑔 ∙ 𝑽𝑽𝑛𝑛 

(12) 

where 𝑠𝑠𝑓𝑓,𝑗𝑗 and 𝑠𝑠𝑔𝑔,𝑗𝑗 are the objective and constraint function sensitivities on the boundary point 𝑗𝑗, 

respectively, 𝑙𝑙𝑗𝑗 is the discrete boundary length for point 𝑗𝑗, 𝑺𝑺𝑓𝑓 and 𝑺𝑺𝑔𝑔 are vectors collecting all the 

sensitivity and discrete boundary length multiplication, and 𝑽𝑽𝑛𝑛 is the vector containing the bound-

ary point normal velocities 𝑉𝑉𝑛𝑛,𝑗𝑗. By replacing Δ𝑡𝑡𝑽𝑽𝑛𝑛𝑘𝑘  with 𝛽𝛽𝑘𝑘�𝑺𝑺𝑓𝑓𝑘𝑘 + 𝜆𝜆𝑘𝑘𝑺𝑺𝑔𝑔𝑘𝑘�/�𝑺𝑺𝑓𝑓𝑘𝑘 + 𝜆𝜆𝑘𝑘𝑺𝑺𝑔𝑔𝑘𝑘�2 [70], the 

actual optimization problem to be solved at current iteration 𝑘𝑘 can be expressed by 
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min
𝛽𝛽𝑘𝑘,𝜆𝜆𝑘𝑘

   𝛥𝛥𝛥𝛥𝑺𝑺𝑓𝑓𝑘𝑘 ∙ 𝑽𝑽𝑛𝑛𝑘𝑘(𝛽𝛽𝑘𝑘,𝜆𝜆𝑘𝑘) 

s.t.   Δ𝑡𝑡𝑺𝑺𝑔𝑔𝑘𝑘 ∙ 𝑽𝑽𝑛𝑛𝑘𝑘(𝛽𝛽𝑘𝑘,𝜆𝜆𝑘𝑘) ≤ −𝑔̅𝑔𝑘𝑘 

𝑽𝑽𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘 ≤ 𝑽𝑽𝑛𝑛𝑘𝑘 ≤ 𝑽𝑽𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘  

(13) 

where  𝑽𝑽𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘  and 𝑽𝑽𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘  are the minimum and maximum velocities derived from the CFL con-

dition, respectively. The optimization problem Eq. (13) is solved by the sequential least square 

SQP (SLSQP) method and the optimized 𝛽𝛽𝑘𝑘  and  𝜆𝜆𝑘𝑘  are substituted back to  Δ𝑡𝑡𝑽𝑽𝑛𝑛𝑘𝑘 = 𝛽𝛽𝑘𝑘�𝑺𝑺𝑓𝑓𝑘𝑘 +

𝜆𝜆𝑘𝑘𝑺𝑺𝑔𝑔𝑘𝑘�/�𝑺𝑺𝑓𝑓𝑘𝑘 + 𝜆𝜆𝑘𝑘𝑺𝑺𝑔𝑔𝑘𝑘�2 to obtain the optimum Δ𝑡𝑡𝑽𝑽𝑛𝑛𝑘𝑘  at iteration 𝑘𝑘. Δ𝑡𝑡𝑽𝑽𝑛𝑛𝑘𝑘  is finally substituted back 

into Eq. (10) to update the level set function. For all examples in this paper, all boundary point 

movements at each iteration are limited to a half of a level set grid size. 

3.2. Sensitivity analysis  

The shape sensitivities of the objective 𝑓𝑓 and constraint function 𝑔𝑔𝐼𝐼 are needed to solve the 

decomposed sub-problems in Eq. (13). Ignoring the body forces in our problem, the compliance 

objective sensitivity can be derived as 

𝑓𝑓′(ΩY𝐼𝐼) = −� �𝐷𝐷𝐼𝐼,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻′ 𝜀𝜀𝑖𝑖𝑖𝑖(𝒖𝒖)𝜀𝜀𝑘𝑘𝑘𝑘(𝒖𝒖)− 2𝛼𝛼𝑇𝑇𝛥𝛥𝛥𝛥𝐷𝐷𝐼𝐼,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻′ 𝜀𝜀𝑖𝑖𝑖𝑖0 𝜀𝜀𝑘𝑘𝑘𝑘(𝒖𝒖)�𝑑𝑑Ω
 

Ω∈Ω𝐼𝐼
 (14) 

where according to Eqs. (5) and (6), the shape sensitivity of 𝐷𝐷𝐼𝐼,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻  can be written as 

𝐷𝐷𝐼𝐼,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐻𝐻′ (ΩY𝐼𝐼) =
1

|Y𝐼𝐼|
� 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝜀𝜀𝑝̅𝑝𝑝𝑝

(𝑖𝑖𝑖𝑖) − 𝜀𝜀𝑝𝑝𝑝𝑝
∗(𝑖𝑖𝑖𝑖)��𝜀𝜀𝑟̅𝑟𝑟𝑟

(𝑘𝑘𝑘𝑘) − 𝜀𝜀𝑟𝑟𝑟𝑟
∗(𝑘𝑘𝑘𝑘)�𝑉𝑉𝑛𝑛𝑑𝑑Γ

 

ΓY𝐼𝐼

 (15) 

The shape sensitivity for the volume fraction constraint can be easily written as 

𝑔𝑔𝐼𝐼′(ΩY𝐼𝐼) = � 𝑉𝑉𝑛𝑛𝑑𝑑Γ
 

ΓY𝐼𝐼

 (16) 

After calculating the sensitivities at Gauss points, the least square method is used to interpolate 

the sensitivities 𝑺𝑺𝑓𝑓 and 𝑺𝑺𝑔𝑔 at a boundary point [71]. 
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4. Numerical examples 

Several numerical examples are presented in this section to design material microstructures for 

a macrostructure under both mechanical and thermal loads. For the sake of simplicity, all involved 

quantities are dimensionless and normalized, and same mesh is used for the level set function and 

finite element analysis. The design domains of all the macrostructures and microstructures are 

discretized by 4-node quadrilateral bilinear elements with size 1×1, and the square unit cell with a 

100×100 FE mesh is used for all the material microstructure design domains. It is assumed that 

the isotropic base material has Young’s modulus 𝐸𝐸 = 1, Poisson’s ratio 𝜈𝜈 = 0.3 and thermal expan-

sion coefficient 𝛼𝛼𝑇𝑇 = 0.001. The void elements are assigned a weak Young’s modulus of 𝐸𝐸 = 10-

6. The least square interpolation radius is set as 2. The optimization is terminated if the relative 

difference of objective function values between two successive steps is less than 10-4. 

4.1. Material design for a cantilever beam 

The first example is to design material microstructures for a cantilever beam as shown in Figure 

2(a). The beam is fixed on the left edge and a downward load 𝐹𝐹 = 1 is applied at the center of the 

right edge. The design domain experiences a uniform temperature change 𝛥𝛥𝛥𝛥 and the allowable 

volume fraction of the solid phase for the microstructure is set to be 40% of the total unit cell 

volume. Figure 2(b) shows the initial design used for the microstructure domain. 
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Figure 2. Optimized material microstructures for the cantilever beam with different 𝐿𝐿×𝐻𝐻 
under 𝛥𝛥𝛥𝛥 = 0 (left: unit cell; middle: 3×3 array; right: effective elasticity matrix). 

The optimized material designs with Δ𝑇𝑇 = 0 and various 𝐿𝐿×𝐻𝐻 are firstly generated as shown 

in Figure 2(c)-(e), together with their optimized effective elasticity matrices. One can clearly see 

from Figure 2 that the macrostructural geometry has a big impact on the optimized material mi-

crostructure. When a long cantilever beam (𝐿𝐿×𝐻𝐻 = 80×20) is considered, material is designed with 

a larger stiffness in the horizontal direction to improve the bending resistance, as shown in Figure 

2(c). As the beam gets shorter, the material stiffness in the vertical direction gradually increases to 

resist shearing, as indicated in Figure 2(d) and (e). It is worth noting that the designs of material 

microstructure with Δ𝑇𝑇 = 0 are all orthotropic even though no orthotropy constraint is enforced. 

�
0.354 0.027 0
0.027 0.035 0

0 0 0.032
� 

�
0.255 0.074 0
0.074 0.113 0

0 0 0.075
� 

�
0.097 0.078 0
0.078 0.263 0

0 0 0.079
� 

(c) 𝐿𝐿×𝐻𝐻 = 80×20, 𝛥𝛥𝛥𝛥 = 0, 𝑓𝑓 = 942.83 

(d) 𝐿𝐿×𝐻𝐻 = 40×40, 𝛥𝛥𝛥𝛥 = 0, 𝑓𝑓 = 49.51 

(e) 𝐿𝐿×𝐻𝐻 = 20×80, 𝛥𝛥𝛥𝛥 = 0, 𝑓𝑓 = 15.99 

(a) Design domian (b) Initial design  
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Figure 3. Optimized material microstructures for the cantilever beam with various 𝐿𝐿×𝐻𝐻 
under 𝛥𝛥𝛥𝛥 = 200 and 𝛥𝛥𝛥𝛥 = 500 (left: unit cell; middle: 3×3 array; right: effective elasticity 

matrix). 

Next, material designs with the same problem setting but non-zero temperature change 𝛥𝛥𝛥𝛥 = 

200 and 𝛥𝛥𝛥𝛥 = 500 are generated in Figure 3 in which distinct differences in the designs can be 

observed when compared to the results with 𝛥𝛥𝛥𝛥 = 0 in Figure 2. The effective elasticity matrices 

indicate that the optimized material designs become anisotropic with an increasing Δ𝑇𝑇 and aniso-

tropic material can lead to a more minimum macrostructural compliance in the presence of the 

thermal load. The material designs also reduce 𝐷𝐷11𝐻𝐻 , 𝐷𝐷12𝐻𝐻 , 𝐷𝐷21𝐻𝐻  and 𝐷𝐷22𝐻𝐻  values with an increas-

ing Δ𝑇𝑇 . An examination of Eq. (4) reveals that these four components are directly related to the 

thermal expansion compliance therefore, reducing 𝐷𝐷11𝐻𝐻 , 𝐷𝐷12𝐻𝐻 , 𝐷𝐷21𝐻𝐻  and 𝐷𝐷22𝐻𝐻  minimizes the thermal 

compliance component. The 𝐷𝐷12𝐻𝐻  and 𝐷𝐷21𝐻𝐻  values become even negative when Δ𝑇𝑇 = 500 (see Fig-

ure 3(e) and (f)). Figure 4 depicts the iterative histories of the objective and constraint functions 

for obtaining the design in Figure 3(b), along with the intermediate designs at various iterations. It 

is observed that the structural compliance decreases rapidly during the first 100 iterations, due to 

�
0.342 0.026 -0.002
0.026 0.037 -0.004
-0.002 -0.004 0.032

� 

�
0.196 0.037 0.007
0.037 0.083 0.004
0.007 0.004 0.073

� 

�
0.051 -0.005 0.006
-0.005 0.173 0.020
0.006 0.020 0.062

� 

�
0.340 0.020 -0.001
0.020 0.025 0.004
-0.001 0.004 0.029

� 

�
0.102 -0.024 0.001
-0.024 0.063 0.010
0.001 0.010 0.061

� 

�
0.045 -0.030 0.011
-0.030 0.109 0.010
0.011 0.010 0.045

� 

(a) 𝐿𝐿×𝐻𝐻 = 80×20, Δ𝑇𝑇 = 200, 𝑓𝑓 = 995.40 

(b) 𝐿𝐿×𝐻𝐻 = 40×40, Δ𝑇𝑇 = 200, 𝑓𝑓 = 78.01 

(c) 𝐿𝐿×𝐻𝐻 = 20×80, Δ𝑇𝑇 = 200, 𝑓𝑓 = 30.60 

(d) 𝐿𝐿×𝐻𝐻 = 80×20, Δ𝑇𝑇 = 500, 𝑓𝑓 = 1153.13 

(e) 𝐿𝐿×𝐻𝐻 = 40×40, Δ𝑇𝑇 = 500, 𝑓𝑓 = 132.51 

(f) 𝐿𝐿×𝐻𝐻 = 20×80, Δ𝑇𝑇 = 500, 𝑓𝑓 = 55.31 
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the increasing porosity of the material design which reduces the thermal expansion compliance. 

As the porosity increases, the mechanical load resistance of the design is weakened. The compli-

ance then increases until the volume fraction constraint becomes feasible at around iteration 200. 

After that, the optimization converges smoothly to an optimized design that has a balanced re-

sistance between the mechanical and thermal loads. 

 

Figure 4. Convergence history of the objective function and volume fraction constraint 
for cantilever beam with 𝐿𝐿×𝐻𝐻 = 40×40, 𝛥𝛥𝛥𝛥 = 200. 

It is noted that the thermal loads are less influential in the long cantilever beam 𝐿𝐿×𝐻𝐻 = 80×20 

even when Δ𝑇𝑇 is high comparing the designs in Figure 3(a) and (d) to Figure 2(c). This is because 

for the long beam, a small decrease in the material stiffness in horizontal direction substantially 

reduces the beam bending resistance, resulting in a large increase in the mechanical component of 

the compliance. In other words, the mechanical load is the dominant influence on the final design 

over the thermal load in the long beam. As the beam gets shorter, the compliance contribution 

from the mechanical load decreases and that the thermal contribution becomes more influential in 

Figure 3(b), (c), (e) and (f). These results demonstrate that the geometry of the macrostructural 

design has a fundamental impact on the material design with non-zero thermal loads. 
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The proposed approach can design multiple material subdomains at different locations of the 

macrostructure and with different volume fraction constraints. To demonstrate this, a cantilever 

beam with 𝐿𝐿×𝐻𝐻 = 80×50 and 4 subdomains is considered as shown in Figure 5(a), in which 𝐻𝐻1 = 

𝐻𝐻4 = 10 and 𝐻𝐻2 = 𝐻𝐻3 = 15. The volume fraction constraints are set as 0.5 for Ω2 and Ω3, and 1 for 

Ω1 and Ω4, i.e. no volume constraint is enforced for the top and bottom subdomains. 

The optimized microstructures with 𝛥𝛥𝛥𝛥 = 0 and 𝛥𝛥𝛥𝛥 = 500 are shown in Figure 5(b) and (c), 

respectively, along with the design details given in Table I. One can see from Figure 5(b) that the 

optimized material designs are orthotropic and symmetric about the central horizontal axis when 

𝛥𝛥𝛥𝛥 = 0. However, the orthotropy and symmetry are broken down when the thermal load is non-

zero, i.e. 𝛥𝛥𝛥𝛥 = 500, in Figure 5(c). This is due to the fact that the thermal expansion load is a 

pressure dependent load. The material designs would be different in the tensile region of the top 

half of the beam from the compressive region in the bottom half.  

One can see that although the allowable material for the top and bottom subdomains are 100%, 

porous material designs are suggested for these two regions when 𝛥𝛥𝛥𝛥 = 500. This is because the 

fully solid material can produce large thermal expansion compliance compared to the porous ma-

terial. Thus, instead of using up all the allowable material, it is better to have a porous design in 

the presence of the non-zero thermal loads. To illustrate the results, Figure 5(b) and (c) array 16×10 

optimized material unit cells. It should be noted that due to the assumption of length scale separa-

tion in the homogenization method, the optimum unit cell sizes should be infinitely small. Thus, 

the selection of unit cell sizes can affect the final material design and its performance. Typically, 

the more number of unit cells are considered, the better performance will be obtained. When the 

unit cell sizes are sufficiently small, the optimized design and its performance would not change 

significantly. This has been demonstrated in [52]. 
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Figure 5. Optimized material microstructures for the cantilever beam with 4 material 
subdomains and different 𝛥𝛥𝛥𝛥. 

Table I. Elasticity matrix and volume fraction of the microstructure designs in Figure 
5. 

Material 
subdomain 

Figure 5(b) Figure 5(c) 

Effective elasticity matrix Volume 
fraction Effective elasticity matrix Volume 

fraction 

ΩY1  �
1.099 0.330 0
0.330 1.099 0

0 0 0.385
� 1 �

0.274 -0.073 0.013
-0.073 0.116 -0.002
0.013 0.002 0.126

� 0.910 

ΩY2  �
0.140 0.114 0
0.114 0.278 0

0 0 0.115
� 0.5 �

0.042 -0.028 -0.023
-0.028 0.080 0
-0.023 0 0.068

� 0.5 

ΩY3  �
0.140 0.114 0
0.114 0.278 0

0 0 0.115
� 0.5 �

0.036 -0.021 0.019
-0.021 0.066 0.014
0.019 0.014 0.083

� 0.5 

(a) 4 subdomains of cantilever beam  

(b) 𝐿𝐿×𝐻𝐻 = 80×50, Δ𝑇𝑇 = 0, 𝑓𝑓 = 39.82 

(c) 𝐿𝐿×𝐻𝐻 = 80×50, Δ𝑇𝑇 = 500, 𝑓𝑓 = 268.21 

Ω𝑌𝑌1  Ω𝑌𝑌2
 

Ω𝑌𝑌3
 Ω𝑌𝑌4

 

Ω1 
Ω2 
Ω3 
Ω4 

Ω𝑌𝑌1
 Ω𝑌𝑌2

 

Ω𝑌𝑌4
 Ω𝑌𝑌3
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ΩY4  �
1.099 0.330 0
0.330 1.099 0

0 0 0.385
� 1 �

0.293 -0.064 0.029
-0.064 0.088 -0.003
0.029 -0.003 0.110

� 0.865 

 

Additional parametric study is carried out to examine the influence of the number of material 

subdomains and the temperature change on the optimized macrostructural objective function. To 

this end, a 𝐿𝐿×𝐻𝐻 = 80×60 cantilever beam composed of uniformly sized subdomains are considered, 

i.e. 𝐻𝐻1 = 𝐻𝐻2 = … = 𝐻𝐻𝑛𝑛𝑛𝑛 in Figure 5(a) where 𝑛𝑛𝑛𝑛 indicates the number of subdomains. The results 

are shown in Table II, which reveal that when the number of subdomain is set to 1, an increase of 

𝛥𝛥𝑇𝑇 leads to a design with a greater compliance due to the increasing thermal compliance associated 

with the increasing temperature. When 𝛥𝛥𝛥𝛥 = 500, an increase in 𝑛𝑛𝑛𝑛 leads to a lower compliance. 

This is due to the fact that when a larger number of subdomains is considered in the optimization, 

a larger design space is explored by the optimizer hence, an improved design performance can be 

expected. 

Table II. Macrostructural compliance comparison with the optimized material micro-
structures with varying number of material subdomains and 𝛥𝛥𝛥𝛥, 𝐿𝐿×𝐻𝐻 = 80×60. 

𝑛𝑛𝑛𝑛 = 1 Δ𝑇𝑇 = 500 
Δ𝑇𝑇 Compliance 𝑛𝑛𝑛𝑛 Compliance 
0 81.88 1 282.26 

100 105.32 2 264.49 
200 152.75 3 246.42 
300 196.04 4 235.88 
400 244.16 5 227.03 
500 282.26 6 221.34 

 

4.2. Material design for a simply supported beam 

The second example is the material design for a simply supported beam in Figure 6. The beam 

is subjected to Δ𝑇𝑇 and 3 downward loads are applied on the top surface of the beam. The allowable 
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volume fraction of the solid phase for the material microstructure is set to be 40% of the total unit 

cell volume. The initial design for the microstructure is the same as the one shown in Figure 2(b). 

 

Figure 6. Simply supported beam with length 𝐿𝐿 and height 𝐻𝐻. 

The designs of the microstructures for the simply supported beam under a single loading case, 

i.e., 𝐹𝐹1 = 1 and 𝐹𝐹2 = 0, are firstly generated, and the resulting topologies with a range of Δ𝑇𝑇 and 

various 𝐿𝐿×𝐻𝐻 are given in Figure 7 along with the corresponding effective elasticity matrices. One 

can see from comparing Figure 7(a) and (d) versus Figure 2(c) and Figure 3(d) that even when the 

macrostructure geometries and Δ𝑇𝑇 are the same, the macrostructural boundary condition has a sig-

nificant influence on the optimized material design. Once again, orthotropic material designs are 

optimum for the simply supported beam when Δ𝑇𝑇 = 0, while anisotropic microstructures with 

lower 𝐷𝐷11𝐻𝐻 , 𝐷𝐷12𝐻𝐻 , 𝐷𝐷21𝐻𝐻  and 𝐷𝐷22𝐻𝐻  values are found to be optimum when Δ𝑇𝑇 = 500. The 𝐿𝐿/𝐻𝐻 ratio again 

affects the material designs for both Δ𝑇𝑇 = 0 and Δ𝑇𝑇 = 500 cases in terms of material horizontal and 

vertical stiffness. Therefore, the optimum macroscale and microscale designs are tightly coupled. 
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Figure 7. Optimized material microstructures for the simply supported beam with 
different 𝐿𝐿×𝐻𝐻 under 𝛥𝛥𝛥𝛥 = 0 and 𝛥𝛥𝛥𝛥 = 500 (left: unit cell; middle: 3×3 array; right: 

effective elasticity matrix). 

Next, the simply supported beam under 3 symmetric loadings (i.e., 𝐹𝐹1 = 𝐹𝐹2 = 1) is optimized 

and their results are presented in Figure 8. Comparing Figure 7 to Figure 8, it is seen that for both 

Δ𝑇𝑇 = 0 and Δ𝑇𝑇 = 500 cases, the material microstructures with 3 loadings are generally different 

from those with 1 loading, and have higher stiffness in both horizontal (𝐷𝐷11) and vertical directions 

(𝐷𝐷22). It is interesting to notice from the right half of Figure 8 that even with non-zero temperature 

change Δ𝑇𝑇 =500, the optimized materials are completely or nearly orthotropic with 3 symmetric 

loadings, which is usually anisotropic with 1 loading. This example demonstrates that the loading 

cases of the macrostructure could also affect the anisotropy of the optimized material design even 

if Δ𝑇𝑇 is non-zero. 
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Figure 8. Optimized material microstructures for the 3 loadings simply supported 

beam with different 𝐿𝐿×𝐻𝐻 under 𝛥𝛥𝛥𝛥 = 0 and 𝛥𝛥𝛥𝛥 = 500 (left: unit cell; middle: 3×3 ar-
ray; right: effective elasticity matrix). 

5. Conclusions 

This paper introduces a level set topology optimization method to directly design architected 

material microstructures tailored for a macrostructure under both mechanical and thermal loads, 

based on the idea of multiscale topology optimization. The design variables are defined at the 

material scale and updated by optimizing the objective function formulated at the structural mac-

roscale. The homogenization method is used to calculate the effective elastic matrix that bridges 

these two scales and the inverse homogenization method is used to determine the optimum micro-

structures. The numerical results demonstrate the effectiveness of the method and show that the 

optimized material designs for a thermoelastic macrostructure highly depends on the geometry, 

temperature change, mechanical loading and boundary conditions of the macroscopic structural 

design. In addition, the thermal loads can significantly influence the optimized material design in 

terms of material orthotropy, symmetry and porosity. When an increasing number of the material 
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subdomains is considered, a better overall performing and improved material designs is obtained. 

By incorporating the actual properties of AM base materials (e.g. thermoplastics, metals, alloys) 

and choosing the reasonable unit cell sizes, the proposed method can generate optimized archi-

tected material that is ready for AM. The current work can be naturally extended to simultaneously 

design macrostructural geometry and microscale material for thermoelasticity, which will be in-

vestigated in our future works. 
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