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ABSTRACT

Motivation: A key premise of open source software is the ability to

copy code to other open source projects (white-box reuse). Such

copying accelerates development of new projects, but the code flaws

in the original projects, such as vulnerabilities, may also spread

even if fixed in the projects from where the code was appropriated.

The extent of the spread of vulnerabilities through code reuse, the

potential impact of such spread, or avenues for mitigating risk of

these secondary vulnerabilities has not been studied in the context

of a nearly complete collection of open source code.

Aim: We aim to find ways to detect the white-box reuse induced

vulnerabilities, determine how prevalent they are, and explore how

they may be addressed.

Method: We rely on World of Code infrastructure that provides

a curated and cross-referenced collection of nearly all open source

software to conduct a case study of a few known vulnerabilities. To

conduct our case study we develop a tool, VDiOS, to help identify

and fix white-box-reuse-induced vulnerabilities that have been

already patched in the original projects (orphan vulnerabilities).

Results: We find numerous instances of orphan vulnerabilities

even in currently active and in highly popular projects (over 1K

stars). Even apparently inactive projects are still publicly available

for others to use and spread the vulnerability further. The often

long delay in fixing orphan vulnerabilities even in highly popular

projects increases the chances of it spreading to new projects. We

provided patches to a number of project maintainers and found

that only a small percentage accepted and applied the patch. We

hope that VDiOS will lead to further study and mitigation of risks

from orphan vulnerabilities and other orphan code flaws.

CCS CONCEPTS

· Software and its engineering→ Software configuration man-

agement and version control systems.
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1 INTRODUCTION

The rapid growth of high quality open source software (OSS) has

significantly increased the different kinds of software that can

be built upon, thus potentially enhancing developer productiv-

ity [29], increasing code quality [12], and improving software se-

curity [15] [17]. A key feature of open source code is that it may

be copied into new projects1, but such copying may bring vulner-

abilities or other issues [15]. We define łorphan vulnerabilitiesž

as vulnerabilities in copied code that still exist in a project after

they are discovered and fixed in another project. In some cases, the

copying is a result of forking, and the link to the original code is

readily available. In other cases, especially when the copying is a

result of many iterations, the link to the original code may not exist.

Either way, the vulnerable code is publicly exposed until the orphan

vulnerability is fixed or the vulnerable code is removed. The aim of

this study is to determine if the ability to copy OSS code actually

results in widespread orphan vulnerabilities. Orphan vulnerabil-

ities present significant risk for several reasons. First, an exploit

for such vulnerabilities may be widely known, making it easier to

attack software with known vulnerabilities [6]. Second, the code

in such repositories may be copied to other projects that may not

be aware of the vulnerability. Third, code in such repositories may

be built into applications and run by unsuspecting users. Fourth, if

a substantial number of OSS projects contain known and unfixed

vulnerabilities, OSS may suffer reputational damage as a dump of

low quality code where it may be hard to find high-quality projects.

To better understand and address the problem of copied and

unpatched code, we first would like to create a tool that, given a

vulnerability fix in one project, identifies all other projects that

contain either still vulnerable or fixed code. Such a tool, if widely

deployed, would have at least two positive impacts: inform main-

tainers and users of still vulnerable projects about the risks of the

vulnerability in their code and warn users that contemplate reusing

such code about the unpatched vulnerabilities.

Second, we want to determine if and how the still vulnerable

projects may differ from the patched ones. For example, we expect

that themore active projects aremore likely to fix known vulnerabil-

ities than the less active projects. This would suggest that the risks

posed by unpatched projects may be attenuated by, presumably,

more narrow deployment. Linus’s Law states that łgiven enough

1Subject to licensing terms of the original and target project.
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eyeballs, all bugs are shallowž [33]. This would suggest that projects

with more developers are less likely to contain vulnerabilities. But

little empirical evidence exists to support this [11]. We want to see

if our results support Linus’s Law.

Third, we would like to understand how quickly patches to

known vulnerabilities propagate to unpatched projects. We expect

that older vulnerabilities are more likely to be fixed in a project

than the more recent ones as it takes time and effort for project

maintainers to patch their project. Presence of such a trend would

suggest that convenient tools supporting such patching may speed

up the deployment of patches.

Fourth, we want to determine if the tool we introduced detects

vulnerabilities of a different kind than one of themost widely known

tools, dependabot [9], to determine if the approach used in our tool

is practically relevant or if developers may safely rely on depend-

abot.

Fifth, we would like to identify how many of the projects that

contain orphan vulnerabilities are not just forked from the original

project where the vulnerability was fixed. Since many forks are

done simply to contribute a patch, not to start a new development,

it would not be surprising if such forks are not updated and do not

patch their code. For any developer, it would be easy to look up

the origin of the fork to get the most authoritative code. However,

it may be harder to do with cloned projects. If, on the other hand,

many of the projects are not forks, it would be much more difficult

for potential users to identify such authoritative versions.

Sixth, we would like to understand to what extent the still vul-

nerable projects are willing to accept patches of the vulnerability

offered to them. For example, while dependabot creates warnings

and provides patches, not all projects are willing to accept them as

the patches may break functionality.

To produce the tool, VDiOS, we build on top of World of Code

(WoC) [25] infrastructure that attempts to approximate the source

code in public git version control systems and provides cross-

references among versions of the code, projects, and changes to the

code.

To answer our research questions, we employ a mixed meth-

ods approach where we analyze large volumes of data to select

candidates for a case study. Such an approach is suitable for our

investigation because on one hand we have a very large and com-

plex datasource representing almost all open source code, and we

need computational approaches to select meaningful examples for

our case study. The case study approach is needed because we

have limited understanding of the problems, and a case study ap-

proach provides łan in-depth, multi-faceted exploration of complex

issues in their real-life settingsž [36]. We carefully pick the subjects

(vulnerabilities) to shed light on all of the above research questions.

It is important to note that here we are exclusively focused on the

so-called white box reuse where the source code is copied instead

of employed as library/system call. Furthermore, we only consider

matching any exact version of the vulnerable code, though the

approach can be straightforwardly extended to cases where the

copied code has been modified and does not match exactly any of

the known fixed or vulnerable versions.

We succeeded in building VDiOS, a tool that identifies projects

with orphan vulnerabilities, and applied it in four cases investi-

gating four vulnerabilities in PNG library, OpenSSL, and xz com-

pression (written in Go language). None of the vulnerabilities were

reported by dependabot in thousands of vulnerable projects that

are not forks of the original projects. Only a fairly small fraction of

projects accepted the pull request fixing the known vulnerability.

On the positive side, we found older vulnerabilities to be more

likely to be fixed, and the still-vulnerable projects tended to be less

active than the patched ones.

In summary, our work makes the following contributions:

• We provide a working approach to find file-level exact code

reuse in any language across all open source repositories.

• We provide a tool to implement our approach.

• We conduct a case study with four cases to answer our re-

search questions regarding vulnerabilities that are spread

via file-level code reuse.

Our primary objective is to reduce security vulnerabilities in

software by identifying cases where a known vulnerability has

been fixed, but copies of versions that are still vulnerable are still

in use in other projects. This is a well-known security risk in the

software supply chain. The Open Web Application Security Project

(OWASP) lists łUsing Components with Known Vulnerabilitiesž in

its Top 10WebApplication Security Risks (OWASPTop 10) [32]. The

software supply chain is a significant source of data breaches [23],

with one estimate suggesting 80% of such breaches come from

supply chain vulnerabilities [28]. Finding file-level duplication and

locating where a file originated helps identify vulnerable or buggy

code.

In the rest of the paper we start from the general background

on the data used in the study in Section 2, discuss our research

methodology in Section 3, present our VDiOS tool in Section 4, and

the results from our case study in Section 5. We then discuss these

results in Section 6. Finally we present limitations in Section 7,

related work in Section 8, and conclude in Section 9.

2 BACKGROUND

2.1 Software Reuse

Software reuse is the practice of using existing software components

when building new software systems [22]. There are two types of

software reuse, often referred to as black-box and white-box reuse.

Black-box reuse refers to external code that is used by a project

but generally not committed into the project’s repository. This

may include, for example, linkable libraries. Black-box reuse is

code that is not modified by the developer. White-box reuse refers

to the case where source code is reused by copying the original

code and committing the duplicate code into a new repository.

White-box reuse code may be modified by the developer. White-box

reuse results in multiple copies of the source code across multiple

repositories. These copies may be changed, and therefore, there may

be multiple different versions of the code. This paper specifically

looks at white-box reuse. We look at code reuse on the individual

file level, not at the function or method level.

White-box reuse presents several challenges. Vulnerabilities and

other bugs may be found and fixed in a copy of the code that exists

in one project, but the fixes may not get propagated to all projects
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that use the file. Similarly, useful enhancements may have been

added to different versions of the code. The result is that fixes to

known vulnerabilities as well as other bug fixes and enhancements

may exist in one project but not in other projects. Also, license terms

may not be properly propagated from the original code, causing

license violations for developers who do not know the origins of the

code. For quality and security reasons, it is important to understand

where the reused code came from, who has worked on it, and if

better versions of it exist in other repositories. Knowing where else

the code exists can help identify if there are known vulnerabilities

in the code by seeing known vulnerabilities in other projects where

the same code exists.

2.2 World of Code

Due to the vast quantity of open source software available from

many different public source code repository hosting platforms, it

has traditionally been too computationally intensive to find origins

of a duplicated piece of code and all revisions of that code across all

open source projects. Therefore, previous research on code reuse

has typically looked at a relatively small subset of open source

software. However, a new innovation, World of Code (WoC) [25],

opens up new research possibilities in this area. WoC provides an

infrastructure that makes it possible to efficiently find all versions

of reused source code files across all of the major source code

repository hosting platforms. We build on the WoC infrastructure

to find file-level code duplication in any language from a WoC’s

expansive collection of open source software. Additional tools that

build on WoC, such as Developer Reputation Estimator (DRE) [2],

can be used to help identify the best of several versions of a file.

The tool described in this paper, VDiOS, uses the World of Code

infrastructure to find duplicate code across many public source

code hosting platforms. WoC is a nearly exhaustive and continually

updated collection of open source software along with tools to effi-

ciently extract and analyze the extremely large set of code. Without

the infrastructure provided byWoC, it would not be possible to find

such a complete collection of code copied (and possibly modified)

across such a large collection of code in many repositories across

many hosting platforms.

Since most open source software today is stored in git reposi-

tories, WoC uses similar constructs to store the data. For example,

blobs, trees, and commits in WoC are identical to the same objects

in git and are referenced with a sha1 hash just like git.

Black-box reuse can be detected with static analysis techniques

that look for dependencies. These dependencies can be checked

against public sources like libraries.io. But white-box reuse, which

is the subject of this paper, requires access to the source code for

all projects from which code may be reused. WoC provides not

only the near complete collection of open source software, but also

organizes its databases for efficient searching.

WoC provides a number of mappings that allow us to efficiently

extract the information that we need. WoC maintains a database of

several objects including blobs, files, commits, projects, and authors,

allowing for efficient mappings. For example, given the contents

of a file, we compute the SHA-1 hash (using the same mechanism

that git uses) that identifies the blob. We then use WoC’s blob to

commit mapping to get the SHA-1 hash of the commit. The commit

to project and commit to time author mappings give us the project

name (from which we can identify the git repo from which it came)

and the author and time of commit (which helps us identify where

the file originally came from). We also use the blob to old blob

mapping to find old versions of the source code of a particular file.

In order to better understand the entirety of open source in our

context, we need to get a handle on the set of distinct projects. Easy

creation of clones in version control systems result in numerous

repositories that are almost entirely based on some parent reposi-

tory. There have been various attempts to detect communities in

this ecosystem to address this issue, some using visual models [24]

and some community detection algorithms [27]. We use the latter,

utilizing WoC mappings that maps each repository to a central

repository in a detected set of repositories which presumably rep-

resent the same project. This mapping is called project to deforked

project (p2P) in WoC.

3 RESEARCH METHODOLOGY

We conducted an exploratory case study to better understand issues

surrounding the spread of software security vulnerabilities caused

by copying open source software. We chose to use an exploratory

case study because we are in the early stages of understanding

the problem and possible solutions. We hope to generate ideas to

mitigate these types of security vulnerabilities and spur additional

academic research. The case study approach allowed us to look

at a small number of widely-reused projects in-depth and within

their real-life context. This in depth examination allowed us to

increase our understanding and gain insights that would otherwise

be difficult to obtain.

Consistent with best practices conducting case studies, we in-

vestigated a small number of cases in depth and in their context

using multiple data sources and emphasizing qualitative data and

analysis while also collecting significant quantitative data. The

subject of each case is a known vulnerability (as described by the

Common Vulnerabilities and Exposures (CVE) database [41] hosted

at MITRE) and the open source project containing the vulnerable

code as described by the CVE entry.

We examined in detail four specific cases of known software

security vulnerabilities that have been fixed in their original project

repository. We used multiple cases to increase the confidence of the

results and increase generalization of the results. We avoid making

broad generalization claims based on just four cases, although we

believe that our results provide insights that are applicable to a

broader range than just our four specific cases.We carefully selected

these four cases by searching for vulnerabilities in popular open

source projects that have been widely copied. We used VDiOS to

screen out cases of known vulnerabilities in code that is not widely

copied. We specifically selected common cases, not unique or edge

cases. We selected a vulnerability in libpng2 that was in the code for

a long time, allowing for many copies over that time. We selected a

new and an old vulnerability in OpenSSL3 to highlight differences

in the age of the vulnerability. OpenSSL was chosen in part be-

cause it is critical to Internet security. We selected the xz package4

2http://www.libpng.org/
3https://www.openssl.org/
4https://github.com/ulikunitz/xz
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• commit to parent commit (c2pc) and commit to child commit

(c2cc) finds the parent and child commit respectively from a

given commit.

• commit to time author (c2ta) finds the time of the commit

and the author of the commit.

• blob to old blob (b2ob) finds the predecessor of the given

blob. old blob to blob (ob2b) is the inverse of b2ob.

VDiOS also retrieves a small amount of data directly from the

source code hosting platform (GitHub, Bitbucket, GitLab, etc). A

system independent interface allows VDiOS to use a single call to

get data, hiding the platform specific details. A system dependent

layer, which calls the appropriate API (for example, the GitHub API),

provides a "glue layer" to connect to the popular hosting platforms

to retrieve the data. The system dependent layer can be extended

to support additional hosting platforms as needed.

The VDiOS output is a set of reports generated in HTML format

for viewing in a web browser.

4.2 Algorithm

VDiOS is divided into four phases, each of which is described in

this section.

The first phase identifies all of the blobs that contain the vul-

nerability and all the blobs that contain the fix. Starting with a

commit that fixes a vulnerability, VDiOS finds the relevant blob or

blobs in that commit. When looking for a security vulnerability, it

is likely that not only is the revision before the fix vulnerable, but

the predecessors of that revision are also likely to be vulnerable.

VDiOS uses WoC’s blob to old blob mapping or commit to parent

commit mapping recursively to find all predecessor blobs. If we

know the commit that introduced the vulnerability, VDiOS looks at

only blobs between the breaking commit and the fixing commit. It

is highly likely that all of those blobs will contain the vulnerability.

VDiOS next finds the descendent blobs using WoC’s old blob to

blob mapping or commit to child commit mapping. These blobs are

highly likely to contain the fix. Manual inspection of these lists can

be done at this point to confirm that the blobs in the first list are

vulnerable and the blobs in the second list are fixed. At the end of

phase one, we have two lists of blobs. The first list contains one or

more blobs that contain the vulnerability. The second list contains

zero or more blobs that are fixed.

The second phase searches for all projects in WoC that contain

a duplicate of any of the vulnerable blobs identified in phase one

by using WoC’s blob to commit mapping and commit to project

mapping. Note that VDiOS looks for duplicates in any revision

within a project. That is, it will find all projects that have ever

contained the vulnerable blob even if it has been fixed or removed

in the most current version. At the end of phase two, we have a

list of all projects that have ever contained one of the potentially

vulnerable versions of the file.

The third phase checks if the blob(s) in question are in the most

current revision of the project. In this phase, VDiOS looks through

the projects found in the second phase. Those are projects that

have at some point in time contained a known vulnerable blob.

We now want to find out if the project still contains a vulnerable

blob. Using the hosting platform’s API, we find the most current

revision of the file. Now we look to see if that revision matches any

of the vulnerable blobs. If so, we know the project still contains the

vulnerable code. Next, we look to see if that revision matches any

of the known good blobs. If so, we know that the vulnerable file

has been fixed. If we do not find a potentially vulnerable or known

good file, then we know that the project has contained a vulnerable

file, that file has been changed, but we do not know if the change

fixed the vulnerability.

The final phase generates the reports in HTML format for view-

ing in a browser. The first page of the report shows the commit

that fixed the vulnerability (if applicable). Next, it has a link to a

list of blobs and filenames where the vulnerability was fixed, a link

to a list of ancestors of those blobs (which presumably contain the

vulnerability), and a link to the descendants of those blobs (which

presumably all contain the fix). Finally, it has links to lists of vul-

nerable projects, not vulnerable projects, and projects where the

vulnerable file has been changed but we do not know if it is fixed or

if it is still vulnerable. For each of the three categories (vulnerable,

not vulnerable, and unknown), a report provides more detailed

information.

5 RESULTS

In this section, we present the results of our case study involving

four cases that demonstrate some of the security problems caused

by orphan vulnerabilities. The four cases are four known security

vulnerabilities that have now been fixed in popular open source

projects. Our case study looks at projects that copied vulnerable

files before the files were fixed in the original project from where

they were copied. We look at two vulnerabilities within the widely

used cryptography library OpenSSL. The first vulnerability is very

recent and the second, heartbleed, is relatively old. We look at

one recent vulnerability in a Go language package supporting xz

compression. We look at one vulnerability that was fixed more than

three years ago in the mature and proven open source PNG [5]

graphics library libpng, which is very widely copied. Our case

study looks at code written in different languages to show that our

approach is language agnostic. It works the same regardless of the

language.

We find tens of thousands of open source projects that contain

files with known vulnerabilities even though the vulnerabilities

have been fixed in the original project fromwhere the vulnerable file

was copied. Many of the vulnerable projects appear to be inactive,

but some are clearly still active. In some cases the fix is recent

and project maintainers have not had much time to apply patches.

In other cases the fix is several years old, and yet many projects

still contain the vulnerable code. Patches we provided were only

accepted by a small percentage of project maintainers.

5.1 Case 1: CVE-2021-3449 in OpenSSL

OpenSSL is a very widely used open source cryptography library

implementing Secure Socket Layer (SSL) and Transport Layer Se-

curity (TLS) [34]. Projects that incorporate OpenSSL play a vital

role in Internet security. This was made clearly evident with the

discovery in 2014 of the security vulnerability in OpenSSL known

as heartbleed [7]. OpenSSL is the leading cryptography library

used for email and website encryption and for software security

in many other open source software packages. In this case study,
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we look at two vulnerabilities in OpenSSL. First, we look at the

most recent (as of this writing) known vulnerability in OpenSSL.

This vulnerability, described in CVE-2021-3449 [43], allows a mali-

ciously crafted renegotiation ClientHello message to crash a TLS

server. OpenSSL considers this a high severity vulnerability [31].

It was fixed in March 2021. Since it was only recently discovered

and fixed, we might expect to find a number of projects that still

contain the vulnerable code. The second OpenSSL vulnerability we

look at, heartbleed, is discussed in the next section, 5.2.

The first OpenSSL vulnerability we look at, CVE-2021-3449, was

introduced in the file ssl/statem/extensions.c in commit c589c34e61

in January 2018 and fixed in commit 02b1636fe3 in March 2021.

According to the OpenSSL vulnerabilities list5 "All OpenSSL 1.1.1

versions are affected by this issue. Users of these versions should

upgrade to OpenSSL 1.1.1k." Since the vulnerability only existed

in a few versions of OpenSSL, we expect to find a relatively small

number of projects that use one of the vulnerable versions.

Following the algorithm described in section 4.2, VDiOS finds

56 revisions of extensions.c that contain the vulnerability. That

is, there are 56 revisions between the commit that introduced the

vulnerability and the commit that fixed the vulnerability. VDiOS

finds three revisions of the file that contain the fix and are thus

known to be not vulnerable to this specific issue. Additionally,

VDiOS finds the following:

• 1,614 projects contain one of the known vulnerable revisions

of ssl/statem/extensions.c in the most current revision of the

project.

• 11 projects contain one of the known fixed revisions of

ssl/statem/extensions.c in the most current revision, mean-

ing it used to be vulnerable but now it is fixed.

• 1,079 projects contain a revision of ssl/statem/extensions.c

that is not in either the list of vulnerable blobs or the list of

fixed blobs, meaning that the project contained a potentially

vulnerable blob in the past, the blob has been modified in the

most current version, but we do not know if the modification

fixed the vulnerability.

• 253 projects used to contain a vulnerable version of the file

but the file has since been removed.

For further investigation of these projects, we used WoC p2P

mappings [27] to see how many of these projects are forked. De-

forking 1614 vulnerable projects resulted into 132 projects. To see

if they are active projects or not, we looked to see if they have any

commit in the past 6 and 18 months. We found that 23 of them have

at least one commit in the past 6 months, and 64 have at least one

commit in the past 18 months. To have an idea about their impact

in the OSS community, we looked at the number of stars [4] each

of these projects have. We observed that four of these projects have

more than 10,000 stars and 10 have more than a thousand stars,

implying their wide impact in the OSS community.

5.2 Case 2: CVE-2014-0160 in OpenSSL

We next look at the OpenSSL heartbleed vulnerability. Heartbleed,

described in CVE-2014-0160 [39], is a very serious vulnerability [45]

that was fixed in 2014. Due to a bounds check error in the TLS heart-

beat extension, the bug allows disclosure of information that should

5https://www.openssl.org/news/vulnerabilities.html

be protected. Since this was a high profile serious vulnerability that

was fixed seven years ago, we expect not to find many, if any, active

projects still using code vulnerable to heartbleed. We use VDiOS to

test this hypothesis and then investigate the projects we find that

still contain the heartbleed vulnerability.

Heartbleed was introduced by commit 4817504d06 on December

31, 2011, in the files ssl/t1_lib.c and ssl/dl_both.c. The first release of

OpenSSL with this vulnerability was release 1.0.1 on March 14, 2012.

The vulnerability was fixed two years later by commit 731f431497f

made on April 7, 2014, and released in release 1.0.1g on April 7,

2014. VDiOS first finds all revisions of the file ssl/t1_lib.c between

the December 2011 commit that introduced the vulnerability and

the commit in April 2014 that fixed the vulnerability. It finds 90 vul-

nerable revisions of ssl/t1_lib.c. Following the procedure described

in section 4.2 above to find projects containing the vulnerability,

we discover the following results:

• 121 projects contain one of the known vulnerable revisions

of ssl/t1_lib.c in the most current revision of the project.

• 3,156 projects contain one of the known fixed revisions of

ssl/t1_lib.c in the most current revision, meaning it used to

be vulnerable but now it is fixed.

• 211 projects contain revisions of ssl/t1_lib.c that is not in

either the list of vulnerable blobs or the list of fixed blobs,

meaning that the project contained a potentially vulnerable

blob in the past, the blob has been modified in the most

current version, but we do not know if the modification

fixed the vulnerability.

Because of the very serious nature of heartbleed [10], we believe

it is important to investigate all 121 projects that contain a known

vulnerable version of ssl/t1_lib.c. We find the following information

about these 121 projects:

• 110 of the projects are forks that were all forked between

when the vulnerability was released in 2012 and when it was

fixed in 2014 and that have had no activity on the project

since before the vulnerability was fixed in 2014.

• Three of the projects are clones that were all cloned between

when the vulnerability was released in 2012 and when it was

fixed in 2014 and that have had no activity on the project

since before the vulnerability was fixed in 2014.

• The remaining eight projects have had some activity (com-

mits or issues) dated 2017 or later, well after the vulnerability

was fixed. These projects are a potential concern, and there-

fore, we investigated these eight in more depth.

The 113 projects with no activity later than 2014 appear to be in-

active projects. Of course any publicly available project containing

heartbleed has the potential to be copied and reused, even if the

project is not active. We find the remaining eight projects, the ones

with activity dated 2017 or later, to be more concerning since they

have been active since the vulnerability was fixed, yet they do not

contain the fix. We looked into those eight projects in more detail

and found the following information:

• One project has several commits this year (2021). This clearly

indicates that it is an active project and potentially concern-

ing since it contains the heartbleed code. Upon further in-

vestigation, we find that this project contains tools for the
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looked at the number of contributing authors in each project using

WoC project to author mappings (P2A) which maps the deforked

projects to aliased author IDs [13]. Looking at the percentages, it

seems that vulnerable projects have relatively fewer developers

involved.

5.4 Case 4: CVE-2017-12652 in libpng

Libpng [35] is a very popular open source graphics library for ma-

nipulating PNG (Portable Network Graphics) image files. It is an old

library, dating back to 1995, and is still actively maintained. Because

of its popularity and its very long history, we expect to find many

copies in other open source projects, making it a strong case for our

study. The libpng source code [44] is hosted on SourceForge [37]

and mirrored on GitHub [16].

Libpng was the first case that we studied. Lessons learned from

this case were applied to our study of the other cases. Improvements

to VDiOS, as described later in this section, were applied based on

those lessons learned.

This case specifically looks at the libpng file pngpread.c. That file

is the subject of the vulnerability described by CVE-2017-12652 [40],

which is labeled as a critical vulnerability in the National Vulnera-

bility Database (NVD) [30]. The vulnerability was fixed in August

of 2017 in release 1.6.32. This fix is in commit 347538e and the blob

for pngpread.c at that revision is 45b23a7.

UsingWoC’s blob to old blob (b2ob) mapping recursively, VDiOS

finds 951 old versions of the file pngpread.c. The old versions are

the potentially vulnerable versions. Using WoC’s old blob to blob

(ob2b) mapping, VDiOS finds 964 new versions of that file. The

new versions presumably all contain the fix. Next, VDiOS looks at

each potentially vulnerable blob and uses WoC’s blob to commit

mapping to find the commits. Once it has the commits, it usesWoC’s

commit to project mapping to find all of the projects containing

the discovered commits. This gives us a list of all projects that have

ever contained one of the potentially vulnerable versions of the

file pngpread.c. Finally, VDiOS looks at the head commit of each

project to see if it contains a version of the file from the potentially

vulnerable list, the presumably fixed list, or neither.

The results are as follows:

• 63,441 projects contain one of the potentially vulnerable

blobs in the most current revision, even though it was fixed

in the original file more than three years ago.

• 458 projects contain one of the presumably fixed blobs in

the most current revision, meaning it used to be vulnerable

but now it is no longer vulnerable.

• 20,274 projects do not contain blobs from either of the two

previous lists, meaning that the project contained a poten-

tially vulnerable blob in the past, the blob has been modified

in the most current version, but we do not know if the modi-

fication fixed the vulnerability. We manually inspected the

first 10 of those projects and found that two out of the 10

projects still contain the vulnerability. In those two cases,

the file was modified, but the specific vulnerability was not

fixed. In the remaining eight cases, the vulnerability was

fixed.

• 28,376 projects used to contain a vulnerable version of the

file, but the file has since been removed.

We see that over sixty thousand projects contain a vulnerable

version of the file. We selected a subset of those projects to analyze

in more detail. To select the subset, we first selected projects that

have a commit within the last 18 months to eliminate long dor-

mant projects. Next, we selected non-forked projects to get a list of

independent projects. Finally, when one commit went to multiple

projects, we selected the first one that VDiOS found and eliminated

the remaining duplicates. This process of elimination leaves us with

1,457 projects. From those 1,457 projects, we randomly selected 88

projects to analyze in more detail. In looking at these projects, we

find that they copy the entire contents of libpng, not just selected

files.

Our first step is to verify that the 88 projects do indeed contain

the vulnerable code. We manually inspected all of the projects and

found six false positives. There were four projects that had deleted

the vulnerable file and two projects that had fixed the vulnerable

file. We removed those six projects from further analysis, leaving

82 projects. We investigated these six cases to understand why

VDiOS produced false positives. In all six cases the reason was

timing. We ran VDiOS to produce the results in early February

2021 and analyzed the results over the next two months. WoC is

continuously updated, but will always be a little bit behind what is

live on the source code repository hosting platforms. We ran VDiOS

on version S of WoC which was updated in August 2020. We found

in those six cases that the vulnerable files had been fixed or removed

after the WoC version that VDiOS used to produce the reports and

before we verified the results in April 2021.We conclude that VDiOS

produced the correct output, but the continuously changing open

source projects will be different from our reports to the extent that

changes are made after the most recent WoC update. As a result of

this discovery, we modified VDiOS to use the APIs of the hosting

platforms to get the most current revision of the file. The results

presented in this case are based on the original version of VDiOS;

this new enhancement to VDiOS is used for the rest of the cases.

For projects hosted on GitHub, we also verified that GitHub’s

dependabot [9] did not find the vulnerability. While dependabot

has similar goals to VDiOS in finding vulnerable dependencies

in the software supply chain, it uses a very different mechanism.

Dependabot requires that a repository define dependencies in a

supported package ecosystem while VDiOS looks for file level code

duplication. As expected, none of the projects we found with a

vulnerable version of libpng were identified by dependabot. Several

of the projects had other issues identified by dependabot, but not

the libpng issue we are investigating. This shows that dependabot

is enabled for these projects. Clearly VDiOS finds different supply

chain dependency vulnerabilities than GitHub’s dependabot.

Finally, we wanted to find out if the maintainers of the projects

that contain known vulnerable files are willing to accept a patch to

fix the vulnerability. For the 82 vulnerable projects, we produced a

patch and sent a message to the maintainers through a pull request,

an issue, or an email. We waited up to two weeks for responses.

Seven project maintainers accepted our pull request with the patch.

One project maintainer updated to a newer version of libpng be-

cause of our contact. Two project maintainers responded and said

they would continue using the existing (vulnerable) code. We re-

ceived no responses about the remaining projects.
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can be enhanced to catch such and other modifications, and it is

the subject of future work.

WoC contains a relatively complete collection of open source

software, but the collection is not complete, with some projects

missing and a several month delay between the versions of WoC

when new projects with vulnerabilities may be created. VDiOS will

miss any code that is not included in WoC. Only increasing open

source coverage for WoC would address this limitation.

It is important to note that some vulnerabilities are never dis-

covered or fixed, or not reported in public vulnerability databases.

In all of these cases VDiOS would not help.

Our findings about the scope and age of orphan vulnerabilities

is limited by the relatively small sample of vulnerabilities explored.

We hope that by highlighting the scope and seriousness of the

problem with our case study and by building VDiOS, we will spur

improvements to VDiOS and wider studies of vulnerabilities in the

future.

8 RELATED WORK

Significant amount of research in the area of code reuse is domi-

nated by studies of black-box reuse. Research on white-box code

reuse, where code is reused by copying the original code and com-

mitting the duplicate code into a new repository, is limited due

to the difficulty of searching the entirety of open source software

looking for duplicates. Using World of Code (WoC) [25] infrastruc-

ture opens new research possibilities in the area of white-box code

reuse as described in section 2.2. We use WoC to find cases of code

reuse across open source projects.

Gharehyazie et al. [14] looked at the prevalence of cross-project

code reuse and report large amounts of code cloned across multiple

projects. They find that most cloned code comes from projects in a

similar domain. GitHub was the only repository hosting platform

that they looked at and Java was the only language. In our work,

we look at code in many different languages and from many dif-

ferent repository hosting platforms including GitHub, Bitbucket,

SourceForge, GitLab, and more.

Xia et al. [47] performed an empirical study to find the proportion

of out-of-date third-party code reused by C language OSS projects.

Using OpenCCFinder [46], which used external code search engines

Google code search and SPARS [19], they found 123 projects that

reused outdated code copied from three original projects. Similar

to our findings, they determined that a significant number of OSS

projects reused out-of-date code that contain security vulnerabil-

ities. They report that OpenCCFinder only returns "a very small

subset" of open source projects. By using our VDiOS tool layered

on top of WoC’s nearly complete collection of OSS in any language,

we are able to find a significantly larger number of projects that

reuse vulnerable code.

Decan et al. [8], through empirical study using Java projects that

use Maven [38], show that it is common practice to use third-party

software components that have known security vulnerabilities,

suggesting that what we found for C and Go languages in white-

box also applies to black-box reuse in Java. Alqahtani et al. [1]

link the NVD9 with Maven to identify known vulnerabilities in

Maven projects. We expand on that by including white-box reuse

9National Vulnerability Database: https://nvd.nist.gov

and by looking at projects in any language that may not use or

have management tools like Maven.

Kawamitsu et al. [21] studied code reuse across repositories,

but only looked at reuse between pairs of repositories rather than

across the full spectrum of open source repositories. They introduce

a method to detect code reuse across 2 repositories.

Ishio et al. [20] proposed a method to find the original version

of cloned source code files. Their method finds files that are similar,

not just files that are exact copies. We only look for exact copies of

any revision of the file. Their method may find additional matches

that our method would miss due to minor changes in a cloned file

before it is committed the first time. Our method may find matches

that theirs miss because we run it over a much larger dataset of

code repositories.

Inoue et al. [18] use code search engines such as Google Code

Search and Koders to find reused code fragments. They present

a tool which takes code fragments and finds cloned fragments

using the public code search engines. It is unclear what coverage is

provided by these third-party tools.

GitHub’s dependabot [9] creates pull requests for projects that

rely on vulnerable libraries but only works for GitHub projects and

only when dependencies are defined in a supported package ecosys-

tem. VDiOS, on the other hand, looks for file level code duplication

and does not rely on supported package ecosystems. VDiOS also

works with projects across all repository hosting platforms, not

just GitHub.

SZZ unleashed [3] finds information about when bugs were in-

troduced. Currently, VDiOS relies on the user to specify the commit

that introduced a vulnerability, but if it is not available, all previ-

ous revisions of a file are considered vulnerable. Using SZZ might

reduce that set.

9 CONCLUSION

Code reuse through code duplication (white-box reuse) is a com-

mon practice in software development. While it has benefits, such

as faster development time, lower cost, and improved quality, it

also has inherent risks as the reused code may contain security vul-

nerabilities or other problems. In some cases, those vulnerabilities

or bugs may be orphan (known and fixed in other repositories).

In this paper, we describe a case study with four different cases

that show the extent of security vulnerabilities in open source

software caused by code reuse. We also present a tool, VDiOS, to

find file-level code reuse in any language across the entirety of open

source software by leveraging the World of Code infrastructure.

Using VDiOS, we find very extensive white-box reuse of vulnerable

code with a large number of projects that do not appear to fix the

upstream vulnerability. These are cases where reused code contains

known vulnerabilities or other bugs that persist in open source

projects even though they have been fixed in other projects.

Overall, we may conclude that extensive code copying in OSS

results in an extensive spread of vulnerable code that may take

years to fix and that affects not only inactive, but also highly active

and popular projects. We also found that many of the projects may

not be willing to patch the vulnerabilities even after being provided

a fix.
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These findings suggest that addressing unfixed vulnerabilities

in OSS requires at least three types of support. On one hand, if a

patch is provided, some of the projects are willing to apply it. On

the other hand, for projects that do not fix vulnerable code, we

need to provide information to potential users of the code that their

application still contains unfixed vulnerability. Finally, developers

who are contemplating reusing the code in a project that contains

unfixed vulnerabilities need to be informed about the risks and

provided with suggestions on how to patch or with patches fixing

the existing vulnerabilities.
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