
0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3163576, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

On the Variability of Software Engineering
Needs for Deep Learning: Stages, Trends, and

Application Types

Kai Gao, Zhixing Wang, Audris Mockus,and Minghui Zhou

Abstract—The wide use of Deep Learning (DL) has not been followed by the corresponding advances in software engineering (SE) for

DL. Research shows that developers writing DL software have specific development stages (i.e., SE4DL stages) and face new

DL-specific problems. Despite substantial research, it is not clear how such needs vary over stages, DL application types, or if they

change over time. To help focus research and development efforts on DL-development challenges, we analyze 92,830 Stack Overflow

(SO) questions and 227,756 READMEs of public repositories related to DL. Latent Dirichlet Allocation (LDA) reveals 27 topics for the

SO questions with 19 (70.4%) topics primarily relating to a single SE4DL stage and eight topics spanning multiple stages. Most

questions concern Data Preparation and Model Setup stages. The relative rates of questions for 11 topics have increased, for eight

topics decreased over time. Questions for the former 11 topics had a lower percentage of having an accepted answer than for the

remaining topics. LDA on README files reveals 16 distinct application types for the 227k repositories. We apply the LDA model fitted

on READMEs to the 92,830 SO questions and find that 27% of the questions are related to the 16 DL application types. The

distribution of topics with the most questions vary with application types, with half topics relating to the second and third stages.

Specifically, developers ask the most questions about topics relating to Data Preparation (2nd) stage for four mature application types

such as Image Segmentation, and topics relating to Model Setup (3rd) stage for four application types concerning emerging methods

such as Transfer Learning. Based on our findings, we distill several actionable insights for SE4DL research, practice, and education

such as better support on using trained models, application-type specific tools and teaching materials.

Index Terms—Software Engineering needs for Deep Learning, Topic modeling, Stack Overflow, Mining Software Repositories

✦

1 INTRODUCTION

D EEP learning (DL) has achieved tremendous success in
different tasks such as image recognition [1] and object

detection [2] owing to its strong representation capability
and the explosive increase of data and computing power
in recent years. Many DL frameworks (e.g., TensorFlow [3],
Keras [4], and PyTorch [5]) are proposed to help developers
quickly transfer their ideas into applications and are widely
used by developers. Based on the architecture documenta-
tion of various DL frameworks, Han et al [6] found that
to build DL applications with DL frameworks, developers
usually go through seven stages starting from Preliminary
Preparation, to Data Preparation, and to Model Setup, Model
Training, Model Evaluation, Model Tuning, and ending with
Model Prediction as shown in Table 1. In this paper, we refer
to the software development in the DL domain, including
the process consisting of the seven stages as software engi-
neering (SE) for deep learning (SE4DL).

Although DL frameworks facilitate SE4DL, SE4DL still
poses unique problems to developers that differ from reg-

• K. Gao is with the School of Software & Microelectrics, Peking University.
E-mail: gaokai19@pku.edu.cn

• Z. Wang is with the School of Information Science and Technology, the
University of Tokyo.
E-mail: zhixing0@protonmail.com

• A. Mockus is with the Department of Electrical Engineering and Com-
puter Science, University of Tennessee, Knoxville.
E-mail: see http://mockus.org

• M. Zhou is with the School of Computer Science, Peking University.
E-mail: zhmh@pku.edu.cn

ular software engineering. In general, developers use DL
frameworks to define DL model structure and run-time
configurations such as loss function and GPU, then feed
large-scale training data to train (adjust the parameters of)
the model [7], [8]. Developers usually set aside some data
that is not used for training to evaluate and tune the model.
The above process is usually experimental with adjusting
the data, model structure, and run-time configurations in a
trial-and-error manner. As a result, DL developers are faced
with problems across SE4DL stages such as managing large-
scale dataset at Data Preparation stage, designing effective
model structure at Model Setup stage, and specifying efficient
run-time configurations at Model Training stage.

The SE research community has investigated SE4DL
needs in some detail. For example, researchers have exten-
sively analyzed challenges and faults in general without
separating them into SE4DL stages [7], [8], [9], [10], [11],
and investigated deployment challenges and faults at the
model prediction stage [12], [13], [14]. Little work [6], [15],
[16] investigated SE4DL stages. Specifically, Alshagiti et
al. [15] labeled 684 SO questions to stages to investigate
the most challenging stages and Islam et al. [16] manually
labeled 970 bugs collected from SO and GitHub to stages to
reveal bug-prone stages. These two papers were based on
small sample size and didn’t reveal what kind of problems
are at each stage. Although Han et al. [6] applied LDA
on a large-scale dataset collected from SO questions and
GitHub issues, they investigated stages under an improper
assumption that an LDA topic exclusively belongs to one

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 21,2022 at 08:31:45 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3163576, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

TABLE 3
Stages, Names, question count, percentage of questions having an accepted answer (% acpt), adjusted p-values, trend, and Sen’s slope for 27

question topics sorted by stages and question count. The Adjusted P-value column presents the p-values adjusted by Holm–Bonferroni
method [45]. ’↑’, ’↓’, and ’–’ in the Trend column denote increasing, decreasing, and unchanging trend respectively.

Stages Topic Name Count % acpt Adjusted P-value Trend Sen’s Slope

Preliminary Preparation
Installation Error 6556 29.9 1.0 – -9.03e-05

Build Error 3299 30.1 0.00029 ↓ -1.93e-04

Data Preparation

Tensor Operation 4163 51.3 1.5e-06 ↓ -2.79e-04

Image Preprocessing 3500 37.7 4.8e-07 ↑ 3.00e-04

Data Type 3376 42.3 1.0 – 7.90e-05

Data Load 3278 35.4 1.0 – -6.46e-05

Data Batch 2623 38.4 1.0 – -2.69e-06

Model Setup

Model Load 5225 35.8 2.5e-09 ↑ 4.28e-04

Graph Session 4021 40.5 0.0 ↓ -1.16e-03

Layer Operation 3459 43.9 1.0 – 4.72e-05

Tensor Shape 3455 45.3 0.0032 ↑ 1.54e-04

Probability 3373 37.9 0.0061 ↓ -1.86e-04

LSTM 2426 35.9 0.00040 ↓ -2.55e-04

Embedding 2218 31.3 1.0 – 3.25e-05

Model Training
Loss Function 4333 38.4 0.034 ↑ 1.49e-04

Device Use 3963 28.3 2.3e-06 ↓ -2.90e-04

Model Evaluation Evaluation Metrics 3398 35.9 5.2e-10 ↑ 3.41e-04

Model Tuning Training Anomaly 3724 33.3 3.2e-12 ↑ 4.69e-04

Model Prediction Model Conversion 2601 25.7 1.4e-13 ↑ 4.20e-04

Multiple-Stage Topics

Code Error 5818 34.4 7.1e-12 ↑ 5.75e-04

API Usage 4473 40.5 9.2e-10 ↓ -4.70e-04

Review 3822 42.0 0.0096 ↓ -1.34e-04

API Misuse 2608 37.0 0.00012 ↑ 1.74e-04

Classification 2198 39.3 1.0 – 7.00e-05

Reinforcement Learning 2150 38.6 0.16 – -9.37e-05

Object Detection API 1976 25.1 0.0012 ↑ 3.59e-04

Error Traceback 794 24.1 0.15 – 5.69e-05

topic names are developed during the labeling process. We
first assign each document to the topic with the highest
probability in its topic distribution. Then the first two au-
thors, who have three and four years of DL experience
respectively, manually inspect each topic’s top nine words
and read through 30 randomly selected documents assigned
to that topic to come up with a topic name that best explains
the words and documents of that topic. The process is
iterative where the authors individually perform labeling,
jointly unify topic names, discuss conflicts, and refine topic
names until they agree on topic names. An arbitrator, who
has five years of DL experience and is skilled at all the
three frameworks, is invited to review the topic names.
The arbitrator is someone external to the project. He agreed
with most (49/53) topic names and provided better phrasing
suggestions for the remaining four topics. These suggestions
are discussed and integrated into final topic names. For
example, one question topic was initially labeled as Dataset,
after checking its top nine words and the 30 randomly se-
lected documents assigned to it, he suggested that Data Load
is clearer. After a discussion, we adopted his suggestion.

3 RQ1: HOW ARE PROBLEMS FACED BY DL DE-

VELOPERS DISTRIBUTED OVER SE4DL STAGES?

3.1 Methods

LDA reveals 27 topics for the 92,830 SO questions shown
in the Topic Name column of Table 3. The number of
questions assigned to each topic is shown in the Count
column. We also calculate the percentage of questions hav-
ing an accepted answer for each topic shown in the %
acpt column. We use the seven DL development stages
proposed previously [6] as shown in Table 1. The stages
were derived by analyzing the architecture documentation
of several DL frameworks. To relate question topics to
SE4DL stages, we manually label 1797 randomly sampled
questions. Specifically, we determine the sample size based
on the 90% confidence level, resulting in 63 to 67 questions
for each question topic. Then, the first two authors manually
label the 1797 questions to SE4DL stages independently
following the definition of stages as described in Table 1. The
Kappa value between the two authors is 82%, reaching an
almost perfect agreement. The inconsistencies are resolved
through discussion. If more than two-thirds of sampled
questions of a topic relate to the same stage, we refer to

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 21,2022 at 08:31:45 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3163576, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

primarily relating to it, indicating that developers mainly
have problems with creating custom loss functions and con-
figuring computing resources correctly and efficiently at this
stage. The last three stages have only one topic primarily
relating to them respectively. Specifically, Evaluation Metrics
questions on how to evaluate DL models primarily relate
to the 5th stage, Training Anomaly questions on how to fix
abnormal training results primarily relate to the 6th stage
(Model Tuning), and Model Conversion questions on how to
correctly convert trained models for deployment primarily
relate to the last stage (Model Prediction). Overall, developers
ask about 6.9%, 6.7%, and 4.8% questions about the last three
stages respectively.

The remaining eight question topics span multiple stages
including five topics related to framework APIs (Code Error,
API Usage, API Misuse, Object Detection API, and Error Trace-
back), two topics related to application tasks (Classification
and Reinforcement Learning), and Review.

The five multiple-stage topics relating to framework
APIs reflect the common needs for easier-to-use DL frame-
work APIs across different stages. Specifically, questions
in Code Error topic spread all stages and occur the most
at Model Setup and Model Training stages. Developers usu-
ally provide code and error messages in questions, e.g.,
Keras ’InputLayer object has no attribute ’inbound nodes’ when
converting to CoreML (Question 48329150), indicating they
fail to debug errors from the error messages. About half
of API Usage questions relate to Model Setup stage which
discuss how to implement something using a specific API
or errors when using a specific API. For example, de-
velopers are frequently confused about the difference be-
tween APIs in torch.nn and torch.nn.functional (e.g.,
Question 63826328) where they provide the same function-
ality but in different ways with the former in class-style and
the latter in function-style. Besides, developers asking API
Usage questions appear to be predominantly novices: among
the 67 sampled questions, ten questions occurred when
developers were running tutorial code and nine questions
explicitly contain “I am new”-like phrases. This finding
indicates that, perhaps not surprisingly, novices have the
greatest challenges in understanding APIs from the docu-
mentation. Questions in Object Detection API topic discusses
the use of TensorFlow Object Detection API13 and mainly
span Model Setup and Model Evaluation stages. Developers
usually draw bounding boxes (or frames) in images to show
the detected objects according to the coordinates produced
by the model at Model Evaluation stage. But they face
various questions in the procedure such as How to output
box coordinates produced from Tensorflow Object Detection API
(Question 48284800).

Topics of (Classification and Reinforcement Learning) span-
ning multiple stages relate to application tasks. For Clas-
sification topic, developers mainly have problems with the
second to the fifth stage. Developers ask questions about
how to deal with imbalanced data at Data Preparation and
Model Setup stage. At Model Training stage, developers ask
about the use and differences of various loss functions
such as categorical cross entropy and binary cross entropy.

13. https://github.com/tensorflow/models/tree/master/research/
object detection

At Model Evaluation stage, developers ask about how to
interpret model output such as How to set a different thresholds
for each class in multi-label classification in Question 62439043.
Questions of Reinforcement Learning topic mainly span Pre-
liminary Preparation, Model Setup, and Model Tuning stages.
For Review topic, developers mainly seek practices and
suggestions about the first three stages when applying DL
in practice.

Unlike the finding reported by prior work [6] that de-
velopers ask the most questions about Preliminary Prepa-
ration and Model Training stages, we find that developers
ask the most questions about Data Preparation and Model
Setup stages. Besides, [6] reports no topic in Model Tuning
stage, while we obtain a topic, Training Anomaly, primarily
relating to this stage. Two reasons may attribute to such
differences. One, prior work assigned each topic to a single
stage, while we find that a topic may span multiple stages;
Two, prior data was collected before April 2018 while our
data is collected before March 2021. Over three years some
changes may have taken place in the DL domain with the
advent and improvement of supporting tools and theories.
Therefore, developers’ questions about SE4DL stages may
have changed markedly. We, therefore, further investigate
the time variability of SE4DL needs in RQ2.

Summary for RQ1:

None of the 27 question topics revealed by LDA for SO
questions are exclusive to one stage as was assumed
in prior work. In total 19 topics primarily relate to
a single SE4DL stage and eight topics span multiple
stages. The 19 single-stage topics cover all seven SE4DL
stages and the eight multiple-stage topics are mainly
about framework APIs and application tasks. Overall,
developers ask the most about the second (Data Prepa-
ration) and third stages (Model Setup) with 23.3% and
30.7% questions respectively, in contrast to the former
study that found the first (Preliminary Preparation) and
fourth (Model Training) stages to be the stages with the
most questions [6].

4 RQ2: HOW DO THESE PROBLEMS VARY OVER

TIME?

4.1 Methods

For the 27 SO question topics identified in Section 3.2,
we calculate each topic’s relative rate over time where the
total number of questions assigned to each question topic
is compared to the total number of DL-related questions
for each month. We then use Mann-Kendall trend test (MK
test) [48] to identify the trend, i.e., the change of relative rate,
of the 27 question topics at 0.05 significance level following
prior work [18]. MK test is a non-parametric test used to
identify monotonic trend in a series and is not affected by
the length of series. We also use Theil-Sen’s slope estimator
(Sen’s slope) [48] to measure the magnitude of monotonic
trend, which is often used together with MK test. Since
we perform 27 MK tests, we adjust the p-values using the
Holm–Bonferroni method [45] to control the family-wise
error rate, which has been widely used in SE studies [49],
[50], [51], [52].

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 21,2022 at 08:31:45 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3163576, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

preprocessing image segmentation datasets. For Medical

Diagnose applications, developers usually deal with med-
ical images to perform tasks like pneumonia detection and
tumor segmentation. Medical images often come from dif-
ferent proprietary systems and may need other knowledge
of the clinical data. Therefore, tools that process various
formats of medical images with clinical knowledge may be
beneficial. Sentiment Analysis mostly concerns Data Load
questions suggesting a potential lack of standard ways or
lack of clear documentation on how to associate text corpus
with sentiment labels. For example, in Question 64986037,
a developer failed to use the code provided in the official
tutorial to load a larger dataset. Therefore, DL frameworks
could provide more examples to show the complex use of
dataload-related APIs in their tutorials.

The application types (Transfer Learning, Time Series

Prediction, Text Generation, and Word Embedding) mostly
concern question topics of Model Load, LSTM, and Embed-
ding, relating to Model Setup stage. These four application
types concern emerging DL methods. Specifically, Model
Load is the primary question topic of Transfer Learning

with 35.7% questions. Transfer learning is an emerging
DL method that applies knowledge gained from solving
one problem to a different but related problem [57] and
is an effective way to speed up training and improve the
performance of DL models, especially when the training
data is limited [58]. As shown in Figure 7, transfer learning
is widely adopted by DL developers to train models with
4.9% (of 227,756) repositories. Our finding suggests further
improvement on current support on loading pre-trained
models is necessary and urgent. Embedding is the primary
question topic of both Text Generation and Word Embedding

with 39.4% and 70.4% questions respectively. Embedding is
usually used to densely represent text data and is widely
used in many natural language processing tasks such as
text generation [59]. As embedding has become pervasive
and fundamental, many models are proposed to train better
embeddings such as BERT17. But our finding indicates that
developers have problems understanding and implement-
ing these embedding models in practice.

Only one application type’s primary question topic pri-
marily relates to Model Training stage, i.e., Image Style

Transfer whose primary question topic is Loss Function
with 36.3% questions. It is possibly due to Generative
Adversarial Networks (GAN), the method widely used
in this application type. GAN involves a contest between
two sub-models, a generator model for generating new
examples and a discriminator model for classifying whether
generated examples are real or fake. It generally needs to
combine two loss functions, one for generator and the other
for discriminator, which adds complexity in implementing
loss functions, e.g., how to assign weights to these two loss
functions using Keras (Question 54068352). Besides, achiev-
ing equilibrium between the generator and discriminator
also leads to difficulties tuning GAN, illustrated by 16.6%
Training Anomaly questions. Training Anomaly, which
primarily relates to Model Tuning stage, is the primary
question topic of Image Recognition with 48.5% questions.
A possible explanation is that many novices to DL usu-

17. https://github.com/google-research/bert

ally get started from image recognition tasks such as the
well-known handwritten digit recognition task, resulting in
many questions about how to fix abnormal training results.
Therefore, summarizing common model tuning practices
may be helpful. Finally, Model conversion, which primarily
relates to Model Prediction stage, is the primary question
topic of Deployment APP with 58.6% questions, indicating
that converting trained models to the format supported
by the deployment environment is the biggest challenge
when deploying DL software. As shown in Figure 7, 4.0%
repositories concern this application type, suggesting the
popularity of deploying DL software and the urgency of
better support on model conversions.

The remaining four application types’ primary question
topics cover three multiple-stage topics. Particularly, Object
Detection API is the primary question topic in questions
related to Object Detection with 78.2% questions. Object
detection is a computer vision task of detecting instances
of objects of a certain class within images or videos [60]. It is
more and more used in many cases such as Tesla’s Autopilot
AI [61]. Many tools are proposed to help developers build
object detection models such as TensorFlow Object Detec-
tion API and are widely used by developers. But as revealed
in Section 4.2, developers sometimes suffer from using the
documentation.

Summary for RQ3:

There are 16 application types related to software de-
velopment in the 227k repositories. The distribution of
topics with the most questions vary with application
types, with half topics relating to the second and third
stages. Specifically, developers ask the most questions
about topics relating to Data Preparation (2nd) stage
for four mature application types such as Image Seg-

mentation, and ask the most questions about topics
relating to Model Setup (3rd) stage for four application
types concerning emerging methods such as Transfer

Learning.

6 IMPLICATIONS

Our results show how SE needs for DL vary across stages,
time, and application types. In the following, we discuss
implications for SE4DL research, practice, and education.
SE4DL Research & Practice. (i) Reduce the rate of prelimi-
nary preparation problems. DL frameworks do have complex
dependencies, which makes it difficult to install and build
them successfully, thus unable to proceed any further. De-
velopers ask the most questions about Installation Error and
this topic is stable over time. Besides, only 29.9% Installation
Error and 30.1% Build Error questions have an accepted
answer. Although docker technology allows developers to
package their code conveniently, it has several limitations.
On the one hand, as revealed by Haque et al. [18], docker
brings new challenges to developers. On the other hand,
current pre-built docker images provided by DL frame-
works usually contain complete functionalities and don’t
support functionality customization. As evidenced by the
Build Error questions, developers sometimes need to cus-
tomize the functionalities of DL frameworks for various

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 21,2022 at 08:31:45 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3163576, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

reasons, e.g., reducing binary size [62] and adding custom
ops [63]. Therefore, many developers still choose to install
and build frameworks locally. Specifically, only 3.6% (36,140
out of 998,514) collected repositories contain ”Dockerfile”.
One possible avenue for further research may be to perform
an in-depth analysis of the influence of docker on reducing
install and build errors. Moreover, frameworks like Keras
that act as interface of other DL frameworks may add ad-
ditional difficulties to the installation. One possible solution
to alleviate such problems is to provide a dedicated page
like TensorFlow [64] and PyTorch [65] to collect common
install and build errors and corresponding solutions.

(ii) Improve the compatibility of DL Framework APIs. The
variety of data and data handling libraries such as Numpy,
Pandas, and Gym, make it often necessary for developers
to convert data types among third-party libraries and DL
frameworks. The relative rate of Data Type questions doesn’t
change over time, indicating that the data type compatibility
between DL frameworks and third-party libraries is an
ongoing and not completely addressed issue. At the same
time, Code Error questions are growing the fastest and their
burst of increases overlap with the major release time of
TensorFlow. This suggests that the backward compatibility
of DL frameworks may need to be improved to mitigate
the influence of breaking changes. Research on tools that
would automatically generate reports of how DL framework
APIs are used in practice could be used to generate better
test suites for the frameworks. Such tools could help DL
API maintainers better understand how frequently users use
their APIs, thus estimating the impact of introducing an API
change.

(iii) Provide better support of using pre-trained models. The
increasing rate of Model Load and Model Conversion questions
that dominate Transfer Learning and Deployment APP appli-
cations respectively suggests that better support of loading
and converting trained models to a form where they can
be used for prediction would be beneficial. Model weights
tend to be saved as key-value pairs where the keys are layer
names and the values are layer weights. However, existing
support on loading models appears to be rudimentary. For
example, to load saved model weights in PyTorch, develop-
ers need to create an instance of the same model first, then
load pre-trained weights using load_state_dict method,
which is inconvenient and unnecessarily limits the flexibility
of loading weights. To make matters even more compli-
cated, the model formats supported by different frameworks
and deployment platforms are not easily convertible as
demonstrated by the rapidly increasing rate of Model Con-
version questions. Developers find it hard to get answers to
their questions as well, with only 25.7% Model Conversion
questions having an accepted answer.

(iv) Provide application-type specific tools. Our results
show that different topics dominate different application
types with sometimes not immediately obvious associa-
tions. Application-type specific tools might be able to better
satisfy developers’ unique needs in some of these applica-
tions. For example, based on our findings, integrating image
preprocessing packages that automatically align images and
pixel labels for image segmentation applications might be
beneficial.

(v) Design shape correction tools. Tensor Shape topic ex-

hibits an increasing trend and has the highest % acpt.
Such questions are typically raised by developers who do
not completely understand the meaning of each dimension
of the neural network layer’s input and output. For ex-
ample, developers are confused with the input shape of
torch.nn.Conv1d when applying it on text input (e.g.,
Question 62372938). Since some of the dimension errors
occur at the time of output, a massive amount of computa-
tional time may be spent before the error manifests itself. Al-
though existing DL frameworks could print model architec-
ture with each layer’s output shape such as print(model)
in PyTorch and model.summary() in Keras, they don’t
check whether the input shape satisfies the layer’s require-
ment. Therefore, on the one hand, frameworks could pro-
vide meaningful information about the expected dimension
and the mismatch in error backtrace. On the other hand,
validation tools might be designed to examine whether the
model on developers’ data induces shape errors and provide
suggestions to correct the errors by analyzing the data flow
in the model. Though several works [66], [67] have designed
tools to detect shape errors for TensorFlow, similar tools for
Keras and PyTorch are lacking and could be designed.

(vi) Improve documentation. As shown in our results,
many developers have difficulty understanding and using
DL framework APIs. For instance, API Usage, API Misuse,
and Object Detection API topics account for 9.8% questions
in total, and API Misuse and Object Detection API topics
both show an increasing trend. Hence, the DL framework
documentation should be improved. On the one hand,
comparisons between similar APIs and best practices of
using an API could be provided in the documentation
to guide developers efficiently use suitable APIs. On the
other hand, as discussed in Section 3.2 and Section 5.2,
developers sometimes fail to learn from official tutorials
(e.g., Question 59290830, 64986037), suggesting that the use-
fulness [68] of relevant documentation should be improved.
For example, rather than using ready-to-use datasets, use
raw data to demonstrate the usage of data-related APIs.
In addition, as revealed in Section 4.2, TensorFlow Ob-
ject Detection API organizes documentation as multiple
markdown files, which causes some findability issues (e.g.,
Question 49148962). Therefore, the usability [68] of Tensor-
Flow Object Detection API documentation could be im-
proved.
SE4DL Education. (i) Design teaching materials in a more
targeted way. The relationship between question topics and
SE4DL stages and application types may provide a checklist
for SE4DL educators to help them design more targeted
teaching materials and tailor the curriculum towards the
specific application type if the course concerns it. They may
consider ensuring that topics found answering RQ1 are
in their teaching materials. RQ2 reveals that the questions
for the 11 topics that are becoming more frequent had a
lower percentage of having an accepted answer. First, the
difficulty of getting an answer may be due to the difficulty
of providing full relevant information [47]: a task difficult
for newcomers to SO [69]. Therefore, educators may con-
sider providing targeted training materials on how to ask
questions on SO so that they are more likely to receive an
accepted answer. Sometimes it may be difficult to provide
relevant information even for experienced SO users for

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 21,2022 at 08:31:45 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3163576, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

problems such as installation or mismatch of model formats.
Possibly a tool could be written that automatically collects
the necessary information so that it can be submitted with
the question. Finally, for some of the topics that developers
may not receive sufficient training, more teaching efforts
may remedy that. Answers to RQ3 may be used to target
teaching materials for specific application type and focus on
primary pitfalls developers experience there. For example,
a SE4DL educator may emphasize how to preprocess image
data when teaching the medical diagnose domain.

7 LIMITATIONS

Internal Validity concerns the soundness and accuracy
of the methods used to perform our study. Specifically,
the manual procedure used to label question topics and
README themes may be subjective. To minimize this sub-
jectivity, two authors performed the labeling separately and
resolved inconsistencies through discussions. Moreover, a
third person has inspected the named question topics and
README themes. The Kappa value of labeling README
sections in Section 2.2.2 and SE4DL stages 3.1 measuring the
agreement between the two authors was both above 0.80,
which is considered to be almost perfect agreement [28],
suggesting high reliability of the procedure. The method
used to identify DL application types relied on considering
the text of first two sections of README files. README
files have been used to classify repositories previously [26],
[27]. We choose the first two sections to locate relevant
information from README files based on the results of
a preliminary study that found that in over 80% of cases
of a random sample functionality-relevant information was
contained within the first two sections. For comparison,
we also ran LDA on the entire text of READMEs but the
results were far worse with the coherence score of 0.47.
The third limitation relates to the accuracy of the estimated
question ratios for SE4DL stages. The ratios were estimated
as described in 3.1. To assess the accuracy of the estimates,
we also manually labeled 383 randomly sampled questions.
Our finding indicates that errors in the estimates are within
1%. The fourth limitation relates to the way how LDA
parameters were selected. To address it, we did parameter
tuning using Mallet’s hyperparameter optimization for ~α

and ~β and also used an approach described in [26], [33],
[36], GA, to tune K and I . As is widely done in recent
research [6], [18], [19], we used coherence score to evaluate
how LDA fit. We also evaluate the LDA stability with widely
used metric — raw score Rn. The process of using the LDA
model fitted on READMEs to make inferences on a different
corpus (SO questions) may introduce vocabulary incom-
patibility issues. To minimize the impact of these potential
issues we use --use-pipe-from option suggested in Mallet
documentation [70] to align tokens in SO questions with
README corpus’s vocabulary and validate the inference
results as described in Section 5.1.

External Validity concerns the threats to generalize our
findings. Similar to previous studies [15], [17], [18], [19], [31],
[32], [33], [34], we use SO questions to identify practical
problems. As a result, we may ignore problems reported
in other platforms besides SO such as GitHub issues. As
discussed in a prior study [6], “GitHub provides more developer

perspectives, while Stack Overflow provides more of a user’s
perspective”. In this study, we aim to investigate problems
faced by developers when developing DL applications (i.e.,
user’s perspective). Therefore, we study SO posts instead
of GitHub issues. Considering that developers who use SO
appear to vary in experience and background, and that
a search engine query often links to SO [71], we believe
that SO questions should approximate developers’ practical
problems regarding which they are willing to attempt to
crowd-source an answer. We identify DL-related SO ques-
tions based on tags that are similar to tags used in previous
work [10]. We use tags representing the three most popular
DL frameworks (in terms of GitHub stars). We can not,
therefore, extrapolate our results to other frameworks. How-
ever, we carefully make a comparison between the three
frameworks under study and four other frameworks (i.e.,
Theano, Caffe, MxNet, and CNTK) which once attracted
attention from industry and academia in Appendix. Com-
pared with the other four frameworks, the three frame-
works selected for this study are actively developed, have
increasing downstream repositories and SO questions, and
cover different DL framework implementations. We also run
LDA on all SO questions related to the seven frameworks,
which identifies the same 27 question topics. Therefore, we
believe the three selected frameworks are representative and
influential. Some of the questions that discuss the three
frameworks may not have the tags we used for filtering.
To capture these untagged questions, future work may con-
sider applying content-based filtering techniques as in [18].
We also identify DL-related repositories based on the three
popular DL frameworks. Some of the DL-related reposito-
ries may use other frameworks. The three frameworks we
choose are used in almost one million repositories, so we
believe our dataset represents a significant part of all open
source DL development.

Construct Validity is the degree to which our metrics
of the relative number of questions and proportion of an-
swered questions measure the relative number of problems
and difficulty of getting answers. For example, even a stable
relative rate for a topic represents increasing number of
questions. The question intensity or relative frequency may
also reflect the changing or growing of the population of
developers. From our perspective, we wanted to demon-
strate the relative importance of a problem, so the exact
reason why certain stages, topics, or themes have more
questions is not essential. What matters is that if addressed
through improvement in the frameworks, better training,
or improved tools, it will bring benefits. The reasons why
some questions do not get answers may vary as well. For
example, a question may be harder, or be badly formulated,
or lack context, or be hard to specify the full context (as in
installation problems), or there simply may be no experts to
answer it. As with the number of questions, these reasons
may be important and may require different interventions.
For example, to train developers how to ask questions, how
to determine and provide relevant context, how to incen-
tivize experts who answer questions better, etc. From the
perspective of our research, however, unanswered questions
indicate unresolved problems and the lower the percentage
of accepted answers, the bigger that the problem is.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 21,2022 at 08:31:45 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3163576, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

TABLE 4
Summary of related work on SE4DL stages

Paper Artifacts Findings about SE4DL Stages Findings about Trend

Alshangiti et
al. [15]

SO questions
The data pre-processing and manipulation stage
and the model deployment and environment setup
stage are the most challenging.

N.A.

Islam et al. [16]
SO questions
and GitHub
commits

The stages with the most bugs are data prepara-
tion, model training, and model setup.

Structural logic bugs are increasing and data
bugs are decreasing.

Han et al. [6]
SO questions
and GitHub
issues

Model Training and Preliminary Preparation are
the most frequently discussed stages and Model
Tuning stage has not been discussed

The impact trend of stages on TensorFlow and
Theano are relatively flat and on PyTorch fluctu-
ates intensely; The top 3 LDA topics with largest
increases or decreases are always different on
the three studied DL frameworks.

8 RELATED WORK

SE4DL has unique problems that differ from problems
encountered in other domains of software development
and has attracted several empirical studies to characterize
SE4DL needs. Specifically, many studies focus on SE4DL
challenges and faults, but they do not investigate how
they vary among SE4DL stages. The study of Zhang et
al. [7] investigated DL software bugs. The authors manually
analyzed 175 TensorFlow program bugs collected from SO
and GitHub and summarized four symptoms such as Error
and Low Effectiveness and seven root causes such as Incorrect
Model Parameter or Structure and Unaligned Tensor. Islam
et al. [16] and Humbatova et al. [10] studied more DL
frameworks for a more comprehensive understanding of DL
software bug symptoms and root causes. Islam et al. also
analyzed fix patterns and challenges of these bugs in their
follow-up work [9]. Zhang et al. [11] studied the program
failures of DL jobs running on DL platforms and found that
near half of the failures occur in the interaction with the
platform rather than in the execution of code logic. Zhang
et al. [8] manually inspected 715 DL-related SO questions
and identified seven kinds of questions such as program
crash, model migration and deployment, and implementation.
Other empirical studies of SE4DL focused on the model
deployment task at Model Prediction stage. Guo et al. [12]
investigated the performance gap when deploying trained
models to mobile devices and web browsers and found
that model deployment suffered from compatibility and
reliability issues. Chen et al. [13] manually analyzed 769
SO posts and built taxonomies consisting of 72 challenges
when deploying DL software to server/cloud, mobile, and
browser. They further analyzed the symptoms and fix strate-
gies of deployment faults of mobile DL apps [14].

Work in [6], [15], [16] investigated SE4DL stages. We
summarize the findings of these three papers in Table 4. The
Artifacts column shows the data source used. The third and
fourth columns show the findings concerning SE4DL stages
and problem trends. N.A. means no findings. Alshangiti et
al. [15] analyzed 684 machine learning (ML) related SO ques-
tions and revealed the stages with the highest percentage
of questions without an accepted answer. Islam et al. [16]
manually labeled 970 bugs collected from SO questions and
GitHub commits to stages and revealed stages with the
most bugs and the annual trend of bugs. Han et al. [6]
applied LDA on large-scale SO questions and GitHub issues

of three DL frameworks, namely, Tensorflow, PyTorch, and
Theano respectively and derived total 75 topics in the six
corpora. The authors then aggregated LDA topics into 20
topic categories in all stages and reported the question topic
distribution over stages. They also reported the impact (the
averaged probability of a topic in the topic probability distri-
bution of all questions) trend of stages in the six corpora and
the impact trend of particular topics and topic categories.

In comparison to these three studies, our study has
made several advances. In particular, unlike our study, the
work described in [15], [16] was based on a much smaller
dataset and didn’t associate problems with DL stages. The
work described in [6] investigated stages under an improper
assumption that the question topics exclusively belong to
a single stage. We found most topics to occur in most
stages. Furthermore, the authors only presented the trends
for only a few of the topics. Finally, none of the three studies
investigate how problems faced by developers vary over DL
application types.

In this study, we perform topic modeling with LDA on
large-scale SO questions and README files to reveal the
varied and interconnected landscape of DL development
stages, developer needs, and DL application types, in partic-
ular, how problems faced by DL developers are distributed
over SE4DL stages and vary over time and application
types.

9 CONCLUSION

Software development of DL applications presents unique
problems, and is rapidly spreading and evolving. This paper
aims to better understand SE4DL needs by identifying how
the problems faced by DL developers vary over DL develop-
ment stages, time, and application types. Our approach is at-
tempting to leverage approximately all DL-related SO ques-
tions and public DL software projects. In total, we analyze
92,830 SO questions and 227,756 READMEs of repositories
related to DL. We also describe the process we used to obtain
the distribution of SO question topics to facilitate not only
reproduction of the results at a later time, but also to support
investigation in other software development domains. The
approach based on analyzing nearly all actual projects and
questions can help better prioritize the training, creation of
relevant tools and technologies, and further research efforts
in that domain. We find the distribution of topics to be
uneven over DL stages, time, and application types. Often

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 21,2022 at 08:31:45 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3163576, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

the most frequent topics for an application type or a stage
are not intuitive. We believe that our detailed description
of the changing landscape of SE4DL needs over DL stages,
time, and application types would help inform ways to
improve SE4DL.

ACKNOWLEDGMENTS

We would like to thank Zhehao Zhao for his valuable
feedback. We also sincerely thank the reviewers for their
great suggestions. This work is supported by the National
Key R&D Program of China Grant 2018YFB1004201 and
the National Natural Science Foundation of China Grant
61825201.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” Commun.
ACM, vol. 60, no. 6, pp. 84–90, 2017. [Online]. Available:
http://doi.acm.org/10.1145/3065386

[2] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object detection,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 2016, pp. 779–788. [Online]. Available:
https://doi.org/10.1109/CVPR.2016.91

[3] “Tensorflow,” https://www.tensorflow.org/, retrieve on August
30, 2021.

[4] “Keras: the python deep learning api,” https://keras.io/, retrieve
on July 27, 2021.

[5] “Pytorch,” https://pytorch.org/, retrieve on August 30, 2021.
[6] J. Han, E. Shihab, Z. Wan, S. Deng, and X. Xia, “What do

programmers discuss about deep learning frameworks,” Empir.
Softw. Eng., vol. 25, no. 4, pp. 2694–2747, 2020. [Online]. Available:
https://doi.org/10.1007/s10664-020-09819-6

[7] Y. Zhang, Y. Chen, S. Cheung, Y. Xiong, and L. Zhang, “An
empirical study on tensorflow program bugs,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21,
2018, F. Tip and E. Bodden, Eds. ACM, 2018, pp. 129–140.
[Online]. Available: https://doi.org/10.1145/3213846.3213866

[8] T. Zhang, C. Gao, L. Ma, M. R. Lyu, and M. Kim, “An empirical
study of common challenges in developing deep learning
applications,” in 30th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2019, Berlin, Germany, October 28-31,
2019, K. Wolter, I. Schieferdecker, B. Gallina, M. Cukier, R. Natella,
N. R. Ivaki, and N. Laranjeiro, Eds. IEEE, 2019, pp. 104–115.
[Online]. Available: https://doi.org/10.1109/ISSRE.2019.00020

[9] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing
deep neural networks: fix patterns and challenges,” in ICSE
’20: 42nd International Conference on Software Engineering, Seoul,
South Korea, 27 June - 19 July, 2020, G. Rothermel and
D. Bae, Eds. ACM, 2020, pp. 1135–1146. [Online]. Available:
https://doi.org/10.1145/3377811.3380378

[10] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella, “Taxonomy of real faults in deep learning
systems,” in ICSE ’20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020, G. Rothermel
and D. Bae, Eds. ACM, 2020, pp. 1110–1121. [Online]. Available:
https://doi.org/10.1145/3377811.3380395

[11] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang,
“An empirical study on program failures of deep learning jobs,”
in ICSE ’20: 42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020, G. Rothermel and
D. Bae, Eds. ACM, 2020, pp. 1159–1170. [Online]. Available:
https://doi.org/10.1145/3377811.3380362

[12] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu,
J. Zhao, and X. Li, “An empirical study towards characterizing
deep learning development and deployment across different
frameworks and platforms,” in 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San
Diego, CA, USA, November 11-15, 2019. IEEE, 2019, pp. 810–822.
[Online]. Available: https://doi.org/10.1109/ASE.2019.00080

[13] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu,
“A comprehensive study on challenges in deploying deep
learning based software,” in ESEC/FSE ’20: 28th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November
8-13, 2020, P. Devanbu, M. B. Cohen, and T. Zimmermann,
Eds. ACM, 2020, pp. 750–762. [Online]. Available: https:
//doi.org/10.1145/3368089.3409759

[14] Z. Chen, H. Yao, Y. Lou, Y. Cao, Y. Liu, H. Wang, and X. Liu,
“An empirical study on deployment faults of deep learning
based mobile applications,” in 43rd IEEE/ACM International
Conference on Software Engineering, ICSE 2021, Madrid, Spain,
22-30 May 2021. IEEE, 2021, pp. 674–685. [Online]. Available:
https://doi.org/10.1109/ICSE43902.2021.00068

[15] M. Alshangiti, H. Sapkota, P. K. Murukannaiah, X. Liu, and
Q. Yu, “Why is developing machine learning applications
challenging? A study on stack overflow posts,” in 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement, ESEM 2019, Porto de Galinhas, Recife, Brazil,
September 19-20, 2019. IEEE, 2019, pp. 1–11. [Online]. Available:
https://doi.org/10.1109/ESEM.2019.8870187

[16] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A
comprehensive study on deep learning bug characteristics,”
in Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019, M. Dumas, D. Pfahl, S. Apel, and
A. Russo, Eds. ACM, 2019, pp. 510–520. [Online]. Available:
https://doi.org/10.1145/3338906.3338955

[17] M. Bagherzadeh and R. Khatchadourian, “Going big: a
large-scale study on what big data developers ask,” in
Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019, M. Dumas, D. Pfahl, S. Apel, and
A. Russo, Eds. ACM, 2019, pp. 432–442. [Online]. Available:
https://doi.org/10.1145/3338906.3338939

[18] M. U. Haque, L. H. Iwaya, and M. A. Babar, “Challenges in
docker development: A large-scale study using stack overflow,”
in ESEM ’20: ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, Bari, Italy, October 5-7,
2020, M. T. Baldassarre, F. Lanubile, M. Kalinowski, and
F. Sarro, Eds. ACM, 2020, pp. 7:1–7:11. [Online]. Available:
https://doi.org/10.1145/3382494.3410693

[19] A. Abdellatif, D. Costa, K. Badran, R. Abdalkareem, and
E. Shihab, “Challenges in chatbot development: A study
of stack overflow posts,” in MSR ’20: 17th International
Conference on Mining Software Repositories, Seoul, Republic of
Korea, 29-30 June, 2020, S. Kim, G. Gousios, S. Nadi, and
J. Hejderup, Eds. ACM, 2020, pp. 174–185. [Online]. Available:
https://doi.org/10.1145/3379597.3387472

[20] “About keras: installation & compatibility,” https://keras.io/
about/#installation-amp-compatibility, retrieve on August 1,
2021.

[21] G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a
firehose,” in 2012 9th IEEE Working Conference on Mining Software
Repositories (MSR), 2012, pp. 12–21.

[22] L. Hong and B. D. Davison, “Empirical study of topic modeling
in twitter,” in Proceedings of the First Workshop on Social Media
Analytics, ser. SOMA ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 80–88. [Online]. Available:
https://doi.org/10.1145/1964858.1964870

[23] “Git objects,” https://git-scm.com/book/en/v2/
Git-Internals-Git-Objects, retrieve on July 30, 2021.

[24] “Mallet/en.txt,” https://github.com/mimno/Mallet/blob/
master/stoplists/en.txt, retrieve on August 1, 2021.

[25] C. Tan, Y. Wang, and C. Lee, “The use of bigrams to enhance text
categorization,” Inf. Process. Manag., vol. 38, no. 4, pp. 529–546,
2002. [Online]. Available: https://doi.org/10.1016/S0306-4573(01)
00045-0

[26] A. Sharma, F. Thung, P. S. Kochhar, A. Sulistya, and
D. Lo, “Cataloging github repositories,” in Proceedings of
the 21st International Conference on Evaluation and Assessment
in Software Engineering, EASE 2017, Karlskrona, Sweden, June
15-16, 2017, E. Mendes, S. Counsell, and K. Petersen,
Eds. ACM, 2017, pp. 314–319. [Online]. Available: https:
//doi.org/10.1145/3084226.3084287

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 21,2022 at 08:31:45 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3163576, IEEE

Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

[27] G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo,
“Categorizing the content of github README files,” Empir. Softw.
Eng., vol. 24, no. 3, pp. 1296–1327, 2019. [Online]. Available:
https://doi.org/10.1007/s10664-018-9660-3

[28] J. L. Fleiss, “Measuring nominal scale agreement among many
raters.” Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[29] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. Germán,
and D. E. Damian, “The promises and perils of mining github,” in
11th Working Conference on Mining Software Repositories, MSR 2014,
Proceedings, May 31 - June 1, 2014, Hyderabad, India, P. T. Devanbu,
S. Kim, and M. Pinzger, Eds. ACM, 2014, pp. 92–101. [Online].
Available: https://doi.org/10.1145/2597073.2597074

[30] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” in Advances in Neural Information Processing
Systems 14 [Neural Information Processing Systems: Natural
and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver,
British Columbia, Canada], T. G. Dietterich, S. Becker,
and Z. Ghahramani, Eds. MIT Press, 2001, pp. 601–608.
[Online]. Available: https://proceedings.neurips.cc/paper/2001/
hash/296472c9542ad4d4788d543508116cbc-Abstract.html

[31] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions
asked by web developers,” in 11th Working Conference on
Mining Software Repositories, MSR 2014, Proceedings, May 31 -
June 1, 2014, Hyderabad, India, P. T. Devanbu, S. Kim, and
M. Pinzger, Eds. ACM, 2014, pp. 112–121. [Online]. Available:
https://doi.org/10.1145/2597073.2597083

[32] C. Rosen and E. Shihab, “What are mobile developers asking
about? A large scale study using stack overflow,” Empir. Softw.
Eng., vol. 21, no. 3, pp. 1192–1223, 2016. [Online]. Available:
https://doi.org/10.1007/s10664-015-9379-3

[33] X. Yang, D. Lo, X. Xia, Z. Wan, and J. Sun, “What security
questions do developers ask? A large-scale study of stack overflow
posts,” J. Comput. Sci. Technol., vol. 31, no. 5, pp. 910–924, 2016.
[Online]. Available: https://doi.org/10.1007/s11390-016-1672-0

[34] S. Ahmed and M. Bagherzadeh, “What do concurrency
developers ask about?: a large-scale study using stack overflow,”
in Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM 2018, Oulu,
Finland, October 11-12, 2018, M. Oivo, D. M. Fernández, and
A. Mockus, Eds. ACM, 2018, pp. 30:1–30:10. [Online]. Available:
https://doi.org/10.1145/3239235.3239524

[35] C. Treude and M. Wagner, “Predicting good configurations for
github and stack overflow topic models,” in Proceedings of the
16th International Conference on Mining Software Repositories, MSR
2019, 26-27 May 2019, Montreal, Canada, M. D. Storey, B. Adams,
and S. Haiduc, Eds. IEEE / ACM, 2019, pp. 84–95. [Online].
Available: https://doi.org/10.1109/MSR.2019.00022

[36] A. Panichella, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and
A. D. Lucia, “How to effectively use topic models for software
engineering tasks? an approach based on genetic algorithms,” in
35th International Conference on Software Engineering, ICSE ’13, San
Francisco, CA, USA, May 18-26, 2013, D. Notkin, B. H. C. Cheng,
and K. Pohl, Eds. IEEE Computer Society, 2013, pp. 522–531.
[Online]. Available: https://doi.org/10.1109/ICSE.2013.6606598

[37] A. Agrawal, W. Fu, and T. Menzies, “What is wrong with
topic modeling? and how to fix it using search-based software
engineering,” Inf. Softw. Technol., vol. 98, pp. 74–88, 2018. [Online].
Available: https://doi.org/10.1016/j.infsof.2018.02.005

[38] A. Panichella, “A systematic comparison of search-based
approaches for LDA hyperparameter tuning,” Inf. Softw.
Technol., vol. 130, p. 106411, 2021. [Online]. Available: https:
//doi.org/10.1016/j.infsof.2020.106411

[39] H. M. Wallach, D. M. Mimno, and A. McCallum, “Rethinking
LDA: why priors matter,” in Advances in Neural Information
Processing Systems 22: 23rd Annual Conference on Neural Information
Processing Systems 2009. Proceedings of a meeting held 7-10
December 2009, Vancouver, British Columbia, Canada, Y. Bengio,
D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and
A. Culotta, Eds. Curran Associates, Inc., 2009, pp. 1973–1981.
[Online]. Available: https://proceedings.neurips.cc/paper/2009/
hash/0d0871f0806eae32d30983b62252da50-Abstract.html

[40] M. D. Hoffman, D. M. Blei, and F. R. Bach, “Online
learning for latent dirichlet allocation,” in Advances in Neural
Information Processing Systems 23: 24th Annual Conference on Neural
Information Processing Systems 2010. Proceedings of a meeting held
6-9 December 2010, Vancouver, British Columbia, Canada, J. D.
Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and

A. Culotta, Eds. Curran Associates, Inc., 2010, pp. 856–864.
[Online]. Available: https://proceedings.neurips.cc/paper/2010/
hash/71f6278d140af599e06ad9bf1ba03cb0-Abstract.html

[41] D. M. Mimno, H. M. Wallach, E. M. Talley, M. Leenders, and
A. McCallum, “Optimizing semantic coherence in topic models,”
in Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2011, 27-31 July 2011, John McIntyre
Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special
Interest Group of the ACL. ACL, 2011, pp. 262–272. [Online].
Available: https://aclanthology.org/D11-1024/

[42] M. Röder, A. Both, and A. Hinneburg, “Exploring the space
of topic coherence measures,” in Proceedings of the Eighth ACM
International Conference on Web Search and Data Mining, WSDM
2015, Shanghai, China, February 2-6, 2015, X. Cheng, H. Li,
E. Gabrilovich, and J. Tang, Eds. ACM, 2015, pp. 399–408.
[Online]. Available: https://doi.org/10.1145/2684822.2685324

[43] Z. Wan, X. Xia, and A. E. Hassan, “What do programmers
discuss about blockchain? A case study on the use of
balanced LDA and the reference architecture of a domain
to capture online discussions about blockchain platforms
across stack exchange communities,” IEEE Trans. Software
Eng., vol. 47, no. 7, pp. 1331–1349, 2021. [Online]. Available:
https://doi.org/10.1109/TSE.2019.2921343

[44] J. H. Gennari, P. Langley, and D. H. Fisher, “Models of incremental
concept formation,” Artif. Intell., vol. 40, no. 1-3, pp. 11–61,
1989. [Online]. Available: https://doi.org/10.1016/0004-3702(89)
90046-5

[45] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian Journal of Statistics, vol. 6, no. 2, pp. 65–70, 1979.
[Online]. Available: http://www.jstor.org/stable/4615733

[46] Wikipedia contributors, “Supermajority — Wikipedia, the
free encyclopedia,” https://en.wikipedia.org/w/index.php?title=
Supermajority&oldid=1061442111, 2021, [Online; accessed 10-
January-2022].

[47] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider,
“Answering questions about unanswered questions of stack
overflow,” in Proceedings of the 10th Working Conference on Mining
Software Repositories, MSR ’13, San Francisco, CA, USA, May
18-19, 2013, T. Zimmermann, M. D. Penta, and S. Kim, Eds.
IEEE Computer Society, 2013, pp. 97–100. [Online]. Available:
https://doi.org/10.1109/MSR.2013.6624015

[48] M. Hussain and I. Mahmud, “pymannkendall: a python package
for non parametric mann kendall family of trend tests.” Journal
of Open Source Software, vol. 4, no. 39, p. 1556, 7 2019. [Online].
Available: http://dx.doi.org/10.21105/joss.01556

[49] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. Ger-
man, and D. Poshyvanyk, “Machine learning-based detection of
open source license exceptions,” in 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering (ICSE), 2017, pp. 118–129.

[50] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, and M. Lanza,
“Pattern-based mining of opinions in q amp;a websites,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), 2019, pp. 548–559.

[51] A. Danilova, A. Naiakshina, S. Horstmann, and M. Smith, “Do
you really code? designing and evaluating screening questions
for online surveys with programmers,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), 2021, pp.
537–548.

[52] J. Jiang, Q. Wu, J. Cao, X. Xia, and L. Zhang, “Recommending tags
for pull requests in github,” Information and Software Technology,
vol. 129, p. 106394, 2021. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0950584920301580

[53] “Google developers blog: Announcing tensorflow 1.0,” https://
developers.googleblog.com/2017/02/announcing-tensorflow-10.
html, retrieve on August 3, 2021.

[54] “Tensorflow 2.0 is now available!” https://blog.tensorflow.org/
2019/09/tensorflow-20-is-now-available.html, retrieve on July 27,
2021.

[55] Z. Zhang, H. Zhu, M. Wen, Y. Tao, Y. Liu, and Y. Xiong, “How
do python framework apis evolve? an exploratory study,” in 27th
IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2020, London, ON, Canada, February 18-21,
2020, K. Kontogiannis, F. Khomh, A. Chatzigeorgiou, M. Fokaefs,
and M. Zhou, Eds. IEEE, 2020, pp. 81–92. [Online]. Available:
https://doi.org/10.1109/SANER48275.2020.9054800

[56] “Image segmentation - wikipedia,” https://en.wikipedia.org/
wiki/Image segmentation, retrieve on August 30, 2021.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 21,2022 at 08:31:45 UTC from IEEE Xplore. Restrictions apply.

