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Abstract: Data privacy is critical in instilling trust and
empowering the societal pacts of modern technology-
driven democracies. Unfortunately it is under continu-
ous attack by overreaching or outright oppressive gov-
ernments, including some of the world’s oldest democra-
cies. Increasingly-intrusive anti-encryption laws severely
limit the ability of standard encryption to protect pri-
vacy. New defense mechanisms are needed.
Plausible deniability (PD) is a powerful property, en-
abling users to hide the existence of sensitive informa-
tion in a system under direct inspection by adversaries.
Popular encrypted storage systems such as TrueCrypt
and other research efforts have attempted to also pro-
vide plausible deniability. Unfortunately, these efforts
have often operated under less well-defined assumptions
and adversarial models. Careful analyses often uncover
not only high overheads but also outright security com-
promise. Further, our understanding of adversaries, the
underlying storage technologies, as well as the available
plausible deniable solutions have evolved dramatically
in the past two decades. The main goal of this work
is to systematize this knowledge. It aims to: (1) iden-
tify key PD properties, requirements and approaches;
(2) present a direly-needed unified framework for eval-
uating security and performance; (3) explore the chal-
lenges arising from the critical interplay between PD
and modern system layered stacks; (4) propose a new
“trace-oriented” PD paradigm, able to decouple secu-
rity guarantees from the underlying systems and thus
ensure a higher level of flexibility and security indepen-
dent of the technology stack.
This work is meant also as a trusted guide for system
and security practitioners around the major challenges
in understanding, designing and implementing plausible
deniability into new or existing systems.
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1 Introduction
Data privacy has become essential maybe more so than
at any other time in human history. Encryption can be
used to defend against unauthorized disclosure of sensi-
tive data, yet is not enough to handle adversaries em-
powered by law or rubber-hose (e.g. oppressive govern-
ments) to coerce the user into revealing encryption keys.

Unfortunately, numerous real-life examples show
that protecting sensitive data in the presence of such co-
ercive adversaries is often a matter of life and death. The
Human Rights Group Network for Human Rights Doc-
umentation at Burma (ND-Burma) [34] documented
large numbers of human rights violations. Proof was
carried out of the country on mobile devices by ND-
Burma activists, risking exposure at checkpoints and
border crossings. In 2012, a videographer could smug-
gle evidence of human rights violations out of Syria by
hiding a micro-SD card in a wound on his arm [31] etc.
Threats of coercive attacks are not merely an Orwellian
fantasy, but a real concern [3, 25, 36, 37, 43, 46, 49].

To address this, plausible deniability (PD) has been
proposed. It is a powerful property, enabling users to
hide the existence of sensitive information on a sys-
tem under inspection by overreaching or coercive ad-
versaries, democratically elected or otherwise.

In the context of secure storage1, PD refers to the
ability of a user to plausibly deny the existence of cer-
tain data stored on a storage device even when an ad-
versary has access to the device. Since adversaries can-
not conclude anything about the existence of sensitive
data, they have no good excuse to perform the coercion
further, thus leaving those data in safety.

PD was first proposed in 1998 [3]. Since then, pop-
ular encrypted file systems (FSes) such as TrueCrypt [2]
(first released in 2004) and other PD research results
have emerged [4, 24, 30, 33, 34, 42] attempting to bal-
ance the ever present security-efficiency trade-off.

Unfortunately, existing efforts were designed for
very specific adversaries and contexts, and under some-

1 PD has been first formalized in a (mostly theoretical) context
of encryption [7, 32], often involving small amounts of data and
sometimes read-only. This work focuses on applied aspects as
they relate to efficient, modern, high-capacity data storage.
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times unclear security models and device assumptions.
However, to achieve strong PD guarantees, it is impor-
tant to understand and evaluate these contexts and lim-
itations properly. This work aims to systematize knowl-
edge and provide a more in-depth understanding for to-
day’s practitioners, and future research.

1.1 Challenges

Before diving in, it is important to understand some of
high-level challenges facing plausibly deniable systems
researchers and practitioners.
Security-Efficiency Trade-Off. Real-Life Adversaries.
Previous PD literature has been focusing on single-
snapshot adversaries who can check the storage de-
vice only once, and multi-snapshot adversaries who can
checks the device at several different time points. While
the former are relatively easy to handle (proof be-
ing practical systems such as TrueCrypt [2]), practical
PD systems resilient against multi-snapshot adversaries
turns out to be more difficult to design.

Ideally, researchers would like to obtain multi-
snapshot security against all probabilistic polynomial
time (PPT) adversaries2 (referred to as “full security”).
However, until today, only a few constructions [4, 9, 14]
achieve this level of security, but are unfortunately sig-
nificantly slower than the underlying storage device.
Other solutions seek better performance by relaxing the
security requirements. For example, some of them as-
sume that a small area on the device is hidden from
the adversary, and some put certain restrictions on the
adversarial behavior (see Sec. 4 for details).

Overall, unfortunately, no practically efficient con-
struction achieves multi-snapshot PD with full security.
This may be also because existing adversarial models
and associated solutions have been developed mostly
ad-hoc and not designed to answer more general, funda-
mental questions regarding the security-efficiency trade-
off. For example, is there a performance bottleneck in-
herent to the concept of PD? Are wORAMs necessary to
achieve fully-secure PD? Are there multiple dimensions
along which the PD security-efficiency trade-off can be
optimized? We believe that answers to these questions
are critical for both practitioners of today aiming to

2 Security against all PPT adversaries is the golden rule for
most cryptographic primitives and security tasks, e.g. one-way
functions, encryption schemes, digital signatures etc.

build in plausible deniability into modern system stacks,
as well as for upcoming research in PD.
Dependency on System Layers. To complicate things
further, modern systems feature layered structures all
of which persist state and can compromise any secu-
rity guarantees aimed for by other layers. Consider that
ubiquitous stack of a typical FS, FS caches, LVM layers,
LVM caches, block-devices (BD), block device caches,
and flash translation layers (FTL) (see Sec. 2.2 for addi-
tional details). Existing PD works consider only a spe-
cific layer, e.g., DEFY [34] builds PD in the FS layer,
TrueCrypt [2] works in the BD layer, DEFTL [24] works
in the FTL layer.

Further, most schemes make ad-hoc case-specific as-
sumptions about the devices and the adversary behav-
ior, accordingly achieving PD in a restricted sense.

Such a layered structure complicates the security
analysis. Schemes designed for a specific layer may lose
their security guarantees if deployed at a “wrong” layer.
As will be shown in Sec. 3.1, this fact can sometimes
be overlooked unintentionally. Further, the existence of
state in the other layers cannot be ignored since it often
contains compromising information breaking the secu-
rity of the overall scheme.

In most cases, a realistic adversary with visibil-
ity into the state of one or more additional lay-
ers, may immediately compromise single-layer
designs since the additional state can reveal ac-
cess patterns and other security-sensitive infor-
mation that a single-layer model simply cannot
capture.

It is thus critical to investigate the interplay be-
tween PD security and layers, and provide construc-
tions and definitions with reduced or zero dependency
on layers. Ideally, such an investigation can isolate PD
as an independent security concept, and not only a
layer/device-dependent property (Sec. 3 and 3.1).
Lack of Unified Security Framework. As discussed, full
security as defined in [4] is achieved by only a few con-
structions which feature prohibitive performance over-
heads. Most other schemes restrict adversaries signifi-
cantly and do not provide strong security or allow even
for a comparative analysis of security. Very often also,
the security arguments for such schemes contain heuris-
tics, a very dangerous practice. For example, the se-
curity of DEFY [34] relied on the authors’ claim that
the hidden pages in their scheme were indistinguish-
able from secure-deleted public pages. However, with
no formal proof given, it was not clear whether the as-
serted indistinguishability really held against all PPT



SoK: Plausibly Deniable Storage 3

coercive adversaries. Subsequently Jia et al. [24] showed
that DEFY can be easily compromised with very little
effort (if adversaries make several attempts to exhaust
writing capacity).

Moreover, due to the lack of a unified security frame-
work, different papers customize the definition of PD to
serve their specific application or devices, making com-
parisons between systems difficult or outright impossi-
ble. This further leads to an unnecessary proliferation of
threat models and definitions, with a polymorphous-yet-
confusing naming style. For example, PD schemes de-
ployed in the FS layer are called “steganographic file sys-
tem” or “deniable file system”, while schemes designed
for the BD layer are named “hidden volume encryption”
or “deniable encryption”. In selecting a proper plausible
deniability mechanism for their application, practition-
ers end up bewildered by such multifarious names, and
the lack of structure or relationships among the security
guarantees provided by those schemes. It is essential to
unify these adversarial definitions and application sce-
narios, and thus enable comparison-based evaluations.

1.2 Contributions

This work synthesizes existing ideas into a guide for
system and security practitioners helping to understand,
design or implement plausible deniability into new or
existing systems. Concretely:
1. We observe that a key point of PD lies in concealing

users’ hidden data access patterns. Often this hap-
pens using randomized (ORAMs) or canonical form
I/O. We examine how these approaches affect the se-
curity and efficiency of the resulting PD schemes. We
also survey another approach appeared recently—
basing the secrecy of access patterns on inherent
properties of storage systems/devices. This approach
usually leads to lightweight solutions that are “na-
tive” to the underlying systems/devices.

2. We investigate the interplay between security assur-
ances, adversarial models and modern multi-layer
storage stacks. This reveals a set of general princi-
ples and definitions that can be deployed for better
security-efficiency trade-offs.

3. We propose the concept of trace-oriented security to
enable the design and evaluation of schemes provid-
ing layer-independent security guarantees. We show
that trace-oriented security was achieved (though not
claimed explicitly) by a few existing constructions
[4, 9, 14]. We show that this stronger security no-

tion comes with a price—equivalence to write-only
ORAMs.

4. We provide a way to unify and evaluate solutions un-
der a single framework, where the main differences
are expressed as constraints on the power of the ad-
versary. Saliently, this unified point of view provides
a framework for the comparison and evaluation of
PD solutions. We present a taxonomy of security for
existing constructions.

5. Finally, we identify important under-explored areas,
and suggest new directions for future research.

2 Model
In this section, we provide the problem setup for PD,
then describe the system and adversary model.

2.1 The Plausible Deniability Problem

Plausibly deniable storage systems need to allow users
to store public data, and sensitive hidden data. Pub-
lic data does not require protection, and is potentially
known by the adversary. Hidden data needs to be pro-
tected against coercive adversaries who can compel the
user to hand over secret information (e.g. encryption
keys). Under duress, the user may need to provide some
information (e.g. keys to public data) that dismisses the
adversary’s suspicions, while most importantly denying
the existence of the hidden data.

2.2 System Model

Modern storage systems comprise multiple layers that
link the physical storage medium and the user applica-
tions. Example layers include the file system (FS), block
device layer (BD), device mapper, flash translation layer
(FTL), and the physical device, e.g., NAND flash or
block device. The File System (FS) layer is mandatory.
It organizes data as files for better management. The
Block Device (BD) layer provides abstractions for block
devices and maps multiple “virtual volumes” onto one
block device, where a volume can be, for instance, a file
system. It is optional and needed only if a block device
is deployed as the storage media (e.g., the device map-
per in the Linux kernel). Another optional layer is the
Flash Translation (FT) layer, needed if NAND flash is
used as the physical device.
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Not every storage system contains all the above lay-
ers. For example, if the physical storage medium is a
NAND flash, then the storage system could consist of
an FS layer only, or both an FS layer and an FTL layer.
Operation Traces. The storage device allows Read and
Write operations. An operation trace is an ordered se-
quence of operations the system performs on the phys-
ical device, independent of layers or device properties.
For instance, the operation trace (Read, l1), (Write, l1,
d1), (Write, l2, d2) first reads the data from location l1,
then writes data d1 into l1 and d2 into location l2.

In the following, we assume that Read operations do
not modify the storage medium. Since only Write oper-
ations leave traces on the storage medium, Write is the
only type of operation that the trace-oriented definition
introduced in Sec. 3 needs to consider.
Mount and Unmount. Several PD systems require users
to Mount and Unmount volumes or partitions in order to
switch between accessing public and hidden data [15,
16, 24], and even require them to Unmount the hidden
partition before handing the device to the adversary.

2.3 Adversary Model

We first detail common adversary assumptions. We then
provide a classification of adversaries based on their
capabilities, and introduce a novel, trace-oriented ad-
versary. Further, we describe the standard, CPA game-
inspired, plausible deniability definition.
Adversary Assumptions and Capabilities. Adversaries
are assumed to be able to access the device of a user,
and attempt to compromise deniability, i.e., determine
if the user is storing any secret data. Adversaries are
generally assumed to be computationally bounded.

Adversaries are assumed to know the design of the
deployed PD solution. They are also assumed not to
know how many keys are used in the system, and to
not have access to hidden user passwords or encryp-
tion keys. However, they can request the user to reveal
passwords and encryption keys. The user is assumed in
this case to reveal public passwords (including providing
root privilege) and public keys. Adversaries can use such
information to access and decrypt stored data. In addi-
tion, adversaries can use password cracking programs
and perform forensics on the disk image.

Additional assumptions have been introduced to
accommodate the applications or to trade for better
performance. Those that significantly affect the design
choices for PD are discussed as follows.

– A1: Adversaries are rational. Namely, an adversary
will stop further coercion if it cannot prove the ex-
istence of any unrevealed data.

– A2: Adversaries cannot observe run-time system
state (e.g., DRAM, caches).

– A3: Adversaries cannot perform malicious code in-
jection on the system used by the user.

Assumption A1 draws a line on the adversary’s coercive
behavior, and was made (sometimes implicitly) in the
majority of exiting work. Assumptions A2 and A3 limit
PD to disk states only. This captures a wide class of ap-
plication scenarios, including the motivational examples
in the introduction.
Adversary Classification. Adversaries can be classified
based on the data they can access on the user device:
– Snapshot-Oriented Adversary. The typical ad-

versary is snapshot-oriented. Such an adversary can
only access snapshots of the physical device.

– Trace-Oriented Adversary. We introduce a
novel, trace-oriented adversary, that can access not
only device snapshots, but also the operation traces
(Sec. 2.2) that produce them.

Traces are the result of probabilistic polynomial time
(PPT) run-time computations on user requests, i.e., se-
quences of compliant logical instructions to be executed
at a layer (Sec. 2.2). For instance, traces at the BD layer
traces may include block Read and block Write instruc-
tions, while at the FTL layer, traces may include page
Read, page Write, and block Erase instructions. This is
in contrast to run-time system state that includes the
contents of memory and caches.

An example where an adversary can capture trace
data is in flash. SSDs implement an FTL layer inside-
the-box that sees all operation traces (e.g., which inode
pages are updated) before they are executed on the ac-
tual flash cells. However, the complex wear-leveling logic
inside the FTL maintains state both as meta information
and on the device itself (e.g., un-mapped not-yet-Erased
blocks containing compromising old data) that, when
inspected, can directly reveal critical information about
past traces or even the traces themselves.

Snapshot-oriented adversaries can be further classi-
fied based on their number of opportunities to inspect
the user device:
– Single-Snapshot Adversary. This adversary can

see the device only once before eventually con-
fronting the user and demanding access to informa-
tion. This makes the design of efficient PD schemes
significantly easier. Indeed, a single snapshot (i.e.,
of a randomized encrypted device) does not leak
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much (if any) information beyond its size. For PD
then, it may be sufficient to hide the sensitive data
“encrypted”3, e.g., indistinguishable from random
“free” device areas.

– Multi-Snapshot Adversary. This adversary can
take multiple snapshots of the device at different
time points [17]. Examples multi-snapshot adver-
saries include customs officers or hotel personnel
with regular access. Data center servers may also
face inspections by overreaching authorities empow-
ered by rubberhose or ill-devised laws. For multi-
snapshot PD, it is exponentially more difficult to
balance the security-efficiency trade-off. Exploring
this will be one of the main themes of Sec. 3.1 and 4.

Standard, CPA-Game for PD. We now briefly describe
the first formal definition of PD introduced by Blass et
al. [4] and refined in [9]. The definition of PD is pro-
vided through a cryptographic game, analogous to the
one used to define encryption against chosen-plaintext
attacks (CPA). We expand this to provide a unified def-
inition of PD in Sec. 3.

The security game is played between a coercive ad-
versary and a challenger  running the underlying PD
scheme Σ. The adversary holds the credentials needed
to access the public data, but is ignorant of the ones
for hidden data. At the beginning,  picks a random
bit b

$
←←←←←←← {0, 1}.  is allowed to interact with  for

polynomial-many rounds. In each round,  issues access
patterns 0 and 1 that share the same access requests
to public data, but may contain different access requests
to the hidden data.  will always execute b. At the end
of these interactions, gets the snapshot of the physical
device.  wins if it can guess the value b correctly. The
scheme Σ is said to achieve single-snapshot PD if the
winning probability of  is ≤ 1

2 + negl(�), where negl(�)
is a negligible function on the security parameter �.4
This game extends to capture multi-snapshot security
by allowing  to access the device state at the end of
each round.

3 The double quotation marks are due to the fact that although
most schemes use standard encryption, there are some schemes
(e.g. [3]) using primitives such as secret-sharing instead.
4 The term 1∕2 reflects the fact that the  can guess randomly
and win the game with probability 1∕2.

3 Unified PD Definition

3.1 Independence of Storage Layers

The layered structure of modern storage systems
(Sec. 2.2) complicates the design of PD schemes. Yet,
this is often overlooked and has not been studied in a
systematic way. In the following we investigate how the
security of PD solutions is affected by storage layers. We
also introduce a new “trace-oriented” definition for PD.
In the standard PD definition (Sec. 2.3) the adversary
gets to see snapshots of devices; A trace-oriented no-
tion allows the adversary to also learn operation traces.
Trace-oriented PD provides stronger security guarantees
and more flexible deployment choices due to its reduced
dependence on storage layers.
Layer-Specific PD Solutions are Vulnerable. Because of
the layered nature of modern technology stacks, PD so-
lutions are often designed for a target layer , e.g., 
could be FS, BD or FTL. Then, in the security analy-
sis, even the very existence of the underlying layers is
often simply ignored. Unfortunately this results in de-
signs that can be easily compromised by an adversary
with access to operation traces (see example of trace-
oriented compromise in Sec. 2.3).

In general, an adversary with visibility into the state
of one or more other layers, can compromise single-layer
designs since that state can reveal access patterns and
other security-sensitive information that a single-layer
model simply cannot consider.
Trace-Oriented PD: Removing Layer Dependency. The
above discussion leads to the following question: Is it
possible to achieve a stronger PD whose security is in-
dependent of individual technology stack layers?

Layer-independence is preferable. First, it enables
modularity and ensures across-the-layers security. Sec-
ond, it enables the evaluation of different schemes based
on overall security strength. Performance metrics (e.g.
time/space efficiency) also make better sense when they
are least interwoven with stack layers. Otherwise, it is
difficult to compare PD solutions operating on two dif-
ferent layers. Third, the fewer dependencies on imple-
mentation specifics, the better the security abstraction.
PD can now be compared with other security constructs
such as ORAMs; Such a connection is hard to establish
for layer-dependent PD.

We can then define trace-oriented plausible deni-
ability by modifying the CPA-style security game of
Sec. 2.3 in the following way: instead of device snap-
shots, the adversary will receive the operation traces
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as the reply to its challenge requests in the security
game (along with the device snapshots). Namely, it is
stipulated that the adversary cannot tell which of the
two challenge sequences were executed, even if it gets
to learn the outputs of the PD logic (aka operation
traces) before they are physically executed on the stor-
age medium. Intuitively, this is a stronger requirement
than that of standard PD because operation traces may
contain more information than snapshots—it is totally
possible that two different sequences of operation traces
lead to the same snapshot.

Operation traces are comprised of Read and Write
operations. As mentioned in Sec. 2.2, only Write opera-
tions leave traces on the storage medium. Thus, Write is
the only type of operation that the trace-oriented defini-
tion needs to consider. Namely, it only requires that the
Write traces reveal no information of the access requests
to a PD scheme. Removing Read operations from traces
is also preferable because an analogue of Lem. 2 will
show that including Read will lead to a trace-oriented
PD definition that is equivalent to ORAMs (instead of
write-only ORAMs), thus suffering ORAMs’ efficiency
lower-bounds [5, 20, 22, 27, 47].

To achieve this we consider a function WOnly(⋅)
that filters out the Read operations but passes the Write
operations; The above security game can then be mod-
ified to return to the adversary the result of applying
WOnly(⋅) on operation traces. This constitutes the fi-
nal definition of trace-oriented PDs.

A PD scheme meeting the trace-oriented definition
also satisfies the standard, CPA-style PD definition of
Sec. 2.3. Indeed, Write traces (the output of WOnly)
contain all the information to induce storage medium
snapshots; If they are oblivious of the input access re-
quest, so are the snapshots. Furthermore, it resolves the
issue of layer dependency: notice that lower-layer traces
are always obtained from higher-layer traces, via an
implementation-specific PPT procedure. Since indistin-
guishable operation traces remain indistinguishable af-
ter being processed by arbitrary PPT procedures, trace-
oriented PD schemes allow the existence of extra layers
between the PD logic and the physical devices.
Equivalence between Trace-Oriented PDs and Write-
Only ORAMs. Blass et al. [4] constructed a trace-
oriented PD scheme from wORAM. Further, in Appx. B
we show that wORAM can also be constructed from
trace-oriented PDs. This implies the following lemma:

Lemma 1. Write-only ORAMs are both sufficient and
necessary for trace-oriented PDs.

3.2 Unified Definition

The CPA-Game for PD from [4, 9] defined in Sec. 2.3 is
deeply integrated with the underlying application. New
solutions have to repurpose this game to define PD at
different system layer with specific underlying devices.
Further, several constructions restricted the adversary’s
power in exchange for better efficiency, making it un-
clear how they fit into this game definition.

In this section we introduce a unified definition that
(1) generalizes the CPA game in Sec. 2.3, thus inherits
all its advantages, e.g. secure against CPA-style coercion
attacks, applicable for both multi-snapshot and single-
snapshot settings; (2) it encompasses existing construc-
tions and admits comparisons among them (shown in
Sec. 4); (3) it can be instantiated for both the traditional
device-oriented security model and the trace-oriented
one proposed in Sec. 3.1.

We present the definition for both device-oriented
and trace-oriented settings, with multi-snapshot adver-
saries. We use the parameter  (e.g.,  can be FS, BD,
FTL) to restrict the game to the scenario where the ad-
versary is attacking a storage device used at layer  (i.e.,
the device is directly connected to the layer ).

The security game captures restrictions on the ad-
versary’s power through two parameters: (1) the number
of rounds r (single-snapshot when r = 1, multi-snapshot
when r > 1), and (2) a new parameter , which can be
instantiated by the designer. This leads to a more uni-
fied point of view, as all PD schemes indeed share the
same abstraction modulo the parameters  and . Fur-
ther, comparisons of security strength among different
schemes become possible by investigating the restric-
tiveness of their respective  parameters.
Layer-Specific Notations. An -request is a legitimate
access (Read or Write) request to layer . An -pattern
 is an ordered sequence of -requests. Let 1 ∪ 2 de-
note the concatenation of requests in patterns 1 and
2. We define the function OpTrace(,) that, for a
layer  and access request  , outputs a sequence of
operations that are meant to be executed on the under-
lying physical device (i.e., the “operation traces”).

Definition 1. For a device  and layer , an -layer
PD (-PD) scheme Σ consists of the following two algo-
rithms (Setup,Oper):
– Setup(�,): this function provides the initial setups. It
takes as input the security parameter � and the device
. It outputs the tuple (init,Kpub,Khid), where init is
the initialized device, Kpub is the key used to protect
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Denote this game as PD
Σ,(�, r). It is parameterized by a se-

curity parameter �, an -PD scheme Σ = (Setup,Oper), an ad-
versary , and a number of rounds r.
Initialization: The challenger  executes the setup algo-
rithm to get (init,Kpub,Khid) ← Setup(�,). Kpub is given to
. The current state is set as st ∶= init.

Challenge:  picks a random bit b
$
←←←←←←← {0, 1} and then exe-

cutes the following steps for r rounds with  (i = [1..r]):
1. The adversary  sends to  two -patterns:

0 ∶= 1pub ∪ 2pub and 1 ∶= 1pub ∪ hid,

where (1
pub
,2

pub
,hid) satisfy the following requirements:

(a) 1
pub

and 2
pub

contain only public requests;
(b) hid contains only hidden requests;
(c) 2

pub
must be ∅ if hid is ∅;

(d) 1
pub

and 2
pub

additionally satisfy some scheme-
specific requirements 1 and 2 respectively;

2. Based on the selected bit b,  executes the request pattern
b on the device, in an order of its choice, and updates the
current device state as:

st ← Oper(st,b,Kpub,Khid).

3.  sends st and/or WOnly(OpTrace(,bi )) to .
Output: Finally,  outputs a bit b∗. The game then termi-
nates with the output defined as PD

Σ,(�, r) ∶= (b == b
∗).

Fig. 1. Security game for multi-snapshot, device and trace-
oriented plausible deniable system. The game involves r rounds
to model both single and multi-snapshot adversaries.

the public data and Khid is the key used to protect the
hidden data.

– Oper(st, ,Kpub,Khid): Oper is a stateful algorithm,
i.e., it may maintain internal state across consecu-
tive invocations5. It takes as input the current state
st, an -pattern , and the key-pair (Kpub,Khid). If 
is not a valid -pattern, the algorithm outputs ⊥ and
halts; Otherwise, it generates a new state ′ accord-
ingly, and updates the current state to st ∶= ′. It
outputs the updated state st:

st ← Oper(st, ,Kpub,Khid).

Device and Trace-Oriented -Layer PD. The security
for a PD scheme can now be formalized through the
CPA-style game in Fig. 1. This game is played between
a coercive adversary  and a challenger  running a
PD scheme Σ.  only knows Kpub (for the public data
that the scheme is not trying to hide), but not Khid

6.

5 This internal state should not be confused with the device
state st in the input to Oper.
6 Otherwise, there is nothing to protect.

The game is played for r rounds: when r = 1 the game
models a single-snapshot adversary, when r = poly(�) it
models a multi-snapshot adversary.

At each round i = [1..r],  is allowed to send two
patterns 0 and 1. 0 is the concatenation of two pub-
lic parts 1

pub
and 2

pub
,7 while 1 is the concatenation of

1
pub

and an arbitrary hidden request pattern hid (up to
some restrictions that will be discussed soon). The chal-
lenger executes b by picking public and hidden requests
in an order of its choice. The challenger then sends back
the snapshot of the device and/or the operation traces.

The adversary should not be able to tell which pat-
terns are executed. More specifically, we define the ad-
vantage of the adversary in the game to be Adv() ∶=
|Pr[PD

Σ,(�, r) = 1] − 1∕2|. This captures the exact re-
quirement of PD—the execution of hidden requests hid

now can be interpreted as some other public requests
2
pub

. Indeed,  cannot tell the difference by investigat-
ing the snapshots and/or operation traces.

As discussed in Sec. 3.1, the WOnly(⋅) function
needs to be applied to screen out the Read operations
from the traces before they are sent to . Lem. 2 states
that if a PD solution is secure in a setup where Read
instructions do not leave traces, it can be converted to
a secure write-only ORAM. However, if a PD solution
is provably secure even if Read instructions leave traces
on the storage device, then it can be converted to a
full ORAM via an analog of Lem. 2. Thus, it will suffer
from ORAMs’ efficiency lower bound [5, 20, 22, 27, 47].
For example, HIVE [4] can be proven secure even if Read
leaves traces; indeed, it employs this actively by explain-
ing a hidden access as a public Read. Unsurprisingly,
HIVE is constructed based on fully-secure ORAMs.

The Adversary Requests. Note the requirements put on
the adversary’s request patterns. First, 0 and 1 must
share the same 1

pub
, as otherwise  (with Kpub) can

always win the game by checking the public data in the
received snapshot. For a similar reason, requirement (c)
(Fig. 1) is also necessary.

An essential difference between this security game
and previous ones lies in requirement (d) (Fig. 1). Ide-
ally, a scheme should be secure against all PPT ad-
versaries. However, this is usually not easy to achieve
in practice. Instead, previous attempts proved the se-
curity of their solutions by making various additional

7 Note that in the CPA game in [9], 0 is also allowed to contain
hidden requests. While this seems to make our definition weaker,
we show in Appx. A that the CPA game defined in Fig. 1 is
actually equivalent to that in [9] in this aspect.
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assumptions on the adversary. In this paper we show
that these assumptions can be viewed as requirements
on the 1

pub
and 2

pub
part of the adversary’s requests

in the security game. Thus, the game in Fig. 1 general-
izes them as two parameters 1 and 2. In Sec. 4 we
show that by instantiating these two parameters prop-
erly, the game can capture the security requirements of
all existing PD systems. Moreover, this approach pro-
vides a way to compare different PD solutions, where
schemes with less restrictive 1 and 2 are preferable
in terms of security.

We choose not to provide restrictions for 1 and
2. Such guidelines are not possible nor useful since 1

and 2 are solution-dependent.

Definition 2 (Device/Trace-Oriented -Layer PD).
For a layer , a PDS Σ = (Setup,Oper) is device/trace-
oriented -Layer PD if for any PPT adversary  in the
game of Fig. 1, it holds that Adv() ≤ negl(�), where
Adv() ∶= |Pr[PD

Σ,(�, r) = 1] − 1∕2|.

4 Comparison
In this section we compare the security and performance
of existing PD schemes. We leverage the unified defini-
tion in Sec. 3.2 to provide a framework for comparing
the security of existing solutions. We further perform
the comparison from a variety of aspects (summarized
in Table 1), to provide a comprehensive understanding
of these schemes.
Security Metrics. The security guarantees of PD
schemes are related to the assumptions made on adver-
saries, which can be captured by the unified definition.
Specifically, the snapshot frequency and the type of se-
curity (listed in Table 1) categorize the scheme in coarse
granularity, and the constraints 1 and 2 are used to
characterize the power of adversaries in a finer way. Be-
fore presenting the constraints on each scheme, let us
interpret the meaning of these constraints:
– The ideal scheme should be secure against all PPT

adversaries (corresponding to empty 1 and 2).
No existing solutions achieve this level of security.
1 and 2 can be viewed as specifying a subset of
all PPT adversaries against which a PD scheme is
secure. Thus, they provide a criterion for security
comparison: the more constrictive, the fewer adver-
sarial behaviors are ruled out, resulting in a more
powerful adversary and a more secure scheme.

– The constraints also define under which conditions
hidden operations can be executed safely. For exam-
ple, the 1

DEFTL
and 2

DEFTL
for DEFTL below essen-

tially say that the hidden operations can be per-
formed with any public operation, as long as an
Unmount is performed (together with the trigger
post-processing), before the device is handed over
to the coercive adversary. The constraints for other
schemes can also be interpreted similarly. Thus, the
less constrictive the constraints, the more flexibility
a scheme has in performing hidden operations.
The following interprets the security of existing

schemes by specifying their corresponding constraints,
and draw comparisons along the way.

4.1 Single vs. Multi-snapshot Adversary

To achieve single-snapshot security, existing solutions
explore two major directions. The first direction is in-
spired by classical steganography, i.e., embedding rela-
tively small messages within large cover-texts, such as
adding imperceptible echoes at certain places in an au-
dio recording [35]. Anderson et al. [3] explored stegano-
graphic file systems and proposed two approaches for
hiding data. The first approach defines the target file
as the (password-derived) linear combination of a set of
cover files. The second approach encrypts the target file
using a block cipher with password-derived secret keys,
and then stores it at the location determined by a cryp-
tographic hash of the filename. In both approaches, an
adversary without the correct password can get no in-
formation about whether the protected file ever exists.
The latter approach was later implemented and opti-
mized by McDonald et al. [30] and Pang et al. [33]. Un-
fortunately, such approaches are not extremely space-
effective, and come with potential data loss and high
performance overheads. They are not suited for build-
ing modern systems handling large amounts of data at
high speed.

The StegFS series [3, 30, 33] have the same model
and share the same constraints in the unified definition:
– 1

StegFS
: no restrictions (1

pub
can be any pattern);

– 2
StegFS

: 2
pub

must be an empty pattern.
The second direction [2, 24, 41] handles PD at block-

device level by designing disk encryption tools that help
users embed “hidden volumes” (together with “public
volumes”) within the device (e.g., in the free space re-
gions), while preventing adversaries from learning how
many such volumes the device actually contains. Dif-
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Schemes Year Snap-
shot

Security
Type Layer

I/O
Perf.

(Pub/Hid)

Space
Util. Data

Loss

No
Add’l.
Space

Invisible De-
vice

StegFS98 [3] 98 Sin device FS - ≈15% ● ● ○ General
StegFS99 [30] 99 Sin device FS 0.86/0.06 - ● ● ◒ General
StegFS03 [33] 03 Sin device FS 0.06 >80% ● ● ○ General
TrueCrypt [2] 04 Sin device BD - 100% ● ● ○ General
MobiFlage [41] 13 Sin device BD 0.95 100% ● ● ○ General
MobiPluto [12] 15 Sin device BD - 100% ● ● ○ General

DEFTL [24] 17 Sin device FTL - 100% ○ ● ○
NAND
flash

DEFY [34] 15 Mul device FS - 100% ● ○ ○
NAND
flash

MobiCeal [13] 18 Mul device BD 0.78 - ● ● ○ General

INFUSE [15] 20 Mul device FS 0.94/0.03 >100% ● ● ◒
Certain
NAND
flash

PEARL [16] 21 Mul device FTL 0.6/0.15 80% ● ● ○
NAND
flash

HIVE [4] 14 Mul trace BD - 50% ○ ● ○ General
HIVE-B [4] 14 Mul trace BD 0.004 50% ○ ○ ○ General
DataLair [9] 17 Mul trace BD 0.19/0.01 50% ○ ○ ○ General

ECD [51] 17 Mul trace FTL * 52.5% ● ○ ○
NAND
flash

PD-DM [14] 19 Mul trace BD 0.10/0.07 ≈50% ○ ● ○ General

Table 1. Comparison of existing PD solutions. An empty circle signifies that the solution does not satisfy the property at the top, while
a black circle denotes that the solution satisfies the property. A half-full circle in the Invisible column denotes that the respective solu-
tion (StegFS, INFUSE) tried to be invisible but did not completely succeed.

ferent keys are used to encrypt different volumes using
randomized encryption indistinguishable from pseudo-
random free space noise. Upon coercion, a user can pro-
vide the encryption keys for the public volumes, thus
providing a plausible non-hidden use case for the disk.
The adversary does not have any evidence for the exis-
tence of additional volumes.

TrueCrypt [2] successfully implemented this idea. It
stores hidden volumes in the free space of public vol-
umes. To hide their existence, TrueCrypt fills all free
space with random data and encrypts the hidden data
with a semantically secure encryption scheme that has
pseudo-random ciphertexts. Upon coercion, the user can
reveal the keys for the public volumes, and claim that
the remaining space contains random free space. Rub-
berhose [23], MobiFlage [42] and DEFTL [24] are imple-
mentations following similar ideas targeted to different
use cases (mobile devices, NAND flash).

In the unified security definition, the constraints of
TrueCrypt and MobiFlage are the following:
– 1

Tc&Mf
: no restrictions;

– 2
Tc&Mf

: 2
pub

must be an empty pattern.
Further, DEFTL has the following constraints:

– 1
DEFTL

: the last operation in 1
pub

must be Unmount;

– 2
DEFTL

: 2
pub

must be an empty pattern.

Highlights: Single-snapshot security can be achieved
with low overheads and high performance. Although
these schemes are designed in different storage layers (FS
vs BD), they share the same restrictions on the adver-
saries’ choice of patterns, thus achieving identical secu-
rity guarantee. However, all the aforementioned schemes
fail to protect against multi-snapshot adversaries. For
example, when TrueCrypt writes hidden data, the de-
vice “free space” changes unexplainably. When observed
by a multi-snapshot adversary this cannot be plausibly
explained away. After all, why did the disk free area
change without corresponding substantial changes to
the public data?

Thus, to protect against multi-snapshot adversaries,
one needs to hide not only the existence of hidden data,
but also associated access patterns.

Given this insight, progress in this area centers
mainly around mechanisms that can consistently ex-
plain updates to both the public and hidden data across
multiple snapshots. Currently, three major approaches
exist: (i) using oblivious RAM mechanisms (Sec. 4.2),
(ii) using canonical forms (Sec. 4.3) and (iii) relying
on device/deployment-specific properties (Sec. 4.4). The
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remainder of this section will explore these approaches,
aiming to understand the fundamentals and distill in-
sights to guide future designs.

4.2 ORAM-Based PD Schemes

Multi-snapshot secure PD requires mechanisms that
hide users’ access patterns to hidden data. ORAMs [20]
are natural tools for this task.
ORAMs. Roughly, an ORAM ensures a database-
hosting server cannot determine which database (the
“RAM”) entries are accessed by one of its client. Access
patterns of any same-length access sequences are de-
signed to be indistinguishable. As a simple example, a
(highly inefficient yet secure) ORAM (with O(n) asymp-
totic complexity per access) can be constructed by filling
the database with randomized encrypted data; To access
one of the elements, the client reads the entire database,
re-encrypts it and writes it back to the server. More
efficient solutions exist that enable complexities much
lower than O(n) [8, 10, 11, 44, 45]. An exhaustive treat-
ment is out of scope here. The following summarizes
how ORAMs were employed to obtain PD solutions.

HIVE [4] was the first to deploy ORAMs. It introduced
hidden volume encryption. The main idea was similar
to a previous work [2], i.e., to divide the storage into a
public volume and a hidden volume8, each volume being
accessed using an ORAM mechanism. Additionally, for
every access to a volume (either public or hidden), the
system also executes dummy accesses to the other vol-
ume. Since ORAM accesses are indistinguishable from
each other (whether dummy or not), adversaries can-
not tell the difference between 1) accesses to the public
volume and 2) accesses to the hidden volume, which sat-
isfies the exact requirement of the CPA game for PD.

Moreover, HIVE leveraged the observation that
Read operations are not visible to adversaries, since such
operations do not leave any discernible traces (Sec. 2.2).
Thus, it is sufficient to use write-only ORAM schemes
(see Def. 3 in Appx. B) that only hide Write opera-
tions. HIVE [4] designed a specific write-only ORAM
with a small stash of pending blocks in memory, i.e.,
where blocks are stored to be written later when a free
block becomes available. The write-only ORAM stash
can also behave as a queue for caching hidden data, and

8 The original HIVE scheme supports multiple volumes.
W.l.o.g., only the two-volume case is considered here (for sim-
plicity).

hidden volume accesses can be performed together with
existing (if any) public volume accesses to minimize the
need for additional dummy accesses. In this case, the ad-
versary cannot tell the difference between 1) accesses to
the public volume only and 2) accesses to both public
and hidden volumes. The only associated requirement
now becomes the need for enough plausible public ac-
cesses to pair with the hidden data in the stash when
written to disk.

In the unified definition, HIVE has the following
constraints:
– 1

HIVE
: 1

pub
and hid must be of equal length;

– 2
HIVE

: 2
pub

must be an empty pattern.
HIVE-B is another PD scheme proposed in the same

paper as HIVE. It provides the same security guarantee
as HIVE, but with different constraints:
– 1

HIVEB
∶ no restrictions;

– 2
HIVEB

∶ 2
pub

and hid must be of equal length (i.e. con-
taining the same number of requests).

DataLair [9] extends these ideas and observes that op-
erations on public data do not need to be hidden since
they are anyway public. In fact, revealing operations on
public data reinforces deniability as it shows plausible
non-hidden device use. Therefore, DataLair only uses
wORAMs for the hidden volumes, while allowing public
data to be accessed (almost) directly without any obliv-
ious access mechanism. Moreover, it designs a specific
throughput-optimized wORAM. Following the strategy
of HIVE, it pairs the operations on hidden data with
those on public data, and ensures that such executions
are indistinguishable from the operations on public data
alone. Compared with its predecessors, DataLair accel-
erates public operations by two orders of magnitude,
and also speeds up hidden operations.

In the unified definition, DataLair introduces a pa-
rameter � in the constraints:
– 1

DataLair
: 1

pub
should contain at least �×k public Write

operations where k is the length of hid and � is a
pre-defined parameter;

– 2
DataLair

: 2
pub

must be an empty pattern.
We note that DataLair’s1 constraints are stronger

than, e.g., StegFS. However, this does not imply that
StegFS provides stronger security because the security
game models the adversary’s power also through the r
parameter: StegFS is designed for single-snapshot, while
DataLair is designed for multi-snapshot adversaries.

MobiCeal [13] implements PD at the BD layer, and
supports a broad deployment of any block-based file
systems for mobile devices. MobiCeal improves perfor-
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mance by replacing wORAMs with dummy write opera-
tions coupled to public writes. In the unified definition,
MobiCeal has the following constraints, where f ∈ (0, 1)
is a random number and � is a rate parameter:
– 1

MobiCeal
: For each public write in 1

pub
, also perform a

dummy write with a certain probability. The dummy
write contributes m dummy block writes, where m is
chosen according to an exponential distribution, m =
⌊−(ln(1 − f ))∕�⌋.

– 2
MobiCeal

: 2
pub

must be an empty pattern.

Where to Write. An important factor affecting both the
security and efficiency of ORAM-based PD approaches
[4, 9] is free-block allocation (FBA), i.e. the mechanism
to keep track of free blocks to store new incoming data.

Note that HIVE uses separate ORAMs on public
and hidden storage spaces, and DataLair uses ORAM
only for hidden space. A naive approach would be to
have separate FBA mechanisms for public and hidden
spaces. Unfortunately, this can lead to storage capacity
waste, as the hidden space must be allocated even if it
is never used. Instead, a better solution uses a “global”
FBA algorithm across all the storage space. In this case,
both the public and the hidden volume can be of the
same logical size as the underlying partition, and use
all the available space for either hidden or public data.

However, this turns to be a delicate task due to the
existence of hidden data. On the one hand, the FBA
should avoid overwriting existing hidden data; On the
other hand, such avoidance should be strategically hid-
den to not raise doubts from the adversary about the
existence of hidden data.

Moreover, since it is in the data path, FBA must
be efficient. Significant amount of work has been de-
voted [4, 9] to the design of FBA algorithms that meet
the above criteria. The reader is referred to the original
papers for details.

4.3 Replacing Randomization with
Canonical Forms

ORAMs are used in PD designs because they can hide
both the locations and contents of each access, mostly
via inherently high-overhead randomization. Yet, ran-
domization is not really necessary to achieve plausible
deniability[14]. Simple canonical forms – e.g., such as
used in log-structured file systems [18] always writing
data sequentially, treating the logical address space as a
circular buffer – may be enough to decouple the user’s
logical from physical access patterns.

Since canonical forms ensure pre-defined physical
device write traces, an adversary is prevented from in-
ferring the logical layer access patterns, of which the
traces are independent of.

Further, importantly, an advantage of certain
canonical forms (e.g., sequential) is the ability to retain
data locality and thus result in significantly higher effi-
ciency than randomization-based ORAM approaches.

PD-DM [14] is the first work that explicitly notes the
above idea. Its design ensures that all writes to the
physical device are located at sequentially increasing
physical addresses, similar to Append operations in log-
structure file systems. PD-DM stipulates that whenever
a public data record Dpub is written on the device, an
additional random string R (the “payload”) is written
immediately in the immediately adjacent next block.
To store hidden data, PD-DM will first encrypt it (in-
distinguishably from random) and then write it as the
payload of some public data write Dpub. In this case,
device snapshots look like the following:

Dpub R Dpub R ⋯ Dpub R ⋯

Since the encrypted hidden data looks indistinguish-
able from the random “payload” of public writings, ad-
versaries are unable to distinguish whether any hidden
data exists or not.

In terms of the unified definition constraints, PD-
DM has similar constraints to DataLair [9]. However,
while DataLair requires a fixed-value parameter �, in
PD-DM the value of � is system specific.

ECD [51] works in a related manner. The idea is to par-
tition the device into a public and a hidden volume. The
public volume is managed by the system in the standard
way, independent of the hidden one. The hidden volume
is divided into equal-size sequential segments, denoted
as {s1, s2,… , sN}. Each si contains some free blocks con-
taining random strings, while other blocks may be oc-
cupied by encrypted hidden data. ECD keeps moving
data from si−1 to si at a predetermined rate. During
this procedure, any free blocks will be re-randomized,
while existing hidden data blocks will be re-encrypted.
To a polynomial adversary this looks like all of si is re-
randomized. New hidden data is written encrypted into
a free block during the migration from si−1 to si. Over-
all this can be viewed as creating an artificial canonical
form on the hidden volume, where segment si is period-
ically overwritten by its immediate predecessor si−1. In
the unified model, ECD has the following constraints:
– 1

ECD
: no restrictions;

– 2
ECD

: 2
pub

must be an empty pattern.
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ECD has the least restrictive rules compared with
other schemes. This is because it employs a regular sys-
tem behavior which periodically modifies the state of
the device to cover up the hidden operation; Such a
periodic system update is general enough to cover any
type of hidden operations. In contrast, other schemes
use public operations to cover up hidden operations,
which naturally introduces constraints to ensure that
the public and hidden operations are “paired” properly.

We conclude that HIVE, DataLair and PD-DM pro-
vide multi-snapshot security at the BD layer, with com-
parable constraints. They all achieve the stronger trace-
oriented security.

4.4 Device-Specific Mechanisms

In pursuit of performance, a recent line of work emerged
building plausible deniability guarantees on device-
specific properties, e.g., electric charge levels in flash
memories. This enjoys certain advantages over previous
work: 1) it may avoid heavy machinery (e.g., ORAMs)
and may lead to lightweight solutions; 2) resulting mech-
anisms may be closer or even native to the underlying
device, allowing for higher performance and better plau-
sibility.

This approach was often implicit in the literature.
This section seeks to sublimate the essence of such con-
structions in a unified perspective. First, consider sev-
eral existing constructions.

INFUSE [15] builds a PD scheme in the flash FTL layer.
The main idea is to modulate additional information
in charges and voltage levels of individual NAND cells,
the minimal storage unit for NAND. A cell can hold
one (SLC, single-level cell) or more (MLC, multiple-level
cell) data bits. Bits are encoded and decoded by using a
programmable threshold voltage Vth and a predefined ref-
erence voltage Vr. For example, an SLC cell with thresh-
old voltage Vth = 3V will be interpreted as a logical “1”
when the reference voltage level is Vr = 3.5V , and as a
“0” if either (i) the reference voltage level drops below
Vr = 2.5V or (ii) the threshold voltage is increased to
e.g., Vth = 4V . MLC work similarly, with multiple levels
to encode multiple values.

Some recent flash controllers are able to operate the
same cell in both SLC and MLC mode [28]. This pro-
vides an opportunity to hide bits. Multiple bits can be
stored in a particular cell using an “MLC-style” encod-
ing but on inspection the system can claim that the
cell is in SLC mode and provide only a single bit. Care

needs to be taken to ensure device-wide indistinguisha-
bility between sets of cells in either SLC or MLC mode.
This constitutes the core idea of INFUSE.

Under the (mostly empirical) assumption that an
adversary cannot distinguish which cells are used in
which mode or whether there are any inconsistencies in
the distribution of SLC vs MLC cells, this scheme pro-
vides significant speedups. Public data operations are
orders of magnitude faster than existing multi-snapshot
resilient PD systems, and only 15% slower than a stan-
dard non-PD baseline and hidden data operations per-
form comparably to the-state-of-the-art PD systems.

In the unified definition, INFUSE has the following
constraints:
– 1

INFUSE
: the last operation in 1

pub
must be Unmount;

– 2
INFUSE

: 2
pub

must be an empty pattern.

PEARL [16] is also operating in the FTL layer, but relies
on a new smart write-once memory (WOM) encoding
that does not require custom voltage programming.

Unfortunately, once written to, a NAND flash cell
cannot be reprogrammed before an Erase of its contain-
ing block. Further, NAND flash is reliable only for a
limited number of Erase cycles. This can severely limit
device lifespan. Complex wear leveling algorithms are
deployed to “even out” wear and maximize lifespan.

WOM codes [38] have been proposed to further op-
timize this wear. They use an important property of
NAND flash: previously-unwritten-to cells can be writ-
ten to even if they are in pages that have been written
to before. WOM codes encode with enough redundancy
(e.g. using 3 cells to store 2 bits) to allow multiple writes
to the same page (i.e., with different data each time)
without requiring an Erase.

At a high level, in the subsequent (e.g., second)
Write, the idea is to modify only the bits that have
not been written-to in the first Write. A well-designed
encoding allows the second logical Write to be encoded
in the resulting physical state with no ambiguity.

For example, consider the case of an encoding with
2-bit logical data records encoded onto 3 physical bits.
For each 2-bit logical record s ∈ {0, 1}2 the encoding de-
fines two possible physical 3-bit configurations E1(s) and
E2(s). When logical record s is stored for the first time,
E1(s) is stored physically. If the logical record s needs
to be replaced with a new value s′ (at the same loca-
tion) writing simply converts the physical value E1(s) to
E2(s′). The WOM encoding is designed unambiguously
and in such a way that any such conversion does not re-
quire overwriting an existing written-to cell. Since such
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a code allows two Write operations per erasure, it is
called a 2-write WOM code9.

PEARL [16] hides information by modulating the
written public data according to the data to be hidden.
To this end, it re-purposes WOM codes. When public
data is written, the codeword is chosen based on the
bits of the data that need to be hidden. This enables
PEARL to surreptitiously hide information even in the
presence of a powerful multi-snapshot adversary. The
end-result is device state that is indistinguishable from
the case of a device that was simply writing data mul-
tiple times using a WOM code. Much care needs to be
taken in the design of the specific WOM code to not in-
troduce device-wide bias. Overall however, the fact that
WOM codes are widely deployed on NAND flash further
strengthens plausibility. Most importantly, the resulting
performance is comparable to the non-PD baseline on
real-world workloads!

In the unified definition, PEARL has the following
constraints:
– 1

PEARL
: the last operation in 1

pub
must be Unmount;

– 2
PEARL

: 2
pub

needs to generate k 1st invalid pages where
k is the length of hid.
A pattern that can generate a 1st invalid page can

be: 1) one public Write followed by a public Delete to
the same page; 2) one public Write which has a corre-
spondingly public Write in 1

pub
.

DEFY [34] is a log-structured FS for NAND flash that
offers PD with a newly proposed secure deletion tech-
nology. It is based on WhisperYAFFS [48], a log struc-
tured FS which provides full disk encryption for flash.
Log-structured FSes have two relevant properties:
1. Data (e.g., files, directories, links) and metadata are

stored sequentially within the logical address space,
and any access to data (including Read) can cause
the update of its corresponding metadata;

2. Updates/deletes of data and metadata will not cause
an actual deletion. Instead, a new address will
be assigned to the updated version, and the old
data/metadata is just marked as old; Subsequent
garbage collection handles it.
DEFY achieves PD by exploiting the above prop-

erties in the following way. In DEFY, modifications to
hidden data will cause the allocation of new records.
Such allocations can be claimed as the results of meta-

9 W.l.o.g., for simplicity this work focuses on 2-write WOM
codes. There exist k-write WOM codes that admit k writings
per erasure [19, 40, 50].

data updating due to public Read/Write, since such up-
dating can also lead to the assignment of new records.
Once these records (for hidden data) become obsolete
(i.e. succeeded by newly allocated records), the system
can claim that they were due to public accesses and are
now securely deleted. Due to the irreversibility of secure
deletion, the adversary has no choice but to believe that
these records were due to public accesses. The system
thus denies the existence of hidden data successfully.

DEFY enjoys impressive efficiency. Read operation
can be as fast as the Linux EXT4 file system.

Further, in the unified definition, DEFY offers PD
conditioned on constraints:
– 1

DEFY
: 1

pub
should contain some public operations, and

the last operation in 1
pub

must be Unmount;
– 2

DEFY
: 2

pub
should contain public accesses that gener-

ate enough deleted pages to cover accesses in hid.
Unfortunately DEFY is not secure, and it can be

compromised in a few attempts to exhaust the writing
capacity [24]. Also, as hidden data are stored masquer-
aded as securely deleted obsolete (public) data, to main-
tain plausibility, the space occupied by them must be
plausibly and frequently enough overwritten by public
data. This results in data loss.

In addition, DEFY assumes the existence of a spe-
cial, “tag storage area” on the device that is hidden
from the adversary. This breaks security against multi-
snapshot adversaries. Thus, the security provided by
DEFY is considered weaker than the schemes that do
not assume the existence of such a hidden area.
In summary, these schemes are optimized for specific
deployment cases. INFUSE and PEARL exploit voltage
variation and properties of WOM codes respectively, to
encode hidden data together with public data at the
same locations. DEFY plausibly encodes hidden data as
securely-deleted obsolete public data. The resulting so-
lutions are specific to the underlying devices but achieve
performance comparable to the non-PD baseline on real-
world workloads. Such efficiency is clearly out of the
reach of ORAM-based solutions. Importantly, WOM
code-based schemes provide an unusually favorable com-
bination of strong security and high performance.

4.5 Access Pattern Hiding Techniques

As mentioned earlier, a key point of PD schemes is to
conceal access patterns to hidden data. In order to hide
the existence of hidden data, a PD scheme should pre-
vent adversaries from learning not only which hidden
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access happens, but also how many hidden accesses hap-
pen. This is in contrast to ORAMs where only that the
access patterns of logical requests are not revealed, while
the number of accesses can be public.

To hide which hidden access happens, existing PD
schemes leverage one of the following two strategies: 1)
randomizing the write trace on physical devices; 2) en-
forcing the write trace to follow certain canonical form
(the commonly used one is log-structure). HIVE, Data-
Lair and MobiCeal follow the first strategy; PD-DM,
ECD, DEFY, INFUSE and PEARL follow the second
strategy. The last 3 schemes are designed for NAND
flash devices, where the device is written sequentially
by default. To hide the number of hidden accesses, the
first strategy is to make the change of device state due
to a hidden access to be indistinguishable from that of
some non-hidden accesses. Thus, any changes on the de-
vices can be attributed to certain public accesses, and
the number of hidden accesses can be claimed as 0. Note
that the public accesses used to “explain” hidden ac-
cesses do not need to happen in reality. The PD schemes
that use this strategy are HIVE, DEFY, PEARL and
ECD. HIVE explains a hidden access as a public Read.
DEFY and PEARL explains it either as a public Write
or Delete, while ECD explains a hidden access as a sys-
tem behavior that happens at a pre-defined rate.

Another strategy to hide the number of hidden ac-
cesses is to “pair” hidden accesses with some public
accesses and ensure that the write trace of the pub-
lic accesses alone is indistinguishable from that of both
the public accesses and hidden accesses. As a result,
for an adversary, only public accesses happen. Exam-
ples include HIVE-B, DataLair, PD-DM, Mobiceal and
INFUSE.

4.6 Performance Metrics

Table 1 also looks at existing solutions from a perfor-
mance standpoint.
I/O Performance. PD comes with both throughput and
space overheads. Some schemes report performance sep-
arately for public operations and hidden operations –
shown in Table 1 in the form of “x/y”. It means that
the public throughput is x times of the non-PD base-
line, and the hidden throughput is y times of the base-
line. Some other schemes reported only one overall per-
formance number, and some schemes did not provide
any explicit performance number or even have not been
evaluated at all since they are designed in theory and no
implementation is completed (shown as “-” in Table 1).

ECD is a special case whose performance (marked with
“*” in the table) depends on a system parameter. Recall
that ECD covers up hidden operations by periodically
updating the device state at a prefixed rate r. Thus, the
number of hidden operations that the system is able to
perform is determined by the updating rate r, rather
than the public operations.
Space Utilization. The column “Space Util.” shows
how efficiently the storage capacity of physical devices
can be exploited by each PD scheme. It is computed as
the ratio between the max size of data (both public and
hidden) that can be stored in one device and the to-
tal capacity of the storage device as a metric for space
utilization in Table 1 (space required by meta-data is
excluded for simplicity). Note that INFUSE enjoys a
space utilization larger than 100%. That is because IN-
FUSE encodes hidden bits at physical storage cells that
already contain some public data (see Sec. 4.4).
Additional Safe Space, Data Loss. As discussed ear-
lier, some PD solutions assume the existence of an area
on the devices that remains hidden from adversaries
(e.g., the TSA block in DEFY, or the stash in HIVE).
Some schemes suffer from data loss, i.e., the hidden data
may be overwritten (maybe by public data) in some use
cases. Table 1 also lists these caveats for each scheme.

5 Key Insights
PD solutions deployed in a layer do not necessarily en-
sure PD for the entire system (Sec. 3.1). However, we
have shown that trace-oriented PD implies the standard
PD security, and trace-oriented PD secure mechanisms
can provide PD for the entire system. More specifically,
since traces at a layer are converted through a PPT al-
gorithm into traces at at lower layer (Sec. 3.1), indistin-
guishability of traces at a layer implies indistinguisha-
bility of traces and snapshots at any lower-layers. This
addresses the issue of the SSD/FTL example in Sec. 2.3:
if the PD solution is BD layer trace-oriented secure, it
achieves plausible deniability even though the SSD has
an FTL layer below.

A key point of multi-snapshot resilient PD systems
lies in hiding access patterns to hidden data (Sec. 4.1).
ORAMs have been used to build PD schemes that hide
access patterns (Sec. 4.2). However, ORAM-based solu-
tions are inefficient due to the inherently heavy random-
ization machinery. Further, ORAMs require carefully-
designed free-block allocation algorithms.
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To improve performance, existing work has explored
two directions, canonical form and device-specific so-
lutions. Canonical form-based PD solutions can hide
user access patterns, and significantly increase through-
put (Sec. 4.3). In particular, sequential approaches can
preserve data locality and make good use of locality-
optimized systems deploying caching and read-ahead
mechanisms. Further, lightweight, device-specific PD so-
lutions have been developed, that exploit specific de-
vices and deployment settings to achieve efficiency com-
parable to the non-PD baselines, that does not always
come at the expense of strong security (Sec. 4.4).

We also note that several PD solutions impose 2
pub

to be empty. This is because to conceal hidden accesses,
some PD schemes make the device state associated with
a hidden access be indistinguishable from that of some
non-hidden accesses.

6 Future Directions
We leverage these insights to propose several promising
directions for future work.

6.1 Trace-Oriented Security

Most existing PD solutions exploit the possibility that
different traces may result in the same snapshot, which
allows users to interpret hidden operations as public
ones. However, such an advantage is lost in the trace-
oriented setting, as the adversary obtains actual traces.
Thus, it is necessary to remove any clues of the user’s
operations from the traces. Lem. 1 establishes the equiv-
alence of trace-oriented PD to wORAMs. Thus, this goal
is hard to achieve without relying on wORAMs.

Established lower-bounds for ORAMs can be
viewed as a signal of the inefficiency of wORAMs, which
translates into clues to the inefficiency of robust PD.
More specifically, strongly-secure PD solutions feature
inherent fundamental efficiency limits, and achieving ef-
ficient PD requires layer-dependency.

However, future progress on wORAM lower-bounds
will also apply to trace-oriented PDs. Importantly, there
is no established lower-bound for wORAMs yet. Thus, the
optimistic interpretation of Lem. 1 encourages us to seek
efficient trace-oriented PDs. Given that all exiting trace-
oriented PD solutions are built on top of wORAMs, it will
be interesting to have constructions that do not make
explicit use of wORAMs. Such constructions may circum-

vent the ORAM lower-bound (if it turns out it applies to
wORAMs). Thus, while it is challenging to build schemes
achieving both trace-based security and good efficiency,
this also yields the following insight: Instead of striving
for trace-based PD, a more promising direction may be
to take the approach illustrated in Sec. 4.4, and design
PDs directly for the “right” layer.

More specifically, a careful selection of the layer
at which the PD solution is implemented, if secure
for traces from lower layers, may provide both trace-
oriented security and efficiency. For example, for an
HDD device whose block device manager does not shuf-
fle the FS layout, an efficient FS-layer PD solution may
be a better option than a trace-oriented PD solution.
For an SSD device, or an HDD with a block device man-
ager that shuffles the FS layout, an efficient PD solution
may be implemented at the BD or FTL layers.

6.2 Invisible PD

Typically, PD systems only intend to hide the existence
of hidden data, not the fact that the system in use is
PD. However, the deployment of a PD system already
raises suspicion about the existence of sensitive data. A
similar issue also exists for deniable encryption [6, 7].

To equip the user with more credibility in the face of
coercive authorities, future work may focus on invisible
PD schemes that hide not only contents but also the ev-
idence that the system is being used to hide data. This
can be done by, e.g., making the scheme look indistin-
guishable to a off-the-shelf storage system. For instance,
as shown in the “invisible” column of Table 1, StegFS
[30] was designed to be indistinguishable to EXT2. How-
ever, StegFS [30] needs to also maintain a bitmap. Fu-
ture efforts may look into making this scheme fully in-
distinguishable by removing the bitmap, while not com-
promising security.

INFUSE [15] was designed to be indistinguishable
from YAFFS [1]. However, INFUSE has a limited capac-
ity for hidden data: If too much hidden data is stored,
the distribution of cell voltages may become suspicious.
Further, INFUSE requires the firmware support which
allows precise manipulation on flash cell voltages. How-
ever, current NAND flash chips do not have the corre-
sponding interface admitting such manipulations.

A promising direction is work on WOM codes [16]
(Sec. 4.4), where information is surreptitiously hidden
in the WOM codes of public data. While WOM codes
are widely deployed on NAND flash, making it possi-
ble to deny the use of a PD solution, PEARL is based
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on customized “PD-friendly” WOM codes. Neverthe-
less, PEARL [16] suggests that WOM codes have great
potential for efficient PD constructions. Future research
may focus on finding other PD-friendly WOM codes
with improved efficiency, and further our understanding
of PD-friendly WOM codes, e.g., proving necessary and
efficient conditions for WOM codes to be PD-suitable,
and lower-bounds on code rates for such codes.

6.3 Explore Adversary Model Changes

As discussed in Sec. 2, designing PD schemes secure
against multi-snapshot adversaries is challenging. Ex-
isting solutions are still too slow. To design a new PD
scheme against multi-snapshot adversaries, one can ei-
ther come up with a new strategy to hide the number of
hidden accesses, or a new strategy to hide which hidden
access happens, and then combine it with some of the
exiting strategies listed in Sec. 4.5. Finding new strate-
gies for hiding the number of hidden accesses seems
more promising as there could be different ways to in-
terpret the disk changes resulting from hidden accesses.

A further promising direction is to design solutions
secure against more realistic, bounded adversaries. Ex-
amples worth exploring include (lower) bounds on the
number of operations that the user needs to perform be-
tween adversary-captured snapshots, or the total num-
ber of snapshots that an adversary can capture.

We also note however that assumptions A2 and A3
(Sec. 2.3) underestimate the power of realistic adver-
saries, who can perform attacks that include cold boot
attacks, access swap files and core dumps. Real-time ac-
cess to, e.g., caches, allows inference of some Read oper-
ations. Unfortunately, existing work ignores caches. Ex-
tending deniability to other parts of the system stack
represents an interesting future direction. For instance,
future work may treat caches and the DRAM as another
layer in the storage hierarchy. We note however that a
PD solution that is provably secure when Read instruc-
tions leave traces on the storage device, can be converted
to a full ORAM via an analog of Lem. 2, thus will suffer
from ORAMs’ efficiency lower bound [5, 20, 22, 27, 47].
(Sec. 3.2)

6.4 Synthetic Operations

Existing PD schemes try to match hidden operations to
public ones. This makes hidden operations rather pas-
sive: to perform a hidden operation, the system has to

wait until the occurrence of the related public operation.
It also restricts the types of allowed hidden operations.

Instead, an active approach is to let the system
generate synthetic public operations whenever the user
wants to perform hidden operations. Existing AI/ML
solutions, e.g., variational autoencoders [26] and gener-
ative adversarial networks [21], trained on large sets of
real-user operations, may be used to generate synthetic
public operations that are difficult to distinguish from
real public operations.

7 Conclusion
Plausible deniability can provide strong privacy guar-
antees that impacts millions of users in a world in-
creasingly encroaching on encryption and personal pri-
vacy. Yet, building secure plausibly deniable efficient
systems is far from trivial. This work systematizes ex-
isting knowledge for researchers and practitioners alike
aiming to understand, deploy, or design plausible deni-
ability systems. We believe plausible deniability to be
an important property on the cusp of efficient main-
stream practicality. This work is meant as a concise yet
reasonably-complete guide on this journey.
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A Unified PD Definition
Equivalence

We now show that the unified PD definition in Sec. 3.2
is equivalent to the one in [9], which allows both 0 and
1 to contain hidden requests.

First, it is easy to see that the definition in [9] is no
weaker than the one defined in Sec. 3.2, because allow-
ing hidden requests in both 0 and 1 only grants the
adversary more power in the CAP game. So, the only
thing left is to show that the definition in Sec. 3.2 is
no weaker than that in in [9]. Roughly speaking, this is
true for the following reason. Consider a pair of [9]-type
challenge 1 ∶= 1

pub
∪hid and  ′1 ∶= 1

pub
∪ ′

hid
, both of

which contain hidden requests (but share the same pub-
lic part). The security guaranteed by Fig. 1 says that a
0 ∶= 1

pub
∪ 2

pub
should be indistinguishable with 1,

and also with  ′1. Thus, it must the case that 1 and  ′1
are indistinguishable. In the following, we formalize the
above intuition.

To prove it formally, we need to show that if a PPT
adversary  can win the CPA game defined in [9] with
non-negligible probability, then it can be efficiently con-
verted into another PPT ′ that wins the CPA game
defined in Fig. 1 with non-negligible probability. We
construct ′ as follows. ′ begins by picking a ran-
dom bit b′

$
←←←←←←← {0, 1} and then runs  internally. In the

i-th (i ∈ {1,… , r}) round,  will send a pair of chal-
lenge requests 0 and 1 (we emphasize that both 0
and 1 contain hidden requests). When this happens,
′ sets  ′1 ∶= b′ ; and ′ sets  ′0 to the public part of
0 (or equivalently, the public part of 1). ′ uses  ′0
and  ′1 as its itℎ-round challenge requests for its own
CPA game (i.e., the game defined Fig. 1), and forwards
the response from its challenger to the internal . At
the end, if  guesses ′’s b′ correctly, ′ will output 1;
otherwise, ′ outputs 0.

It is easy to see that if the b picked by ′’s chal-
lenger (in the game specified in Fig. 1) equals 1, then
the view of the internal  is identical to the case
when it is participating in the CPA game in [9]. Since
Pr[b = 1] = 1∕2, it follows that with probability 1∕2,
the internal  will “think” that it is participating in
the CPA game from [9]. Recall that we assume that 
wins the [9] CPA game with some non-negligible proba-
bility p. Therefore, ′ will win its own Fig. 1 game with
probability p∕2, which is also non-negligible.

"http://www.denverpost.com/news/ci_19669803"
"http://www.denverpost.com/news/ci_19669803"
"https://github.com/WhisperSystems/WhisperYAFFS/wiki"
"https://github.com/WhisperSystems/WhisperYAFFS/wiki"
"http://en.wikipedia.org/wiki/Key_disclosure_law"
"http://en.wikipedia.org/wiki/Key_disclosure_law"
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B Write-Only ORAMs from
Trace-Oriented PDs

B.1 Write-Only ORAMs

Notations. A data request is a tuple (op, addr, d),
where op ∈ {Read, Write} denotes a Read(addr) or a
Write(addr, d) operation, addr denotes the identifier of
the block being read or written, and d denotes the data
being written. For an ORAM scheme Π and a sequence
y⃗ = {r1,… , rn} of data requests, let PhysicalAccΠ(y⃗) de-
note the the physical access pattern that is produced by
executing Π on y⃗.

Definition 3 (Write-Only ORAMs [4, 29, 39]). An
ORAM scheme is write-only oblivious if for any two
sequences of data requests y⃗0 and y⃗1 containing the same
number of Write requests, it holds that

WOnly(PhysicalAccΠ(y⃗0))
c
≈ WOnly(PhysicalAccΠ(y⃗1)),

where WOnly(⋅) filters out the read physical accesses, and
c
≈ denotes computational indistinguishability.

Remark 1. In Def. 3 y⃗0 and y⃗0 may have different
length10; they are only required to contain the same
number of Write requests. This stipulates that the ex-
ecution of Read requests does not incur any physical
writes: otherwise two sequences with different number of
Read requests might be easily distinguished by checking
the number of resulted physical writes.

B.2 Write-Only ORAMs from
Trace-Oriented PD

The High-Level Idea. In the security game of trace-
oriented PDs, it is guaranteed that the writing traces
resulted from two adversarially chosen access patterns
1
pub
∪hid and 1

pub
∪2

pub
are computationally indistin-

guishable. In particular, this implies the existence of two
“universal” public patterns 1

pub
and 2

pub
with the fol-

lowing property: for any hidden patterns hid, the Write
traces resulted from 1

pub
∪hid are indistinguishable with

that from 1
pub
∪2

pub
Given a PD scheme under the above

restriction, a wORAM can be implemented as follows: to

10 This is in contrast to standard ORAMs, which considers
y⃗0 and y⃗1 of equal length, and requires the indistinguishabilty
between the execution results without applying WOnly(⋅).

Alg. 1: Write-Only ORAM from Trace-Oriented PDS

1: procedure ORAM.Setup(1�)
2: Kpub,Khid, init ← PDS.Setup(1�)
3: Initialize the device/memory blocks by execut-

ing init
4: end procedure

5: procedure ORAM.Access(op, addr, d)
6: hid ∶= (r1,… , rn)← HiddenGen(n, op, addr, d)
7: if op == Read then⊳ if this is a Read request
8:  ∶={Rdummy} ∪hid

9: else ⊳ if this is a Write request
10:  ∶= 1

pub
∪ hid

11: end if
12:  ← PDS.Oper(Kpub,Khid,)
13: return 
14: end procedure

15: procedure HiddenGen(n, op, addr, d)
16: r1 = (op, addr, d)
17: for i = 1 to n do
18: ri = Rdummy ⊳ Pad the access pattern with

dummy requests
19: end for
20: return (r1,… , rn)
21: end procedure

perform a target operation � = (op, addr, d), it first loads
� into hid, and then executes the PDS access algorithm
on 1

pub
∪ hid, where 1

pub
is the aforementioned univer-

sal public pattern. Thanks to the security of the PDS,
the Write traces of the execution of 1

pub
∪hid are indis-

tinguishable from those of the execution of 1
pub
∪ 2

pub
,

whichever � is hidden inside hid. This provides the hid-
ing of Write operations as required by wORAMs. This
idea is formalized in Alg. 1.
ORAM Setup. The setup procedure (Line 1) simply
runs the PDS.Setup to get the keys for public and hidden
PD requests, and a sequence of commands init that is
meant to initialize the PD scheme. Once the commands
in init are executed on the underlying device/memory
blocks, the ORAM system is ready to work.
ORAM Access. On input a request � = (op, addr, d), the
ORAM.Access procedure first invokes a sub-procedure
called HiddenGen (Line 15), which pads � with n − 1
(same) dummy request Rdummy. This “padding” is neces-
sary for the following reasons. Recall that the construc-
tion wishes to execute � by loading it in the hidden part
of some input pattern to PDS.Oper. To leverage the se-
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curity of PDS, the hidden part must have length n. This
is exactly the purpose of HiddenGen. Now, the procedure
can create a pattern  = 1

pub
∪ hid by concatenating

the “universal” 1
pub

with output hid of HiddenGen; the
writing traces for  will be indistinguishable with that
for 1

pub
∪ 2

pub
, due to the security of PDS.

As mentioned in Rem. 1, write-only ORAMs inher-
ently require that Read request should not lead to phys-
ical writings. However, this condition may not be sat-
isfied by the underlying PDS. To see that, consider a
Read request �. Following the above strategy, the pro-
cedure will load � into hid and set  = 1

pub
∪ hid.

Since hid contains only � and some dummy requests,
we can assume that hid does not cause any physical
writings. However, the 1

pub
part may contain some re-

quests which incur physical writes. To resolve this issue,
replace 1

pub
with (the sequence of) a single dummy op-

eration (Line 8), if � is a Read request. Since a dummy
operation does not cause any writes, � can be executed
without incurring physical writes.

Lemma 2. If PDS = (Setup,Op) is a secure PD scheme,
then Alg. 1 is a secure write-only ORAM.

Proof. Let y⃗0 and y⃗1 be two arbitrary data request se-
quences that contain the same number of Write op-
erations. Note that it is possible that |y⃗0| ≠ |y⃗1|. For
b ∈ {0, 1}, let Outb denote the sequence of traces re-
sulted from executing Alg. 1 sequentially on each re-
quests in y⃗b. The following shows that WOnly(Out0) and
WOnly(Out1) are computationally indistinguishable.

Let m denote the number of write operations in y⃗0
(or y⃗1). Note that Out0 and Out1 may have different
length, because the length of Outb depends on y⃗b. But it
is clear that |WOnly(Out0)| = |WOnly(Out1)| = m due to
the following two facts:
1. by construction (specifically, Line 7 and Line 8), Read

requests do not cause any writing traces;
2. both y⃗0 and y⃗1 contain exactly m Write requests.
Moreover, by the security of PDS, running Alg. 1 on
any Write request has the same effect of executing
PDS.Oper(Kpub,Khid,1pub∪

2
pub
). Therefore, it follows that

for any b ∈ {0, 1},
(

WOnly( ∗),… ,WOnly( ∗)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
repeat m times

c
≈ WOnly(Outb), (1)

where  ∗ denotes the output of the following operation:

PDS.Oper(Kpub,Khid,1pub ∪ 2pub).

It then follows immediately from Equation (1) that
WOnly(Out0)

c
≈ WOnly(Out1).
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