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ABSTRACT
Stress level modeling and predictions are essential in recommend-
ing activities and interventions to individuals. While successful
stress models have been proposed in the literature, there is still a
missing connection between user engagement behaviors, interest
in activities, and their stress levels. In this paper, we propose a
novel multi-view tensor decomposition method for stress and user
behavior modeling with heterogeneous data, which could provide
personalized stress tracking and plausible user behavior modeling
across time. To the best of our knowledge, it is the �rst method that
could model user stress and behavior at the same time with multi-
ple resources of data, such as stress measurement, activity rating,
and engagement. Our experiments show that leveraging multiple
resources of data could not only improve predictions with sparse
data, but also results in discovering the underlying stress-activity
patterns. We demonstrate the e�ectiveness of our proposed model
on the dataset collected via a self-contained stress management
mobile application.
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1 INTRODUCTION
Stress, as a fundamental phenomenon, has been de�ned as “a par-
ticular relationship between the person and the environment that is
appraised by the person as taxing or exceeding his or her resources and
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endangering his or her well-being” [20, p.19]. Stress has a direct in�u-
ence on the physical and psychological health of an individual, her
(or his) cognition, and performance [19, 41]. As a result, the study
and tracking of user stress andmood [5, 17, 22, 44, 46, 50], predicting
them [1, 16, 18, 21, 22, 37, 42], and presenting proper interventions
to help individuals manage them better [24, 26, 29, 36, 43], have
been a growing topic of research. Particularly, studying stress level
and its changes in association with the individual’s activities and
behaviors is needed for suggesting e�ective interventions to them.
Ideally, considering that each individual’s stress response to an ac-
tivity may be di�erent, a personalized model is needed to study such
an association. For example, calling a friend may reduce the stress
levels in some, while being ine�ective for others. So, recommending
the same one-size-�ts-all activity to everyone would not be e�ective.
Additionally, such association between an activity and stress levels
can be due to multiple underlying factors, such as activity type and
the coping mechanisms that it provides. Such underlying factors
can be also associated with the individual’s personality, e.g. calling
a friend (as a social activity with the distancing coping mechanism)
may be more e�ective in reducing the stress levels of an extrovert
person compared to an introvert. Consequently, understanding the
underlying processes between activities and stress levels would
lead to a better choice of intervention recommendations, especially
in the face of data sparsity.

Furthermore, in this paper, we argue that, an individual’s pref-
erences and interests play an additional role in their engagement
to perform a recommended activity and its e�ectiveness on their
stress levels. For example, one may prefer mindful breathing to
guided imagery, although they both are individual activities with
self-controlling strategy types and the same di�culty levels. Ad-
ditionally, such an association can be reciprocal: not only one’s
activity interest and engagement can be predictive of their future
stress levels, their current stress levels may be related to the choice
of their next activity. While a few current literature has focused on
creating personalized stress prediction models [15], personalized
interventions [6], and �nding the associations between stress levels
and activities [24], none of the current studies have modeled a per-
sonalized association model that can be used to both recommend
interesting activities to individuals and discover the underlying
stress-activity patterns. More importantly, the reciprocal relation-
ship between stress level, activity interest, and engagement has not
been studied before.

In this paper, we propose a holistic model for simultaneously rep-
resenting activity interest, engagement, and stress level over time
for users of a stress-management mobile application. Our model
is personalized, as it �nds user-speci�c latent factors, can �nd the
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related underlying latent factors in activities, and track the stress
change patterns across time. To this end, we propose a multi-view
tensor and matrix factorization model that share user, activity, and
stress-change latent factors. Sharing these factors across the stress,
interest, and engagement views allows our model to tackle the
cold-start problem; e.g., to predict stress levels for users who have
never reported their stress levels, only based on their past activities.
Additionally, our experiments on the real-world application dataset
show that our proposed multi-view model results in better predic-
tion performance in all three modeled data views and discovers
meaningful patterns and clusters among users and activities.

2 RELATEDWORK
Mental Health Recommender Systems. Health Recommender
Systems is relatively new compared to other areas of recommender
systems, being discussed mostly for the past �ve years [8, 33, 39],
with isolated concept-level e�orts in late 2000s [3, 35]. Mental
well-being and health promotion are relatively underrepresented
in the literature of recommender systems. Related work often fo-
cus on the curative aspects, such as therapy [38], patients with
depression [12, 30, 48, 49], or supporting counselors for suicide
preventions [34]. However, preventive measures are as important,
if not more, as the curative e�orts. And yet, the contributions re-
lated to health recommender systems are limited to a few instances.
Design of health recommender systems for stress [6, 13, 25, 45],
general well-being [24, 29], happiness [10], emotion regulation [2],
and depression [12, 31, 48], are example domains of mental health
promotion-related contributions. These contributions mostly use
mobile devices and rely on these devices’ pervasiveness and ca-
pabilities in functioning as both the tracking tool and interaction
medium [6, 24, 25, 28, 30, 48, 49]. Among them, Paredes et al. [25]
and Clarke et al. [6] focused speci�cally on stress and building a
stress intervention system. They used variants of reinforcement
learning on less than 20 total interventions and relied on the stress
value in the objective function.
Stress Prediction Models. For detecting mood and stress, self-
reported measures, such as [7], have been traditionally the standard
tool for estimating the subjective user experience. However, primar-
ily because of user fatigue and compliance issues, non-self-reported
approaches, such as physiological, behavioral, or environmental
sensor data have been increasingly used to predict stress, e.g., [27].
Most such not-self-reported approaches rely on wearables and phys-
iological sensor data, e.g., [1, 4, 6, 14, 23, 37]. However, this kind of
data has challenges, such as fragment issues [16] and convenience
for users in general. Ultimately, the most convenient way of deter-
mining users’ experience of stress is passive detection or prediction.
Accordingly, various learning techniques have been investigated
to predict stress. Such prediction-based research is only concerned
with real-time estimations, e.g., [11]; however, stressful experiences
and mood generally are time-dependent concepts. Therefore, a
growing share of the related work models stress with time-based
considerations, particularly using wearables and physiological sen-
sor data, e.g., [1, 4, 6, 14, 16, 23, 37]. For example, time-based con-
siderations are sometimes also used in non-physiological data, such
as mobile sensor data namely, containing location, activity, and
conversation [37, 40, 50].

Table 1: Descriptive Statistics of Experimental Dataset.
Variables Size Mean SD Min. Med. Max.

Users 53 - - - - -
Days 14 - - - - -
Items 49 - - - - -

Users’ age 53 37.71 11.55 18 33 61
Users’ coping strategy score 52 76.36 24.39 0 80 136

Activity rating records 134 3.88 1.11 1 4 5
Activity rating records per item 46 2.91 1.79 1 3 10
Average activity rating per item 46 3.87 0.77 1 4 5
Average activity records per user 33 4.06 3.43 1 3 15
Average activity rating per user 33 3.83 0.69 2.66 4 5

Stress reported 188 2.10 0.91 1.00 1.96 5
Stress reported records per user 39 4.82 3.03 1 4 11
Average stress reported per user 39 2.09 0.80 1.14 2.01 4.80

Open records 408 - - - - -
Engagement records 196 - - - - -
Open records per user 45 9.06 6.34 1 7 34
Engagement records per user 45 4.35 4.64 0 4 20
Open records per activity 49 8.33 4.37 1 8 23
Engagement records per activity 46 4.26 3.33 1 3 18

3 STRESS AND BEHAVIOR MODELING
3.1 Application and Data
We used data collected as part of a larger longitudinal study with
a self-contained mobile platform and application called PAX. As
a result of this running study, a preliminary dataset, for health
promotion and mental well-being based on the random recommen-
dation of stress coping activities, were built. This dataset contains
a combination of various smartphone-based data, including self-
reported age, mood, and stress data collected through experience
sampling method and app usage log data. In addition, users com-
pleted a pre-study questionnaire assessing their general stress cop-
ing skills using ways of coping instrument [9] and perceived stress
level over the past two weeks using instrument of [7] (CS score).
Using the app, various stress-reducing activities were randomly
presented to users at di�erent points in time. Each activity has a
corresponding description, labeled types, and strategies. There are
�ve general types of activity items, including Social Engagement,
Physical Activities, Mindfulness, Positive Thinking, and Enjoyable
Activities. Additionally, there are di�erent item coping strategy
types including Distancing, Seeking Social Support, Planful Prob-
lem Solving, Accepting Responsibility, Confront the Problem, Positive
Reappraisal, Self-controlling, and Accepting the Problem. Users could
open the suggested activities, follow them, mark them as “done”,
and afterwards, provide ratings for them. They could also close the
recommendation session, ignoring the suggested activities.

For experiments, we select users who use the PAX application
frequently and have at least four records on either one view or type
of data. Eventually, we end up with 53 users for our experiments.
The descriptive data statistics are shown in Table 1. As shown in
the table, there are only 134 rating records, 188 stress records, and
408 engagement records on 53 users, 49 items, and 14 days of usage.
The data is extremely sparse, and not all users have records for
all three views. Although all activities had been opened at least
once by users, not all activities got engaged with and received user
ratings. In addition, there are only 33 out of 53 users who ever rated
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at least one activity and 39 out of 53 users who ever reported their
stress levels.

3.2 Problem Formulation and Assumptions
Assume we have U users, T time points, and A stress-coping ac-
tivities or items. Input includes three types of data: the sequence
of activities marked as “done” by each user (user engagement), se-
quences of stress scores calculated for each user across di�erent
time points (stress levels), and user ratings on the recommended ac-
tivities (user interest). Wemodel the activity sequences as aU ⇥T⇥A
binary tensor X, in which xu,t,a = 1 means that the user u has
interacted with suggested activity a at a time point t , and xu,t,a = 0
means that the user u has ignored the suggested activity and has
not engaged with it. Note that in some cases xu,t,a is missing and
unknown, e.g., because a has not been suggested tou at t . We model
the stress score sequence as aU ⇥T matrix Y , and the user-activity
ratings as a U ⇥ A matrix Z . Similar to X, matrices Y and Z are
sparse and noisy, include a high percentage of missing values, and
a few observations.

We assume that users can be more (or less) similar to each other
based on how they cope with stress, what activities they like, and
what they engage in. Hence, we consider users to be represented
by underlying latent features that describe such patterns. These
features can be used to softly cluster the users into di�erent groups,
with similar users having closer latent features to each other. Ad-
ditionally, we consider the activities to be represented by similar
latent features, representing their usefulness in helping to cope
with stress, their appeal to users, and the e�ort needed to engage
with them, among other factors. We regard users’ stress levels and
preference in engaging with di�erent activities (marking them as
“done”) to be dynamic over time. These dynamics can be more simi-
lar within some groups of users over similar activities. Finally, we
regard the underlying patterns deriving user interest in activities,
their engagement with the activities, and their stress level dynamics
to be related. A user’s stress level will not change as a result of an
activity, unless the user engages in that activity. We also consider
this change and the user’s choice in doing an activity to be related
to how much the user enjoys that activity. This results in having
“interrelated patterns” among the three types of data input.

3.3 STRETCH Model
Here, we propose a novel stress, rating, and engagement predic-
tion model according to the above assumptions: STRess and be-
havior modeling with Tensor deComposition of Heterogeneous
data (STRETCH 1). We represent user u’s latent features as an N -
dimensional feature vector su . Similarly, we use an N -dimensional
activity feature vector qa to represent activity a’s latent features.
Having that user engagement with activities may change over time,
we attribute this change to the dynamics in user and activity latent
features. In other words, we would like to model the way user latent
features evolves with activity latent features over time, with respect
to how users engage in those activities. As an example of such dy-
namics, suppose that a group of users who are generally interested
in doing social activities start engaging with the easier social activ-
ities �rst, and end up doing the ones that require more e�orts. To
1The source code is provided at https://github.com/persai-lab/WIIAT2021-STRETCH
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Figure 1: STRETCH Model

model these dynamics over time, we use an N ⇥ N ⇥T tensor C.
The t th slice of this tensor (time matrix Ct ) shows the relationship
between user latent features and item latent features at time step
t . As a result, we can represent the user u’s choice in engaging
with activity a at time step t (estimated binary value x̂u,t,a ) as a
combination of user latent features, item latent features, and latent
feature engagement dynamics at time point t , as in Equation 1.

x̂u,t,a ⇡ � (su ·Ct · qa + bxu + bxt + bxa ) (1)

Parameters bxu , bxt , and bxa are intercepts representing user, time
point, and item biases in the model, and � (.) represents the Sigmoid
function.

At the same time, considering our last assumption of interrelated
patterns, we set the same underlying user interests and activity
properties to drive users’ ratings of activities. Accordingly, we
model the estimated rating value ẑu,a of user u on activity a as in
Equation 2, where bzu and bza respectively represent user rating
bias (e.g., if the users usually rates the items highly) and activity
rating bias (e.g., activity popularity).

ẑu,a ⇡ su · qa + bzu + bza (2)

Similarly, we assume that user stress levels are related to user
features, the activities they have done, and as a whole, how much
each activity feature is associated with user stress levels. Hence,
we estimate user stress level at time step t as a combination of user
latent feature su , latent feature engagement dynamics at that time
Ct , and the overall association between each latent feature and
stress levels w (Equation 3).

�̂u,t ⇡ su ·Ct ·w + b�u + b�t (3)

Here, w is an N -dimensional vector working as a weighted av-
erage to calculate an overall value of the engaged activity’s latent
features for users’ stress levels; b�u and b�t are biases to capture
overall user stress levels and overall stress trends.

Tensor C captures the dynamics in user engagement and stress
level changes. Assuming that these changes are slow and smooth
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over time steps, we regularize the change in C. Particularly, using
a regularization constraint, we enforce the L2 norm between con-
secutive time point slices in C to be small. Alternatively, assuming
that the C values over time steps can vary dramatically, we do not
use such a regularization term in our model. In our experiments, we
will study the e�ect of having this regularization on model results.
Figure 1 illustrates our full model. Using the same user, activity,
and dynamics’ latent features across di�erent views of the data, not
only is consistent with our assumptions, but also helps our model
in dealing with data sparsity, noisiness, and missing user data. For
example, if user data is missing in one view, e.g., if a user has not
rated any activities, the learned user factors from the two other
views will be transferred and used to estimate the missing data, e.g.,
the target user’s ratings.

To learn the model parameters, the objective would be to min-
imize the di�erence between observed and estimated x , �, and z
values, formulated in Equation 4. To add to the generalizability and
interpretability of our model, we impose L2 norm regularization
on parameters in S , Q , w, Ct , and the vector for all biases b. Here
�s , �q , �w , �b , and �C are regularization weight or trade-o� hyper-
parameters, which will be tuned over the training process. Finally,
we control addition of the time smoothness regularization of C
using the hyperparameter �.

arg min
S,C,Q,w,b

’
xu,t,a 2�X

(xu,t,a � x̂u,t,a )2 +
’

�u,t 2�Y
(�u,t � �̂u,t )2

+
’

zu,a 2�Z

(zu,a � ẑu,a )2 + �s
’
u

ksu k22 + �q
’
a

kqa k22+

�w kwk22 + �b kbk22 + �C
’
t

kCt k2F + �
T’
t=1

kCt �Ct�1k2F
(4)

�X , �Y , and �Z denote all observed user records on activity en-
gagement, stress measurement, and activity rating, respectively.

4 EXPERIMENTS
We design our experiments to investigate these research questions:
- RQ1: Can our proposed multiview model e�ectively predict user’s
sequential engagement, stress-level, and rating behavior with few
and sparse observations?

• RQ 1.1. How good our proposed multiview model’s �t is?
• RQ 1.2. How does each view of the data a�ect the prediction
performance in all views?

• RQ 1.3. How does the time step smoothness assumption
a�ect the prediction performance in all views?

- RQ2: Can our proposed multiview model provide insights and
interpretations of user behavior and mental health data?

• RQ 2.1. How do activity groups found by our model associate
with their types, popularity, and engagement?

• RQ 2.2. How do user groups found by our model associate
with their demographics, behaviors, and stress levels?

• RQ 2.3. How do user groups found by our model associate
with their activity preferences, activity characteristics, and
activity popularity?

Table 2: Best Hyperparameters of Each Prediction.

N � � learning rate min epoch

Stress Prediction 4 0.001 0.1 0.01 4
Rate Prediction 1 0.001 0.1 0.1 4

Engagement Prediction 2 0.001 0 0.1 4

Table 3: Stress Prediction Results.
Stress Prediction

Methods RMSE MAE

Global Running Average (GRA) 0.834 ± 0.307⇤⇤⇤ 0.692 ± 0.223⇤⇤⇤
User Running Average (URA) 0.487 ± 0.059⇤ 0.383 ± 0.043⇤⇤⇤

STRETCH-SV (Stress) 0.605 ± 0.108⇤⇤⇤ 0.478 ± 0.073⇤⇤⇤
STRETCH-TV (Stress+Rate) 0.435 ± 0.210⇤⇤ 0.297 ± 0.142⇤⇤
STRETCH-TV (Stress+Engag.) 0.428 ± 0.175⇤⇤ 0.303 ± 0.125⇤⇤

STRETCH-SV-NS (No-Smooth Stress) 0.934 ± 0.117⇤⇤⇤ 0.770 ± 0.118⇤⇤⇤
STRETCH-FULL-NS (3-view+NoSmooth) 0.487 ± 0.245⇤⇤ 0.354 ± 0.179⇤⇤

STRETCH-FULL (3-view) 0.373 ± 0.201 0.261 ± 0.131

4.1 Experimental Setup
In experiments, we would like to validate the performance of our
proposed multiview model on the tasks of stress prediction, rate
prediction, and engagement prediction.
Online Testing and Hyperparameter Tuning.We leverage the
nested 5-fold user-strati�ed cross-validation for hyperparameter
tuning and performance evaluation. We �rst split users into �ve
folds. Three folds of users are training users, one fold is validation,
and the last fold is testing. We use validation users’ records for
hyperparameters tuning and testing users’ records for performance
evaluation. To �nd the optimal hyperparameters for each prediction
task, we apply grid search separately, and report the best hyperpa-
rameters we �nd in Table 2. N is the dimension of latent factors.
� is the regularization trade-o� parameter. � is the smoothness
weight.min-epoch is the minimum number of epochs to run before
the early stop. As we can see, due to the sparsity of our dataset, the
dimension of latent factors is small as expected.

For testing, we predict the last 50% of testing users’ records in
the target view, given their �rst 50% records. We predict each test
user’s stress level, activity rating, and activity engagement over
time as in the real-world scenario, to avoid the information leak
between time steps in di�erent views. In other words, we do not use
any user’s records from any resource after the testing time point
for training, and we will merge the outdated testing data before the
testing time point into the training data. In addition, due to online
training and testing, we leverage the prediction performance on
validation data for early stopping to avoid over-�tting.

4.2 Performance Experiment Results
In this section, we answer RQ 1.1., RQ 1.2., and RQ 1.3. Speci�cally,
we evaluate the prediction performance of our proposed model in
stress level prediction, user engagement prediction, and user rating
prediction. Given that stress level and rating data are numeric,
we use the root mean squared error (RMSE) and mean absolute
error (MAE) metrics for evaluating their predictions. To evaluate
the performance of engagement prediction, we use the ROC curve
(AUC) and accuracy (ACC).
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Table 4: Rating Prediction Results.

Rating Prediction
Methods RMSE MAE

Global Running Average (GRA) 1.081 ± 0.398⇤⇤⇤ 0.880 ± 0.379⇤⇤⇤
User Running Average (URA) 0.859 ± 0.330⇤ 0.624 ± 0.259⇤
Item Running Average (IRA) 0.921 ± 0.193⇤⇤ 0.729 ± 0.145⇤⇤⇤

STRETCH-SV (Rate) 1.455 ± 0.167⇤⇤⇤ 1.234 ± 0.154⇤⇤⇤
STRETCH-TV (Rate+Stress) 0.794 ± 0.290⇤⇤⇤ 0.525 ± 0.151⇤⇤⇤
STRETCH-TV (Rate+Engag.) 0.674 ± 0.302 0.484 ± 0.180⇤

STRETCH-FULL (3-view) 0.614 ± 0.231 0.417 ± 0.127

To answer each of the research questions under RQ1, we compare
our proposed model’s performance in all three views (STRETCH-
FULL) with the following baseline methods:
- Global Running Average (GRA): uses the average over all users’
observed records of target view as prediction value (for RQ 1.1.).
- User Running Average (URA): uses the average of the target
user’s observed records of target view as prediction value (RQ 1.1.).
- Item Running Average (IRA): uses the average of the target
item’s observed records of target view as prediction value (RQ 1.1.).
- STRETCH-SV Single View Model: is based on our model, but
only using the single view of data to train the model (RQ 1.2.).
- STRETCH-TV Two View Model: is based on our model, but using
two views of the data (target view with one additional view) to
train the model (RQ 1.2.).
- STRETCH-NS No-Smooth Model: is based on our model, but does
not impose the smoothing regularization term on tensor C (RQ
1.3.).

We report the average performance as well as 95% con�dence
interval for tasks of engagement prediction, stress prediction, and
rating prediction in Tables 3, 4, and 5, respectively. We show the
best performance with bold letters and use ⇤⇤⇤, ⇤⇤, and ⇤ to indicate
if the best model is signi�cantly outperforming others with p-values
less than 0.05, 0.10, and 0.15, respectively.

RQ 1.1., Model Fit. Looking at the global running average
(GRA), user running average (URA), and item running average
(IRA) results, we can see that these baselines are performing rela-
tively well in all tasks. Speci�cally, URA performs the best among
the average baselines for stress and rating predictions and IRA per-
forms better than GRA and URA in engagement prediction. Having
more than 73% accuracy in predicting user future user engagement,
0.85 RMSE in rating prediction, and 0.48 RMSE in stress level pre-
diction shows that these baselines are competitive and strong. For
example, Table 4 shows that these approaches perform better than
STRETCH-SV (the single-view model) in rating prediction. One
reason for that could be the time-based patterns in the data that
cannot be captured by the matrix-based STRETCH-SV model for
rating prediction. IRA, GRA, and URA change over time steps as
running averages and can pick up some time-based trends in the
data. Comparing our proposed three-view STRETCH-FULL model
with these baselines, we see that STRETCH-FULL signi�cantly out-
performs all three of IRA, GRA, and URA. This shows that our
model �ts the data well, and that the data has more complexities
than that can be captured using an average trend. It also shows that
STRETCH-FULL can do well in predicting the future values in all
three views of the data.

Table 5: Engagement Prediction Results.
Engagement Prediction

Methods AUC ACC

Global Running Average (GRA) 0.652 ± 0.094⇤⇤⇤ 0.659 ± 0.019⇤⇤⇤
User Running Average (URA) 0.748 ± 0.141⇤⇤⇤ 0.555 ± 0.088⇤⇤⇤
Item Running Average (IRA) 0.814 ± 0.098⇤⇤⇤ 0.736 ± 0.090⇤⇤⇤

STRETCH-SV (Engag.) 0.643 ± 0.090⇤⇤⇤ 0.708 ± 0.061⇤⇤⇤
STRETCH-TV (Engag.+Rate) 0.955 ± 0.038 0.890 ± 0.051⇤⇤
STRETCH-TV (Engag.+Stress) 0.967 ± 0.036 0.918 ± 0.034

STRETCH-SV-NS (No-Smooth Engag.) 0.643 ± 0.090⇤⇤⇤ 0.708 ± 0.061⇤⇤⇤
STRETCH-FULL-NS (3-view + No-Smooth) 0.925 ± 0.039⇤⇤ 0.834 ± 0.076⇤⇤⇤

STRETCH-FULL (3-view) 0.925 ± 0.039⇤⇤ 0.834 ± 0.076⇤⇤⇤

RQ 1.2., Multiview Helpfulness. To assess if modeling mul-
tiple views to the data help in the prediction performance of our
proposed model, we compare STRETCH-SV (the single-viewmodel)
and STRETCH-TV (the two-view model) results with STRETCH-
FULL. For stress prediction, aswe could see in Table 3, the STRETCH-
FULL model achieve the best prediction performance, signi�cantly
better than the other two versions of the model. Additionally,
STRETCH-TV results are better than STRETCH-SV results. It shows
that modeling both rating and engagement views of the data are
helpful in predicting future stress levels, compared to not using
them at all. The engagement data is also more helpful than the
rating data in predicting users’ stress levels. Furthermore, modeling
both engagement and rating views coupled with stress view is even
more helpful compared to adding only one of these auxiliary views.

For rating prediction (Table 4), both STRETCH-TV models per-
form better than STRETCH-SV, which shows that modeling two
views of the data, whether adding stress or engagement modeling,
results in better rating predictions than only modeling the ratings
alone. Our STRETCH-FULL model achieves the lowest prediction
error compared to all STRETCH-SV and STRETCH-TV models.
However, for STRETCH-TV, this improvement is more signi�cant
when having the stress data as the auxiliary view. Overall, it shows
that the engagement data is more bene�cial than the stress-level
data here. One reason could be having more user records on the
engagement data, compared to stress-level records. As another
potential reason, the rating data could be more related to the en-
gagement data as two views of the user behavior, e.g., the user is
likely to rate an activity after engaging with it.

The results are slightly di�erent in the engagement prediction
task. Similar to stress and rating prediction, training the model with
only engagement data (STRETCH-SV) results in relatively poor pre-
dictions. With modeling any additional view (both STRETCH-TV
models), the performance boosts relatively 50%, with the stress data
being more useful than rating data. But, modeling all three views
of the data together (STRETCH-FULL) does not help more than
STRETCH-TV models. In fact, STRETCH-TV with stress data is sig-
ni�cantly better than STRETCH-FULL in engagement predictions.
It seems that using both stress-level and rating data would result
in some con�icts in the learned model. However, this con�ict is
not large enough to completely cancel out the boost that is gained,
compared to not using any of these two views (in the STRETCH-SV
model). One potential reason could be the richness of engagement
data compared to the other two views. Accordingly, the shared pa-
rameters learned in each of the STRETCH-TV models would �t the
engagement data better, while modeling the three views together
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Table 6: Descriptions of Representative Items in Each Cluster
Cluster ID Item ID General Type Short Description

0 6 Positive Thinking Don’t be afraid of pride. It is OK to tell yourself how great you are or how long you waited and tried to get where you are now.
23 Positive Thinking Acknowledging the limitations of your abilities and things that are in your control.

1 30 Mindfulness Grab a pen and paper and get writing.
33 Mindfulness Use a herb, essential oil or a mild smell like perfume, �ower, or a leaf of Pelargonium to relax and focus on the problem.

2 11 Social Engagement Choose someone of your social media contact that you know he/she is a supportive person and meet them again face to face.
20 Social Engagement Remember friends birthdays and reconnect.

3 25 Physical Activity Sit at a desk all day? A few in-home or in-o�ce exercises to strengthen your muscles.
28 Physical Activity Go to the hallway and go up and down the stairs

4 44 Mindfulness Roll breathing helps you to develop full use of your lungs and to focus on the rhythm of your breathing.
47 Mindfulness Mindful breathing helps you take a break for a moment to unwind and concentrate on the here and now.

(a) Item Avg. Rate (b) Item Rate Count (c) Item Engagement Ratio (d) Item Engagement Count
Figure 2: Pairwise T-Tests on Item Cluster Attributes.

would impose more constraints on the learned parameters to �t an
additional view and be less �exible to the engagement data.

RQ 1.3., Smoothing Helpfulness. To study if the smoothing
assumption helps in achieving better predictions, we compare the
STRETCH-FULL and STRETCH-SVmodels with their variants with-
out the smoothing regularization. Since only stress-level and en-
gagement data include time-steps, we compare the results in these
two views. As Table 3 shows, STRETCH-SV and STRETCH-FULL
perform better than STRETCH-SV-NS and STRETCH-FULL-NS,
respectively. Hence, the smoothness regularization helps in both
single view and full models for stress predictions. This approves
our assumption that user stress levels do not change dramatically
and, instead, change slowly in time.

However, the results are di�erent in engagement predictions. As
we can see in Table 5, the best STRETCH-SV and STRETCH-FULL
models have the same results as STRETCH-SV-NS and STRETCH-
FULL-NS, respectively. This, as well as Table 2, show that during
the hyperparameter tuning, our model automatically selects the
models with no smoothing as the best performers for engagement
predictions. As a result, the smoothness assumption does not work
for engagement data, showing that user engagement patterns are
highly variant across consecutive time steps.

4.3 Activity Cluster Analysis
To answer RQ 2.1., and investigate if our model �nds meaningful
activity characteristics, we perform activity cluster analysis based
on the learned model parameters. Particularly, for each activity, we
concatenate the learned item factors (Qa ), item rating bias (bza ), and
item engagement bias (bxa ) to build an item feature vector. Then,
we apply the spectral clustering algorithm[47] on item feature
vectors to group the activities into clusters. Using the Silhouette
coe�cient [32] to choose the best number of clusters, we discover
�ve item clusters.

Table 7: Statistics of Each Item Cluster
Cluster Item Item Item Item
ID Average Rate Engagement Engagement

Rate Count Ratio Count
Mean STD Mean STD Mean STD Mean STD

0 2.65 1.08 4.02 0.56 0.37 0.15 3.47 1.72
1 3.46 2.31 3.99 0.67 0.66 0.17 5.92 4.38
2 3.78 1.75 3.75 0.60 0.67 0.20 5.33 3.37
3 1.33 0.47 4.67 0.47 0.23 0.07 1.33 0.47
4 1.50 0.87 2.58 0.92 0.18 0.17 1.14 1.36

Figure 3: Chi-square Test for Item Cluster and Item Type.

To assess the validity of these clusters, we (1) study the activity
descriptions and coping strategies in each cluster and (2) investi-
gate the association between these clusters with item attributes
in the data. Checking the activity descriptions in each cluster, we
�nd that items in some clusters share inherent similarities. For
example, activities in cluster-3 are mostly physical activities and
in-place exercises, while cluster-4 activities are about breathing
and mindfulness. Since the whole data would not �t, we show some
representative activities of each cluster in Table 6. As we can see,
activity 30 and 33 in cluster-1 and activity 44 and 47 in cluster-4
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(a) User Age (b) User Avg. Stress (c) User Stress Variance (d) User CS Score
Figure 4: Heatmaps of P-Values of Pairwise T-Test on User Cluster Attributes.

Figure 5: Chi-square Test between User Cluster and Coping Strategy Type.

are all in Mindfulness general type. However, activity 30 and 33
are more about solution-oriented suggestions, and activity 44 and
47 are more about breathing for relaxation and calming.

Accordingly, for assessing if activity clusters are signi�cantly
related to speci�c item characteristics, such as activity type or
coping strategy, we perform Chi-Square tests between item clusters
and these characteristics. Particularly, we test if the distribution of
items in terms of activity general type and activity coping strategy
are signi�cantly di�erent in item clusters. To this end, we calculate
the number of activities with each activity general type (or activity
coping strategy type) observed in each cluster. Then, we compare
this value with the expected number of activities of each type in
each cluster, assuming the null hypothesis (that no pattern exists
between item clusters and item attributes). The Chi-Square tests
calculate the p-value for this comparison. Speci�cally, Figure 3
shows a heatmap of normalized di�erence between the observed
and expected number of items from each general item type in each
cluster. The red color indicates that the observed value was more
than the expected value, and the blue color is the reverse. The larger
the di�erence, the darker the color is. According to the Chi-Square
test, the p-value for cluster 3 is 0.0098, indicating a signi�cant level
for rejecting the null-hypothesis. As we can see in the �gure, cluster
3 items are more about physical activities and less from other types,
con�rming our previously mentioned results. Similarly, cluster
4 items, although not signi�cant, are more about enjoyable and
mindful activities rather than physical activities. Cluster 2 items are
more enjoyable than expected, and cluster 0 and 1 activities are less
about enjoyable activities than expected. We omit the Chi-Square
test results for activity coping strategy types, as none of the item
clusters signi�cantly rejected the null hypothesis.

At the same time, not all item clusters can be explained by item
descriptions. The item feature vectors are based on many factors,

such as prediction accuracy, which could be di�erent from the se-
mantic activity similarities. To assess this aspect, we compare the
discovered clusters over several attributes, such as items’ average
rating, item rating counts, item engagement ratio, and item engage-
ment counts. Each cluster’s statistics are shown in Table 7. As we
can see, clusters 3 and 4 have activities with relatively lower item
average ratings, engagement ratios, and engagement counts. How-
ever, items in cluster 3 received more ratings than items in cluster 4.
On the other hand, clusters 1 and 2 have activities with the highest
item average rating, engagement ratio, and engagement counts.
To achieve a deeper understanding of these results, we conduct
the statistical t-test on each attribute for each pair of clusters and
report the p-values with heatmaps, which are shown in Fig. 2. As
we can see (part (a)), cluster 3 has a signi�cantly lower mean of
item average rating than cluster 4. However, cluster 3 has signi�-
cantly fewer ratings than other clusters, except cluster 4 (part (b)).
In addition, items in cluster 1 have a similar ratio of engagement
and engagement count as items in cluster 2; and items in clusters 3
and 4 also share these similarities (parts (c) and (d)). However, item
clusters 3 and 4 have signi�cantly less user engagement compared
with clusters 1 and 2 (part (d)).

4.4 User Cluster Analysis
Similar to item clustering, we conduct the user cluster analysis to
answer RQ 2.2. and RQ 2.3.. The users are clustered based on the
discovered user factors su , user rating bias bzu , user stress bias b�u ,
and user engagement bias bxu , via the spectral clustering algorithm.
Accordingly, four clusters are found among the users.

To answer RQ 2.2., we study several user attributes in user
clusters, such as user age, coping strategy (CS) score, average stress
levels, stress level variance, average rating, rate count, engagement
ratio, as well as engagement count for comparison. The �rst two
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Table 8: Statistics of Each User Cluster
Cluster User User User User
ID Age Average Stress CS

Stress Variance Score
Mean STD Mean STD Mean STD Mean STD

0 40.88 8.85 1.77 0.24 0.24 0.20 19.00 7.68
1 37.22 12.93 2.17 0.79 0.24 0.19 19.44 6.10
2 39.73 12.05 2.13 0.61 0.13 0.21 20.60 5.64
3 29.42 5.39 2.08 1.14 0.11 0.09 22.17 5.03

Cluster User User User User
ID Average Rate Engagement Engagement

Rate Count Ratio Count
Mean STD Mean STD Mean STD Mean STD

0 4.15 0.93 6.38 5.15 0.93 0.07 9.14 5.28
1 3.42 0.48 1.44 2.57 0.25 0.23 3.27 5.04
2 3.81 0.59 1.73 2.14 0.28 0.25 3.08 3.27
3 4.04 0.52 2.58 1.98 0.55 0.30 4.30 2.37

attributes are measured using questionnaires, independently of our
model. The mean and standard deviation of each attribute for each
user cluster is shown in Table 8. The pairwise T-Test results among
user clusters are shown in Fig 4.

By checking the Table 8 and Fig. 4 together, we can see that the
discovered clusters can be interpreted using these attributes. First,
we see that users in cluster 3 have an average age of 29 years old,
which is signi�cantly lower than the users in other clusters. Also,
cluster 3 users have the highest mean coping strategy test score
among all user clusters. Additionally, these users have relatively
less stress variance or �uctuation compared with other clusters,
speci�cally signi�cantly lower than cluster 1 users, and have a
medium-level engagement ratio. It indicates that cluster 3 users are
young people with less stress level changes and more resilience in
coping with stress compared to other users. Similarly, we can see
that cluster 0 includes the older users with relatively lower stress
levels, who tend to engage in more activities, rate more activities,
and give higher ratings to these activities.

In addition to user attributes, we are interested to know if there
is a relation between user clusters and the activity attributes that
they interact with (RQ 2.3.). Particularly, we test if the distribution
of user-engaged activities are signi�cantly di�erent in clusters, in
terms of activity general type and activity coping strategy. First,
to assess activity general types in each cluster, we calculate the
number of activities with each activity general type used by users
of each user cluster. We do the same thing to calculate the number
of observed results based on activity coping strategy types in each
cluster. Then, we use the Chi-square test on the categorical variables,
user cluster and item type. Figure 6 shows the results of item general
types. Clusters 1 and 3 have signi�cantly di�erent distributions than
expected with p-values 0.047 and 0.095 and Chi-square statistics
9.64 and 7.90 respectively. We can see that users in cluster-1 who on
average are 37 years old engage more with Social Engagement and
Mindfulness activities and are less interested in Physical Activity
and Enjoyable Activity categories. In contrary, users in cluster-3
who are 29 years old on average are more interested in engaging
with Physical Activities and Enjoyable Activities, but less engaged
with Positive Thinking and Mindfulness.

Performing the same analysis on coping strategy types, we see
that cluster 2 has a signi�cantly di�erent distribution of activity
coping strategies than expected (with p-value 0.028 and Chi-square

Figure 6: Chi-square Test for User Cluster and Item Type.

statistic of 15.68). The heatmap results are shown in Figure 5. As
we can see, users in cluster 2, who are on average 39.73 years old,
engaged more with items related to Accepting the Responsibility,
Accepting the Problem, and Confronting the Problem, but less with
items in other categories such as Positive Reappraisal, Distancing,
Planful Problem Solving, and Self-controlling. As shown in Table 8,
cluster-2 has relatively high average stress but with a relatively
high coping strategy score.

5 CONCLUSIONS
In this paper, we introduced STRETCH, a multi-view tensor and
matrix decomposition model for holistic stress-level, activity en-
gagement, and interest predictions, that can generalize well with
small, missing, and sparse data. We designed experiments to an-
swer 6 research questions. In our experiments, we showed that the
multi-view modeling of STRETCH provides improvements over
single-view predictions. Particularly, we showed the reciprocal re-
lations between stress levels, user interests, and engagements with
activities: not only observing user interest and engagement in activ-
ities helped in predicting their stress levels; but also observing user
stress levels helped in predicting users’ interests and engagement.
We also showcased the validity of STRETCH results by studying
user and item clusters discovered by our model, in association with
various factors. Speci�cally, our experiments demonstrated that the
item clusters represent item general types, average item popularity,
and average item desirability. Additionally, we presented interest-
ing �ndings in the discovered user clusters: a cluster of younger
users with less stress variation and more preference for physical
and enjoyable activities, and a cluster of older users with lower
stress levels and higher engagements. This study is limited in using
only one dataset from one application, with smaller data size. In
the future, we would like to expand this study to other datasets.
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