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Abstract
Evaluating recommendation algorithms with long-term independently-measured rewards, such as ed-
ucational recommender systems, has proven to be a di�cult task, especially using o�ine data. While
many usemodel-based evaluation strategies to evaluate such recommender systems, we argue that these
strategies are unreliable, particularly due to biases introduced via simulation and reward estimation
models. In this paper, we showcase this argument by experimenting with a state-of-the-art model-based
evaluation model and presenting its �aws. Next, we propose MOCHI, an o�ine model-free evaluation
framework that can be used on sparser collected data with longer trajectories. We experiment with
MOCHI and show how it can be used to e�ectively evaluate educational recommender policies with
long-term goals.
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1. Introduction and Related Work

With the rise of online education, the size of classes and, as a result, the need to provide
automatic guidance for students grows. Educational recommender systems and instructional
sequencing policies aim to provide the best learning materials to students during their studies
in online learning platforms [1, 2]. Despite the considerable application of these algorithms
in online education platforms, e�ectively evaluating them has been proven challenging [3].
Particularly, because of scalability problems in case-based user studies and equity considerations
in online A/B testing in this domain, o�ine evaluation strategies are essential for educational
recommender systems.

We note that having delayed and independently-measured utility or reward is one of the main
reasons for this evaluation to be challenging. Unlike consumer-based and commercial systems
that aim to serve users’ interests, the main purpose of educational systems is for students to
learn. Research has shown that students’ interest-based behaviors may not be aligned with their
learning goals and can potentially be against them [4, 5]. As a result, the widely used implicit
and explicit observable feedbacks, such as user ratings and clicks, are not adequate success
indicators in evaluating an educational recommender system. Instead, long-term learning
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measures, such as post-test score and learning gain, are more reliable to evaluate educational
recommender systems’ e�ectiveness in student learning.
These more reliable scores are, however, evaluated independently of the student trajectory

items and as a result not directly observable from the trace data. For example, post-test scores
are student grades in a test that is administered at the end of the course and may not include
any problems that the student had practiced before. Additionally, these measures are delayed
as they are collected at the end of student trajectory and can change as the students interact
with the recommended learning materials. Accordingly, for a successful o�ine evaluation of
educational recommenders using these measures, not only full user trajectories are needed,
but also the training traces should have vast coverage of all possibly observable trajectories to
facilitate a generalizable o�ine evaluation. These problems complicate the o�ine evaluation in
educational recommender systems. A similar challenge exists in other recommender systems
with delayed independently-measured rewards, such as health or weight-loss applications.

To avoid these problems, recent educational recommendation literature has sought model-
based evaluation that simulates student trajectories and estimates the potential �nal reward for
o�ine evaluation [6]. Model-based evaluation methods train a student model using the users’
historical performance data from the logged system and then use it as a simulator coupled with
a reward model to estimate the performance of a target policy [7, 8, 9, 6]. Yet, these evaluation
strategies su�er from many problems. Most importantly, they rely on two estimators that can
induce major errors. To simulate student trajectories, a student knowledge model should be used
to estimate student knowledge and performance in the recommended items. Naturally, these
models have an estimation bias that would exacerbate by the length of the simulated student
trajectory. The reward estimator is usually trained using the learned student knowledge model
parameters to predict student post-test score or knowledge gain. Again, not only the reward
estimator model itself can be biased, but also relying on error-prone estimated parameters can
intensify such a bias. Recently, e�orts such as Robust Evaluation Matrix (REM) [10] have aimed
to address some issues by testing the proposed policies against multiple student simulation
models. REM has an innovative approach to explore experiment-worthy policies. It evaluates
the policies in a conservative way: policy A is considered to be better than policy B only if
policy A outperforms policy B under all student simulation models. So, if a policy shows to be
better than other according to REM results, this policy would be a policy worth exploring in
practice. Yet, REM su�ers from other uncertainties that we present in this paper.
A more elegant model-free solution is importance sampling, which is popularly used in the

�eld of o�-policy evaluation in reinforcement learning [11, 12, 13, 14, 15]. The main idea is to
re-weight the pre-collected reward from the logged policy to compute an unbiased estimate of
the expected reward on a new compatible policy. However, this method requires the trajectory
generated by the new policy to preexist in the old data generated by the logged policy. Otherwise,
the importance sampling could yield an estimate with large variance, especially when we have
very sparse observed rewards from the logged system. In other words, the existing model-
free evaluations are not applicable to the o�ine evaluation of educational recommendation
systems with a long trajectory and sparse reward. Given these challenges, having an o�ine
evaluation framework that can handle delayed independently-measured rewards, is independent
of recommendation and student models, allows for multiple item recommendations and user
choice, and does not only rely on the super�cial observed interest-based measures is essential



for the educational recommender systems.
In this paper, we �rst examine the REM framework and demonstrate the need for a model-free

evaluation framework by showing the problems that arise in such model-based methods. Next,
we propose Model-free O�ine Correlational HIt (MOCHI), a model-free evaluation framework
that can work with delayed independently-measured rewards with long trajectories. MOCHI
evaluates if higher degrees of following a recommender system’s non-trivial suggestions would
be associated with higher independently-measured rewards. Experimenting with the o�ine
data from a real-world online education platform, we show that the results generated by our
proposed framework are in accordance with our expectations. Additionally, we present ways to
interpret MOCHI’s results. Our proposed evaluation framework is algorithm-agnostic and can
be used to evaluate any adaptive or non-adaptive educational recommendation or instructional
sequencing algorithm that either suggests or mandates the next item for the students to work on.
It does not limit the number of recommended items to students, neither their trajectory length.
Most importantly, it can be used for any application domain, such as health and �tness, in
which a delayed long-term independently-measured reward is required rather than immediate
super�cial observations.

2. Model-Based Evaluation Challenges: A Case Study

In this section, we investigate Robust Evaluation Matrix (REM) [10], to argue that the existing
evaluation methods are not su�cient to validate the e�ectiveness of educational recommenda-
tion policies.

2.1. Dataset

We use the data from the MasteryGrids platform 1, collected during Spring 2012, Fall 2012,
and Spring 2013 semesters in the Java introductory course with the same curriculum at the
University of Pittsburgh. MasteryGrids is an open-learner interface for an intelligent tutoring
system, in which students can practice with various kinds of problems and annotated examples.
In this paper, we use student trajectories in solving problems that ask the students to read a
code snippet and answer simple questions, such as the �nal output or a variable’s value. The
items to be recommended in this system are these problems. In MasteryGrids, the programming
problems are ordered from left to right by 21 curriculum topics. The topics that cover a wide
range of concepts including simple "Variables" and more complex "Wrapper Classes"
topics ordered by a domain expert. Each topic includes multiple problems. Although students
can freely select any problem to work on, they typically follow the interface’s topic order. The
students take a pretest before starting their class and a post-test at the end of their course. We
normalize the pre-test and post-test scores to be between zero and one. Also, we calculate
students’ knowledge gain by deducing their pre-test score from their post-test score. Score
distributions are presented in Figure 1. In total, trajectories of 86 students with their pre-test
and post-tests are available in the dataset. Descriptive statistics of the dataset are shown in
Table 1.

1http://adapt2.sis.pitt.edu/wiki/Mastery_Grids_Interface
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Table 1
Descriptive Statistics of MasteryGrids Dataset.

Dataset #Users #Questions #Topics #Records Trajectory Length
Min Median Max

MasteryGrids 86 103 22 17741 11 168 988

Figure 1: Distribution of Pre-test Score (Le�), Post-test Score (Mid.), and Knowledge Gain (Right).

2.2. Setup and Expectations

Model-based evaluations in the education domain use a student model as a simulator to estimate
the students’ performance under the policies that are being evaluated. Since they are simulation-
based, they have to also estimate the delayed reward or utility for each student using a reward
model. Accordingly, in our experiment setup, we use three di�erent student models to evaluate
�ve recommendation policies. Additionally, we use multiple reward models to evaluate how a
reward model would a�ect the evaluation results. We simulate 1, 000 student trajectories and
sample the trajectory lengths and pretest scores from the pre-collected training data.
Simulator Student Models. We use the following models as student simulators:

• Bayesian Knowledge Tracing (BKT) is a pioneer model based on hidden Markov
models that estimates student probability of success based on the probability that the
student has learned a topic (mastery) [16].

• Deep Knowledge Tracing (DKT) is an LSTM [17] that predicts student’s correctness
probability according to their knowledge estimate [18].

• Dynamic Key-Value Memory Network (DKVMN) is a sequential key-value memory
based deep model that represents the student’s estimated knowledge in each latent
concept [19]. This model has not been used in previous model-based evaluations.

Reward Models. The rewards models aim to estimate the �nal delayed reward for simulated
students. They are trained on the simulator parameters that are learned according to training
students’ trajectories as their independent variables and the training students’ �nal utilities
(e.g., post-test scores) as the dependent variables. Since di�erent simulator student models
have di�erent parameters, we have di�erent parametrizations of the dependent variables for
their reward models. Additionally, the model to estimate the �nal reward according to the
independent parameters can be di�erent. We use two di�erent reward models for each student



simulator: a linear regression and a ridge regression model. Linear regression is selected
according to REM. Ridge regression is chosen to increase linear regression’s generalizability.

We also de�ne di�erent independent variables for each student model. For BKT, following [10],
we use the trained parameters to infer the mastery probabilities of the 21 topics in MasteryGrids.
So, BKT model’s knowledge representation is a 21-dimensional vector. To train the reward
model for BKT simulator, we �t the regression model with the concatenation of pre-test score
and knowledge vector as independent variables to predict the post-test score. Knowledge
gain can be calculated based on the di�erence between the estimated post-test and pre-test
scores. For DKT, we use the last estimated student knowledge state vector at the �nal attempt
concatenated with the pretest score as the input for the reward model. For DKVMN, we compute
the knowledge state at each time step represented by a 10-dimensional vector [19, 20], 10 being
the discovered latent concept size and concatenate it with student pre-test score.
Recommendation Policies. We consider the following standard educational policies that
were evaluated in [10]:

• Random: is a non-adaptive policy that randomly recommends k learning resources to
each student at each attempt.

• InstructSeq: is based on the designed instructional order and student’s performance.
If the student answers the current question correctly, the next k following questions in
the instruction sequence will be suggested. Otherwise, the current question and the next
k � 1 following questions are recommended.

• Mastery: is an adaptive policy that leverages BKT 2 student model to estimate student
mastery probability at each attempt. It selects the top-k questions that are the farthest
from the prede�ned mastery threshold level, which is usually set to 95%.

• HighProbCorr: is also an adaptive BKT-based policy that selects the next top-k questions
that have the highest probabilities to be answered correctly by the student based on their
current mastery probability estimates.

• Myopic: is another adaptive BKT-based policy that selects the next top-k questions that
could lead to the largest estimated reward for the student.

Expectations. Among the above policies, we expect the InstructSeq policy to be a reason-
ably good policy, since the course topic sequence has been designed by the domain experts.
Particularly, we expect InstructSeq to lead to better learning in students, compared to the
Random policy. In addition, since the Mastery policy suggests the items which the student
is least likely to have mastered, we anticipate it to recommend very di�cult problems. Since
the course covers a vast variety of topics with some being the most di�cult and presented at
the end of the semester, we expect this policy to always recommend the most di�cult course
problem to all students. Similarly, we anticipate the HighProbCorr policy to always suggest
the easiest course problems to all students, since they are the most likely to be solved by them.
As a result, we expect InstructSeq to also be better than both Mastery and HighProbCorr
policies.

2https://github.com/myudelson/hmm-scalable
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2.3. Experimental Results of Robust Evaluation Matrix

Here, we �rst present the predictive accuracies of di�erent student and reward models. Then,
we present REM evaluation results with di�erent setups to show how student and reward model
variations can a�ect the model-based evaluations. Since in REM students are assumed to always
follow the recommended item, we recommend the top-1 problem.
Predictive Accuracy of Student Models. We train the three student models with 5-folds
user-strati�ed cross-validation, and report the predictive accuracy of each model in Table 2.
ROC-AUC stands for the area under the receiver operating characteristic curve, and PR-AUC
denotes the area under the precision-recall curve. As we can see, they all have reasonably good
predictive accuracy with the performance order DKT > DKVMN > BKT.

Table 2
Predictive Accuracy of the Student Models. The average performance and 95% confidence intervals
are reported.

Dataset BKT DKT DKVMN
ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

MasteryGrids 0.7002± 0.0247 0.8251± 0.0259 0.7839± 0.0075 0.8759± 0.0135 0.7691± 0.0057 0.8666± 0.0081

Predictive Accuracy of Reward Models. We estimate each reward model’s prediction error
via 5-fold user-strati�ed cross-validation. The results are shown in Table 3. We can see that
ridge regression’s results are only signi�cantly better than regression results in the DKT student
model. This over�tting of linear regression can be explained by the large knowledge state
representation size in DKT, that results in a high number of reward model parameters.

Table 3
Prediction Errors of 6 Reward Models with 95% confidence interval.

Student Model Reward Model with Linear Regression Reward Model with Ridge Regression
RMSE MAE RMSE MAE

BKT 0.1558± 0.0207 0.1300± 0.0158 0.1428± 0.0355 0.1175± 0.0282
DKT 0.3743± 0.2216 0.2812± 0.1700 0.1366± 0.0309 0.1101± 0.0259

DKVMN 0.1508± 0.0270 0.1209± 0.0237 0.1456± 0.0284 0.1209± 0.0204

REMResultswith Linear RegressionRewardModel. Table 4 presents the expected reward
and its standard deviation over 1000 simulations under each combination of student simulation
model and recommendation policy. We also show the heatmap of pair-wise Cohen’s d e�ect
size in Fig 2. Conventionally, d = 0.2, 0.5, and 0.8 respectively represent a ’small’, ’medium’,
and ’large’ e�ect size [21]. As we can see, for BKT student simulation model, the Random policy
has a similar e�ect to InstructSeq, Mastery, and HighProfCorr; the Mastery policy is equivalent
to HighProbCorr; and only the Myopic policy is the most di�erent from all with the highest
reward. On the other hand, for the DKT student model, we can conclude that InstructSeq
equally contributes as HighProbCorr, and the Mastery policy results in the highest reward.
For DKVMN, we have Myopic=InstructSeq=HighPropCorr. We can simply see that di�erent
simulator student models result in signi�cantly di�erent evaluations. REM selects one policy as
the best (worst) policy only if it is the best (worst) in all simulation model experiments. Overall,



since the policy performance is not consistent across di�erent student models, REM will not
conclude that any of the policies are better or worse than others.

Table 4
Estimated Regression Rewards of Recommendation Policies under Di�erent Student Simulation Mod-
els.

Random InstructSeq Mastery HighProbCorr Myopic
BKT 0.7251± 0.2943 0.7596± 0.1656 0.6896± 0.2825 0.6992± 0.1175 0.8468± 0.3589
DKT 0.6858± 0.3636 0.6290± 0.3659 0.8120± 0.1077 0.5964± 0.1285 0.7537± 0.2228

DKVMN 0.7124± 0.0848 0.7160± 0.0976 0.7596± 0.0836 0.7368± 0.0874 0.7228± 0.0846

Figure 2: Cohen’s d E�ect Size for Policy Pairs under BKT (Le�), DKT (Mid.), and DKVMN (Right) and
Regression Reward Models.

REM Results with Ridge Regression Reward Model. Similarly, we show the estimated
rewards for ridge-regression-based reward models in Table 5 and pairwise Cohen’s e�ect size
in Fig. 3. Again, with the BKT simulation model, the Myopic policy achieves the best rewards.
With DKT, we can see that Mastery is better than HighProbCorr. But, with DKVMN, we see
the reverse e�ect. The di�erence between policies with DKT and DKVMN policies are smaller,
with the Cohen’s d e�ect usually being smaller for DKVMN. As a result, similar to the previous
analysis, REM will not conclude that any of the policies are better or worse than others.
Comparing the results of Tables 4 and 5 for each simulation model, the linear regression

and ridge regression reward models can also lead to very di�erent and even contradictory
conclusions. For example, for DKVMN with linear regression model Mastery policy is better
than Random and InstructSeq. But, with ridge regression, Mastery is not di�erent from Random
and InstructSeq policies.

Table 5
Estimated Ridge-Regression Rewards of Recommendation Policies under Di�erent Student Simulation
Models.

Random InstructSeq Mastery HighProbCorr Myopic
BKT 0.7894± 0.0779 0.7732± 0.0744 0.8448± 0.0844 0.6789± 0.0374 0.9342± 0.0717
DKT 0.7525± 0.0148 0.7556± 0.0175 0.7665± 0.0124 0.7429± 0.0132 0.7570± 0.0148

DKVMN 0.7333± 0.0424 0.7457± 0.0297 0.7393± 0.0485 0.7541± 0.0291 0.7524± 0.0451



Figure 3: Cohen’s d E�ect Size for Policy Pairs under BKT (Le�), DKT (Mid.), and DKVMN (Right) and
Ridge Regression Reward Models.

2.4. Lessons Learned from Robust Evaluation Matrix

As we have seen in our experiment results, REM evaluation can be inconclusive and highly
variant depending on the simulation and reward models. It also contradicts our expectations in
Section 2.2. Here we discuss the potential problems that may lead to misleading results in REM.
As we have seen, using di�erent simulation models can lead to di�erent results in REM.

The problem is that, in practice, it is not clear how many simulators and which classes of
student models should be employed to be con�dent about REM results or any other model-based
evaluations. Even if one policy is consistently better than others in all the applied simulation
models, it may be contradicted in a new simulation model. Predictive accuracy could be one
criterion for student model selection as suggested in [10]. However, since we have no standard
of poor simulators, there is no guarantee that results under a particular student model with high
predictive accuracy will always generate trustworthy results. Additionally, as we have seen in
our experiments, the results of the DKT simulator, which had the best predictive performance,
still contradicted our expectations from the policies.
Another similar issue comes from the reward modeling. Reward modeling is needed here

to estimate the long-term independently-measured reward. But, simply relying on predictive
accuracy of the reward model is inadequate, as we do not know how good of a reward model
should be used. As we can see in Table 3, the reported expected prediction error is much higher
than the standard error in REM shown in Table 4 and Table 5, which could be an indicator
of a poor reward model. In addition, in the MasteryGrids dataset, we only observe a single
reward (post-test score) for each trajectory, which is extremely sparse. As we can see, too
many factors and variables a�ect the results of model-based evaluations. As a result, a reliable
model-free o�ine evaluation strategy with fewer variations is needed to evaluate long-term
independently-measured reward policies, such as educational recommender systems.

3. Model-free O�line Correlational HIt (MOCHI)

In this section, we present MOCHI, our model-free o�ine evaluation framework to validate the
e�ectiveness of algorithms with long-term independently measured rewards, such as general
educational recommender systems. We assume that a user who often follows a more e�ective



recommendation policy will have a higher �nal reward, such as a higher �nal course grade,
compared to a student who adopts a less e�ective one. Given an o�ine previously collected
dataset, our �rst counterfactual question is how to quantify if a student would follow the target
recommendation policy if it has never been applied to the student. The second question is how
signi�cant the student’s following of the target policy is, compared to having no, or a di�erent,
baseline policy. Finally, the third question is how to determine the e�ectiveness of a policy,
given the signi�cance of student trajectories that would have followed it if it was applied. In
the following sections, we introduce our solutions to these questions as building blocks of the
MOCHI framework.

3.1. Average Discounted Cumulative Hit

We consider an educational recommender system that ranks the top-k most useful items and
learning resources for the target student at every student attempt. For instructional sequencing
algorithms that only suggest one item to students, k = 1. According to our assumption, we
would expect the students who studied the higher-ranked recommended learning resources
to have better academic performance than those who chose the lower-ranked ones, or did not
follow the recommendations. Hence, we need an “agreement” measure to determine how well a
student follows the high-ranked recommended items by an algorithm. Having a ranked-based
measure is particularly important in applications with smaller o�ine trajectory datasets in
which users choose to interact with one or a few items at a time and the datasets may not cover
all the possible combinations of trajectories. In that case, it is important to know how close the
recommender system was to suggest the user’s top choices, even if they were not ranked in the
highest possible positions. Inspired by the Discounted Cumulative Gain (DCG), we design a new
metric called Discounted Cumulative Hit (DCH) in Equation 1, that provides such a measure for
one set of k recommended items to one target student at one attempt.

DCH =

kX

j=1

HIT (j)

log2(j + 1)
(1)

Here, HIT (j) = 1 if the target student had worked on the jth learning resource from the
top-k recommendations, and 0 otherwise. According to Equation 1 the lower the selected
learning material is in the recommended item list, the lower the DCH will be (with a logarithmic
scale). Note that the DCG measure cannot be used in our problem directly, since its main
assumption is that a gold-standard item-ranking is available from the user to be compared to
the list of recommended items. In other words, to use DCG, users are assumed to be the best
judges of their own interests and provide their interests in an ordinal format. However, in the
education domain, such a ranked-list of learning resources by students in every step of their
trajectories is not available.

3.2. Inverse Probability Weighted Discounted Cumulative Hit

So far, DCH only measures how in agreement an algorithm’s suggestion is, with one attempt of
a student. DCH can be used in a controlled online experiment to compare how much students’



choices agree with a recommender algorithm versus another. However, it is not adequate for
o�ine evaluation, as the data is collected without the target algorithms’ recommendations
being presented to the user. In other words, if the data was collected in a system with no
recommender algorithms,DCH cannot distinguish if this agreement is because the recommended
item is something that the students would have selected even if it has not been recommended
to them. We call recommending such an item a trivial recommendation. For example, a
mandatory reading that is completed by everyone at the beginning of the course can be a
trivial recommendation. Ideally, recommending a non-trivial item with a high utility should be
more valuable than recommending a trivial item. Additionally, in educational systems with a
predetermined order of topics, some students select the items within that �xed topic order. This
can create a bias in the collected data, even if no recommender algorithm is used in the system.

In order to reduce this bias from the logged data, we borrow the inverse propensity scoring
idea from importance sampling-based o�-policy evaluation [22, 11] and normalize the DCH
score by a propensity score ⇢. This propensity score discounts the calculated agreement between
the recommended item and the user-selected item by how trivial the item is. We call it inverse
probability weighted DCH (IPW-DCH), and formally de�ne it as in Equation 2.

IPW-DCH =

kX

j=1

1

⇢j

HIT (j)

log2(j + 1)
(2)

In our experiments with no recommendation algorithm at the time of data collection, we
simply use the bi-gram item probability as the propensity score. Given the current working
item i in the training data, we use the conditional probability of next item j as in Equation 3. It
can be interpreted as the sequential item popularity in the dataset.

⇢j =
# question i followed by question j

# question i
. (3)

Note that ⇢j optimistically attributes all encounters of the target student following item
j after item i to the system bias. Consequently, IPW-DCH is a pessimistic indicator of how
frequently or favorably a student would “follow” the recommendation generated by the target
policy. The propensity score ⇢j can be de�ned according to the application domain and data
collection setup. For example, if a baseline recommender algorithm is active during the data
collection, ⇢j should be updated to include the bias introduced by this baseline algorithm in
addition to the system bias.
IPW-DCH focuses on one student’s interaction in one attempt. But a student has a sequence

of attempts and IPW-DCH should be extended to represent the whole student trajectory. Since
di�erent students have di�erent trajectory lengths, we average all IPW-DCH scores of a student
trajectory to represent their Average IPW-DCH score.

3.3. Correlation between Following Policy and Reward

Finally, with an e�ective educational recommender system, we expect the students who usually
follow the recommendations to have a higher long-term utility. In the education domain, such
utility would be a better academic performance or a higher knowledge gain. Therefore, in the



end, we evaluate our proposed model based on the correlation between Average IPW-DCH and
students’ academic performance. A stronger positive correlation indicates better performance
on the task of sequential educational learning material recommendation. Particularly, we use
Spearman’s rank correlation coe�cient in our experiments, which is de�ned as below, where P
is the number of test students, and di is the di�erence in the ranks of the ith student in Average
IPW-DCH and real rewards.

rs = 1� 6⌃id
2
i

P (P2 � 1)
(4)

4. MOCHI Experiment Results

To demonstrate our proposed evaluation framework, we run it on the real trajectories of the
MasteryGrids data for recommending k = 1 and k = 3 items at each step. The results are
presented in Table 6.

Table 6
Experimental Results of MOCHI.

Results of MOCHI for k = 1
Random InstructSeq Mastery HighProbCorr Myopic

Values Mean STD Mean STD Mean STD Mean STD Mean STD
Avg. DCH 0.0097 0.0009 0.3311 0.1346 0.0070 0.0135 0.0143 0.0143 0.0080 0.0095

Avg. IPW-DCH 0.1362 0.1732 1.0493 0.6419 0.0415 0.1491 0.0800 0.1932 0.0521 0.1384
Spearman Correlations Corr. P-value Corr. P-value Corr. P-value Corr. P-value Corr. P-value
Avg. DCH vs Post-test �0.0014 0.5111 0.2704 0.0118 �0.0047 0.9658 0.0589 0.5901 �0.0797 0.4657

Avg. DCH vs Knowledge Gain 0.0329 0.5026 0.0788 0.4707 0.0109 0.9210 0.0090 0.9345 0.0720 0.5099
Avg. IPW-DCH vs Post-test 0.0296 0.5225 0.2539 0.0183 0.0323 0.7680 0.0497 0.6494 �0.0580 0.5956

Avg. IPW-DCH vs Knowledge Gain 0.0502 0.4855 0.1442 0.1854 0.0039 0.9717 �0.0017 0.9874 0.0771 0.4805

Results of MOCHI for k = 3
Random InstructSeq Mastery HighProbCorr Myopic

Values Mean STD Mean STD Mean STD Mean STD Mean STD
Avg. DCH 0.0208 0.0013 0.3611 0.1427 0.0126 0.0195 0.0345 0.0309 0.0201 0.0180

Avg. IPW-DCH 0.2710 0.2476 1.7750 1.3710 0.1254 0.2979 0.2171 0.3184 0.2316 0.4759
Spearman Correlations Corr. P-value Corr. P-value Corr. P-value Corr. P-value Corr. P-value
Avg. DCH vs Post-test 0.0054 0.4932 0.2813 0.0087 0.0106 0.9228 0.0472 0.6662 0.1454 0.1818

Avg. DCH vs Knowledge Gain 0.0153 0.4907 0.0931 0.3937 0.0294 0.7880 �0.0309 0.7778 0.0879 0.4211
Avg. IPW-DCH vs Post-test 0.0628 0.4725 0.3116 0.0035 0.0602 0.5821 0.1094 0.3158 0.1844 0.0892

Avg. IPW-DCH vs Knowledge Gain 0.0679 0.4560 0.1068 0.3276 0.0859 0.4316 �0.0449 0.6815 0.1355 0.2134

First, we check the Average DCH and IPW-DCH values. As we can see, the Average DCH
values for InstructSeq is higher than all other policies. However, the standard deviation of
Average DCH is the largest for InstructSeq, meaning that not all students follow this topic
sequence and may need more guidance than the prede�ned topic order. The next, is High-
ProbCorr Average DCH showing that a few tend to solve easier problems. Looking at Average
IPW-DCH, values are the highest for InstructSeq. Meaning that, although InstructSeq suggests
from the topic sequence, this suggestion is not trivial for all the students. Comparing the
Random and HighProbCorr policies, although HighProbCorr has a higher Average DCH, its
Average IPW-DCH is lower than Random. This shows the non-triviality of random suggestions,
compared to the HighProbCorr ones. Interestingly, unlike when k = 1, the Myopic policy
has a higher Average IPW-DCH compared to HighProbCorr, when k = 3. This can show that
the Myopic policy has more non-trivial interesting suggestions in the second or third-ranked
recommendations.



Looking at the correlation values, we can see that InstructSeq has the highest correlation
values of Average DCH and IPW-DCHwith both post-test and knowledge gain scores. Especially,
its Average DCH and IPW-DCH values are signi�cantly (p-value< 0.1) correlated with post-test
scores. This means that students who followed the InstructSeq policy had higher post-test
scores. Next, the Myopic policy’s Average IPW-DCH has a signi�cant (p-value < 0.1) positive
correlation with students’ post-test score when k = 3. Meaning that for Myopic policy to
help students, it needs to suggest more items to students. The most reliable correlation with
knowledge gain score is the positive relationship in Average IPW-DCH with k = 1. The rest
of the correlations are insigni�cant and non-conclusive with large p-values. It can be because
of the low number of data points, also re�ected by low Average DCH values. But, it may also
represent the ine�ectiveness of the studied policies on student performance. Overall, our results
show that InstructSeq is better than other policies when considering post-test score rewards.
This is in agreement with our expectations in Section 2.2.

Additionally, in InstructSeq, we can see that when k = 1 the correlation with posttest score
is lower than when k = 3. However, when k = 1 the correlation with knowledge gain is higher
than the correlation with k = 3. This indicates that students with high post-test scores, and
high knowledge gain bene�t more when k = 1. But, students with high post-test scores, but
low knowledge gain bene�t more when k = 3. Meaning that a more strict recommendation
(k = 1) is needed for the success of students with a lower prior knowledge. But, for students
with an already high prior knowledge more freedom (k = 3) can be more bene�cial.

5. Conclusions

In this paper, we investigated the state-of-the-art o�ine evaluation method, Robust Evaluation
Matrix, on a real-world educational dataset. We found that model-based evaluations are not
reliable, and their results can be contradictory and highly dependent on the student simulation
and reward models. We concluded that a model-free evaluation method is necessary, especially
for domains with delayed independently-measured rewards. We also proposed MOCHI, a model-
free o�ine evaluation framework, as an additional tool for validating the recommendation
policies, that does not rely on estimation models, can evaluate list recommendations, and only
uses the collected o�ine data. In our experiments, we showed how MOCHI’s results can be
interpreted and that our proposed metric meets the expected results and can be an auxiliary
tool of o�ine evaluation of educational recommender systems. MOCHI’s limitations include
the di�culty to work with policies that have very few instances of agreements with student
trajectories in o�ine data, and hence, resulting in insigni�cant correlations. In future work, we
would like to investigate more on our proposed method with online experiments.
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