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We model the current density in a semiconductor based on the drift-

diffusion transport of the charge carriers to accurately determine the 

thermoelectric effects in the bulk material (Thomson effect) and 

material junctions (Peltier effect). We utilize the model to perform 

2-D finite element simulations of mushroom phase change memory 

cell with a critical dimension of 20 nm using temperature and 

electric field dependent material parameters and analyze the 

contributions of symmetric Joule heating and asymmetric 

thermoelectric heats during reset and set operations. We investigate 

the effect of altering the direction of current flow by changing the 

connection point between the cell and the access device and observe 

that, corresponding change in thermoelectric effects cause 

significant difference in operation dynamics, temperature 

distribution profiles, amorphous volume, energy requirement and 

resistance contrast between reset and set states. 

 

 

Introduction 

 

Phase change memory (PCM) is an emerging non-volatile electronic memory technology 

which offers fast read/write times, high endurance to repeated cycling, long data retention, 

low voltage operation and high scalability to smaller dimensions (1-4). PCM utilizes the 

electrical resistivity difference between the amorphous and crystalline phases of phase 

change materials to store information. A typical PCM cell consists of a phase change 

material, typically a chalcogenide such as Ge2Sb2Te5 (GST), sandwiched between two 

contacts. Short duration electrical current pulses are utilized to self-heat the cells in order 

to switch the cell from crystalline to amorphous phase by melting and sudden quenching 

(reset) or to self-heat above glass transition temperature (Tglass) to crystallize (set). During 

this fast and reversible switching, the cells experience extremely large thermal gradients (~ 

50 K/nm) and high current densities (~ 50 MA/cm2) which result in significant coupling 

between heat current and electrical current. Therefore, thermoelectric (TE) effect induced 

heating or cooling contributions in the bulk and at materials and solid-liquid interfaces 

become very significant during the device operation (5-8). The direction of current flow 

determines the locations of heat release (heating) or absorption (cooling) due to TE effects 

and thereby impacts the energy requirements for reset-set operations (9). With proper 

selection of the phase change and contact materials and operation voltage pulse polarity, 

TE effects can be utilized to reduce the power consumption and enable ultralow power 

nanoscale device operation (5, 10, 11). 



      Previously, we have performed finite element analysis of the reset operation on 

mushroom PCM cell in COMSOL Multiphysics (12) to analyze TE effects (5). There we 

utilized effective media approximation to model the crystallization and amorphization 

dynamics which is useful to simulate large scale PCM devices (13). Later, we developed 

the model to capture discrete nucleation and growth of individual grains while tracking 

crystal orientation and grain boundaries (14), ensure energy conservation in 

amorphization-crystallization cycles by coupling the latent heat of phase change with 

specific heat (15) and implement heterogeneous melting to model the initiation of melting 

at the high energy sites: grain boundaries and material interfaces (16). In the present work, 

we use our latest model (16) to perform 2-D finite element electro-thermal simulations of 

20 nm mushroom PCM cells in order to investigate the effects of thermoelectrics and the 

direction of current flow through the cell on the melting, amorphization and re-

crystallization of GST during reset and set operations. We employ a precise charge 

transport model formulated considering the drift-diffusion of the carriers and using the 

thermoelectric characteristics of the material. Besides, we utilize electric field and 

temperature dependent material parameters (15,17) to accurately capture the strong 

coupling between charge and heat transport in PCM.    

 

 

Device Structure 

 

      Typical PCM mushroom cells share a top contact and are individually addressed 

through their bottom contact. The simulated geometry in this computational study consists 

of GST as the phase change material with width, W = 180 nm and height, h = 50 nm, a 

narrow (W = 20 nm) TiN bottom electrode known as heater, a TiN top electrode and SiO2 

used to isolate the neighboring cells (Figure 1). Three TiN heaters, separated by 30 nm, 

represent three PCM cells sharing the same GST region and top electrode. An n-channel 

metal oxide semiconductor field effect transistor (MOSFET) is used as an access device. 

A voltage pulse is applied to the gate of the MOSFET to control the reset, set and read 

operations. The connection of the MOSFET defines the positive and negative polarity 

configurations.  

Figure 1. Planar PCM mushroom cell geometry and materials simulated in COMSOL 

Multiphysics. TiN is used as the top and bottom electrodes, GST is the phase change 

material and SiO2 acts as an insulator to isolate the neighbor cells. The connection of the n-

channel MOSFET defines the positive and negative polarity configurations. GST is shown 

as polycrystalline material with different color representing different crystal orientation of 

the grains.    
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Physics Model 
 

      In the simulation framework, we solve the heat transport and current continuity 

equations [equation (1) and (2) respectively] self-consistently using electric current and 

heat transfer physics and utilize our PCM physics model (13-16) to obtain the potential, 

temperature and phase changes in the device structure.     

 

                                    𝑑𝐶𝑝
𝑑𝑇

𝑑𝑡⏟  −𝛻. (𝑘𝛻𝑇)⏟      = −𝛻𝑉. 𝐽⏟  −𝛻. (𝐽𝑆𝑇)⏟      + 𝑄𝐻⏟                                  [1]                                                                                                          

  

 

                                            

                                           𝛻. 𝐽 = −
𝜕𝜌𝑣

𝜕𝑡
                                                              [2] 

 

where 𝑑 is the mass density, 𝐶𝑝 is the specific heat, 𝑇 is the temperature, 𝑡 is the time, 𝑘 is 

the thermal conductivity, 𝑉 is the electric potential, 𝐽 is the electric current density, 𝑆 is the 

Seebeck coefficient, 𝑄𝐻 represents the latent heat of phase change, and 𝜌𝑣 is the volume 

charge density. In earlier works (5,8,16,18), the following more common form of J was 

used, 

 

                                                     𝐽 = −𝜎𝛻𝑉 − 𝜎𝑆𝛻𝑇                                                       [3] 

 

where σ is the electrical conductivity. Here the first term in the right side (−𝜎𝛻𝑉) is the 

drift current density component due to the applied electric field and the second term 

(−𝜎𝑆𝛻𝑇) is the diffusion current component for a uniform material where only temperature 

gradient results in diffusion of charge carriers (19) and does not capture current driven by 

carrier concentration and Seebeck gradients. However, large thermal gradient (~50 K/nm) 
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Figure 2. (a) Schematic energy band diagram of an n-type semiconductor with contacts at 

two ends in equilibrium. (b) Carrier concentration, n versus position, x in the 

semiconductor; n0 and n1 are the concentrations at x0 and x0+∆x respectively, 𝑙 ҧ is the mean 

free path. (c) Energy band diagram of the same device in (a) under an external bias voltage, 

𝑉 causing a split of the Fermi level of the two metal contacts, 𝐸𝑓1 − 𝐸𝑓2  =  𝑞𝑉. Solid red 

line indicates the change of the Fermi level inside the semiconductor, green circle represents 

an electron and the arrow next to it shows drift velocity (𝜈𝑑𝑟) due to the applied electric 

field. K.E. is the kinetic energy (
3

2
𝑘𝐵𝑇) where 𝑘𝐵 is the Boltzmann constant and P.E. is the 

chemical potential energy (Ec-Ef) of the electron. Peltier coefficient, 𝛱𝑛 =
1

−𝑞
[
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2
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and high current densities (~50 MA/cm2) in PCM give rise to significant gradients in carrier 

concentrations and Seebeck coefficients. Therefore, along with temperature gradient, 

gradients of conductivity and Seebeck coefficient play significant role in PCM device 

operation and need to be incorporated in equation (3).  

 

      In this work, we derive an updated model of 𝐽 for cases of significant thermal gradients 

following the procedure detailed in (20). We start by assuming an n-type semiconductor 

bar having arbitrary carrier concentration throughout with two contacts at the two ends 

(Figure 2a,b). Here 𝑛0  =  𝑛(𝑥0) is the concentration at 𝑥0 while 𝑛1 = 𝑛(𝑥0 + ∆𝑥) is the 

concentration at 𝑥0 + ∆𝑥. Electrons move from left to right when an external voltage, V is 

applied to the right contact (Figure 2c). Carrier velocity consists of drift velocity (𝜈𝑑𝑟) and 

thermal velocity (𝜈𝑡ℎ ). Due to the random nature of thermal motion, there is equal 

probability for electrons to move to the right and left from their current positions which 

corresponds to different magnitude and direction of νth. For instance, at a particular time, 
𝑛0

2
 electrons will move to the right and 

𝑛0

2
 electrons will move to the left from 𝑥0. At any 

position in between 𝑥0 and 𝑥0 + ∆𝑥, net electron flux density due to electrons moving from 

left to right (considering contributions of 𝑛0 and 𝑛1 only) is given by,  

 

Ф𝑛(𝑥) =
𝑛0
2
 𝑛𝑒𝑡(𝑥0) −

𝑛1
2
 𝑛𝑒𝑡(𝑥0 + ∆𝑥) 

 

=
1

2
𝑛(𝑥0){ 𝑡ℎ(𝑥0) +  𝑑𝑟(𝑥0)} −

1

2
𝑛(𝑥0 + ∆𝑥){ 𝑡ℎ(𝑥0 + ∆𝑥) −  𝑑𝑟(𝑥0 + ∆𝑥)} 

 

= 
1

2
[
𝑛(𝑥0)𝑣𝑡ℎ(𝑥0)−𝑛(𝑥0+∆𝑥)𝑣𝑡ℎ(𝑥0+∆𝑥)

∆𝑥
] ∆𝑥 +

1

2
[𝑛(𝑥0) 𝑑𝑟(𝑥0) + 𝑛(𝑥0 + ∆𝑥) 𝑑𝑟(𝑥0 + ∆𝑥)] 

 

= 
1

2
[
𝑛(𝑥0)𝑣𝑡ℎ(𝑥0)−𝑛(𝑥0+∆𝑥)𝑣𝑡ℎ(𝑥0+∆𝑥)

∆𝑥
] 𝑙 + (𝑛 𝑑𝑟)𝑎𝑣𝑒𝑟𝑎𝑔𝑒                                               [4] 

 

where we assume ∆𝑥 = mean free path = 𝑙 ҧ. For the limiting case of small ∆𝑥, equation (4) 

can be expressed as, 

 

Ф𝑛(𝑥) =
1

2
lim
∆𝑥→0

[
𝑛(𝑥0)𝑣𝑡ℎ(𝑥0)−𝑛(𝑥0+∆𝑥)𝑣𝑡ℎ(𝑥0+∆𝑥)

∆𝑥
] 𝑙 + (𝑛 𝑑𝑟)𝑎𝑣𝑒𝑟𝑎𝑔𝑒  

 

     =
1

2
{
−𝑑(𝑛𝑣𝑡ℎ)

𝑑𝑥
} 𝑙 + (𝑛 𝑑𝑟)𝑎𝑣𝑒𝑟𝑎𝑔𝑒                    [5] 

 

The current density for electrons, 𝐽𝑛 is the product of the electron charge and flux density, 

 

𝐽𝑛 = (−𝑞)Ф𝑛(𝑥) = (−𝑞) [
1

2
{
−𝑑(𝑛𝑣𝑡ℎ)

𝑑𝑥
} 𝑙 + (𝑛 𝑑𝑟)]              

                                 = (−𝑞)
1

2
{
−𝑑(

𝑛𝑙
2

𝑡
)

𝑑𝑥
} + (−𝑞)𝑛(−µ𝑛𝐸)                                                       [6] 

where  𝑡ℎ =
𝑙 ҧ

𝑡ҧ
, 𝑡ҧ is the mean free time, and  𝑑𝑟 = −µ𝑛𝐸, µ𝑛 is the electron mobility and 𝐸 

is the electric field. Equation (6) can then be re-written as, 



 

𝐽𝑛 = {
𝑑(

𝑞𝑛𝑙
2

2𝑡
)

𝑑𝑥
} + 𝑞𝑛µ𝑛𝐸 =

𝑑(𝑞𝑛𝐷𝑛)

𝑑𝑥
+ 𝑞𝑛µ𝑛𝐸 = 𝐽𝑛,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 + 𝐽𝑛,𝑑𝑟𝑖𝑓𝑡                           [7] 

 

where 𝐷𝑛 = 
𝑙
2

2𝑡
  is the electron diffusion coefficient (20) and 𝐽𝑛,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = 

𝑑(𝑞𝑛𝐷𝑛)

𝑑𝑥
 and 

𝐽𝑛,𝑑𝑟𝑖𝑓𝑡 = 𝑞𝑛µ𝑛𝐸 are the diffusion and drift components of the current density. 𝐽𝑛,𝑑𝑟𝑖𝑓𝑡 can 

be further modified to account for the thermoelectric effects through Peltier coefficient,  

 

−𝑞𝛱𝑛 = −𝑞𝑆𝑛𝑇 = 𝐾𝑖𝑛𝑒𝑡. 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐶ℎ𝑒𝑚. 𝑃𝑜𝑡. 𝐸𝑛𝑒𝑟𝑔𝑦 =  
3

2
𝑘𝐵𝑇 + (𝐸𝑐 − 𝐸𝑓)         [8] 

 

Here 𝑆𝑛 is the Seebeck coefficient of electron, 𝐸𝑐 is the conduction band edge, 𝐸𝑓 is the 

Fermi energy level, 
3

2
𝑘𝐵𝑇 is the kinetic energy where 𝑘𝐵 is the Boltzmann constant and 

𝐸𝑐 − 𝐸𝑓 is the chemical potential energy of the electron. 

 

Therefore,                                     𝐸𝑐 = (−𝑞)𝛱𝑛 −
3

2
𝑘𝐵𝑇 + 𝐸𝑓                                             [9] 

 

Electrostatic force (F) experienced by the electron is, 

 

𝐹 = (−𝑞)𝐸 = −
𝑑𝐸𝑐

𝑑𝑥
 = −

𝑑(−𝑞𝛱𝑛−
3

2
𝑘𝐵𝑇+𝐸𝑓)

𝑑𝑥
         

 

                                =  𝑞
𝑑𝛱𝑛

𝑑𝑥
+
3

2
𝑘𝐵

𝑑𝑇

𝑑𝑥
−
𝑑𝐸𝑓

𝑑𝑥
  = 𝑞

𝑑𝛱𝑛

𝑑𝑥
+
3

2
𝑘𝐵

𝑑𝑇

𝑑𝑥
+ 𝑞

𝑑𝑉

𝑑𝑥
                                  [10] 

                                                    

Using equation (10), 𝐽𝑛,𝑑𝑟𝑖𝑓𝑡 can be expressed as, 

 

𝐽𝑛,𝑑𝑟𝑖𝑓𝑡 = 𝑛µ𝑛(𝑞𝐸) = −𝑛µ𝑛 [𝑞
𝑑𝛱𝑛

𝑑𝑥
+
3

2
𝑘𝐵

𝑑𝑇

𝑑𝑥
+ 𝑞

𝑑𝑉

𝑑𝑥
]      

 

                                    = −(𝑞𝑛µ𝑛)[
𝑑𝛱𝑛

𝑑𝑥
+
3𝑘𝐵

2𝑞

𝑑𝑇

𝑑𝑥
+
𝑑𝑉

𝑑𝑥
] = −𝜎𝑛

𝑑(𝑉+𝛱𝑛+
3𝑘𝐵𝑇

2𝑞
)

𝑑𝑥
                            [11] 

 

where 𝜎𝑛 = 𝑞𝑛µ𝑛 is the electron component of conductivity. Using the Einstein relation, 

𝐷𝑛
𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛 = µ𝑛

𝑘𝐵𝑇

𝑞
 , 𝐽𝑛,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 can be given by, 

 

                        𝐽𝑛,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 =
𝑑(𝑞𝑛𝐷𝑛

𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛)

𝑑𝑥
=
𝑑(
𝑞𝑛µ𝑛𝑘𝐵𝑇

𝑞
)

𝑑𝑥
=
𝑑(
𝜎𝑛𝑘𝐵𝑇

𝑞
)

𝑑𝑥
                                  [12] 

 

Combining equation (7), (11) and (12), 𝐽𝑛 can be given by,  

 

                                  𝐽𝑛 = −𝜎𝑛
𝑑(𝑉+𝛱𝑛+

3𝑘𝐵
2𝑞
𝑇)

𝑑𝑥
+
𝑑(
𝜎𝑛𝑘𝐵𝑇

𝑞
)

𝑑𝑥
                                                    [13] 

 

For the three-dimensional space, equation (13) can be expressed as, 



 

 𝐽𝑛 = −𝜎𝑛𝛻(𝑉 + 𝛱𝑛 +
3𝑘𝐵

2𝑞
𝑇) + 𝛻(

𝜎𝑛𝑘𝐵𝑇

𝑞
) = −𝜎𝑛𝛻(𝑉 + 𝑆𝑛𝑇 +

3𝑘𝐵

2𝑞
𝑇) + 𝛻(

𝜎𝑛𝑘𝐵𝑇

𝑞
)      [14]                

 

Hole current density, 𝐽𝑝 , containing the drift and the diffusion components can also be 

derived using the same approach, 

 

                                𝐽𝑛 = −𝜎𝑛𝛻 (𝑉 + 𝑆𝑛𝑇 +
3𝑘𝐵

2𝑞
𝑇)

⏟                
+𝛻(

𝜎𝑛𝑘𝐵𝑇

𝑞
)

⏟      
                                     [15]                

 

 

                                𝐽𝑝 = −𝜎𝑝𝛻 (𝑉 + 𝑆𝑝𝑇 −
3𝑘𝐵

2𝑞
𝑇)

⏟                
−𝛻(

𝜎𝑝𝑘𝐵𝑇

𝑞
)

⏟      
                                     [16]                

 

   

Equation (15) and (16) can be written using the following general form and expanded to 

compare with the previous model of J,  

 

                              𝐽𝑛,𝑝 = −𝜎𝑛,𝑝𝛻 (𝑉 + 𝑆𝑛,𝑝𝑇 ±
3𝑘𝐵

2𝑞
𝑇) ± 𝛻(

𝜎𝑛,𝑝𝑘𝐵𝑇

𝑞
)                              [17]        

 

              𝐽𝑛,𝑝 = −𝜎𝑛,𝑝𝛻𝑉 − 𝜎𝑛,𝑝𝑆𝑛,𝑝𝛻𝑇⏟              −𝜎𝑛,𝑝𝑇𝛻𝑆𝑛,𝑝 ∓
1

2

𝑘𝐵

𝑞
𝜎𝑛,𝑝𝛻𝑇 ±

𝑘𝐵

𝑞
𝑇𝛻𝜎𝑛,𝑝⏟                        

               [18] 

 

 

 

In equation (17) and (18), for the terms following the (±) sign, + and – correspond to 𝐽𝑛 

and 𝐽𝑝 respectively. Equation (18) clearly indicates the differences between the derived 

model in this work and earlier model as described by equation (3). The new model can 

capture the thermoelectric phenomena with more accuracy through the additional terms.  

 

      Here, it should be noted that carrier mobility is assumed to be a weak function of space 

and the Einstein relationship used to relate diffusion coefficient and carrier mobility 

assumes that diffusion coefficient is constant (not a function of space),  𝐽𝑛,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 =

 𝑞𝐷𝑛
𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛 𝑑𝑛

𝑑𝑥
, instead of the more complete form 𝐽𝑛,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 =  𝑞

𝑑(𝐷𝑛𝑛)

𝑑𝑥
 we have used in 

equations (7), (12)-(14). Thermally driven diffusion current, hence thermoelectric effects, 

cannot be captured if diffusion coefficient is assumed to be constant. An alternative 

approach to relate the diffusion coefficient to electrical conductivity would be through 

Wiedemann–Franz law (WFL), which relates the electronic component of thermal 

conductivity (𝑘𝑒) to electrical conductivity as, 

 

                                                         𝑘𝑒 = 𝐿𝜎𝑇                                                                                          [19] 

 

where 𝐿 is the Lorenz number. In absence of an external bias under a thermal gradient, the 

heat flux due to diffusing charge carriers (Fourier heat conduction) can be expressed in 

terms of 𝑘𝑒 and the kinetic energy of the carriers similar to the derivation given above in 

equations (4)-(6),  

 

𝐽𝑛,𝑑𝑟𝑖𝑓𝑡 𝐽𝑛,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 

𝐽𝑝,𝑑𝑟𝑖𝑓𝑡 𝐽𝑝,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 

𝑃𝑟𝑒 𝑖𝑜𝑢𝑠 𝑚𝑜𝑑𝑒𝑙,  
𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (3) 

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑚𝑜𝑑𝑒𝑙 



                                     𝐻𝑒𝑎𝑡 𝐹𝑙𝑢𝑥 =
𝑑

𝑑𝑥
 (𝑘𝑒𝑇) =

𝑑

𝑑𝑥
 (
3

2
𝑘𝐵𝑇

𝑛

2
 𝑡ℎ)𝑙                                        [20] 

 

Once again, assuming that 𝑙 is constant and can be included in the derivative, 

     

                                        𝑘𝑒 =
3

2
𝑘𝐵

𝑛

2
 𝑡ℎ𝑙 = 𝐿𝜎𝑇 = 𝐿𝑞𝑛µ𝑛𝑇                                            [21] 

 

Hence, 

 

                                           𝑡ℎ =
4

3

𝐿𝑞µ𝑛𝑇

𝑘𝐵𝑙
                                                                               [22] 

 

Expressing 𝐽𝑛,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  using a diffusion coefficient based on the WFL (𝐷𝑛
𝑊𝐹𝐿)  and 

equating it to 𝐽𝑛,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  derived in equations (4)-(6), we calculate a temperature 

dependent diffusion coefficient,    

 

𝐽𝑛,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 =
𝑑൫𝑞𝑛𝐷𝑛

𝑊𝐹𝐿൯

𝑑𝑥
=  𝑞

1

2
{
𝑑(𝑛𝑣𝑡ℎ)

𝑑𝑥
} 𝑙  

 

𝑞𝑛𝐷𝑛
𝑊𝐹𝐿 = 

1

2
𝑞𝑛 𝑡ℎ𝑙  

 

                                                            𝐷𝑛
𝑊𝐹𝐿 =

1

2
 𝑡ℎ𝑙 =  

2

3

𝐿𝑞µ𝑛𝑇

𝑘𝐵
                                                      [23] 

 

Comparing the two diffusion coefficients, 

 

𝐷𝑛
𝑊𝐹𝐿

𝐷𝑛
𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛 =

2

3

𝐿𝑞µ𝑛𝑇

𝑘𝐵
µ𝑛𝑘𝐵𝑇

𝑞

=
2

3

𝐿𝑞2

𝑘𝐵
2 ≈

2

3
×
1.2 × 10−8𝑉2𝐾−2൫1.6 × 10−19𝐶൯

2

(1.38 ×
10−23𝐽

𝐾
)
2 = 1.08  

 

Here we are using an experimental Lorenz number (1.2×10-8 V2K-2) reported for 

semiconductors with high Seebeck coefficients (21), similar to amorphous GST. The 

expressions we obtain using a diffusion coefficient based on the Einstein relation and the 

WFL have the same temperature dependence and their magnitudes are within 10% of each 

other. Hence, the diffusion coefficient we obtain using Einstein relation can be considered 

as a reasonable approximation and the diffusion currents calculated using 𝐷𝑛
𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛 may 

be considered as the lower bound.    

 

 

Results and Discussion 
 

      Thermoelectric heating/cooling along with Joule heating cause significantly varying 

temperature distribution profile inside the device for positive and negative polarity 

configurations leading to different crystal grain distributions within the phase change 

material. Thermoelectric heat transport is due to generation and recombination of electrons 

and holes as well as the kinetic energy absorbed or released by the transported free charge 

carriers (19) and is modeled as Thomson heat. The energy exchanges that can take place at 

material interfaces is defined as Peltier heat: 

 



 

Figure 3. Time evolution of the crystal grain distribution maps and combined Joule and 

thermoelectric heat distribution profiles during the reset and set pulses for positive and 

negative polarity. VGate and current through the device, I during the sequential read-reset-

read-set-read operations are shown in (a) where VReset = 3.2V, VSet = 1.6V and VRead = 0.1V.  
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                                                𝑄𝑇ℎ𝑜𝑚𝑠𝑜𝑛 = −𝛻. (𝐽𝑆𝑇)                                                    [24]   

 

                                               𝑄𝑃𝑒𝑙𝑡𝑖𝑒𝑟 = −𝐽∆(𝑆𝑇)                                                         [25] 

 

      Figure 3 shows the time evolution of the grain arrangements inside the GST and the 

Joule and thermoelectric heats together in GST and TiN regions during the reset and set 

operations. For the same reset voltage amplitude, negative polarity results in faster melting 

and attains a larger amorphous area after quenching (over-reset). On the other hand, due to 

less net heating from Joule and thermoelectric effects, positive polarity results in a smaller 

amorphous area but optimized reset condition as the amorphous plug is only large enough 

to cover the heater for a high resistance state of the device. Consequently, the applied set 

voltage pulse can recrystallize the positive polarity device, whereas it is not sufficient to 

achieve electrical breakdown in the larger amorphous region of the negative polarity device. 

 

      Figure 4 shows the Joule, Thomson and Peltier heat distributions separately at the peak 

of the reset pulse. As the temperature rise is less in positive polarity (Figure 4g), GST 

remains more resistive which leads to higher Joule heating compared to the negative 

polarity. Thermoelectric heats change polarity (heating to cooling and vice-versa) with the 

reversal of current direction whereas the Joule effect always results in heating. Seebeck 

coefficient of GST is assumed to be zero for the liquid phase (Figure 5) so there is no 

Thomson heat within the molten region whereas the surrounding regions (liquid-crystal  

Figure 4. Heat dissipation at the peak of reset (Figure 3vii, xxv) due to Joule (a,d), 

Thomson (b,e) and Peltier (c,f) effects for positive and negative polarity and resultant 

temperature distribution profiles with TE effects (g,i) and without TE effects (h).         
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interface) experience the greatest Thomson effect because of the largest gradients of 

Seebeck coefficient (Figure 4b,e). The grain boundaries also show pronounced Thomson 

effect because of the large gradients of electrical conductivity and Seebeck coefficient. It 

is also evident from the Figure 4(b,e) that Thomson cooling around the molten region of 

the positive polarity device hinders further melting and thus results in smaller amorphous 

area in comparison with the negative polarity case where Thomson heating surrounding 

the molten volume enhances the spread of the molten region. However, the model using J 

as the total current density does not capture heat transport by electrons and holes diffusing 

in the same direction which significantly enhance thermal conduction at the liquid-solid 

interfaces. This thermal conduction mechanism, generation of carriers in the melt - 

transport across the interface – recombination in the solid region (GTR) (19), is expected 

to dominate thermal transport at the solid-melt interfaces and can be captured by handling 

electron and hole currents (𝐽𝑛, 𝐽𝑝) separately.    

 

      Peltier heat is absorbed (released) at the GST-heater boundary for positive (negative) 

polarity cells (Figure 4c,f) and is calculated assuming the heat at material junction is 

transmitted throughout a 1 nm thick volume. Peltier heat is larger than Joule and Thomson 

heat (~100 W/μm3 compared to ~10s of W/μm3) for both polarities and this can be 

attributed to the larger difference in Seebeck coefficients between p-type GST and n-type 

TiN (Figure 5). Peltier heat has highest magnitude at the two corners of the heater in both 

positive and negative polarity because of current spreading.  

 

      We calculate the ratio of reset resistance to set resistance for different reset energy 

(Figure 6). Higher resistance ratio for the negative polarity at the same reset energy and 

initial set resistance indicates more melting followed by amorphization of the active region  

Figure 5. Seebeck coefficient of GST and TiN used in the simulation model based on the 

experimental results (22). a-, c- and m- stand for amorphous, crystalline and molten phase 

respectively.      
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in negative polarity compared to the positive polarity. Quantitatively, negative polarity 

requires ~ 2x less energy to achieve the successful reset state with sufficient resistance 

contrast (~ 102). The simulations performed by removing the TE terms in equation (1), (15) 

and (16) show similar reset energy – resistance contrast relation as the negative polarity as 

the resistance contrast increases above 103, while the results without TE terms are in 

between the two polarities for lower resistance contrasts. 

     

 

Conclusions 

 

We have investigated Joule heating and thermoelectric Thomson and Peltier effects on 

a mushroom PCM cell with a revised electro-thermal physics model that accounts for the 

effects of significant thermal gradients. Temperature and electric field dependent material 

parameters and thermal boundary resistances at the material interfaces have been used in 

the simulations to obtain the temperature gradient and corresponding phase changes 

resulting from current flow. Positive and negative polarity cells have been simulated to 

study the current polarity dependence of TE effects. Peltier heating at the GST-heater 

boundary and Thomson heating near the active region make the negative polarity cell more 

energy efficient, as it requires less current to make a set to reset transition. Though it is 

advantageous to have higher TE heating inside the mushroom and its interfaces for reduced 

power and energy consumption (negative polarity), TE cooling away from the mushroom 

interfaces is preferred for reduced thermal cross-talk and write-disturb on the neighbor cells 

(positive polarity).   

 

 

 

 

Figure 6. Reset state resistance to set state resistance ratio at different reset energy levels 

for positive and negative polarity with and without thermoelectric effects.        
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