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We model the current density in a semiconductor based on the drift-
diffusion transport of the charge carriers to accurately determine the
thermoelectric effects in the bulk material (Thomson effect) and
material junctions (Peltier effect). We utilize the model to perform
2-D finite element simulations of mushroom phase change memory
cell with a critical dimension of 20 nm using temperature and
electric field dependent material parameters and analyze the
contributions of symmetric Joule heating and asymmetric
thermoelectric heats during reset and set operations. We investigate
the effect of altering the direction of current flow by changing the
connection point between the cell and the access device and observe
that, corresponding change in thermoelectric effects cause
significant difference in operation dynamics, temperature
distribution profiles, amorphous volume, energy requirement and
resistance contrast between reset and set states.

Introduction

Phase change memory (PCM) is an emerging non-volatile electronic memory technology
which offers fast read/write times, high endurance to repeated cycling, long data retention,
low voltage operation and high scalability to smaller dimensions (1-4). PCM utilizes the
electrical resistivity difference between the amorphous and crystalline phases of phase
change materials to store information. A typical PCM cell consists of a phase change
material, typically a chalcogenide such as Ge>SboTes (GST), sandwiched between two
contacts. Short duration electrical current pulses are utilized to self-heat the cells in order
to switch the cell from crystalline to amorphous phase by melting and sudden quenching
(reset) or to self-heat above glass transition temperature (Tglass) to crystallize (set). During
this fast and reversible switching, the cells experience extremely large thermal gradients (~
50 K/nm) and high current densities (~ 50 MA/cm?) which result in significant coupling
between heat current and electrical current. Therefore, thermoelectric (TE) effect induced
heating or cooling contributions in the bulk and at materials and solid-liquid interfaces
become very significant during the device operation (5-8). The direction of current flow
determines the locations of heat release (heating) or absorption (cooling) due to TE effects
and thereby impacts the energy requirements for reset-set operations (9). With proper
selection of the phase change and contact materials and operation voltage pulse polarity,
TE effects can be utilized to reduce the power consumption and enable ultralow power
nanoscale device operation (5, 10, 11).



Previously, we have performed finite element analysis of the reset operation on
mushroom PCM cell in COMSOL Multiphysics (12) to analyze TE effects (5). There we
utilized effective media approximation to model the crystallization and amorphization
dynamics which is useful to simulate large scale PCM devices (13). Later, we developed
the model to capture discrete nucleation and growth of individual grains while tracking
crystal orientation and grain boundaries (14), ensure energy conservation in
amorphization-crystallization cycles by coupling the latent heat of phase change with
specific heat (15) and implement heterogeneous melting to model the initiation of melting
at the high energy sites: grain boundaries and material interfaces (16). In the present work,
we use our latest model (16) to perform 2-D finite element electro-thermal simulations of
20 nm mushroom PCM cells in order to investigate the effects of thermoelectrics and the
direction of current flow through the cell on the melting, amorphization and re-
crystallization of GST during reset and set operations. We employ a precise charge
transport model formulated considering the drift-diffusion of the carriers and using the
thermoelectric characteristics of the material. Besides, we utilize electric field and
temperature dependent material parameters (15,17) to accurately capture the strong
coupling between charge and heat transport in PCM.

Device Structure

Typical PCM mushroom cells share a top contact and are individually addressed
through their bottom contact. The simulated geometry in this computational study consists
of GST as the phase change material with width, W = 180 nm and height, h = 50 nm, a
narrow (W = 20 nm) TiN bottom electrode known as heater, a TiN top electrode and SiO>
used to isolate the neighboring cells (Figure 1). Three TiN heaters, separated by 30 nm,
represent three PCM cells sharing the same GST region and top electrode. An n-channel
metal oxide semiconductor field effect transistor (MOSFET) is used as an access device.
A voltage pulse is applied to the gate of the MOSFET to control the reset, set and read
operations. The connection of the MOSFET defines the positive and negative polarity
configurations.
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Figure 1. Planar PCM mushroom cell geometry and materials simulated in COMSOL
Multiphysics. TiN is used as the top and bottom electrodes, GST is the phase change
material and SiO; acts as an insulator to isolate the neighbor cells. The connection of the n-
channel MOSFET defines the positive and negative polarity configurations. GST is shown
as polycrystalline material with different color representing different crystal orientation of
the grains.



Physics Model

In the simulation framework, we solve the heat transport and current continuity
equations [equation (1) and (2) respectively] self-consistently using electric current and
heat transfer physics and utilize our PCM physics model (13-16) to obtain the potential,
temperature and phase changes in the device structure.
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where d is the mass density, C, is the specific heat, T is the temperature, t is the time, k is
the thermal conductivity, I is the electric potential, ] is the electric current density, S is the
Seebeck coefficient, Qy represents the latent heat of phase change, and p,, is the volume
charge density. In earlier works (5,8,16,18), the following more common form of J was
used,

J = —oVV — aSVT [3]

where o is the electrical conductivity. Here the first term in the right side (—oVV) is the
drift current density component due to the applied electric field and the second term
(—oSVT) is the diffusion current component for a uniform material where only temperature
gradient results in diffusion of charge carriers (19) and does not capture current driven by
carrier concentration and Seebeck gradients. However, large thermal gradient (~50 K/nm)
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Figure 2. (a) Schematic energy band diagram of an n-type semiconductor with contacts at
two ends in equilibrium. (b) Carrier concentration, n versus position, x in the
semiconductor; no and n; are the concentrations at xo and xo+Ax respectively, [ is the mean
free path. (c) Energy band diagram of the same device in (a) under an external bias voltage,
V causing a split of the Fermi level of the two metal contacts, Efy — Ef, = qV. Solid red
line indicates the change of the Fermi level inside the semiconductor, green circle represents
an electron and the arrow next to it shows drift velocity (vg4,-) due to the applied electric

field. K.E. is the kinetic energy (g kgT) where kg is the Boltzmann constant and P.E. is the

chemical potential energy (Ec-Ef) of the electron. Peltier coefficient, 1, = _iq[% kT +
(Ec — Ef )]



and high current densities (~50 MA/cm?) in PCM give rise to significant gradients in carrier
concentrations and Seebeck coefficients. Therefore, along with temperature gradient,
gradients of conductivity and Seebeck coefficient play significant role in PCM device
operation and need to be incorporated in equation (3).

In this work, we derive an updated model of | for cases of significant thermal gradients
following the procedure detailed in (20). We start by assuming an n-type semiconductor
bar having arbitrary carrier concentration throughout with two contacts at the two ends
(Figure 2a,b). Here n, = n(x,) is the concentration at x, while n, = n(x, + Ax) is the
concentration at x, + Ax. Electrons move from left to right when an external voltage, V is
applied to the right contact (Figure 2c). Carrier velocity consists of drift velocity (v4,-) and
thermal velocity (vy,). Due to the random nature of thermal motion, there is equal
probability for electrons to move to the right and left from their current positions which
corresponds to different magnitude and direction of vi. For instance, at a particular time,

% electrons will move to the right and ? electrons will move to the left from x,. At any

position in between x, and x + Ax, net electron flux density due to electrons moving from
left to right (considering contributions of n, and n,; only) is given by,
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where we assume Ax = mean free path = [. For the limiting case of small Ax, equation (4)
can be expressed as,
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The current density for electrons, J, is the product of the electron charge and flux density,
1(-d o
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where vy, = otis the mean free time, and v, = —pu, E, W, is the electron mobility and E
is the electric field. Equation (6) can then be re-written as,
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where D,, = % is the electron diffusion coefficient (20) and J, gif rusion = 2@nDn) and

dx
Jn,arist = qni,E are the diffusion and drift components of the current density. J, 4rif can

be further modified to account for the thermoelectric effects through Peltier coefficient,

—qll, = —qS,,T = Kinet. Energy + Chem. Pot.Energy = ;kBT + (E. — Ef) [8]

Here S, is the Seebeck coefficient of electron, E, is the conduction band edge, Ef is the
Fermi energy level, %kBT is the kinetic energy where kg is the Boltzmann constant and
E. — Ef is the chemical potential energy of the electron.

Therefore, Ec = (—q)T, — kT + Ey [9]

Electrostatic force (F) experienced by the electron is,
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Using equation (10), J, 4rif; can be expressed as,
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where 0, = gqn, is the electron component of conductivity. Using the Einstein relation,
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For the three-dimensional space, equation (13) can be expressed as,
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Hole current density, J,, containing the drift and the diffusion components can also be
derived using the same approach,
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Equation (15) and (16) can be written using the following general form and expanded to
compare with the previous model of J,

npk
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equation (3)

In equation (17) and (18), for the terms following the (+) sign, + and - correspond to J,,
and J, respectively. Equation (18) clearly indicates the differences between the derived
model in this work and earlier model as described by equation (3). The new model can
capture the thermoelectric phenomena with more accuracy through the additional terms.

Here, it should be noted that carrier mobility is assumed to be a weak function of space
and the Finstein relationship used to relate diffusion coefficient and carrier mobility
assumes that diffusion coefficient is constant (not a function of space), Jp aiffusion =

qDElnstemd d(Dnpn)

instead of the more complete form J, 45 fusion = q ——— we have used in

dx
equations (7) (12)-(14). Thermally driven diffusion current, hence thermoelectric effects,
cannot be captured if diffusion coefficient is assumed to be constant. An alternative
approach to relate the diffusion coefficient to electrical conductivity would be through
Wiedemann—Franz law (WFL), which relates the electronic component of thermal
conductivity (k,) to electrical conductivity as,

k, = LoT [19]

where L is the Lorenz number. In absence of an external bias under a thermal gradient, the
heat flux due to diffusing charge carriers (Fourier heat conduction) can be expressed in
terms of k, and the kinetic energy of the carriers similar to the derivation given above in
equations (4)-(6),
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Once again, assuming that 1 is constant and can be included in the derivative,
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Expressing [, giffusion Using a diffusion coefficient based on the WFL (Dy/**) and
equating it to [ giffusion derived in equations (4)-(6), we calculate a temperature
dependent diffusion coefficient,
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Comparing the two diffusion coefficients,
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Here we are using an experimental Lorenz number (1.2x10® V2?K?) reported for
semiconductors with high Seebeck coefficients (21), similar to amorphous GST. The
expressions we obtain using a diffusion coefficient based on the Einstein relation and the
WFL have the same temperature dependence and their magnitudes are within 10% of each
other. Hence, the diffusion coefficient we obtain using Einstein relation can be considered
as a reasonable approximation and the diffusion currents calculated using DEStin may
be considered as the lower bound.

Results and Discussion

Thermoelectric heating/cooling along with Joule heating cause significantly varying
temperature distribution profile inside the device for positive and negative polarity
configurations leading to different crystal grain distributions within the phase change
material. Thermoelectric heat transport is due to generation and recombination of electrons
and holes as well as the kinetic energy absorbed or released by the transported free charge
carriers (19) and is modeled as Thomson heat. The energy exchanges that can take place at
material interfaces is defined as Peltier heat:
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Figure 3. Time evolution of the crystal grain distribution maps and combined Joule and
thermoelectric heat distribution profiles during the reset and set pulses for positive and
negative polarity. Vgae and current through the device, I during the sequential read-reset-
read-set-read operations are shown in (a) where VRreset = 3.2V, Vset = 1.6V and VRread =0.1V.
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Figure 3 shows the time evolution of the grain arrangements inside the GST and the
Joule and thermoelectric heats together in GST and TiN regions during the reset and set
operations. For the same reset voltage amplitude, negative polarity results in faster melting
and attains a larger amorphous area after quenching (over-reset). On the other hand, due to
less net heating from Joule and thermoelectric effects, positive polarity results in a smaller
amorphous area but optimized reset condition as the amorphous plug is only large enough
to cover the heater for a high resistance state of the device. Consequently, the applied set
voltage pulse can recrystallize the positive polarity device, whereas it is not sufficient to
achieve electrical breakdown in the larger amorphous region of the negative polarity device.

Figure 4 shows the Joule, Thomson and Peltier heat distributions separately at the peak
of the reset pulse. As the temperature rise is less in positive polarity (Figure 4g), GST
remains more resistive which leads to higher Joule heating compared to the negative
polarity. Thermoelectric heats change polarity (heating to cooling and vice-versa) with the
reversal of current direction whereas the Joule effect always results in heating. Seebeck
coefficient of GST is assumed to be zero for the liquid phase (Figure 5) so there is no
Thomson heat within the molten region whereas the surrounding regions (liquid-crystal
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Figure 4. Heat dissipation at the peak of reset (Figure 3vii, xxv) due to Joule (a,d),
Thomson (b,e) and Peltier (c,f) effects for positive and negative polarity and resultant
temperature distribution profiles with TE effects (g,i) and without TE effects (h).
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Figure 5. Seebeck coefficient of GST and TiN used in the simulation model based on the
experimental results (22). a-, c- and m- stand for amorphous, crystalline and molten phase
respectively.

interface) experience the greatest Thomson effect because of the largest gradients of
Seebeck coefficient (Figure 4b,e). The grain boundaries also show pronounced Thomson
effect because of the large gradients of electrical conductivity and Seebeck coefficient. It
is also evident from the Figure 4(b,e) that Thomson cooling around the molten region of
the positive polarity device hinders further melting and thus results in smaller amorphous
area in comparison with the negative polarity case where Thomson heating surrounding
the molten volume enhances the spread of the molten region. However, the model using J
as the total current density does not capture heat transport by electrons and holes diffusing
in the same direction which significantly enhance thermal conduction at the liquid-solid
interfaces. This thermal conduction mechanism, generation of carriers in the melt -
transport across the interface — recombination in the solid region (GTR) (19), is expected
to dominate thermal transport at the solid-melt interfaces and can be captured by handling
electron and hole currents (/,,, J,) separately.

Peltier heat is absorbed (released) at the GST-heater boundary for positive (negative)
polarity cells (Figure 4c,f) and is calculated assuming the heat at material junction is
transmitted throughout a 1 nm thick volume. Peltier heat is larger than Joule and Thomson
heat (~100 W/um® compared to ~10s of W/um?®) for both polarities and this can be
attributed to the larger difference in Seebeck coefficients between p-type GST and n-type
TiN (Figure 5). Peltier heat has highest magnitude at the two corners of the heater in both
positive and negative polarity because of current spreading.

We calculate the ratio of reset resistance to set resistance for different reset energy
(Figure 6). Higher resistance ratio for the negative polarity at the same reset energy and
initial set resistance indicates more melting followed by amorphization of the active region
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Figure 6. Reset state resistance to set state resistance ratio at different reset energy levels
for positive and negative polarity with and without thermoelectric effects.

in negative polarity compared to the positive polarity. Quantitatively, negative polarity
requires ~ 2x less energy to achieve the successful reset state with sufficient resistance
contrast (~ 10%). The simulations performed by removing the TE terms in equation (1), (15)
and (16) show similar reset energy — resistance contrast relation as the negative polarity as
the resistance contrast increases above 10°, while the results without TE terms are in
between the two polarities for lower resistance contrasts.

Conclusions

We have investigated Joule heating and thermoelectric Thomson and Peltier effects on
a mushroom PCM cell with a revised electro-thermal physics model that accounts for the
effects of significant thermal gradients. Temperature and electric field dependent material
parameters and thermal boundary resistances at the material interfaces have been used in
the simulations to obtain the temperature gradient and corresponding phase changes
resulting from current flow. Positive and negative polarity cells have been simulated to
study the current polarity dependence of TE effects. Peltier heating at the GST-heater
boundary and Thomson heating near the active region make the negative polarity cell more
energy efficient, as it requires less current to make a set to reset transition. Though it is
advantageous to have higher TE heating inside the mushroom and its interfaces for reduced
power and energy consumption (negative polarity), TE cooling away from the mushroom
interfaces is preferred for reduced thermal cross-talk and write-disturb on the neighbor cells
(positive polarity).
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