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I. INTRODUCTION

The dynamics of small elastic beams immersed in a viscous fluid are at the heart of many

important technologies1,2. Typical devices using doubly-clamped beams composed of silicon

nitride posses varying degrees of tension and exhibit a fundamental mode of oscillation with

a natural frequency in the megahertz range and a spring constant on the order of 1 N/m.

However, when the beam is immersed in a viscous fluid the frequency of the fundamental

peak shifts to lower frequency and the quality factor of the oscillation reduces significantly3–5.

These reductions in performance become significantly larger when the viscosity and density

of the fluid is appreciable as in the case of water. These reductions become even more

significant when the dimensions of the beam are uniformly decreased from the microscale

down to the nanoscale4,5. These issues have led to interesting solutions such as the use of

the higher modes of oscillation to increase the frequency of the measurement6–8, tailoring

of the beam geometry to improve performance9, using paddle shaped nanoscale cantilevers

to drastically reduce stiffness4,5,10, and placing the fluid of interest inside of the oscillating

cantilever rather than immersing the cantilever in the fluid to significantly increase the

quality factor11.

From a broad point of view, device performance for many applications improves if the

frequency representing the peak of the amplitude spectrum can be increased. In essence, with

an increase in frequency the energy stored by the fluid and solid system increases more than

energy lost by dissipation due to the viscous fluid per oscillation3,5,12. The end result is an

oscillator with a higher quality. One accessible way to increase the frequency of oscillation,

without changing the beam geometry or composition, is to include a tension force8. For

example, a doubly clamped beam with tension can be the result of the fabrication process

or an intrinsic property of the material13,14. Including a tension force in addition to rigidity

has several favorable outcomes which can be drawn from the following observations: (i) the

natural frequencies of all of the modes will increase, (ii) the relative natural frequencies are

closer together in the frequency domain, (iii) the relative stiffness of the different modes

are closer together, and (iv) the quality factor of the oscillations will increase. (ii)-(iii) are

important since they reduce the range of measurements that are required in an experiment.

(ii) reduces the frequency range that must be resolved in a experiment. (iii) reduces the

required range of beam displacements that must be resolved in an experiment. Lastly, (iv) is
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useful since higher quality factors are desirable experimentally due to the more defined peak

that results in a measurement of the amplitude as a function of frequency.

The relative magnitude of the peaks in the amplitude spectrum, for the different modes

of oscillation, depend upon how the beam is driven and also on the interactions with the

surrounding fluid. Small beams can be driven by Brownian motion alone or the beams

can also be driven externally. There is significant interest in the stochastic motion of small

elastic objects in a viscous fluid3,4. However, due to the increased stiffness of the higher

modes, the magnitude of the amplitude of oscillations for the higher modes, when driven

thermally, are very small. The theory we describe here could be extended to this case but

we do not explore this here. Typically, when a beam is driven externally the magnitude

of the deflections are well above the Brownian fluctuations of the beam and the dynamics

are treated deterministically. In this paper, we treat this case and focus our attention upon

small beams that are driven externally where the external drive force can be tailored to

yield favorable magnitudes of oscillation in an experiment. In particular, we consider a

doubly-clamped beam that is driven near its attachment points by a spatially varying drive

force.

One approach used in the literature to achieve a spatially varying harmonic driving force

is electrothermal actuation13–15. The essential idea is to heat the two ends of the beam using

an electric current through a typically U-shaped gold wire by Joule heating. The localized

heating causes a temperature gradient that results in a stress gradient due to the differential

amount of thermal expansion that occurs in the solid material composing the beam. This

generates a bending moment which yields the flexural deflections. By driving the current

harmonically in time, it is possible to drive the beam at a chosen frequency and to then

sweep over a wide range of frequencies of interest. This approach has been demonstrated

to be very effective in driving the flexural oscillations of small beams at frequencies of over

200 MHz15.

In this paper, we quantitatively explore these ideas for a wide range of conditions where

we pay particular attention to the role of tension on the beam dynamics and to the influence

of the external driving. We explore a doubly-clamped beam that is immersed in a viscous

fluid and driven externally by a spatially varying drive force. We develop a theoretical

description that is valid for all values of tension in the beam which is bounded by an Euler-

Bernoulli beam in the absence of tension and by a string description where tension dominates
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contributions from elasticity. We compare our theoretical predictions with experimental

measurements for an electrothermally driven beam under high tension.

II. THEORY

We are interested in the dynamics of a microscale elastic beam with tension that is

immersed in a viscous fluid and driven externally by a spatially varying harmonic drive

force. A schematic is shown in Fig. 1 that represents the general configuration we consider.

The doubly-clamped beam has length L, width b, and thickness h. The axial distance along

the beam is the x direction, transverse to the beam is the z direction, and the y direction

(not shown) is into the page. The harmonic driving force has a constant magnitude F0

and is applied over the spatial regions specified by the constants ξL and ξR. The flexural

displacement of the beam at position x and time t is given by W (x, t).

FIG. 1. A schematic of the doubly-clamped beam with a spatially varying driving force. The

beam has a length L, width b (into the page), and thickness h with axial coordinate x, transverse

coordinate z, and the remaining coordinate y is into the page. The harmonic driving force has a

constant magnitude F0 and is applied near the left and right ends of the beam over the spatial

regions specified by the constants ξL and ξR.

In our study, we will use the beam geometry and material properties given in Table I.

Although specifying a particular beam geometry is not necessary for the development of

the theory, it allows us to provide dimensional diagnostics regarding this beam over a wide

range of conditions. This beam is also typical of a nanoscale beam fabricated from silicon

nitride that has been used in development of new technologies13,14. We will quantify the

dynamics of this beam as a function of the tension in the beam and for a varying spatial
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extent of the external forcing. Lastly, this particular beam geometry is precisely the one

used in our experimental investigation that is described in Section III. By introducing the

geometry and material properties now we will tailor our discussion toward the comparison

between theory and experiment. In our theoretical development we will pay close attention

to the influence of tension, ξL, ξR, and F0 on the dynamics of the beam.

L b h ρs E

(µm) (µm) (µm) (kg/m3) (GPa)

40 0.90 0.10 2960 300

TABLE I. Geometry and material properties. The doubly-clamped beam has length L, width b,

thickness h, density ρs, and Young’s modulus E. We will consider this beam immersed in air

or water. For the fluid density ρf and dynamic viscosity µf we use: for air ρf = 1.23 kg/m3,

µf = 1.79 × 10−5 kg
ms ; for water ρf = 997.8 kg/m3, µf = 9.53 × 10−4 kg

m s .

For a long and thin beam, L ≫ b ≫ h, that is under tension, the flexural deflections are

described by

EI
∂4W (x, t)

∂x4
− FT

∂2W (x, t)

∂x2
+ µ

∂2W (x, t)

∂t2
= Ff (x, t) + Fd(x, t) (1)

where E is the Young’s modulus, I=bh3/12 is the area moment of inertia, FT is the tension

force, µ=ρsbh is the mass per unit length, Ff (x, t) is the fluid force per unit length acting on

the beam, and Fd(x, t) is the spatially varying driving force per unit length. In the absence

of tension, FT = 0, and Eq. (1) reduces to an Euler-Bernoulli beam immersed in a fluid.

The doubly-clamped beam satisfies fixed boundary conditions such that W (0, t)=W (L, t)=

dW (0,t)
dx

= dW (L,t)
dx

= 0. It will be convenient to introduce a nondimensional axial coordinate

x∗=x/L while leaving time as dimensional to yield

EI

L4

∂4W (x∗, t)

∂x∗4
− FT

L2

∂2W (x∗, t)

∂x∗2
+ µ

∂2W (x∗, t)

∂t2
= Ff (x

∗, t) + Fd(x
∗, t). (2)

For the boundary conditions this yields W (0, t) =W (1, t) = ∂W (0,t)
∂x∗

= ∂W (1,t)
∂x∗

= 0. In what

follows we will assume that x is nondimensional and drop the ∗ notation to simplify the

notation.
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A. The natural frequencies and mode shapes of a beam with tension

The analysis of a beam with tension has been described in detail elsewhere8,15 and we

provide only the essential details in support of our discussion. The natural frequencies and

mode shapes are found for the case of no damping and no driving (setting Ff = Fd = 0 in

Eq. (2)) and assuming that for each mode we can express the solution asWn(x, t)=Yn(x)e
iωnt

where n is the mode number, Yn(x) is the nth mode shape, and ωn is the nth natural

frequency. Substituting this solution into Eq. (2) for these conditions yields

EI

L4

d4Yn(x)

dx4
− FT

L2

d2Yn(x)

dx2
− µω2

nYn(x) = 0 (3)

which has the solution16

Yn(x) = c1,n sinh(Mnx) + c2,n cosh(Mnx) + c3,n sin(Nnx) + c4,n cos(Nnx) (4)

where the mode shapes Yn(x) are orthogonal, Mn =
(

U +
√

U2 + Ω2
n

)1/2

, and Nn =
(

−U +
√

U2 + Ω2
n

)1/2

. The nondimensional tension parameter U is

U =
FT

2EI/L2
(5)

which represents a ratio of the tension force to an elastic force scale. The parameter U is

very useful in determining the impact of the tension on the beam. For U = 0 the Euler-

Bernoulli beam result is recovered, for increasing U a beam with tension is described, and

for U → ∞ (or equivalently E → 0) a string description is recovered. The nondimensional

natural frequency for mode n is

Ωn =
ωn

α/L2
(6)

where α=(EI/µ)1/2. Inserting Eq. (4) into Eq. (3) and rearranging yields the characteristic

equation16

Ωn + U sinh

[

(

U +
√

U2 + Ω2
n

)1/2
]

sin

[

(

−U +
√

U2 + Ω2
n

)1/2
]

− Ωn cosh

[

(

U +
√

U2 + Ω2
n

)1/2
]

cos

[

(

−U +
√

U2 + Ω2
n

)1/2
]

= 0 (7)
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where

c1,n = 1, (8)

c2,n =
Mn sin(Nn)−Nn sinh(Mn)

Nn [cosh(Mn)− cos(Nn)]
, (9)

c3,n = −Mn

Nn
, (10)

c4,n = −c2,n. (11)

For a given value of the tension parameter U , the roots of Eq. (7) yield the nondimensional

natural frequencies Ωn. It will be useful to define the normalized mode shapes as φn(x) =

1√
ñn
Yn(x) where ñn is a normalization constant whose value is given by

ñn =

∫ 1

0

Yn(x)Yn(x)dx. (12)

The orthonormal mode shapes φn(x) therefore satisfy

∫ 1

0

φn(x)φm(x)dx =











1 n = m

0 n 6= m
(13)

The mode shapes φn of an Euler-Bernoulli beam without tension are recovered for U = 0

and the mode shapes for a beam with tension are quantified using a finite value of U .

The limit of the tension parameter U → ∞ indicates the dominance of tension over

elasticity which can also be represented as E → 0. Neglecting the elastic contribution by

setting E=0 in Eq. (2) yields the string equation

−FT

L2

∂2W (x, t)

∂x2
+ µ

∂2W (x, t)

∂t2
= Ff (x, t) + Fd(x, t) (14)

with the no-displacement boundary conditions W (0, t)=W (1, t)=0 where the slope of the

string at the boundaries may be non-zero. The mode shapes and natural frequencies of the

string can be found by analyzing Eq. (14) in the absence of the fluid interaction force and

the driving force to yield φn(x)=−
√
2 sin(nπx) and ωn=

πc
L
n where c=

√

FT/µ is the wave

speed for the string and the minus sign is to match the convention used when describing

the modes of a beam in Eq. (4). This yields ωn/ω1=n indicating that the relative natural

frequencies of the string increase linearly with n.

The first five mode shapes φn(x) are shown in Fig. 2 as a function of U . Curves are

included for an Euler-Bernoulli beam without tension U = 0, as the solid black line, beams
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FIG. 2. The first five orthonormalized mode shapes φn(x) as a function of the amount of tension

in the beam. (a)-(e) show modes 1 through 5, respectively. Each panel has 5 curves: the Euler-

Bernoulli beam U = 0 (black, solid), U=10 (red), U=100 (blue), U=1000 (green) and the limit of

a string (dashed). In all panels the solid lines approach the dashed line as the tension is increased.

with increasing tension where U = 10 (red), 100 (blue), 1000 (green), and a string shown

as the dashed line. In all panels, the curves approach the string result as the tension is

increased. It is clear that the tension affects the mode shapes. This is very evident at the

boundaries where the beam must approach the walls horizontally while the string does not.

This is of particular interest because it is near these boundaries, at x=0 and x=L, where

the spatially varying external drive force will be applied. Therefore it is anticipated that the

relative magnitudes of the peaks in the amplitude spectrum will depend upon the details

of the mode shapes and their variation with tension since this will affect how the external

driving is coupled with the beam motion.

The variation of the natural frequencies of the beam with tension is shown in Fig. 3.

Curves are included for U = 0, 10, 100, 1000 and for a string (dashed line). The frequency of

oscillation increases significantly with increasing tension and with increasing mode number.
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In particular, the fifth mode of the beam under very high tension has a natural frequency of

over 30 MHz. As the tension is increased, the variation of frequencies approach the linear

trend of the string. This is shown more clearly in Fig. 3(b) which plots the variation of the

normalized frequency fn/f1 as a function of n. This illustrates how the relative separation

of the frequencies decreases toward the linear behavior as U is increased.

FIG. 3. (a) A log-log plot of the variation of the first five natural frequencies fn of the beam with

the mode number n as a function of the tension parameter U where U =0 (black, solid), U =10

(red), U=100 (blue), U=1000 (green) and a string (dashed). (b) The same data plotted as fn/f1

versus n. In both panels the curves approach the string result in order with increasing U .

Once the mode shapes are known, it is straightforward to determine the effective mass

mn and effective spring constant kn of the modes in the usual manner5 by ensuring the

kinetic energy and potential energy of the entire beam are captured by the lumped mode

when measured at some position x0. This yields mn = αnm where αn = φn(x0)
−2. The

effective spring constant of mode n, when the measurement of the displacement is made at

x0, is then kn=mnω
2
n. When these ideas are applied to the string this yields kn=

π2FT

Lφn(x0)2
n2

which shows that kn increases linearly with FT at fixed n and quadratically with n at fixed

FT which can also be expressed as kn/k1=n2.

The variation of kn with n is shown in Fig. 4(a) as a function of U . In order to present

the results of all of the modes on a single plot it must be understood that the measurement

is taken for each mode at the location x0 of an antinode where that mode shape φn(x) is
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maximum. Specifically, x0 =1/2 for the odd modes, x0 =1/4 for mode 2, and x0=1/8 for

mode 4. The dramatic increase in the stiffness of the beam with increasing tension is evident

by noting that at high tension k5 ≈ 200 N/m which is 25 times stiffer than the fundamental

mode. The relative magnitude of kn with respect to k1 is represented in Fig. 4(b). As the

tension is increased, the separation of the spring constants with respect to k1 decrease until

reaching the quadratic trend of the string. The relative amplitude of the oscillation of a

particular mode with respect to the amplitude of the fundamental mode is given by k1/kn.

When viewed in this light, this indicates that the relative magnitude of the oscillations of

the higher modes, with respect to the fundamental mode, decrease with increasing tension.

FIG. 4. (a) A log-log plot of the first five spring constants kn with varying tension where U =0

(black), U=10 (red), U=100 (blue), U=1000 (green), and a string (dashed) in units of N/m. For

the odd modes kn is measured at x0=1/2, for the second mode x0=1/4, and for the fourth mode

x0=1/8. (b) The same data plotted as kn/k1 versus n. In both panels, the results approach the

string in order with increasing values of U .

B. The dynamics of an externally driven beam with tension in a viscous fluid

We now develop the solution for the dynamics of the beam with tension in a viscous fluid

that is being driven externally. It will be convenient to transform Eq. (2) into frequency
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space using the Fourier transform pair

Ŵ (x, ω) =

∫ ∞

−∞
W (x, t)eiωtdt (15)

W (x, t) =
1

2π

∫ ∞

−∞
Ŵ (x, ω)e−iωtdω (16)

to yield

EI

L4

∂4Ŵ (x, ω)

∂x4
− FT

L2

∂2Ŵ (x, ω)

∂x2
− µω2Ŵ (x, ω) = F̂f(x, ω) + F̂d(x, ω). (17)

The force due to the fluid can be expressed as3,12

F̂f(x, ω) =
π

4
ρfω

2b2Γ(ω)Ŵ (x, ω) (18)

where Γ(ω) is the complex-valued hydrodynamic function for an oscillating blade of width b

in a viscous fluid of density ρf . The hydrodynamic function contains contributions due to the

mass loading captured by its real part and due to viscous damping captured by its imaginary

part. Γ(ω) can be expressed as Γ(ω)=Ωc(ω)Γc(ω) where Γc(ω) is the hydrodynamic function

of an oscillating cylinder with diameter b and Ωc(ω) is a complex valued correction factor.

Explicit expressions for Γc(ω) and Ωc(ω) are given by Sader3. In Eq. (18) we have also

assumed that Γ(ω) is independent of the mode number n which is expected to be a good

approximation for the first several harmonics of the beam. Acoustic radiation and axial flows

may cause the dissipation to deviate from the cylinder solution, but these are negligible for

lower harmonics17. The generalized hydrodynamic function for arbitrary mode number7,18

could be included if desired.

Equation (18) is valid when the Reynolds number describing the fluid motion, Re, is

small. For the case of microscale and nanoscale elastic structures in fluid, Re≪ 1 due to

the small amplitudes of the oscillation even though the oscillation frequency is large. The

Reynolds number of the fluid motion generated by the motion of mode n of the beam can

be expressed as

Ren =
ρfAnωn,fb

2µf

(19)

where An is the maximum amplitude of the motion of the nth mode, ωn,f is the frequency

of oscillation at which An occurs in the fluid, µf is the dynamic viscosity of the fluid, and

the length scale has been chosen to be the beam half width b/2. For example, in experiment

the magnitude of the driving force is typically set to achieve an amplitude of oscillation
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on the order of A1 ≈ 1 nm and when the fluid is air we have the additional simplification

ωn,f ≈ωn. If we assume the beam in Table I has high tension and use the string predictions

as a guide, this leads to Re1=1.1×10−3. Furthermore, the Reynolds number of the higher

modes decreases with increasing mode number. Although the quantitative details change

when the beam is placed in a more viscous fluid such as water where ωn,f <ωn, the Reynolds

number of the beam remains small and it also decreases with increasing mode number.

The quality factor of the oscillations Q can quantified using the hydrodynamic function.

Extending the approach used in Ref.5 for the fundamental mode to describe the quality of

mode n yields

Qn ≈
1
T0

+ Γr(ωn,f)

Γi(ωn,f)
(20)

where Γr and Γi are the real and imaginary parts of the hydrodynamic function, respectively.

The frequency dependence of the added mass due to the fluid motion is given by Γr(ω) and

the frequency dependence of the viscous damping due to the fluid is given by ωΓi(ω). The

mass loading parameter, T0=
πρf b

4ρsh
, represents the mass of a cylinder of fluid with diameter

b to the mass of the beam. The quality Qn is evaluated at the frequency ωn,f that yields

the maximum amplitude of mode n when driven in fluid. The quality Qn increases with

increasing values of the frequency ωn,f . Therefore the quality factor will increase with the

addition of tension and also with increasing mode number n.

The variation of Qn with tension is shown quantitatively in Fig. 5 for the beam of Table I

immersed in (a) air and in (b) water. Moving from left to right in Fig. 5 illustrates the

increase in the quality factor as a function of mode number and moving vertically illustrates

the increase in the quality factor with increasing tension. Increasing the mode number and

the tension significantly increases the quality factor of the oscillations. For example, in

Fig. 5(a), Qn goes from approximately 10 for the first mode of an Euler-Bernoulli beam to

over 150 for the 5th mode of a string. Figure 5(b) shows the dramatic reduction in quality

that occurs when the fluid is water. However, for water it can be seen that Q1
<∼0.5 for the

Euler-Bernoulli beam and that the quality factor increases to nearly Q1≈1.5 by increasing

the tension.

Following the approach described in Refs.3,19, we solve Eq. (17) using an expansion in

terms of the normalized beam modes

Ŵ (x, ω) =

∞
∑

n=1

Ŵn(x, ω) =

∞
∑

n=1

f̂n(ω)φn(x) (21)
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FIG. 5. The variation of the quality Qn with mode number n as a function of tension for the beam

of Table I immersed in (a) air and (b) water. Solid lines are shown for U=0 (black), 10 (red), 100

(blue), 1000 (green) and the dashed line is for a string. The solid lines approach the string result

in order as the tension increases.

where Ŵn(x, ω) is the complex amplitude of mode n and f̂n(ω) describes the frequency

dependent amplitude of mode n. Inserting Eq. (21) into Eq. (2) and using the orthogonality

property of the beam modes yields

f̂n(ω)ω
2
n − ω2 (1 + T0Γc(ω)) f̂n(ω) =

1

µ

∫ 1

0

φn(x)F̂d(x, ω)dx (22)

which can be solved for f̂n(ω). After rearranging, the solution for f̂n(ω) can be expressed as

f̂n(ω) =
L4

EI

∫ 1

0
F̂d(x, ω)φn(x)dx

C4
n −B(ω)4

(23)

where

B(ω) = C1

(

ω

ω1

)1/2

[1 + T0Γ(ω)]
1/4 . (24)

and Cn = Ω
1/2
n . Using the final result for f̂n(ω) allows us to express the solution for the

flexural oscillations as

Ŵ (x, ω) =
L4

EI

∞
∑

n=1

∫ 1

0
φn(x

′)F̂d(x
′, ω)dx′

C4
n − B(ω)4

φn(x). (25)

The magnitude of the flexural oscillations of the beam measured at position x0 is then

|Ŵ (x0, ω)|.
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A string description can be obtained following a similar approach by starting with Eq. (14)

and using the expression for the fluid force to yield

−FT

L2

∂2Ŵ (x, ω)

∂x2
− ω2

[

µ+
π

4
ρlb

2Γ(ω)
]

Ŵ (x, ω) = F̂d(x, ω). (26)

This equation can be solved using an eigenfunction expansion, the mode shapes of the string,

and orthogonality of the mode shapes to yield

f̂n(ω) =
L2

π2FT

∫ 1

0
F̂d(x, ω)φn(x)dx

n2 − B2(ω)
(27)

where

B(ω) =

(

ω

ω1

)

[1 + T0Γ(ω)]
1/2 . (28)

We note that the expression for B(ω) in Eq. (28) is different for the string when compared

to the expression for the beam given by Eq. (24). However, it can be seen that (B(ω)/C1)
2

of the beam equals B(ω) of the string. The string displacement is then

Ŵ (x, ω) =
L2

π2FT

∞
∑

n=1

∫ 1

0
F̂d(x

′, ω)φn(x
′)dx′

n2 −B2(ω)
φn(x). (29)

If the explicit expressions for the string mode shapes are used this can also be expressed as

Ŵ (x, ω) =
2L2

π2FT

∞
∑

n=1

∫ 1

0
F̂d(x

′, ω) sin(nπx′)dx′

n2 − B2(ω)
sin(nπx). (30)

C. Modeling a spatially varying drive force

We next consider a driving force that is constant in magnitude that is applied harmon-

ically at the two edges of the beam (see Fig. 1). We will include the possibility where

the driving force at the ends of the beam can be in-phase or out-of-phase with respect

to each other. On the left side of the beam near the wall where 0 ≤ x ≤ ξL we have

Fd(x, t) = aL
F0

L
sin(ωdt). Similarly, on the right side of the beam near the wall where

ξR ≤ x ≤ 1 we have Fd(x, t) = aR
F0

L
sin(ωdt). Elsewhere on the beam the driving force is

not applied. The constants aL and aR are ±1 to indicate if the driving at the two ends are

in-phase (aL=aR=1) or out-of-phase (aL=1, aR=−1). Due to the symmetry of the mode

shapes, the odd modes are even about the middle of the beam (x=1/2), and they are driven

with an in-phase drive. The even modes are odd about the middle of the beam and they are
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driven by an out-of-phase drive. In our analysis, we use an impulse force in time to study

the frequency response of the system due to a harmonic drive. In this case, the external

drive force is represented as

Fd(x, t) =
F0

L























aLδ(t) 0 ≤ x ≤ ξL

0 ξL < x < ξR

aRδ(t) ξR ≤ x ≤ 1

(31)

where δ(t) is the Dirac delta function. In the frequency domain the drive force is then

F̂d(x, ω) =
F0

L























aL 0 ≤ x ≤ ξL

0 ξL < x < ξR

aR ξR ≤ x ≤ 1.

(32)

The coupling of the spatially extended drive force with the beam mode shapes is captured

by the integral term in Eq. (23). If we next assume that the spatial variation of the drive

force is of equal spatial extent ξ∗, on either side of the beam, we can simplify the notation

further by noting ξL=ξ∗ and ξR=1−ξ∗. Therefore, ξ∗ can vary over the range 0≤ξ∗≤1/2

where ξ∗=1/2 corresponds to a driving force that has been applied over the entire length

of the beam. If we define the integral term in Eq. (23) as ψn, and express the limits of

integration using ξ∗, we have

ψn(ξ
∗) = aL

∫ ξ∗

0

φn(x)dx+ aR

∫ 1

1−ξ∗
φn(x)dx (33)

and

Ŵ (x, ω) =
F0L

3

EI

∞
∑

n=1

ψn(ξ
∗)φn(x)

C4
n −B(ω)4

(34)

where the complex amplitude of mode n is

Ŵn(x, ω) =

(

F0L
3

EI

)

ψn(ξ
∗)φn(x)

C4
n − B(ω)4

. (35)

The variable ψn(ξ
∗) quantifies the magnitude of the coupling of the spatial drive force with

the individual modes of the beam. The tension in the beam is accounted for by the variation

of the mode shape φn with the applied tension.

For the string, using Eq. (33) yields

Ŵ (x, ω) =
F0L

π2FT

∞
∑

n=1

ψn(ξ
∗)φn(x)

n2 − B2(ω)
(36)
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where ψn(ξ
∗) can be evaluated to yield

ψn(ξ
∗) = −2

√
2

nπ
(1− cos(nπξ∗)) . (37)

Equation (37) is valid for even and odd modes of the string where it is assumed that the odd

modes have been driven by a symmetric drive and the even modes have been driven by an

asymmetric spatial drive. Gathering these results together for the string, we can represent

the oscillations in a more convenient form as

Ŵ (x, ω) =
4LF0

π3FT

∞
∑

n=1

1− cos(nπξ∗)

n (n2 − B2(ω))
sin(nπx) (38)

where the displacement of mode n is

Ŵn(x, ω) =

(

4LF0

π3FT

)

1− cos(nπξ∗)

n (n2 − B2(ω))
sin(nπx). (39)

The variation of ψn with ξ∗ is shown in Fig. 6. The coupling of the spatial driving force

with modes 1 through 5 are shown in panels (a)-(e), respectively. The string result is shown

as the black dashed line and the solid lines approach the string result in order with increasing

tension. In each panel, the 4 solid lines represent results for U = 0 (black), 10 (red), 100

(blue), 1000 (green). For the first and second modes, shown in Fig. 6(a)-(b), the magnitudes

of ψ1(ξ
∗) and ψ2(ξ

∗) increase monotonically with increasing tension. However, for the third

mode and higher the coupling with the driving force is non-monotonic with ξ∗.

The variation of ψn with ξ∗ provides immediate insight into the relative heights of the

peaks in the amplitude spectrum. Considering only the odd modes, which would be excited

by the symmetric drive, this indicates that as ξ∗ is increased the coupling with modes 3

and 5 will reach a maximum and will then decay with larger values of ξ∗. For example,

the relative amplitude of mode 3 will be largest for an applied driving force with ξ∗≈0.35

and the relative amplitude of mode 5 will be significantly reduced when ξ∗ ≈ 0.4. Similar

insights can be drawn for the even modes that are driven by an asymmetric driving force.

Knowledge of the ψn(ξ
∗) could be used in an experiment to tailor the amplitudes of the

different modes. Figure 6 also indicates the influence of the tension on these couplings.

D. The amplitude of oscillation of a driven beam with tension in a fluid

The variation of the amplitude of oscillation with frequency for increasing tension is

shown in Fig. 7 for the beam given in Table I when it is immersed in air (a) or water (b).
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FIG. 6. The variation of ψn(ξ
∗) for the first five modes with the distance covered by the applied

driving ξ∗ for the symmetric drive of the odd modes (a) n = 1, (c) n = 3 and (e) n = 5 or the

asymmetric drive of the even modes (b) n=2 and (d) n=4 . The solid curves are for U=0 (black),

10 (red), 100 (blue), 1000 (green) and the dashed curve is for the string. The solid curves approach

the string result in order with increasing tension.

Figure 7 shows the amplitude of the fundamental mode, |Ŵ (x0, ω)|, measured at x0=1/2 for

an external force of magnitude F0=2×10−10 N that has been applied over the spatial region

given by ξ∗=0.3. The five different curves show the amplitude spectrum of the fundamental

mode for varying amounts of tension for U = 0, 10, 100, 1000 and a string. As the tension

increases, the amplitude of the peak decreases while its frequency increases. The dramatic

spreading out of the amplitude spectrum when the beam is immersed in water is evident in

Fig. 7(b). A comparison of the amplitudes in Fig. 7(a)-(b) also yield an order of magnitude

reduction in the amplitude of the beam motion when immersed in water.

The absolute and relative magnitudes of the amplitude peaks depend upon how the

external force is applied. In particular, for the situation we explore here, the magnitude

of the peaks depend upon the spatial region of the beam that is driven as specified by ξ∗.
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FIG. 7. The variation of the amplitude of flexural oscillations of the first mode (n = 1) with

frequency for a beam with increasing tension that is immersed in a fluid. The symmetric drive has

a magnitude of F0=2×10−10 N and a spatial application of ξ∗=0.3 where the beam is immersed

in air (a) or in water (b). On each panel the five different curves represent the variation in tension

where U=0 (black), 10 (red), 100 (blue), 1000 (green) and the string (dashed, black). The location

of the peak moves towards higher frequency with increasing tension with the string result furthest

to the right. These results are obtained by evaluating |Ŵ1(x0=1/2, ω)| using Eq. (35) for the beam

with tension and using Eq. (39) for the string.

The variation of the magnitude of the peaks are shown in Fig. 8 as a function of ξ∗ for

a symmetric drive which actuates the odd modes. The coupling of the drive force with

the beam motion is captured by ψn(ξ
∗) which is directly reflected by the variation of the

magnitude of the peaks in Fig. 8. For example, in Fig. 8(a) the magnitudes of the peaks

increase monotonically with ξ∗ as indicated by the monotonic increase of ψ1(ξ
∗) with ξ∗

shown in Fig. 6(a). Similarly, Fig. 8(b) shows how the magnitude of the peak increases

and then decreases with increasing ξ∗ as indicated by the variation of ψ3(ξ
∗) in Fig. 6(c).

The variation of the magnitude of the peaks of the even modes with ξ∗ follow the trends

indicated by the appropriate ψn and are shown in Fig. 9.
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FIG. 8. The variation of the amplitude of motion of a beam immersed in air under high tension

as a function of ξ∗ for the odd modes that are driven using a symmetric drive force. The beam is

specified in Table I, the tension is U=1000, the magnitude of the drive force is F0 = 2×10−10 N,

and the beam is immersed in air. Each panel includes five curves for ξ∗=0.1 (red), 0.2 (blue), 0.3

(black, dashed), 0.4 (green), 0.5 (cyan). These results are obtained by evaluating Eq. (35) for the

odd modes at x0=1/2. (a) n=1, the peak magnitude increases monotonically with increasing ξ∗.

(b) n=3, the smallest to largest peak magnitudes occur in the order ξ∗=0.1, 0.5, 0.2, 0.4, 0.3. (c)

n=5, the smallest to largest peak magnitudes occur in the order ξ∗=0.4, 0.1, 0.5, 0.3, 0.2.

III. COMPARISON WITH EXPERIMENT

We have performed experiments on a long and thin doubly-clamped beam in the config-

uration shown in Fig. 1. In the experiments, the beam motion is driven electrothermally

near its left and right ends. An electron micrograph of the beam is shown in Fig. 10. The

experimental approach has been described in detail elsewhere13,14 and we provide only the

essential details here.

The geometry and density for this beam are specified in Table I. The value listed for the

beam density in Table I is the experimentally measured value. As a result, we will consider

the density of the beam a known value. The Young’s modulus E in Table I, on the other

hand, is simply a nominal value for silicon nitride13. As shown in Fig. 10, the entire beam is

suspended in a cavity. The distance from the beam to the substrate below is approximately

2 µm. The beam is under high tension, U ≫ 1, as a result of the fabrication process. We

quantify a value for U in the discussion below. We have conducted experiments on this

beam when it is placed in vacuum, air, or water.
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FIG. 9. The variation of the amplitude of motion of a beam immersed in air under high tension

as a function of ξ∗ for the even modes that are driven using an asymmetric drive force using the

same parameters and conventions as Fig. 8. These results are obtained by evaluating Eq. (35)

at x0 = 1/4 for n= 2 and at x0 = 1/8 for n= 4. (a) Mode n= 2, the peak magnitude increases

monotonically with increasing ξ∗. (b) Mode n=4, the smallest to largest peaks occur in the order

ξ∗=0.5, 0.1, 0.4, 0.2, 0.3.

The upper surface of the beam contains two U-shaped gold electrodes near the sidewalls,

with one located at the left side and the other located at the right side, that are used for

the electrothermal drive. The gold electrodes are evident in Fig. 10 by their lighter color

near the locations where the beam attaches to the sidewalls. When a sinusoidally varying

current passes through the gold electrodes the beam is locally heated due to Joule heating.

The heating causes the beam to expand which results in beam deflections since the beam is

fixed at either end. The odd modes of the beam are actuated when the current in the two

electrodes is in-phase (symmetric drive) and the even modes are actuated when the current

is 90◦ out-of-phase (asymmetric drive). The deflection of the beam is measured optically

at location x0 which is typically chosen to correspond with an anti-node of the beam mode

that is being measured.

We next describe the procedure used for comparing the theoretical predictions with the

experimental measurements. The constants U and FT are required in the theoretical ex-

pressions to describe the amount of tension in the beam. In addition, we will introduce
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FIG. 10. An electron micrograph of the doubly clamped beam used in the experiments. The beam

has a length L=40µm, width b=0.9µm, thickness h=0.1µm, and density ρs=2960 kg/m3. The

beam is suspended 2µm above the floor. The dark region on the floor below the beam is a residue

left over from the fabrication process.

an effective length L∗ of the beam in order to quantitatively describe the magnitudes of

the natural frequencies for the conditions of the experiment. The constants ξ∗ and F0 are

required to describe the spatially varying drive force that is applied. Detailed measurements

of the tension and the drive force are difficult to obtain directly and, in our analysis, we

determine their experimental values indirectly using only measured frequencies, amplitudes,

and the density of the beam which are typically more accessible.

The values of U , L∗, and FT are determined using measurements of the beam’s natural

frequencies ωn,exp in a vacuum where n=1, 2, . . .N . We have used N =5 but the approach

remains valid if more or fewer natural frequencies are used.

1. Determine the tension parameter U . The value of U determines the nondimensional

natural frequencies Ωn and their spacing in the frequency domain as the roots of

Eq. (7). We determine U as the value which minimizes the total error EU in the ratio

of each mode with the fundamental frequency when compared with the experimentally

measured values. Specifically, U is chosen as the value which minimizes EU where

EU =
N
∑

n=2

(

Ωn

Ω1

− ωn,exp

ω1,exp

)2

(40)

and the subscript exp indicates the experimentally measured natural frequencies. This

step determines U and Ωn. For large values of the tension it is important to measure
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ωn/ω1 in vacuum, and to not approximate their values using measurements in air

which can lead to a significant error in the determination of U .

2. Determine the effective length L∗. The effective length is chosen to obtain quantitative

agreement with the dimensional natural frequencies measured in experiment. For each

mode n, an effective length can be computed using Eq. (6) and requiring ωn=ωn,exp.

We define the effective length L∗ as the mean of these values which can be expressed

as

L∗ =
1

N

N
∑

n=1

(

EIΩ2
n

µω2
n,exp

)1/4

(41)

where Ωn is the nondimensional natural frequency of the beam with tension.

3. Determine the tension force FT . The tension force is found by evaluating Eq. (5) to

yield

FT =
2EIU

L∗2
. (42)

Applying this procedure to the beam used in the experiments yields the values given in

the first row of Table II. The large value of the tension parameter, U=4538, indicates that

the beam is under very high tension which immediately suggests that a string description

may be useful. The effective length L∗ is larger than the length of the beam L. We emphasize

that the effective length is also being used to account for features of the experiment that

has not been explicitly included in the theoretical description. This includes the presence of

the ledge which the beam is attached to at its edges, the gold electrodes that are used for

the electrothermal drive, and any material inhomogeneities that may be present. Lastly, we

note that we have used a nominal value for the Young’s modulus, E=300 GPa. Using this

approach results in theoretical predictions of the first five natural frequencies of the beam

with tension that have errors of less than 0.3% when compared with the experimentally

measured values. The last row of Table II includes the value of FT that is for the string

description. In this case, ω1,exp is used to determine FT as FT =c2µ which can be expressed

as

FT = ω2
1,exp

L2

π2
µ. (43)

The theoretical prediction also requires values of ξ∗ and F0 which are used to describe

the spatially varying drive force that is applied. In the experiments, the magnitude of
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theory U L∗ FT

(µm) (µN)

beam 4538 48.0 88.6

string – – 65.0

TABLE II. Parameters required in the theoretical description that are determined using experi-

mental measurements of the natural frequencies. Equation (40) is used for the tension parameter

U , Eq. (41) is used for the effective length L∗, and Eq. (42) is used for the tension force FT . For

the string, FT is determined by Eq. (43). The geometry and material properties of the beam are

given in Table I.

the driving was set differently depending upon if the beam was in vacuum, air, or water.

The driving magnitude in the experiments was then maintained at a constant value for the

symmetric and asymmetric drive measurements. In order to account for the differences in

the symmetric and asymmetric driving of the experiments we determined values of ξ∗ and F0

for each measurement that we used in our comparison between theory and experiment. We

point out that the symmetric and asymmetric driving measurements are treated separately

to yield values of ξ∗ and F0 that we use in our theoretical predictions. For each measurement,

we have used the following steps to determine ξ∗ and F0.

1. Determine the spatial application of the driving force ξ∗. The value of ξ∗ is used to

determine the ratio of the amplitudes measured at their peak frequency. For the odd

modes, driven by the symmetric drive, ξ∗ is determined as the value which minimizes

the total error, Eamp, in the experimentally measured ratios of the amplitude of the

higher modes at their peaks to the magnitude of the first mode at its peak. All odd

modes are measured at x0 = 1/2. Therefore, for the odd modes, ξ∗ is the value that

minimizes Eamp where

Eamp =

(

|Ŵ3(x0, ω3,f)|
|Ŵ1(x0, ω1,f)|

− |Ŵ3(x0, ω3,f)|exp
|Ŵ1(x0, ω1,f)|exp

)2

+

(

|Ŵ5(x0, ω5,f)|
|Ŵ1(x0, ω1,f)|

− |Ŵ5(x0, ω5,f)|exp
|Ŵ1(x0, ω1,f)|exp

)2

(44)

Similarly, for the even mode experiments ξ∗ is the value that minimizes

Eamp =

(

|Ŵ4(x0, ω4,f)|
|Ŵ2(x0, ω2,f)|

− |Ŵ4(x0, ω4,f)|exp
|Ŵ2(x0, ω2,f)|exp

)2

(45)
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where x0=1/4 for mode 2 and x0=1/8 for mode 4.

2. Determine the magnitude of the external force F0. The value of F0 is used to set the

overall magnitude of the amplitudes of the modes at their peak frequency. Note that

is the previous step it was the ratio of the magnitudes that was determined and not

the overall magnitude. F0 is determined as the value required for the amplitude of

the first mode to agree with the experimentally measured value. For the odd mode

experiments, this can be expressed as

|Ŵ1(x0, ω1,f)| = |Ŵ1(x0, ω1,f)|exp (46)

where x0=1/2. For the even mode experiments this becomes

|Ŵ2(x0, ω2,f)| = |Ŵ2(x0, ω2,f)|exp (47)

where x0 = 1/4. Combined with the choice of ξ∗ in the previous step, this ensures

that peak magnitude of the amplitude of the first mode agrees with experimental

measurements.

theory modes ξ∗ F0 ξ∗ F0

air air water water

(nN) (nN)

beam odd 0.275 0.13 0.26 1.69

beam even 0.225 0.15 0.195 1.69

string odd 0.275 0.15 0.26 1.96

string even 0.225 0.18 0.195 1.96

TABLE III. Parameters used in the theoretical description of the external driving that are deter-

mined using experimental measurements. ξ∗ specifies the spatial region of the beam where the

driving force is applied and F0 is the magnitude of the driving force. ξ∗ and F0 depend on the

experiment as indicated by the fluid used. These parameters are determined in order from left to

right as described in Section III. Rows 1-2 are for the beam theory with tension and rows 3-4 are

for the string theory.

The values of ξ∗ and F0 are given in Table III. The first two rows shows the parameters

for the beam theory and the last two rows show the parameters for the string theory. The
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electrothermal driving is tailored individually for each experiment therefore our values of ξ∗

and F0 also vary with each experiment. The spatial extent of the applied force ξ∗ for the odd

mode experiments, for both air and water, encompasses approximately 40-55% of the beam’s

upper surface when the driving at both ends of the beam are included. This is a much larger

distance than the physical region of the beam in contact with the gold electrodes as shown

in Fig. 10. This illustrates the complexity of the electrothermal drive. Our model suggests

that to represent the electrothermal drive as a uniformly applied harmonic force requires a

much larger spatial application than what is covered by the electrodes in order to yield the

measured amplitudes of deflection. Our value of ξ∗ provides a measure of the effective spatial

extent of this driving when represented as a harmonic force with a constant magnitude. It

would be an interesting study to explore the details of the electrothermal drive in depth.

Our intention here is not to focus on the physics of one particular driving mechanism, but

rather to explore in general how a spatially varying drive affects the dynamics of a beam

immersed in a fluid over a wide range of tension.

The magnitude of F0 is more than an order of magnitude larger for the experiment

in water when compared to the experiment in air. In general, the voltages used for the

electrothermal driving are set to larger values when a more viscous and denser fluid is used

in order to achieve a desired magnitude of fluctuations.

A. The beam immersed in air

We first present a comparison of the theoretical prediction with experimental measure-

ment for the case when the beam is immersed in atmospheric air. It is important to em-

phasize that the hydrodynamic function Γ(ω), introduced in Eq. (18), assumes that the

fluid obeys the continuum Newtonian approximation for the length and time scales under

consideration3,12. However, for nanoscale devices in air this assumption can be violated20.

The important nondimensional numbers that provide insight into this issue are the Knud-

sen number Kn and the Weissenberg number Wi. The Knudsen number can be estimated

as the ratio of length scales Kn = λ/b where λ is the mean-free path of air and b is the

beam width. The Weissenberg number is the ratio of time scales Wi = τ/ω−1 where τ is

the relaxation time and ω−1 is the inverse of the oscillation frequency of interest for the

beam. Using λ ≈ 100 nm for atmospheric air yields Kn≈0.1 and using a relaxation time20
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of τ≈8× 10−10 s yields Wi≈0.1 if we use the frequency of the fifth mode of the beam. The

scaling shown in Ref.20 suggests that the continuum approximation for the hydrodynamic

function is satisfactory when Kn+Wi <∼ 1. In light of this, we expect that the continuum

description will remain valid for the range of measurements we have conducted in air.

The amplitude spectra are shown in Fig. 11 for the odd modes. The parameters used

in the beam theory are given in Table II. Figure 11(a) shows the comparison for the fun-

damental mode where the solid line is the theoretical prediction of the beam theory given

by Eq. (35) using n=1 and the open circles are the experimental measurements. The ex-

periment uses the symmetric electrothermal drive and the motion of the beam is measured

at x0 = 1/2 for all of the odd modes. We note that for air it is sufficient to represent the

amplitude spectrum using only the mode of interest, as opposed to the full mode expansion,

since the peaks of the different modes are sharp and well separated in frequency. Also in-

cluded is the prediction using the string description, given by Eq. (39) using n= 1, which

is represented as the dashed line. The dashed line is nearly indistinguishable from the solid

line indicating excellent agreement.

5.5 6 6.5 7
10-2

10-1

18 18.5 19

10-2

10-1

30.5 31 31.5 32

10-2

FIG. 11. The frequency dependent amplitude of oscillation for the odd modes when the beam is

immersed in air. Open circles are experimental measurements, the solid lines are the theoretical

prediction using beam theory given by Eq. (35) with n=1, 3, 5, and the dashed lines are the string

prediction given by Eq. (39) with n = 1, 3, 5. The beam motion is evaluated at x0 = 1/2 and a

symmetric driving force is used. See Table II for detailed information about the specific properties.

(a)-(c) Show results for modes n=1, 3, and 5 respectively.

The comparison between theory and experiment for mode 3 is shown in Fig. 11(b) where

the agreement between the beam theory and the experiment is excellent. The string ap-

proximation now shows some error in the location of the peak frequency as expected since
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the string approximation is the limit of infinite U and the actual beam has a large but finite

value of U . We would like to highlight that the peak of mode 3 for the string description

is less than the frequency of the peak for the beam theory. This is because we have set FT

for the string description to yield the experimentally measured fundamental frequency as

shown in Fig. 11(a). The spacing of the peaks in frequency space is smaller for the string

than for the beam with tension as shown in Fig. 3(b). Therefore the peak frequency of the

string is lower in Fig. 11(b) than that of the beam. In fact, for this reason, all of the string

predictions that we will show will include a shift toward lower frequencies for this reason.

However, we emphasize that the string approximation represents mode 3 quite accurately

despite this shift in frequency.

Figure 11(c) illustrates the comparison for mode 5 where the agreement with the beam

theory is good for the shape and location of the amplitude spectrum however it significantly

under predicts the magnitude. The error in the magnitude of the motion of mode 5 is

expected to be due to the coupling of the electrothermal drive to mode 5 which is stronger

than what is described by our model. The string approximation is included as the dashed

line which again is similar to the result from the beam theory with a shift in frequency.

Figure 12 shows the amplitude spectra for the even modes where (a) shows the second

mode and (b) shows the fourth mode. The agreement between the beam theory and exper-

iment is excellent. The string description is also very good, however with the addition of a

shift in frequency as expected.

The excellent agreement of the string description for the shape and magnitude of the

amplitude spectra can be made more clear using a normalized frequency as shown in Fig. 13.

The frequency has been normalized by the frequency of the amplitude peak of that mode in

fluid such that the peak occurs at frequency of unity for each curve. The amplitude spectrum

for the beam theory is the solid line and for the string theory it is the dashed line. Figure 13

shows results for modes 3-5 in panels (a)-(c), respectively. The two descriptions are nearly

indistinguishable when represented in this way. This clearly illustrates the usefulness of the

string description for beams with very high tension.

27



11.5 12 12.5 13
10-2

10-1

24 24.5 25 25.5

10-2

10-1

FIG. 12. The amplitude spectrum for the even modes when the beam is immersed in air. The

open circles are the experimental measurements, the solid curve is the theoretical prediction using

Eq. (35) and n= 2 and 4 and the dashed curve is the string prediction. (a) n= 2, measured at

x0=1/4. (b) n=4, measured at x0=1/8.
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FIG. 13. A comparison of the beam and string theory descriptions of the amplitude spectra for the

higher order modes of a beam immersed in air as a function of the normalized frequency. Solid lines

are beam theory and dashed lines are the string prediction. The frequency, for each description,

has been renormalized by its peak frequency in fluid fn,f . (a) n=3, (b) n=4, (c) n=5.

B. The beam immersed in water

Figure 14 shows the amplitude spectra of the beam when it is immersed in water. When

the beam is immersed in water there is significant reduction in the frequencies of the peaks

as well a broadening of the peaks. As a result of the peak broadening, the response from the
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different modes overlap significantly and it is not as useful to show the mode individually

using Eq. (35) but to include a representation of the full modal expansion given by Eq. (34).
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FIG. 14. The amplitude spectra for the beam when immersed in water. Open circles are experi-

mental measurements, the solid line is the theoretical prediction using Eq. (34) from beam theory,

and the dashed line is the string approximation using Eq. (38). (a) Modes 1 and 3 measured at

x0=1/2. In the theoretical prediction modes 1, 3, and 5 are included in the summation. (b) Mode

2 measured at x0=1/4. In the theoretical prediction modes 2, 4, and 6 are included in the sum-

mation.

Figure 14(a) shows the amplitude spectrum for the odd modes that are actuated by the

symmetric drive and which are measured at x0 = 1/2. The experimental results are the

open circles and the solid line is the theoretical prediction using Eq. (34) over odd modes

where the infinite series is truncated at n = 5. The drastic reduction in the frequency of

the fundamental mode is clearly evident with a value of 1.8 MHz. Mode 3 is also visible in

this plot with a peak frequency of approximately 7 MHz. The string prediction is included

as the dashed line which shows excellent agreement. Since water has a much larger density

and viscosity than that of air the spectra are dominated by the fluid properties. The small

difference in the tension of the beam and string descriptions are less important as a result.

The deviation between the theoretical predictions and the experimental measurement at

very small frequency is a result of low frequency contributions in the experiments that are

not included in our model.
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Figure 14(b) shows the amplitude spectrum for mode 2 of the beam when driven asym-

metrically and immersed in water. The experimental measurement of the beam deflection

is at x0 = 1/4. This location is near an anti-node for mode 4 and therefore it does not

contribute here. The theoretical predictions use modal expansions that include modes 2, 4,

and 6 in Eq. (34) for the beam with tension and in Eq. (38) for the string. The agreement

between the theory and experiment is very good.

IV. CONCLUSION

We have developed theoretical approaches to describe the dynamics of externally driven

nanoscale beams that are under high tension and immersed in a viscous fluid. We have

specifically focused upon doubly clamped beams that are driven externally using a spatially

varying drive force applied near the ends of the beam. Our results are valid for the entire

range of tension which includes the zero tension limit of the Euler-Bernoulli beam and the

infinite tension limit of a string. By developing our approach as a modal expansion it is valid

for the higher modes of the beam and it is also valid for measurements that are taken at any

spatial location of the beam. The string description reduces to much simpler expressions

that we anticipate will be very useful in the design of future devices.

We have compared our theoretical predictions with an experiment that electrothermally

drives the motion of a beam with high tension with a symmetric or asymmetric approach to

drive the odd and even modes, respectively. Our model yields quantitative agreement with

the experiment for the first several modes of oscillation. A more specialized model of the

electrothermal driving would be needed for an improved description of this experiment and

this would be an interesting avenue of future research.

It is important to highlight that full-scale numerical simulations of nanoscale beams

immersed in a viscous fluid remain very computationally expensive. This is particularly

true if complex driving mechanisms, such as an electrothermal drive, are included, and if

multiple modes of oscillation are desired which require a large range of spatial and temporal

scales to be resolved. The theoretical description developed here provides important insights

that will be useful for future experimental and theoretical efforts to explore these questions

and nanoscale technologies further.
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