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Sums of Squares and Sparse Semidefinite Programming∗
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Abstract. We consider two seemingly unrelated questions: the relationship between nonnegative polynomials
and sums of squares on real varieties and sparse semidefinite programming. This connection is
natural when a real variety X is defined by a quadratic square-free monomial ideal. In this case
nonnegative polynomials and sums of squares on X are also natural objects in positive semidefinite
matrix completion. We show quantitative results on the approximation of nonnegative polynomials
by sums of squares, which leads to applications in sparse semidefinite programming.
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1. Introduction. The relationship between nonnegative polynomials and sums of squares
is a cornerstone problem in real algebraic geometry. In a fundamental 1888 paper Hilbert
showed that there exist globally nonnegative polynomials that are not sums of squares of
polynomials [17]. He then showed in 1893 that a bivariate globally nonnegative polynomial is
a sum of squares of rational functions. Hilbert’s 17th problem asked to show that this was true
for any number of variables. It was solved by Artin in the 1920s using the Artin–Schreier theory
of real closed fields [9]. In the last twenty years, questions about nonnegative polynomials and
sums of squares (of polynomials) gained new prominence due to the development of sums of
squares relaxations in optimization [6]. Testing whether a nonnegative polynomial is a sum of
squares can be done with semidefinite programming, and sums of squares relaxations currently
achieve best-known results for a variety of optimization problems [2, 18].

Hilbert’s theorem on equality has been generalized to the setting of sums of squares on
real projective varieties, resulting in a clearer classification of cases [7, 8]. Another approach is
to ask the more quantitative question of whether the sums of squares polynomials are a “good
approximation” of nonnegative polynomials. It was shown in [5] that the normalized volume
of an appropriate slice of the cone of nonnegative polynomials is asymptotically larger than
that of the sums of squares polynomials if the degree is fixed and the number of variables tends
to infinity. In this paper we initiate a quantitative study of sums of squares approximation of
nonnegative polynomials on real projective varieties.

1.1. Sums of squares and matrix completion. In our setting, the main algebraic objects
are quadratic square-free monomial ideals, and the corresponding varieties are unions of coor-
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652 G. BLEKHERMAN AND K. SHU

(a) The 5-cycle graph C5.


1 1 ? ? 1
1 1 1 ? ?
? 1 1 1 ?
? ? 1 1 1
1 ? ? 1 1


(b) A partially specified matrix corresponding to
C5. ? corresponds to an unknown entry.

Figure 1.1. The partially specified matrix here represents the quadratic form
∑

i x
2
i + 2

∑
{i,j}∈E(Cn) xixj

on the variety XCn . There are many quadratic forms on Rn which restrict to the same form on XCn , for

instance,
(∑

i xi

)2
, which is a sum-of-squares completion of this form.

dinate subspaces. We now describe how these ideals and their associated varieties are related
to the positive semidefinite matrix completion problem (see [7] for more on monomial ideals
and [21] for a survey on some results in matrix completion).

Given a graph G, we consider a square-free monomial ideal IG whose monomials are
nonedges of G: IG = ⟨xixj : {i, j} ̸∈ E(G)⟩. The variety XG defined by IG is the union of
linear subspaces corresponding to maximal cliques of G. Under the standard basis, quadratic
forms on XG correspond to the partially specified symmetric matrices where the diagonal
entries and the off-diagonal entries corresponding to the edges of G are specified and the rest
of the entries are unspecified.

Example 1.1. Consider the 5-vertex cycle graph C5. We think of the edges as indexing
entries in a 5 × 5 matrix (see Figure 1.1). We associate to C5 a class of “partially specified
matrices,” where we think of entries indexed by edges as being given and the remainder as
being unknown. Our goal will typically be to complete these matrices by setting the unknown
entries so that the resulting matrix is positive semidefinite (PSD).

Nonnegative quadratics on XG correspond to partially specified matrices where all fully spec-
ified submatrices are PSD. Sum of squares quadratics on XG correspond to matrices that
can be completed to a full PSD matrix. By a result of Grone et al. in [16], all nonnegative
quadratics on XG are sum of squares if and only if G is a chordal graph.

We find a class of graphs G for which we can quantify the extent to which sums of squares
provide a good approximation of nonnegative quadratics. The class G contains chordal and
series-parallel graphs and is closed under the operations of taking clique sums and joining
with complete graphs (see section 1.3 for a precise description). The quality of approximation
of nonnegative polynomials by sums of squares for G ∈ G depends only on the size of the
smallest induced cycle of size at least 4 in G and the number of vertices of G. For n-cycles
Cn we show that, surprisingly, the quality of approximation improves sharply as n increases,
verifying an experimental observation of Drton and Yu [12].

A similar class of graphs was studied in [4] in relation with the PSD matrix completion
problem. A graph is called cycle completable if the positive semidefiniteness of fully specified
submatrices and the completability of each induced cycle to a PSD submatrix are sufficient
for the existence of a full PSD completion. It was shown in [4] that cycle-completable graphsD
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SPARSE SEMIDEFINITE PROGRAMMING 653

are precisely the graphs which can be formed by taking clique sums of complete graphs and
series-parallel graphs. This class of graphs can also be characterized by forbidding the wheel
graph and its splittings as subgraphs. Since the wheel graph is a join of a cycle graph and
the one vertex graph, the graph class G is strictly larger than cycle-completable graphs. Some
computational and graph-theoretic properties of the class G are discussed in section 5.1.

1.2. Semidefinite programming. Our results have direct application to semidefinite pro-
gramming. Consider a general semidefinite program of the form

minimize ⟨B0, X⟩
such that tr(X) = 1,

⟨B1, X⟩ = b1,

⟨B2, X⟩ = b2,

. . .

⟨Bk, X⟩ = bk,

X ⪰ 0.

In some circumstances, not all of the entries of X are needed to define the constraints or the
objective, which corresponds to cases when some of the entries of the Bℓ are zero. Explicitly,
let G be the graph where {i, j} ∈ E(G) if some Bℓ

i,j ̸= 0. If {i, j} ̸∈ E(G), then the linear
constraints do not depend on the value of Xi,j , and this sparsity should be exploitable.

It is known that if the graph G is chordal, then it is possible to decompose the semidefinite
program into smaller semidefinite programs which can be solved faster, an observation which
seems to originate from [14]. This idea is extended greatly in [24]. Reducing a problem
to one with a chordal sparsity pattern may be hard, as the problem of finding the sparsest
possible chordal graph containing a given one is NP-hard to approximate [11]. We extend this
idea to the case of possibly nonchordal graphs in our class G by showing that it is possible
to decompose a semidefinite program with a sparsity pattern corresponding a graph G ∈ G
with an error depending only on the smallest induced cycle of G and the number of vertices
in G.

In quantitative terms, for any graph G ∈ G, we can bound the multiplicative error for this
decomposition of the semidefinite program by 1 + O( n

g3
), where g is the size of the smallest

induced cycle in the graph of length at least 4, assuming some technical conditions. In partic-
ular, these results apply to the MAX-CUT semidefinite program of Goemans and Williamson
for graphs in G [15].

The value of this decomposition is that the smaller semidefinite programs produced are
frequently easier to solve and require fewer variables in total than the original semidefinite
program. The reduction in the number of variables can mean the difference between the
program being solvable and being unsolvable in practice, so our results may make a larger
class of semidefinite programs practically tractable.
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654 G. BLEKHERMAN AND K. SHU

1.3. Results in detail.

1.3.1. Definitions. Let G be a graph. We can associate to G a quadratic square-free
monomial ideal IG, where the monomials in IG correspond to the nonedges of G. The ideal
IG is a radical ideal, and the variety XG defined by IG is the union of coordinate subspaces
which correspond to maximal cliques of G. More explicitly, if we let CG be the set of all
maximal cliques of G, then

XG =
⋃

K∈CG

span(ei : i ∈ K),

where the ei are coordinate vectors and span denotes the linear span of a collection of vectors.
We let RG = R[x1, . . . , xn]/IG be the graded coordinate ring of XG.

We let P(G) be the cone of quadratic forms in R2, (the degree 2 part of RG), which are
nonnegative on XG, and we let Σ(G) be the cone of quadratic forms in R2 that are sums of
squares of linear forms. Both Σ(G) and P(G) are full-dimensional, convex, pointed cones in
R2 [6, Chapter 4].

For a form q ∈ P(G) we define εG(q) ∈ R to be the smallest real number such that

q(x) + εG(q) tr(q)(x
2
1 + · · ·+ x2n) ∈ Σ(G),

where tr(q) =
∑n

i=1 q(ei). If εG(q) is small, then there is a sum of squares polynomial which
closely approximates q(x). We let ε(G) be the largest value of εG(q) over all q ∈ P(G).
Observe that ε(G) ≥ 0 for any graph G and ε(G) = 0 if and only if G is a chordal graph.
We call ε(G) the (trace-normalized) conical distance between P(G) and Σ(G). The quantity
ε(G) appears naturally in several contexts. See section 2.3 for a more detailed discussion and
motivation for this definition.

If the conical distance between P(G) and Σ(G) is small, then the above discussion shows
that sums of squares quadratics on XG provide a good approximation of nonnegative qua-
dratics on XG. However, using conical distance as a measure of approximation quality has
its limitations. Lemma 2.4 shows that if G contains an induced four-cycle C4, then the coni-
cal distance between P(G) and Σ(G) will be large (i.e., bounded from below by a constant).
When the conical distance is large, the results in this paper will not provide strong approxima-
tion results for semidefinite programming, though other techniques may still result in useful
bounds.

To state our results, we will also require some graph-theoretic terminology. A minor of a
graph G is any graph which can be obtained from G by iteratively deleting edges or combining
the endpoints of an edge to form a single vertex. A series-parallel graph is any graph without
the 4-vertex complete graph K4 as a minor. We say that a graph S is the clique sum of
graphs G and H if S is obtained from G and H by finding isomorphic cliques in G and H
and combining G and H by identifying corresponding vertices contained in the clique. We
denote the clique sum of G and H by G ⊕ H. See section 3.1 for a precise definition. As a
note, in much of the literature, when taking a clique sum of two graphs, it may be allowed to
delete some of the edges contained in the clique. In this paper, we follow the convention in
[20], which uses the term clique identification where we use clique sum.

The cone over a graph G is obtained by introducing a single new vertex to G and then
adding edges from that new vertex to every vertex in G. We denote the cone over G by Ĝ.
See section 3.2 for a more detailed definition.D
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SPARSE SEMIDEFINITE PROGRAMMING 655

1.3.2. Main results. Our main result is a class of graphs for which we can compute the
conical distance exactly. Let G be the smallest collection of graphs satisfying the following
three conditions: (1) Series-parallel and chordal graphs are in G, (2) any clique sum of two
graphs in G is in G, and (3) the cone over any graph in G is in G.

Theorem 1.2 (Theorem 4.10). Let G ∈ G. Then

ε(G) =
1

g

 1

cos
(
π
g

) − 1

 ,

where g is the length of the smallest induced cycle of G of length at least 4.

In particular, this gives an exact computation for the conical distance of the wheel graph
Wn = Ĉn so the set G is strictly larger than the cycle-completable graphs.

We prove this result by computing the conical distance in three key cases.
We first show that ε(G) behaves well under the clique sum and cone operations. These

are natural operations to consider because they preserve the class of chordal graphs, which
are the only cases where ε(G) = 0. This results in the following two theorems.

Theorem 1.3 (Theorem 3.1). ε(G⊕H) = max{ε(G), ε(H)}.

Theorem 1.4 (Theorem 3.6). ε(Ĝ) = ε(G).

Finally, we compute ε(G) when G is an n-cycle Cn.

Theorem 1.5 (Theorem 4.3). For n > 3,

ε(Cn) =
1

n

(
1

cos
(
π
n

) − 1

)
.

Theorem 4.3 implies that the ratio of the volumes between appropriately normalized slices of
Σ(Cn) and P(Cn) approaches 1 as n goes to infinity, verifying an experimental observation of
Drton and Yu [12].

We now discuss applications of our results to semidefinite programming. Unlike the usual
intuition for nonnegative polynomials and sums of squares, the cone P(G) is simpler algo-
rithmically in some cases, as it corresponds to partially specified matrices, all of whose fully
specified principal submatrices are PSD. In semidefinite programming problems we often en-
counter the cone Σ(G), and we would like to replace Σ(G) with the simpler cone P(G). This
leads to replacement of the global positive semidefiniteness constraint with a series of smaller
constraints, which is very advantageous in practice. Our bounds on the quality of approxima-
tion of P(G) by Σ(G) allows us to show that for our class G this substitution has a controlled
cost.
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656 G. BLEKHERMAN AND K. SHU

More specifically, consider the conical program:

minimize ⟨B0, X⟩
such that tr(X) = 1,

⟨B1, X⟩ = b1,

. . .

⟨Bk, X⟩ = bk,

X ∈ K.

When K = Σ(G), we denote the value of this program as α, and when K = P(G), we denote
the value by α′.

Under some mild technical conditions, we obtain the following bound.

Theorem 1.6 (Theorem 5.1).

α′ ≤ α ≤ 1

1 + nε(G)
α′ +

ε(G)

1 + nε(G)
tr(B0).

This is especially effective for a rescaled version of the Goemans–Williamson MAX-CUT
semidefinite program, as several of these technical assumptions are satisfied automatically.
Thus we can extend the ideas in [24] to nonchordal graphs.

Finally, we give some graph-theoretic results about our graph class G, in particular showing
that it is recognizable in polynomial time and that the number of maximal cliques in a graph
G ∈ G is a polynomial in the size of G in section 5.1.

2. Definitions and problem setup.

2.1. Graphs and partially specified matrices. Let G = (V,E) be an undirected graph on
n vertices. We use V (G) and E(G) to denote the set of vertices and edges of G, respectively.

We associate to G a vector space, Sym(G), which we think of as assigning a real number
to each edge and each vertex of G

Sym(G) = RE(G)+V (G).

Choosing an ordering of the vertices of G identifies V (G) with [n] so that we can regard
each edge in G as an unordered pair of integers. Under this identification, the edges of G
index off-diagonal entries in a symmetric n × n matrix, and the vertices index the diagonal
entries.

Example 2.1. Let Kn be the n-vertex complete graph on the vertex set [n]. Sym(Kn) is
isomorphic to the space of symmetric n× n matrices over R. We will use Sym(Kn) to denote
the space of symmetric matrices throughout the paper.

For any G with n vertices, there is a linear projection,

πG : Sym(Kn) → Sym(G),

given by sending a matrix M to the vector of entries corresponding to the edges of G:

πG(M) = (Mij){i,j}∈E(G)+V (G).D
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SPARSE SEMIDEFINITE PROGRAMMING 657

We can therefore think of Sym(G) as a collection of partially specified matrices, where we
start with a matrix M and then “forget” the entries of M that do not correspond to edges of
G. Note that symmetric matrices in Sym(Kn) correspond naturally to quadratic forms over
the variety Rn = XKn , and similarly Sym(G) corresponds naturally to the space of quadratic
forms over the variety XG. The projection πG on the level of quadratic forms is induced by
the embedding of XG inside XKn .

If A is a partially specified matrix in Sym(G), then we say that a matrix M ∈ π−1
G (A) is

a completion of A, since it is a fully specified matrix which agrees with A on all entries in A
which are specified.

More generally, if H is a subgraph of G, then we also have a projection,

πH : Sym(G) → Sym(H),

which additionally forgets the entries of a partially specified matrix which correspond to edges
not in H. Although technically this notation does not distinguish between the projection from
Sym(Kn) to Sym(H) and the projection from Sym(G) to Sym(H), this distinction will not be
relevant in this paper, so we will abuse notation and write πH without specifying the domain.

Suppose that K ⊆ G is a clique contained in G; then in this case, if A is a partially
specified matrix in Sym(G), then πK(A) will be a fully specified principle submatrix of A.

2.2. Partially positive and partially sums of squares matrices. Inside the space of sym-
metric matrices, Sym(Kn), we have the subset of PSD matrices. We will denote these by
Σ(Kn) = P(Kn), as they correspond naturally to the sum of squares (equivalently nonneg-
ative) quadratic forms over Rn. Now, we can define the subset of Sym(G), which are the
projections of PSD matrices in Sym(Kn). Precisely,

Σ(G) = πG(Σ(Kn)).

Equivalently, we can think of Σ(G) as being those partially specified matrices that can be
completed to a PSD matrix. We call these partially sums of squares matrices. These also
correspond to quadratic forms on XG which are sums of squares.

Now, we note that ifM is a PSD matrix which completes A, then any principal submatrix
of M is also PSD, so for any subgraph H of G, πH(A) is PSD completable. In particular, if K
is a clique contained in G, the fully specified submatrix πK(M) = πK(A) is PSD. Therefore we
see that if A ∈ Σ(G) is PSD completable andK is a clique contained inG, then πK(A) ∈ Σ(K).
In particular πK(A) is a fully specified PSD matrix.

Consider the convex cone

P(G) = {A ∈ Sym(G) : πC(A) ∈ P(C) for all C ∈ CG}.

These are the matrices in Sym(G) such that all of their fully specified principal submatrices
are PSD, and these correspond to nonnegative quadratic forms on XG. We will refer to a
partially specified matrix in P(G) as a partially positive matrix. It is clear that Σ(G) ⊆ P(G).

2.3. Conical distance. Finding a way to quantify the difference between P(G) and Σ(G)
requires careful consideration. Part of the difficulty lies in the fact that these two convex setsD
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658 G. BLEKHERMAN AND K. SHU

are not compact, which is a requirement of some typical notions of distance in convex geometry.
In order to make these cones compact, we choose a hyperplane so that the intersection of these
cones with that hyperplane is compact and then use one of these more common notions of
convex analysis. Fortunately, in this case, it is natural to consider the hyperplane of trace-1
matrices and identify a multiple of the identity matrix with the origin.

Let H be the hyperplane in Sym(G) given by H = {A ∈ Sym(G) : tr(A) = 1} (this is well
defined, since the ideal IG is square-free). Let Σ̄(G) and P̄(G) be the intersections of Σ(G)
and P(G) with H, respectively. We define the conical distance between P(G) and Σ(G) to be

ε(G) = min
ε

{ε for all M ∈ P̄(G) M + εIn ∈ Σ(G)}.

It is clear that if ε ≥ ε(G), then for any A ∈ P̄(G), A+ εIn ∈ Σ(G).
This definition of conical distance has connections to several familiar notions. We will

make particular note of the connection between conical distance and the notion of expansion
ratio and the connection between conical distance and the eigenvalues of completions of partial
positive matrices.

2.3.1. Expansion ratio. We can consider the expansion ratio α(G) of Σ̄(G) and P̄(G)
with respect to the scaled identity matrix 1

nIn, which is a standard way of measuring distance
between compact convex sets [1]. The expansion ratio is defined to be the smallest k > 0 such
that k(Σ̄(G)− 1

nIn) contains P̄(G)− 1
nIn.

Lemma 2.2. α(G) = 1 + nε(G).

Proof. Let k = 1 + nε(G), and consider any M ∈ P̄(G). We see that

1

k

(
M − 1

n
In

)
+

1

n
In =

1

k

(
M + (k − 1)

1

n
In

)
=

1

k
(M + ε(G)In),

where M + ε(G)In ∈ Σ(G) by definition of ε(G). We also see that tr( 1k (M + ε(G)In)) = 1.
Therefore if M ∈ P̄(G), there is an element of Σ̄(G), namely, X = 1

k (M + ε(G)In) so that
k(X − 1

nIn) =M − 1
nIn, i.e., k(Σ̄(G)−

1
nIn) ⊇ P̄(G). Thus, α(G) ≤ 1 + nε(G).

The other bound α(G) ≥ 1 + nε(G) is obtained in a similar way.

2.3.2. Eigenvalues. We can also interpret ε(G) in terms of the eigenvalues of the partially
positive matrices.

Lemma 2.3. If A ∈ P̄(G), then A can be completed to a matrix M whose minimal eigen-
value is at least −ε(G).

Proof. By definition, ε(G) is the smallest ε so that for every A ∈ P̄(G), A + εIn is PSD
completable. If M is a PSD completion of A + εIn, then M − εIn is a completion of A
with minimal eigenvalue at least −ε. Similarly, if M is a completion of A with a minimum
eigenvalue λmin, then M − λminIn would be a PSD completion for A− λminIn. Thus,

ε(G) = min
A∈P̄(G)

max
M∈π−1

G (A)
−λmin(M).
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In other words, computing the conical distance between this pair of cones is equivalent
to finding completions of partially positive matrices with minimum eigenvalues which are as
large as possible.

2.4. Monotonicity. One simple observation to make about conical distance is that it is
monotonic increasing in the induced subgraph ordering, as indicated by the following lemma.

Lemma 2.4. If H is an induced subgraph of G, then ε(H) ≤ ε(G).

The remainder of this paper will be devoted to computing this distance for some classes
of graphs.

3. Constructions on graphs. We will show that the two operations of clique sums and
joins of a graph with cliques act naturally on the conical distance of a graph.

3.1. Clique sums. Suppose that G and H are graphs and that, for some n, there is a
complete graph Kn and injective homomorphisms ϕ : Kn → G and ψ : Kn → H.

We define the clique sum of G and H (with respect to ϕ and ψ) to be the graph S
obtained by taking the disjoint union of the graphs G and H and then identifying ϕ(x) with
ψ(x) for each x ∈ Kn. This is the categorical pushforward of the two morphisms ϕ and ψ.
For notational convenience, we will suppress the dependence of the clique sum on ϕ and ψ
and denote the clique sum of two graphs as S = G⊕H.

We can consider G and H to be induced subgraphs of G⊕H so that the subgraph induced
by V (G) ∩ V (H) is a clique. From Lemma 2.4, it is clear that ε(G⊕H) ≥ max{ε(G), ε(H)}.
In fact, this inequality is an equality.

Theorem 3.1. ε(G⊕H) = max{ε(G), ε(H)}.
For the proof, first recall that an n × n matrix M is PSD if and only if there exist vectors
v1, v2, . . . , vn ∈ Rn such that M is the Gram matrix of v1, v2, . . . , vn, i.e., Mij = ⟨vi, vj⟩ for all
i, j ≤ n. From this fact, it is clear that the following lemma holds.

Lemma 3.2. If A ∈ Sym(G), then A ∈ Σ(G) if and only if there are vectors v1, . . . , vn ∈ Rn

so that for any {i, j} ∈ V (G) + E(G), ⟨vi, vj⟩ = Aij.

We call such a collection of vectors a vector arrangement inducing A.

Lemma 3.3. A ∈ Σ(G⊕H) if and only if πG(A) ∈ Σ(G) and πH(A) ∈ Σ(H).

Proof. If A ∈ Σ(G ⊕ H), then it follows immediately that πG(A) ∈ Σ(G) and πH(A) ∈
Σ(H).

Now, suppose that πG(A) ∈ Σ(G) and πH(A) ∈ Σ(H). We wish to show that A ∈
Σ(G ⊕ H). The idea will be to “glue” together a vector arrangement inducing πG(A) with
one inducing πH(A) using an appropriate orthogonal transformation.

For the sake of concreteness, assume that the vertices of G⊕H are V (G⊕H) = [n], that
the vertices of G are V (G) = [k], and finally that V (H) = {ℓ, ℓ+1, . . . , n}, where ℓ ≤ k. This
implies that the vertices in V (G) ∩ V (H) are {ℓ, . . . , k}.

Let v1, . . . , vk ∈ Rk be a vector arrangement inducing πG(A) and wℓ, . . . , wn ∈ Rn−ℓ+1

be a vector arrangement inducing πH(A). By considering Rk and Rn−ℓ+1 subspaces of Rn,
we can also take v1, . . . , vk and wℓ, . . . , wn to all lie in Rn. We wish to produce a vector
arrangement inducing A. If i, j ∈ V (G)∩ V (H), then {i, j} ∈ E(G⊕H) because we assumedD
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that V (G) ∩ V (H) induced a clique in our definition of the clique sum. Therefore, from the
definition of these vector arrangements, for each i, j ∈ V (G) ∩ V (H),

⟨vi, vj⟩ = Ai,j = ⟨wi, wj⟩.

Consider the subsets of the vectors S1 = {vi : i ∈ V (G) ∩ V (H)} and S2 = {wi :
V (G)∩ V (H)}. Our previous observation is equivalent to the fact that πG∩H(A) is the Gram
matrix of both S1 and S2. In particular, the Gram matrices of S1 and S2 are equal.

This implies that there exists an orthogonal transformation T ∈ O(n) so that Twi = vi
for each i ∈ V (G) ∩ V (H). This is shown, for example, in [19, Chapter 7, Theorem 7.3.11].

Consider the collection of vectors ui, where ui = vi if i ≤ k and ui = Twi if i ≥ ℓ (which is
well defined, as Twi = vi when ℓ ≤ i ≤ k). We claim that the ui induces A. This follows from
the fact that each edge e ∈ E(G⊕H) is either an edge of G or an edge of H. If e = {i, j} is
an edge of G, then

⟨ui, uj⟩ = ⟨vi, vj⟩ = Ai,j .

If e is an edge of H, then by orthogonality of T ,

⟨ui, uj⟩ = ⟨Twi, Twj⟩ = ⟨wi, wj⟩ = Ai,j .

In either case, we see that ⟨ui, uj⟩ = Ai,j , as desired.

Proof of Theorem 3.1. Let A be in P̄(G ⊕ H), and consider the matrix A + max{ε(G),
ε(H)}In. Consider the projection

πG(A+max{ε(G), ε(H)}In) = πG(A) + max{ε(G), ε(H)}I|V (G)|.

Note that πG(A) is in P(G), so from the definition of ε(G),

πG(A) + ε(G) tr(πG(A))I|V (G)| ∈ Σ(G).

Further note that tr(πG(A)) ≤ 1, since tr(A) = 1, and the diagonal entries of A are nonnega-
tive. Combining these two facts, we can see that

πG(A) + ε(G)I|V (G)| ∈ Σ(G),

and therefore that πG(A) + max{ε(G), ε(H)}I|V (G)| ∈ Σ(G).
A similar argument shows that πH(A + max{ε(G), ε(H)}In) lies in Σ(H). Thus, by our

previous lemma, A+max{ε(G), ε(H)}In is in Σ(G⊕H).

Remark 3.4. A graph G is chordal if and only if G is the result of taking repeated clique
sums of complete graphs (see, say, [13]), and for a complete graph K, it is clear that the
conical distance, ε(K), is 0, since Σ(Kn) = P(Kn).

Thus, this immediately implies the known result that for any chordal graph G, ε(G) = 0.
This, combined with the observation that any cycle Cn of size at least 4 has ε(Cn) > 0, implies
that chordal graphs are the only graphs for which P(G) = Σ(G). Thus, we obtain another
proof of the following corollary.

Corollary 3.5. ε(G) = 0 if and only if G is chordal.D
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3.2. Joins of graphs with cliques. Another common construction in graph theory is the
join of two graphs, G and H. We define G ∧H by taking its vertex and edge sets to be

V (G ∧H) = V (G) ⊔ V (H),

E(G ∧H) = E(G) ∪ E(H) ∪ {{i, j} : i ∈ V (G), j ∈ V (H)}.

If H is a one vertex graph and G is arbitrary, then define the cone over G to be Ĝ = G∧H.
That is, Ĝ is the graph consisting of G, together with a new vertex, which we will denote by
v∗, which is connected to all of the vertices in G. If G is chordal, then Ĝ will also be chordal.

For an arbitrary graph G, we see that Ĝ will have the same conical distance as G.

Theorem 3.6. ε(Ĝ) = ε(G).

Proof. The inequality that ε(Ĝ) ≥ ε(G) follows from Lemma 2.4, since G is an induced
subgraph of Ĝ.

A partial matrix in Sym(Ĝ) can be regarded as a matrix in Sym(G), together with an
appended row and column corresponding to the new vertex that is added. That is, a partial
matrix in Sym(Ĝ) can be written as

A =

(
Q c
c⊺ b

)
,

where Q ∈ Sym(G), c ∈ Rn, and b ∈ R.
Now, suppose that we have A, which is in P(Ĝ). We consider two cases: either b = 0 or

b > 0.
If b = 0, then consider a 2×2 minor corresponding to an edge of the form {v∗, v} for some

v ∈ V (G). We see that we will obtain a submatrix of the form(
Qvv cv
cv 0

)
.

Since A ∈ P(G), all of the minors corresponding to edges must be PSD, and so we see that
cv = 0 for all v ∈ V (G). This implies that c = 0, and in fact,

A =

(
Q 0
0 0

)
.

Thus, we see that

A+ ε(G)In =

(
Q+ ε(G)In−1 0

0 ε(G)

)
.

Clearly, because there is a PSD completion of Q + ε(G)In, we can obtain a PSD completion
of A+ ε(G)In ∈ Σ(Ĝ).

Now, we consider the case b > 0, where we will need an additional lemma. In this case, we
will denote by A/v∗ the partially specified matrix defined by Q− b−1πG(cc

⊺) ∈ Sym(G). We
call this the Schur complement of the partially specified matrix A with respect to the 1 × 1
submatrix corresponding to v∗.D
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Lemma 3.7. If A is in P(Ĝ) and b ̸= 0, then A/v∗ ∈ P(G).

This lemma states that every point in P(Ĝ) decomposes into the sum of a rank 1 PSD-
completable partial matrix and a partial matrix in P(G).

Proof of Lemma 3.7. This follows from the fact that Schur complements preserve the class
of PSD matrices (see [10, A.5.5]).

To show that A/v∗ is in P(G), we need to show that for each clique K ⊆ G, πK(A/v∗) is
PSD.

Given a clique K in G, we can consider the subgraph of Ĝ induced by V (K)∪{v∗}, which
will be a clique in Ĝ, since v∗ is connected to all vertices of G. Because A ∈ P(Ĝ), we have
that πK∪{v∗}(A) is PSD.

Now, we see that

πK∪{v∗}(A) =

(
πK(Q) πK(c)
πK(c) b

)
,

where πK(c) is the projection of c onto the subspace of Rn corresponding to the vertices in
K. The Schur complement of this fully specified matrix is then

πK∪{v∗}(A)/v
∗ = πK(Q)− b−1πK(c)πK(c)⊺.

Because πK∪{v∗}(A) is PSD, its Schur complement is PSD.
Compare this to πK(A/v∗), which is

πK(A/v∗) = πK(Q− b−1cc⊺) = πK(Q)− b−1πK(cc⊺).

Note that the entries of πK(cc⊺) satisfy

πK(cc⊺)ij = cicj = (πK(c)i)(πK(c)j)

so that πK(cc⊺) = πK(c)πK(c)⊺.
We then see that

πK(Q− b−1cc⊺) = πK(Q)− b−1πK(c)πK(c)⊺

is the Schur complement of the fully specified matrix πK∪{v∗}(A). Because the Schur comple-
ment of a fully specified PSD matrix is PSD, πK(A/v∗) is therefore PSD for every clique K
of G, as desired.

Proof of Theorem 3.6 continued. Now, we see that if A ∈ P(Ĝ), then A is of the form

A =

(
A/v∗ 0
0 0

)
+ πĜ

(
b−1cc⊺ c
c⊺ b

)
=

(
A/v∗ 0
0 0

)
+ πĜ

((
c√
b√
b

)(
c⊺√
b

√
b
))

.

Since A/v∗ ∈ P(G) and tr(A/v∗) ≤ 1, we obtain that A/v∗ + ε(G)In−1 ∈ Σ(G):

A+ ε(G)In =

(
A/v∗ + ε(G)In−1 0

0 0

)
+ πĜ

((
c√
b√
b

)(
c⊺√
b

√
b
))

+

(
0 0
0 ε(G)

)
.

This is the sum of three matrices which are each in Σ(Ĝ), and so the sum is in Σ(Ĝ), as
desired.D
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Remark 3.8. This proof shows something a little stronger than the statement about conical
distance: it in fact shows that every element A ∈ P(Ĝ) can be decomposed as A = B + C,
where B,C ∈ P(Ĝ), B can be completed to a rank 1 PSD matrix, and C satisfies Cv∗v∗ = 0.

Iterating the previous lemma k times gives us the following theorem.

Theorem 3.9. Let Kk be a complete graph of size k. Then ε(G ∧Kk) = ε(G).

4. Rank and an exact conical distance for cycle graphs.

4.1. Rank of an optimal completion. Define the conical distance at a positive partially
specified matrix A ∈ P(G) as

εG(A) = min{ε : A+ εI ∈ Σ(G)}.

First notice that for fixed A, this can be computed in terms of the following semidefinite
program:

εG(A) = min ε

such that for all {i, j} ∈ E(G) : (M − εIn)i,j = Ai,j ,

M ⪰ 0.

We see that the feasible set is defined only by equations and the positive semidefiniteness
constraints and moreover that by choosing ε large enough, there will be positive definite
feasible points. By Slater’s condition ([6, Theorem 2.15]), we obtain strong duality:

εG(A) = max
∑

{i,j}∈E(G)

Ai,jYi,j

such that for all {i, j} ̸∈ E(G) : Yi,j = 0,

tr(Y ) = 1,

Y ⪰ 0.

The convex cone associated with the feasible set of this program,

Σ∗(G) = {Y : Y ⪰ 0, for all i, j ̸∈ E(G) : Yi,j = 0},

is the dual cone to Σ(G).
Now, if M∗ is the PSD completion of A + εG(A)In obtaining the optimum in the primal

semidefinite program and Y ∗ optimizes the dual semidefinite program, then by complementary
slackness,

Y ∗M∗ = 0.

Since M∗ is PSD, all nonzero eigenvectors of M∗ must lie in the kernel of Y ∗, and in
particular, rank(Y ∗) + rank(M∗) ≤ n.

We note that [7] gives a bound on the rank of any extreme point in the dual cone Σ∗(G).
We restate this theorem here. Define the chordal girth of G to be the number of vertices in
the smallest induced cycle in G with at least 4 vertices or ∞ if G is chordal.D
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Theorem 4.1. If G is a graph whose chordal girth is g and Y is an extreme point of the
dual cone Σ∗(G) so that Y is not in P∗(G), then the rank of Y is at least g − 2.

Applying this theorem directly to M∗ and Y ∗ in the previous example gives the following
theorem.

Theorem 4.2. Let g be the chordal girth of G, suppose that εG(A) > 0, and let M∗ be a
PSD completion of A+ εG(A)In. Then the rank of M∗ is at most n− g + 2.

In particular, if G is a cycle, we see that this rank is at most 2, which will be useful in
one of our next results.

4.2. Exact conical distance for the cycle. The simplest kind of graphs for which we
can consider the conical distance question, besides the chordal graphs, is the family of cycle
graphs. In fact, we can compute the conical distance for these graphs exactly.

Theorem 4.3. For n > 3, ε(Cn) =
1
n(

1
cos(π

n
) − 1).

Before we prove the main theorem in this section, we will need some lemmas.
First, we show that matrices in P(Cn) which maximize conical distance to Σ(Cn) can be

reduced to a certain normal form.

Lemma 4.4. The function εCn(A) is maximized in P̄(Cn) by a partially positive matrix A
such that every fully specified 2 × 2 minor of A is singular, and A has exactly one negative
entry.

Proof. First, we note that εCn(A) is concave as a function of A, since if A and Q are in
P̄(Cn) and α, β ≥ 0 are such that α+ β = 1, then

αA+ βQ+ (αεCn(A) + βεCn(Q))In = α(A+ εCn(A)In) + β(Q+ εCn(Q)In)

is the sum of two PSD completable matrices so that it is PSD completable. Thus this function
is maximized at an extreme point.

Note that for n > 3, the only cliques in Cn are the edges, so we only need to check that
all of the 2× 2 fully specified submatrices are PSD.

Consider any extreme ray A in P(Cn). For each edge e = {i, j} ∈ E(G), consider
det(πe(A)). If det(πe(A)) > 0, then we see that if we replace Ai,j by Ai,j ± δ for δ small
enough, then the determinant of this block will still be positive and the 2×2 block of A would
be PSD, and because no other clique in G contains the edge {i, j}, we see that A will also
remain inside P. This contradicts the fact that A is an extreme ray. Thus, for each edge
e = {i, j}, det(πe(A)) = 0.

That is, for each i, j so that {i, j} ∈ E(Cn), AiiAjj − A2
ij = 0. Rewriting, this implies

that Aij = ±
√
AiiAjj . That is, the diagonal entries of an extreme point will determine the

off-diagonal entries up to a choice of signs.
Next, we note that if D is a diagonal matrix where all of the diagonal entries are either

1 or −1, then D is unitary, and hence, conjugating a matrix by D preserves its eigenvalues.
Given A, an extreme ray in P(Cn), we can conjugate it by an appropriate diagonal matrix D
so that A has a minimal number of negative entries. There are two cases: either A can be
conjugated so that all of its entries are nonnegative or so that exactly one pair of entries isD
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negative. If A can be conjugated so that all of its entries are nonnegative, then, in fact, it is
the projection of a rank 1 PSD matrix, and so it is PSD completable. The only important
case then is the case when A has exactly one pair of negative entries, and we will call this the
normal form of an extreme ray A.

Example 4.5. Consider the case of extreme points in P(C4). We note that since each fully
specified submatrix is rank 1, the form of such a partially matrix is

m11 ±√
m11m22 ? ±√

m11m44

±√
m11m22 m22 ±√

m22m44 ?
? ±√

m22m33 m33 ±√
m33m44

±√
m11m44 ? ±√

m33m44 m44

 .

If we conjugate by an appropriate ±1 diagonal matrix, we can bring this into the form

D


m11 ±√

m11m22 ? ±√
m11m44

±√
m11m22 m22 ±√

m22m44 ?
? ±√

m22m33 m33 ±√
m33m44

±√
m11m44 ? ±√

m33m44 m44

D

=


m11

√
m11m22 ? ±√

m11m44√
m11m22 m22

√
m22m44 ?

?
√
m22m33 m33

√
m33m44

±√
m11m44 ?

√
m33m44 m44

 .

Here, D is the diagonal matrix,

D =


±1 0 0 0
0 ±1 0 0
0 0 ±1 0
0 0 0 ±1

 .

If the (1, 4) entry is positive, then it is clear that the resulting partial matrix is completable
to a rank 1 PSD matrix.

We will identify n + 1 with 1 so that we can write expressions such as
∑n

i=1Aii+1, and
this will mean that we sum up all of the off-diagonal entries in A.

Also, let arccos(x) : [−1, 1] → [0, π] be the inverse of the cos(θ) function defined on this
interval.

We can now show a necessary and sufficient condition for A ∈ Sym(Cn) to be completable
to a rank 2 PSD matrix.

Lemma 4.6. If A ∈ P(Cn), then A has a rank 2 PSD completion if and only if there are
some ai ∈ {1,−1} so that

n∑
i=1

ai arccos

(
Aii+1√

Aii
√
Ai+1i+1

)
= 2kπ(*)

for some integer k.D
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Proof. We make a sequence of reductions to prove the result.
In terms of vector arrangements, A is completable to a PSD rank 2 matrix if and only if

there are vectors v1, . . . , vn ∈ R2 so that for each i

∥vi∥2 = Aii,

⟨vi, vi+1⟩ = Aii+1.

For the sake of notation, let Āi =
Aii+1√

Aii

√
Ai+1i+1

. If we renormalize these equations to make

the vi lie on the unit circle, we can equivalently ask for vi ∈ R2 so that

∥vi∥2 = 1,

⟨vi, vi+1⟩ = Āi.

In this case, we will think of ai arccos(Āi) as the angle between vi and vi+1; the equation is
equivalent to the condition that the sum of the angles between the vectors on the circle is a
multiple of 2π.

Formally, for each vi ∈ R2 so that ⟨vi, vi⟩ = 1, we can express vi in polar coordinates.
This implies that there are some θi so that

vi = (cos(θi), sin(θi)).

In this case, these equations reduce to the equation

cos(θi+1 − θi) = Āi.

To see the necessity of (∗), note that if there exist θi satisfying the previous equation, then
using some basic facts about the cos function, there exist some ai ∈ {−1, 1} and ℓi ∈ Z so
that

θi+1 − θi = ai arccos(Āi) + 2πℓi.

Letting k = −
∑n

i=1 ℓi, this implies that

n∑
i=1

(θi+1 − θi) =

n∑
i=1

(ai arccos(Āi) + 2πℓi)

=

n∑
i=1

ai arccos

(
Aii+1√

Aii
√
Ai+1i+1

)
− 2kπ

= 0,

which clearly implies (∗).
To see the sufficiency of (∗), suppose that there exist ai and some k so that (∗) holds.

Then, set θ1 = 0, and for each 1 ≤ i < n, set

θi+1 = θi + ai arccos(Āi).D
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Then, clearly, for i < n, we have the desired result that

cos(θi+1 − θi) = cos(ai arccos(Āi)) = Āi,

and for i = n, we see that

θn =
n−1∑
i=1

ai arccos(Āi)

=
n−1∑
i=1

ai arccos

(
Aii+1√

Aii
√
Ai+1i+1

)
= 2kπ − an arccos

(
A1n√

A11

√
Ann

)
.

Therefore,

cos(θ1 − θn) = cos

(
2kπ − an arccos

(
A1n√

A11

√
Ann

))
= Ān,

as we desired.

The previous lemma has particular application to a partial matrix in normal form.

Lemma 4.7. If A ∈ P(Cn) and A is in normal form, then A + εIn has a rank 2 PSD
completion if

n∑
i=1

arccos

( √
AiiAi+1i+1√

Aii + ε
√
Ai+1i+1 + ε

)
= π.

Proof. This follows from Lemma 4.6: after considering the sum

n−1∑
i=1

arccos

(
Aii+1√

Aii + ε
√
Ai+1i+1 + ε

)
− arccos

(
A1n√

A11 + ε
√
Ann + ε

)

=

n−1∑
i=1

arccos

( √
AiiAi+1i+1√

Aii + ε
√
Ai+1i+1 + ε

)
− arccos

(
−

√
A11Ann√

A11 + ε
√
Ann + ε

)

=

n∑
i=1

arccos

( √
AiiAi+1i+1√

Aii + ε
√
Ai+1i+1 + ε

)
− π

= 0.

where we have used the equation arccos(−x) = π − arccos(x) and the hypothesis of the
lemma.

The last, somewhat mysterious fact we will need is the following lemma.

Lemma 4.8. For any ε ≥ 0, the function fε : R2
+ → R given by

fε(x, y) = arccos

( √
xy

√
x+ ε

√
y + ε

)
is convex.D
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Proof. We prove this by computing the Hessian matrix of fε:

H(fε) =

(
∂2

∂x2 fε
∂2

∂x∂yfε
∂2

∂x∂yfε
∂2

∂y2
fε

)
.

This evaluates to
ε2y2(ε2+ε(5x+y)+x(4x+3y))

4(ε+x)7/2(ε+y)3/2(xy)3/2
(

ε(ε+x+y)
(ε+x)(ε+y)

)3/2 − ε2

4(ε+x)3/2(ε+y)3/2
√
xy

(
ε(ε+x+y)
(ε+x)(ε+y)

)3/2

− ε2

4(ε+x)3/2(ε+y)3/2
√
xy

(
ε(ε+x+y)
(ε+x)(ε+y)

)3/2

ε2x2(ε2+ε(x+5y)+y(3x+4y))

4(ε+x)3/2(ε+y)7/2(xy)3/2
(

ε(ε+x+y)
(ε+x)(ε+y)

)3/2

 .

Note that if ε, x, y ≥ 0, then the diagonal entries of this matrix are nonnegative.
Consider the Hessian determinant of this function if x, y > 0:

det(H(fε)) =
ε(ε(x+ y) + 3xy)

4xy(ε+ x)2(ε+ y)2(ε+ x+ y)
.

This is also nonnegative on this domain.
These two facts about H(fε) are enough to determine that it is PSD, and so f is convex.

Proof of Theorem 4.3. Fix some A in normal form. We wish to show that there is some
ε ≤ 1

n(
1

cos(π
n
) − 1) so that A + εIn is completable to a PSD matrix with rank 2. We want to

apply the condition in Lemma 4.7. Consider the function

g(ε) =
n∑

i=1

arccos

( √
AiiAi+1i+1√

Aii + ε
√
Ai+1i+1 + ε

)
.

Lemma 4.7 implies if ε is such that g(ε) = π, then in fact there is a rank 2 PSD completion
of A+ εIn. We will show that g(0) = 0 and g( 1n(

1
cos(π

n
) − 1)) ≥ π so that by the intermediate

value theorem, there must be ε ∈ [0, 1n(
1

cos(π
n
) − 1)] so that g(ε) = π, yielding the result.

First note that if ε = 0, then

n∑
i=1

arccos

( √
AiiAi+1i+1√

Aii + ε
√
Ai+1i+1 + ε

)
=

n∑
i=1

arccos(1) = 0 < π.

Now, we want to show that if ε = 1
n(

1
cos(π

n
) − 1), then g(ε) ≥ π. We use Lemma 4.8 and

the fact that tr(A) = 1 to see that

g(ε) = n

n∑
i=1

1

n
fε (Aii, Ai+1i+1)

≥ nfε

(
1

n

n∑
i=1

Aii,
1

n

n∑
i=1

Aii

)

= nfε

(
1

n
,
1

n

)
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= n arccos

(
1

1 + nε

)
= n arccos

(
cos
(π
n

))
= π,

as desired.
Thus, there is some ε ≤ 1

n(
1

cos(π
n
) − 1) satisfying the condition of Lemma 4.7.

To see that this value of ε is in fact attained for some A, we can use the matrix A, where
Aii =

1
n for each i, A12 = − 1

n , and each other specified off-diagonal entry is 1
n . This matrix

can be verified to have εG(A) =
1
n(

1
cos(π

n
) − 1) using the cycle conditions found in [3].

We note that asymptotically 1
n(

1
cos(π

n
) − 1) is O( 1

n3 ).

4.3. Relative volumes of nonnegative and sums of squares cones for cycles. It is worth
noting that this bound on the conical distance is strong enough to give us a bound on the
relative volumes of slices P̄(Cn) and Σ̄(Cn). By using the connection of conical distance with
expansion ratio we see that(

Σ̄(Cn)−
1

n
In

)
⊆
(
P̄(Cn)−

1

n
In

)
⊆ (1 + nε(Cn))

(
Σ̄(Cn)−

1

n
In

)
.

Since the dimension of Sym(Cn) is 2n,

Vol(Σ̄(Cn)) ≤ Vol(P̄(Cn)) ≤ (1 + nε(Cn))
2nVol(Σ̄(Cn)).

Now, note that ε(Cn) = O( 1
n3 ) so we have that

(1 + nε(Cn))
2n ≤ eO(1/n),

which approaches 1 as n goes to infinity.

4.4. Cycle-completable graphs. The following characterization of cycle-completable graphs
proved in [4] allows us to find exact conical distance for a larger class of graphs.

Theorem 4.9. Let G be a graph; let Γ(G) be the set of matrices A so that for each induced
cycle C ⊆ G, πC(A) ∈ Σ(C). Then Σ(G) = P(G)∩Γ(G) if and only if G is the clique sum of
series-parallel and chordal graphs.

We are now ready to extend the result on exact conical distance between P(G) and Σ(G)
from cycles to a larger class of graphs using our previous results and the above theorem.

Theorem 4.10. Let G be the smallest class of graphs which is closed under the clique sum
operation and the cone operation and which contains all complete graphs and series-parallel
graphs. Then for any G ∈ G, ε(G) = ε(Cg), where g is the chordal girth of G.

Proof. It suffices to show that ε(G) = ε(Cg) for any series-parallel graph G. The theorem
then follows from applying Theorems 3.1 and 3.6.

If g is the chordal girth of G, then there is no cycle in G with length greater than 3 and
less than g. Moreover, note that the conical distance for Cg is monotonic decreasing in g.D
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If C is any cycle contained in G, then ε(C) ≤ ε(Cg). Thus, if A ∈ P(G), then for any
cycle C in G, πC(A+ ε(Cg)In) = πC(A) + ε(Cg)In ∈ Σ(C). Thus, A+ ε(Cg)In ∈ P(G), and
moreover, for all cycles C in G, πC(A + ε(Cg)In) ∈ Σ(C); so by Theorem 4.9, we have that
A+ ε(Cg)In ∈ Σ(G), as desired.

It is noteworthy that the class of graphs described in [4] has the wheels, Wn = Ĉn, as its
forbidden minors, yet the conical distance for the wheel graphs goes to 0 at the rate O( 1

n3 ) as
n grows, which implies small expansion ratio and good volume approximation for Σ̄(G) and
P̄(G).

5. Applications to semidefinite programming. Conical distance can be used to bound
approximation errors in some semidefinite programs. Consider a semidefinite program of the
form

minimize ⟨B0, X⟩
such that tr(X) = 1,

⟨B1, X⟩ = b1,

. . .

⟨Bk, X⟩ = bk,

X ⪰ 0.

(SDP)

We will say that this program is G-sparse for some graph G if for each ℓ, Bℓ
ij = 0 for all

{i, j} ̸∈ E(G).
If this semidefinite program is G-sparse, then the semidefinite program is equivalent to

one where the condition X ⪰ 0 is replaced by X ∈ Σ(G) without losing information.
Consider replacing the condition that X ∈ Σ(G) with the condition that X ∈ P(G):

minimize ⟨B0, X⟩
such that tr(X) = 1,

⟨B1, X⟩ = b1,

. . .

⟨Bk, X⟩ = bk,

X ∈ P(G).

(SDP′)

The condition X ∈ P(G) can be defined while only considering the entries of X which
correspond to edges in G. If G is a graph in our class G, which has o(n2) edges, and has
no small cycles of size greater than 3, then the resulting savings in terms of the number of
variables needed to define the program can be large while not costing too much in terms of
the approximation factor.

Let α be the value of (SDP) and α′ be the value of (SDP′).

Theorem 5.1. If 1
nIn is a feasible point of (SDP) and (SDP) is G-sparse, then

α′ ≤ α ≤ 1

1 + nε(G)
α′ +

ε(G)

1 + nε(G)
tr(B0).
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Proof. Since Σ(G) ⊆ P(G), we have that α ≥ α′.
Let X ′ be an optimum point for (SDP′). By the definition of the conical distance,

X ′ + ε(G)In ∈ Σ(G).

Then because Σ(G) is a cone, we have the rescaled equation

1

1 + nε(G)
X ′ +

nε(G)

1 + nε(G)

(
1

n
In

)
∈ Σ(G).

Note that this is a convex combination of X ′ and 1
nIn, and thus, it satisfies all of the linear

equations for the feasible set for (SDP). The optimal value therefore satisfies

α ≤
〈
B0,

(
1

1 + ε(G)
X ′ +

ε(G)

n(1 + ε(G))
In

)〉
=

1

1 + nε(G)
α′ +

ε(G)

1 + nε(G)
tr(B0).

A key example of this type of semidefinite program is the rescaled Goemans andWilliamson
semidefinite program (see [15]) for approximating MAX-CUT for a graph G. For consistency
with the rest of the paper, we have written this as a minimization problem and reversed
the sign of the objective function so that the result is a negative number. In that case, the
definition of the semidefinite program is

minimize n
∑

i,j∈E(G),i ̸=j

Xij

such that for all i,Xii =
1

n
,

X ⪰ 0.

This semidefinite program satisfies the conditions for the theorem, and moreover, we see that
tr(B0) = 0; so the result is the cleaner

α′ ≤ α ≤ 1

1 + nε(G)
α′.

In applications, the input graph G is not necessarily chordal. Rather, given an input graph,
one attempts to find a chordal cover of G, i.e., a chordal graph C so that G is contained in
C. Any G-sparse semidefinite program then is also C-sparse, and the results of [24] apply.
However, finding a chordal graph C which minimizes the number of edges added to E(C) \
E(G) is known to be NP-complete, even to approximate [11]. Thus, it may be valuable in
practice to relax the chordal condition to a somewhat more general condition and settle for
an approximation.

5.1. Properties of the class G. Graph-theoretic questions about the graph class G are of
practical interest, and we will briefly give some results here. One important property is that
G is closed under taking induced subgraphs.

A clique separator of a graph G is a clique K ⊆ G with the property that removing K
from G increases the number of connected components of the graph G. If K is such a cliqueD
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separator of G, we can write G = H1 ⊕ H2, where H1 and H2 are induced subgraphs of G,
and K = H1 ∩H2.

A graph H with no clique separators will be referred to as an atom. By repeatedly
finding clique separators of the graph G, we can decompose G into the clique sum of atoms:
G = H1 ⊕ H2 ⊕ · · ·Hk, where each Hi is an atom. We will refer to the Hi’s as the atoms
of the decomposition, and when the decomposition is left implicit, we will refer to the Hi as
the atoms of G. It is clear then that any graph G is the clique sum of its atoms. Note that
the atoms of a graph depend on a particular decomposition of the graph G and cannot be
uniquely determined from the graph G.

We can characterize the possible atoms of a graph G ∈ G.

Theorem 5.2. If G is a graph, then G ∈ G if and only if for any decomposition of G into
atoms, all atoms are of the form H ∧Kn, where H is series parallel and H ∧Kn is the n-fold
repeated coning over the graph H.

Proof. Suppose that G is a graph with a decomposition into atoms, each of which is of the
form H ∧Kn, where H is a series-parallel graph. Since H is series parallel, it is contained in
G, and thus the repeated coning over H is contained in G. So, the atoms of G are contained
in G. Because G is the clique sum of its atoms and G is closed under clique sums, we see that
G is contained in G.

On the other hand, suppose that G∈ G. Let G1 ⊕ G2 ⊕ · · · ⊕ Gk be a decomposition of
G into a clique sum of atoms. Note that the partial sum G1 ⊕G2 ⊕ · · · ⊕Gk−1 is an induced
subgraph of G and, therefore, is also an element of G, and thus, inductively, it suffices to show
that Gk is of the form H ∧Kn.

By definition, Gk is an atom and is an induced subgraph of G. In particular, Gk is an
element of G, and Gk is either series parallel, chordal, the cone over a graph in G, or a clique
sum of two graphs in G. Clearly, if Gk is the clique sum of two graphs, then it is not an atom,
and thus, we can exclude this case.

If Gk = Ĵ for some J ∈ G, then we can also assume that J does not have a clique separator,
since if J = J1 ⊕ J2, then Gk would be Ĵ1 ⊕ Ĵ2. Thus, we can iteratively remove cone vertices
until we are left with a graph with no cone vertices. In that case, Gk = H ∧Kn, where H ∈ G
has no clique separators or cone vertices. Thus, H must be either chordal or series parallel. If
H were chordal, then H would be the clique sum of cliques. Clearly, if H is the clique sum of
cliques and also an atom, then H must be a clique. Moreover, if H is a clique that contains
no cone vertices, then H must be a single vertex and thus also series parallel. This shows the
desired result.

A result of Tarjan in [22] shows that it is possible to find a decomposition of a graph
G into at most n − 1 atoms in O(nm) time, where n = |V (G)| and m = |E(G)| (assuming
m > 0). A result of Valdes, Tarjan, and Lawler in [23] also shows that it is possible to
recognize series-parallel graphs in linear time. It is thus clear that given a graph G, we can
recognize if it is in G by first decomposing G into atoms, then checking that each atom is
the cone over a series-parallel graph, which in total gives a O(n2+nm) time algorithm for
detecting graphs in G.

It is then also easy to see that a graph in G does not have too many maximal cliques.
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Theorem 5.3. If G ∈ G, then the number of maximal cliques in G is O(n(n+m)).

Proof. It is clear that if G = H1⊕H2, then the number of maximal cliques in G is at most
the sum of the number of maximal cliques in H1 and H2 separately. From above, we have
that if G ∈ G, then G decomposes into the clique sum of at most n graphs of the form H ∧Kk

with H series parallel. The coning operation does not change the number of maximal cliques,
so it suffices to argue that a series-parallel graph with at most n vertices and m edges has at
most O(n+m) maximal cliques. This is clear from the characterization that a series-parallel
graph is a subgraph of a partial 3-tree, i.e., a chordal graph with clique number at most 3,
and it is clear that any chordal graph has at most n maximal cliques. Thus, there are at most
O(n) cliques of size 3 in a series-parallel graph, at most m cliques of size 2 (edges), and at
most O(n) cliques of size 1 (vertices). This implies the result.

Remark 5.4. It is likely possible, with a slightly more sophisticated accounting, that the
number of maximal cliques for a graph in G is in fact O(n).

As in the chordal case, it is of interest to find the smallest number of edges that can
be added to a given graph so that the resulting graph is in the class G. The authors are
not aware of any results which indicate that this problem is asymptotically more tractable
than completing to a chordal graph, though clearly fewer edges are required. It is likely that
algorithms for finding small chordal completions can be modified to find small completions
for graphs in our class.
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