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HYPERBOLIC RELAXATION OF \bfitk -LOCALLY POSITIVE
SEMIDEFINITE MATRICES\ast 
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Abstract. A successful computational approach for solving large-scale positive semidefinite
(PSD) programs is to enforce PSD-ness on only a collection of submatrices. For our study, we
let \scrS n,k be the convex cone of n \times n symmetric matrices where all k \times k principal submatrices
are PSD. We call a matrix in this k-locally PSD. In order to compare \scrS n,k to the cone of PSD
matrices, we study eigenvalues of k-locally PSD matrices. The key insight in this paper is that there
is a convex cone H(enk ) so that if X \in \scrS n,k, then the vector of eigenvalues of X is contained in
H(enk ). The cone H(enk ) is the hyperbolicity cone of the elementary symmetric polynomial enk (where
enk (x) =

\sum 
S\subseteq [n]:| S| =k

\prod 
i\in S xi) with respect to the all ones vector. Using this insight, we are able

to improve previously known upper bounds on the Frobenius distance between matrices in \scrS n,k and
PSD matrices. We also study the quality of the convex relaxation H(enk ). We first show that this
relaxation is tight for the case of k = n - 1, that is, for every vector in H(enn - 1) there exists a matrix

in \scrS n,n - 1 whose eigenvalues are equal to the components of the vector. We then prove a structure
theorem on nonsingular matrices in \scrS n,k all of whose k \times k principal minors are zero, which we
believe is of independent interest. This result shows shows that for 1 < k < n  - 1 ``large parts"" of
the boundary of H(enk ) do not intersect with the eigenvalues of matrices in \scrS n,k.
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1. Introduction.

1.1. \bfitk -Locally positive semidefinite matrices. Positive semidefinite (PSD)
matrices are of fundamental interest in a wide variety of fields, ranging from opti-
mization [31] to physics [8]. Formally, a symmetric matrix X \in Symn is PSD if and
only if

u\top Xu \geq 0 \forall u \in \BbbR n.

The property of being PSD is very strong and implies a large amount of structure
in a matrix. For example, all the eigenvalues of a PSD matrix are non-negative.
Another important property of a PSD matrix is that all its principal submatrices
are also PSD. There are various conceivable converses to this fact which fail to hold;
for instance, even if all of the proper submatrices of a matrix are PSD, it is still
possible for the matrix to have a negative eigenvalue. Nevertheless, one might be
interested in a partial converse: if enough submatrices of a matrix are PSD, we should
expect that the matrix is ``close"" to being PSD, in some sense. Such a result would
help explain a phenomenon observed in various recent computational experiments,
where the constraint of a matrix being PSD is relaxed to that of some principal
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submatrices being PSD. It has been empirically observed that the resulting relaxation
has an optimal objective function value close to the optimal objective function of the
original problem. See [17, 18, 28] for examples involving SDP relaxation of optimal
electrical power flow problem and [2, 9, 23] for examples involving SDP relaxation of
box quadratic programs.

To formally understand the relaxation of enforcing positive semidefiniteness on
submatrices, we investigate a class of matrices, where we impose the conditions that
all k \times k principal submatrices of an n \times n matrix are PSD. We will call such
a matrix k-locally PSD. This terminology is meant to suggest that we only check
the PSD conditions locally on some small parts of the matrix rather than globally.
Let

\scrS n,k := \{ X \in Symn | every k \times k principal submatrix of X is PSD\} (1.1)

be the set of k-locally PSD matrices. The set \scrS n,k is a closed convex cone, and its
dual cone is the set of symmetric matrices with factor width k, defined and studied
in [6, 22, 11]. The set of symmetric matrices with factor width 2 is the set of scaled
diagonally dominant matrices [6, 30], i.e., symmetric matrices A such that DAD is
diagonally dominant for some positive diagonal matrix D. The paper [1] uses scaled
diagonally dominant matrices for constructing inner approximation of the PSD cone
for use in solving polynomial optimization problems. See [15, 25, 26] for related pa-
pers.

For X \in Symn, we let \lambda (X) = (\lambda 1(X), . . . , \lambda n(X)), where \lambda 1(X) \leq \lambda 2(X) \leq 
\cdot \cdot \cdot \leq \lambda n(X) are the eigenvalues of X counting multiplicity. We say that a vector
\lambda \in \BbbR n is a vector of eigenvalues of X if it can be obtained from \lambda (X) by permuting
its coordinates.

Our main goal is to understand properties of eigenvalues of k-locally PSD matri-
ces. In particular, we would like to understand how as k gets closer to n, the matrices
in \scrS n,k become closer to PSD matrices in terms of eigenvalues. This work extends
(and improves) results in a recent paper [3] by identifying a relaxation of the set of
eigenvalues of k-locally PSD matrices. This relaxation is based on the machinery of
hyperbolic polynomials and hyperbolicity cones, which we discuss next.

1.2. The hyperbolic relaxation. In order to motivate the the machinery of
hyperbolic polynomials and corresponding hyperbolicity cones (which we formally
define later), let us first construct a natural relaxation of the set of eigenvalues of
matrices in \scrS n,k.

Given an n\times n matrix X, recall the definition of the characteristic polynomial of
X:

pX(t) = det(X  - tI) =

n\sum 
\ell =0

( - 1)n - \ell cn\ell (X)tn - \ell ,

where

cn\ell (X) =
\sum 
S\subseteq [n]
| S| =\ell 

det(X| S).

Here, X| S is the principal submatrix of X obtained by restricting X to the rows
and columns contained in S. Notice that if X \in \scrS n,k, then for all S \subseteq [n] with
| S| \leq k, X| S is PSD and, in particular, det(X| S) \geq 0. This implies that cn\ell (X) \geq 0
for \ell \leq k.
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Let us introduce the set

H(cnk ) = \{ X \in Symn : \forall \ell \leq k, cn\ell (X) \geq 0\} .

Our first observation is then that

\scrS n,k \subseteq H(cnk ).(1.2)

The roots of pX are precisely the negatives of the eigenvalues of X, so we have
that

pX(t) =

n\prod 
i=1

(\lambda i  - t) =

n\sum 
\ell =0

( - 1)n - \ell enk (\lambda 1, . . . , \lambda n)t
n - \ell ,

where \lambda 1, \lambda 2, . . . \lambda n are the eigenvalues of X in any order, counting multiplicity, and
enk \in \BbbR [x1, . . . , xn] is the elementary symmetric polynomial

enk (x) =
\sum 
S\subseteq [n]
| S| =k

\prod 
i\in S

xi.

Comparing coefficients of the tk terms, we see that for 0 \leq k \leq n,

cnk (X) = enk (\lambda 1, . . . , \lambda n).

Combining our previous observations, we see that X \in H(cnk ) if and only if
en\ell (\lambda 1, . . . , \lambda n) \geq 0 for \ell \leq k.

We will define the set

H(enk ) = \{ \lambda \in \BbbR n : \forall \ell \leq k, en\ell (\lambda ) \geq 0\} .

Combining these observations, we obtain the following.

Observation 1.1. \scrS n,k \subseteq H(cnk ). Also, \lambda = (\lambda 1, . . . , \lambda n) is a vector of eigenval-
ues of some X \in H(cnk ) if only if \lambda \in H(enk ).

The set H(enk ) will turn out to be the hyperbolicity cone of the polynomial enk
with respect to the all ones vector and in particular will turn out to be invariant to
permutations of the coordinates and convex [10, 13]. We will refer to H(enk ) as the
hyperbolic relaxation for the eigenvalues of \scrS n,k Similarly, H(cnk ) will be the hyper-
bolicity cone of cnk with respect to the identity matrix. The cone H(cnk ) is well known
in the literature and is sometimes referred to as the (n  - k)th Renegar derivative of
the PSD cone [24].

By exploiting properties of these convex cones, we obtain bounds that indicate
that if X \in \scrS n,k, then in fact, X is close to being PSD in a number of different norms.

As an example, notice that enn =
\prod n

i=1 xi, and H(enn) = \BbbR n
+, the nonnegative

orthant. Similarly, H(cnn) is the PSD cone, and we have that H(enn) is exactly the set
of possible eigenvalue vectors for matrices in H(cnn).

This observation motivates us to ask the following related questions that tie in
with our goal of understanding properties of \lambda (X) for X \in \scrS n,k:

\bullet Is it possible to obtain understanding of \{ \lambda (X) | X \in \scrS n,k\} in comparison to
eigenvalues of PSD matrices by studying properties of H(enk )?

\bullet How good is the approximation of the set \{ \lambda (X) | X \in \scrS n,k\} by H(enk )?
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In this paper, we answer ``yes"" to the first question by improving on results
in [3] via the hyperbolic relaxation of the set of eigenvalues of matrices in \scrS n,k.
This motivates us to delve further into the second question, and we verify various
structural results that give a better understanding of relationship between the sets
\{ \lambda (X) | X \in \scrS n,k\} and H(enk ). One particularly interesting result that we would like
to highlight is a structure theorem for matrices in \scrS n,k all of whose principal k \times k
minors vanish (Theorem 2.8). This theorem has relations to previous results in linear
algebra: Theorem 13 in [29] and results of [21].

1.3. Notation. For a positive integer n, let [n] := \{ 1, . . . , n\} . Let Symn denote
the vector space of n\times n symmetric matrices. Let \scrS n denote the cone of PSD matrices
inside of Symn. Note that \scrS n,n = \scrS n. If M \in \scrS n, we write M \succeq 0. We use \scrS n,k to
refer to the k-locally PSD matrices, which are defined above in (1.1). We will refer
to k-locally PSD matrices for convenience as locally PSD matrices if k is clear from
context. An important example of a non-PSD matrix lying in \scrS n,k is given by

G(n, k) =
k

k  - 1
I  - 1

k  - 1
\vec{}1\vec{}1\top .(1.3)

Here, \vec{}1 denotes the all ones vector of dimension n. All diagonal entries of G(n, k) are
identically 1, and all off-diagonal entries are identically  - 1

k - 1 . Notice that all k \times k
principal minors of G(n, k) vanish, but the matrix is nonsingular.

Given a matrix M \in \scrS n,k and a diagonal matrix D with nonzero diagonal entries,
observe that

DMD \in \scrS n,k.

We say that the matrix DMD is diagonally congruent to M . By applying Sylvester's
law of inertia to any submarix of M , the number of positive and negative eigenvalues
is conserved for the same submatrix of a diagonally congruent matrix. In particular,
a principal submatrix of a diagonally congruent matrix is singular if and only if the
same submatrix is singular in the original matrix.

The rest of the paper is organized as follows: Section 2 lists all our main results,
and section 3 concludes with some open questions. Then section 4 presents background
results needed for proving the main results. The remaining sections present our proofs
of the main results.

2. Main results.

2.1. Bounds on minimum eigenvalues of matrices in \bfscrS \bfitn ,\bfitk . The primary
way we can measure the distance between a matrix in \scrS n,k and the cone of PSD
matrices is by considering the smallest eigenvalue of such a matrix. Certainly, if the
minimum eigenvalue of a matrix is nonnegative, then the matrix is PSD, and we
will say that a (suitably normalized) matrix is close to being PSD if its minimum
eigenvalue is close to being nonnegative. We show that if k is sufficiently close to n,
then the k-locally PSD matrices are close to the PSD matrices. Let \lambda 1(M) be the
minimum eigenvalue of a matrix M \in \scrS n,k.

Because \lambda 1 is 1-homogeneous, i.e., if a \geq 0, then \lambda 1(aM) = a\lambda 1(M), we should
try to compare \lambda 1(M) for M \in \scrS n,k to other 1-homogeneous (also called positively
homogeneous) quantities on M .

Formally, let \scrF be the class of functions F : Symn \rightarrow \BbbR so that F is a unitarily
invariant matrix norm (thus, a norm depending entirely on the eigenvalues) or the
trace function. Examples of unitarily invariant matrix norms are the Schatten p-
norms, \| M\| p = p

\sqrt{} \sum n
i=1 | \lambda i(M)| p for p \geq 1. Note that the Frobenius norm is a
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special case of the Schatten p-norm when p = 2. Also, recall that G(n, k) is defined
in (1.3).

Theorem 2.1. Let k \in \{ 2, . . . , n\} . Let F \in \scrF and let \~G(n, k) = G(n,k)
F (G(n,k)) . For

any M \in \scrS n,k with F (M) = 1, the minimum eigenvalue of M is at least as large as
the minimum eigenvalue of \~G(n, k), that is,

\lambda 1(M) \geq \lambda 1( \~G(n, k)) \forall M \in \scrS n,k s.t. F (M) = 1.

The bound on \lambda 1(M) is tight since \~G(n, k) \in \scrS n,k achieves this bound.

An immediate corollary of Theorem 2.1 in the case when F is the trace function
is the following.

Corollary 2.2. Let k \in \{ 2, . . . , n\} . For any M \in \scrS n,k such that Trace(M) = 1,
we have

\lambda 1(M) \geq k  - n

n(k  - 1)
.

The proof of Theorem 2.1 is a direct application of the fact that H (enk ) is a
convex relaxation of the set of eigenvalues of matrices in \scrS n,k. This allows us to write
a convex relaxation of the optimization problem minimizing \lambda 1(M) over M \in \scrS n,k.
The optimal solution of this convex relaxation is the bound obtained in the above
theorem.

Remark 2.3. The bound on \lambda 1(M) presented in Theorem 2.1 holds for M \in 
H(cnk ). Therefore, this bound can be used to provide upper bounds on the distance
between the PSD cone and the Renegar derivative H(cnk ) of the PSD cone.

We can use Theorem 2.1 to bound Frobenius distances of matrices in \scrS n,k from
those in \scrS n (when we normalize the matrices using the Frobenius norm) as in the
following result.

Corollary 2.4. Let dist(\scrS n,k,\scrS n) = maxA\in \scrS n,k:\| A\| F=1 (minG\in \scrS n\| A - G\| F ).
Then dist(\scrS n,k,\scrS n) \leq (n - k)3/2\surd 

(n - k)2+(n - 1)k2
.

This corollary improves upon Theorem 2 in a previous paper [3]. Our new result
has a better constant factor and applies to all regimes of k and n.

2.2. Tightness of the relaxation \bfitH 
\bigl( 
\bfite \bfitn \bfitk 

\bigr) 
for the set of eigenvalues of

matrices in \bfscrS \bfitn ,\bfitk . We have seen that the vector of eigenvalues of matrices in Sn
k is

preciselyH(enk ) for n = k. We next show that this observation holds for two additional
cases of k.

Theorem 2.5. If k is one of 1, n - 1, or n, and x \in H(enk ), then x is the vector
of eigenvalues of some matrix in \scrS n,k.

Since H(enk ) is a convex set for all k, in particular, Theorem 2.5 implies that the
set of possible vectors of eigenvalues for matrices in \scrS n,n - 1 is convex, although there
does not seem to be an easy way to see this directly. Therefore we have the following.

Corollary 2.6. The set of all vectors of eigenvalues of matrices in \scrS n,n - 1 is
convex.

On the other hand, we show that \{ \lambda (X) | X \in \scrS n,k\} is strictly contained in H(enk )
for 1 < k < n - 1, and thus we completely characterize the tightness of this hyperbolic
relaxation.
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In order to do so, we examine the boundary of the cone H(enk ) and obtain a
result which is of independent interest. Recall that the boundary of H(enk ) is pre-
cisely the set of points in the hyperbolicity cone on which the polynomial enk van-
ishes.

Recall that if M is a matrix and \lambda (M) is a vector of eigenvalues of M , we have
that

enk (\lambda (M)) =
\sum 

S\subseteq [n]:| S| =k

det(M | S).

Because of this, we see that if enk (\lambda (M)) = 0 and M \in \scrS n,k, then we have that
det(M | S) = 0 for all subsets S of size k. We formalize this notion.

Definition 2.7. We say that a matrix M is (n, k)-locally singular if it lies in
\scrS n,k and all of the k \times k minors of M are singular.

We see that for M \in \scrS n,k, \lambda (M) is on the boundary of H(enk ) if and only if M
is (n, k)-locally singular. Sometimes (n, k) is omitted and we say a matrix is locally
singular if n and k are clear from context.

The simplest class of examples of locally singular matrices is the set of matrices
of rank less than k. In particular, rank 1 PSD matrices will be locally singular for
any n and k. A more interesting example of locally singular matrices is the G(n, k)
matrices defined in (1.3). Not only are these matrices locally singular, but they are also
nonsingular. From this example we can construct an n-dimensional space of locally
singular matrices by taking an arbitrary invertible diagonal matrix D and considering

DG(n, k)D \in \scrS n,k,

that is, the set of matrices that are diagonally congruent to G(n, k).
It follows from Sylvester's law of inertia, applied to the various submatrices of

G(n, k), that any matrix diagonally congruent to G(n, k) is in fact locally singular
and nonsingular.

On the other hand, it is worth performing a quick dimension counting heuristic to
estimate how many possible matrices satisfy these conditions: Each submatrix that
is constrained to be singular imposes a single polynomial equation on the possible
solution set. If n  - 1 > k > 2, then we see that the number of equations is

\bigl( 
n
k

\bigr) 
,

which is in fact greater than the dimension of the space of n\times n symmetric matrices,
which is

\bigl( 
n
2

\bigr) 
. This indicates that solutions to this type of system should be somewhat

``uncommon."" Therefore, it is perhaps not surprising that in the cases when n - 1 >
k > 2, we are able to show that all of the locally singular matrices in \scrS n,k, which are
not singular, are diagonally congruent to G(n, k).

The following theorem formalizes this idea. Both the statement and the proof of
this theorem seem closely related to Theorem 13 in [29]. More generally, the theorem
can be viewed as giving semialgebraic relations between the various principal minors
of a symmetric matrix. A complete characterization of the algebraic relations between
the principal minors of a symmetric matrix was given in [21].

Theorem 2.8. Let n - 1 > k > 2 or (n, k) = (4, 2). Suppose that M \in \scrS n,k, M
is (n, k)-locally singular, and M is invertible. Then M must be diagonally congruent
to G(n, k).

Note that this immediately implies that there are points on the boundary of
H(enk ) which are not the eigenvalues of any matrix in \scrS n,k: since G(n, k) has only
one negative eigenvalue, any matrix diagonally congruent to G(n, k) has at most one
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negative eigenvalue, and there are points on the boundary of H(enk ) with as many as
n - k negative entries and no zero entries.

When k = 2 and n = 4, locally singular matrices in \scrS 4,2 are diagonally congru-
ent to a symmetric matrix with diagonal entries identically one and \pm 1 off-diagonal
entries. We can numerically check that a such matrix has at most one negative eigen-
value. Thus by Cauchy's interlacing theorem, for any n > 4 and k = 2, any locally
singular matrix in \scrS n,2 can have at most n  - 3 negative eigenvalues, whereas the
boundary of H(en2 ) contains points with as many as n - 2 negative eigenvalues. Thus
we get the following corollary.

Corollary 2.9. If n - 1 > k \geq 2, then the set of possible eigenvalue vectors for
matrices in \scrS n,k is strictly contained in H(enk ).

2.3. Eigenvalues of matrices in \bfscrS \bffour ,\bftwo whose eigenvalues lie on the bound-
ary of \bfitH (\bfite \bffour \bftwo ). Theorem 2.8 implies that if X is a nonsingular matrix in \scrS n,k whose
eigenvalues lie on the boundary of H(enk ), then X is in fact diagonally congruent to
the matrix G(n, k). Because G(n, k) has only one negative eigenvalue, Sylvester's law
of inertia [14] implies that a matrix of this form has at most one negative eigenvalue.

The next lemma is a converse to the previous observation when n = 4 and k = 2.

Lemma 2.10. If \lambda \in H(e42) so that e42(\lambda ) = 0 and \lambda has at most one negative
eigenvalue, then \lambda is a vector of eigenvalues for a matrix which is diagonally congruent
to G(4, 2).

The idea of the proof is to use a characterization of the coefficients of real-rooted
polynomials to reduce the problem to proving that there exist real-rooted polynomials
having certain properties. These properties can be described entirely in terms of
polynomial inequalities, so we can use algorithms for quantifier elimination over real
closed fields to solve this problem. We do not know of a proof of this result that does
not rely on computational methods.

3. Conclusions and open questions. The key insight in this paper is the ob-
servation that H(enk ), i.e., the hyperbolicity cone of the elementary symmetric polyno-
mial enk , is a convex relaxation of the set of the eigenvalues of matrices in \scrS n,k. Using
this insight, we are able to improve upper bounds on the distance of the matrices in
\scrS n,k from PSD matrices \scrS n given in [3]. The next question that was considered is
how good is the relaxation H(enk ): We first show that this relaxation (apart from the
trivial case of k = n) is tight for the case of k = n - 1. Indeed, in this case, we are able
to show that H(enn - 1) is exactly the set of eigenvalues of matrices in \scrS n,n - 1. However,
in general we prove that if \lambda (M) belongs to the boundary of H(enk ) and M \in \scrS n,k,
then either M is nonsingular or M is diagonally congruent to G(n, k). Since there are
points on the boundary of H(enk ) with as many as n - k negative entries and no zero
entries, this shows that ``large parts"" of the boundary of H(enk ) do not intersect with
the eigenvalues of matrices in \scrS n,k.

There are many interesting open questions. As discussed above, we have shown
that the set of eigenvalues of matrices in \scrS n,n - 1 is convex. It was recently shown in
[19] that the set of eigenvalue vectors of matrices in \scrS 4,2 is not convex, but it is still
an open question for all other values of k < n  - 1. Another question vis-\'a-vis the
structure theorem is to classify singular matrices in \scrS n,k that lie on the boundary
of H(enk ). Finally, instead of enforcing PSD-ness on all submatrices, we can enforce
PSD-ness of a smaller set of submatrices. Are there similar relaxations like H(enk ) for
specially structured collections of submatrices?
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4. Preliminaries.

4.1. Introduction to hyperbolic polynomials and hyperbolicity cones.
Hyperbolic multivariate polynomials are a rich collection of polynomials with connec-
tions to convex optimization, combinatorics, and theoretical computer science. We
give a brief description of the important properties of hyperbolic polynomials here.
We say that a polynomial p \in \BbbR [x1, . . . , xn] is hyperbolic with respect to a fixed vector
v if p(v) > 0, and for any fixed x \in \BbbR n, the univariate polynomial p(x  - tv) \in \BbbR [t]
has only real roots. An important example of this comes from the determinant of
symmetric matrices, det(X) \in \BbbR [xij : i \leq j], which is hyperbolic with respect to the
identity matrix, by the spectral theorem. Another example which is critical for our
purposes is the elementary symmetric polynomial enk (x), defined as

enk (x) =
\sum 

S\subseteq [n]:| S| =k

\prod 
i\in S

xi.

This polynomial is hyperbolic with respect to \vec{}1, the all ones vector.
Let V (p) \subset \BbbR n be the set of zeros of the polynomial p. Let p be hyperbolic with

respect to v \in \BbbR n. The closed hyperbolicity cone of polynomial p with respect to
v is the closure of the connected component of \BbbR n \setminus V (p) containing v [10, 13, 24].
We will denote it by Hv(p). When p is the determinant or sum of certain principal
subdeterminants of a symmetric matrix, we will abbreviate H(p) = HI(p), where I is
the identity matrix.

The hyperbolicity cone of elementary symmetric polynomial enk (x) with respect

to \vec{}1 will be denoted by H(enk ). A simple algebraic characterization of H(enk ) is given
by (see, for example, [33])

H(enk ) = \{ x \in \BbbR n : enl (x) \geq 0 \forall 1 \leq l \leq k\} .

It is also known that H(enk ) is spectrahedral [7] for all 1 \leq k \leq n, i.e., an affine slice
of a higher dimensional PSD cone.

The key fact for our purposes is Proposition 1 in [24] originally proved by G\r arding
in [10].

Lemma 4.1. If p is hyperbolic with respect to v, then Hv(p) is convex, and its
boundary is precisely Hv(p) \cap V (p).

4.2. Linear algebra. We use the following standard results in the paper.
Proofs can be found in [14].

Theorem 4.2 (Schur--Horn theorem). Let d, \lambda \in \BbbR n such that di \geq di+1 and
\lambda i \geq \lambda i+1, i \in [n  - 1]. There is a symmetric matrix with diagonal values d and
eigenvalues \lambda if and only if

\bullet 
\sum j

i=1 di \leq 
\sum j

i=1 \lambda i for all j \in [n - 1],
\bullet 
\sum n

i=1 di =
\sum n

i=1 \lambda i.

Note that the original theorem in [14] proves the existence of a real symmetric
matrix (not just Hermitian) that achieves the desired eigenvalues and diagonal entries.

We next present the famous Cauchy's interlacing theorem.

Theorem 4.3 (Cauchy's interlacing theorem). Consider an n \times n symmetric
matrix A, and let A| J be any of its k\times k principal submatrices. Then for all 1 \leq i \leq k,

\lambda n - k+i(A) \leq \lambda i(A| J) \leq \lambda i(A).
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We also present the symmetric case of Jacobi's complementary minors formula.
The proof for general case can be found in [20]

Theorem 4.4 (Jacobi's complementary minors formula, symmetric case). Let
M be an invertible n\times n matrix and \emptyset \subsetneq S \subsetneq [n].

(4.1) det(M | S) = det(M) det(M - 1| Sc).

This theorem states that the minor of M corresponding to a subset S can be
written in terms of the minor of M - 1 with respect to the complement \scrS c. In the
simplest case when | S| = n  - 1, this is simply Cramer's rule for the diagonal entries
of the inverse matrix.

5. Proof of Theorem 2.1 and Corollary 2.4.

5.1. Proof of Theorem 2.1. For the remainder of this section, fix n > k \geq 2
and an F \in \scrF . Let f be the function so that f(\lambda (M)) = F (M) for each M \in Symn.

In order to prove the theorem, we would like to verify an appropriate lower bound
on z\ast defined as

z\ast := minimize \lambda 1(M)

s.t. f(\lambda (M)) = 1,

M \in \scrS n,k,

where \lambda 1(M) is the smallest eigenvalue of M .
In order to provide a lower bound on z\ast , we (i) apply the hyperbolic relaxation

for the eigenvalues of \scrS n,k to replace \{ \lambda (M) | M \in \scrS n,k\} with H(enk ) and (ii) replace
f(\lambda (M)) = 1 by f(\lambda (M)) \leq 1 to obtain the following convex optimization problem:

zl := minimize \lambda 1

s.t. \lambda 1 \leq \lambda i \forall i \in \{ 2, . . . , n\} ,
f(\lambda ) \leq 1,
(\lambda 1, \lambda 2, . . . , \lambda n) \in H(enk ).

(5.1)

It is straightforward to verify that the set \{ \lambda | f(\lambda ) \leq 1, \lambda \in H(enk )\} is compact.
Thus zl is finite, and at least one optimal solution exists. Also note that since (5.1)
is a convex program which is symmetric with regard to variables \lambda 2, . . . , \lambda n, it is
straightforward to verify that there exists an optimal solution where \lambda 2 = \cdot \cdot \cdot = \lambda n.
Therefore, we arrive at the following two-variable optimization problem:

zl := minimize \lambda 1

s.t. \lambda 1 \leq \lambda 2,
f(\lambda 1, \lambda 2, . . . , \lambda 2) \leq 1,
(\lambda 1, \lambda 2, . . . , \lambda 2) \in H(enk ).

(5.2)

Next observe that if we remove the constraint (\lambda 1, \lambda 2, . . . , \lambda 2) \in H(enk ) from (5.2),
then the following hold:

\bullet If f corresponds to a norm, then one optimal solution of the resulting problem
is of the form (a, 0, . . . , 0) where a < 0, which is infeasible for (5.2) since it
does not satisfy the constraint (\lambda 1, \lambda 2, . . . , \lambda n) \in H(enk ). Thus, there must be
at least one optimal solution of (5.2) belonging to the boundary of of H(enk ).

\bullet If f corresponds to the trace function, then the optimal solution of the re-
sulting problem is unbounded. Thus, again we can conclude that the optimal
solution of (5.2) belongs to the boundary of H(enk ).
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A simple computation shows that for (\lambda 1, \lambda 2, . . . , \lambda 2) to be on the boundary of H(enk ),
we have \lambda 1 =  - n - k

k \lambda 2. Thus, we obtain that zl =  - 1

f( - 1, k
n - k ,..., k

n - k )
. Since f

is 1-homogeneous, it is easy to verify that \lambda 1( \~G(n, k)) =  - 1

f( - 1, k
n - k ,..., k

n - k )
, which

completes the proof of the theorem.

5.2. Proof of Corollary 2.4. Let A \in \scrS n,k with \| A\| F = 1. If A is PSD,
then the distance is zero, so we assume A has at least one negative eigenvalue. By
Cauchy's interlacing theorem (Theorem 4.3), A has at most n  - k negative eigen-
values. So dist(A,\scrS n

+) \leq | \lambda 1(A)| 
\surd 
n - k. By Theorem 2.1 we have that | \lambda 1(A)| \leq 

1\sqrt{} 
1+(n - 1) k2

(n - k)2

, which completes the proof.

6. Proof of Theorem 2.5. When k = n the statement is clear, since x \in H(enn)
if and only if x \geq 0, and it is the eigenvalues of diag(x) which is PSD. When k = 1,
let x \in H(en1 ) = \{ y :

\sum n
i=1 yi \geq 0\} . By the Schur--Horn theorem (Theorem 4.2), there

exists a symmetric matrix M0 with identically zero diagonal entries and eigenvalues

x  - 
\sum n

i=1 xi

n . Thus, M0 +
\sum n

i=1 xi

n I has eigenvalues x and is in \scrS n,1, since all of its
diagonal entries are nonnegative.

Now let k = n  - 1. First, we reduce to the case when x is on the boundary of
H(enn - 1). To do that, we note that if x is any point in H(enn - 1), then for some t > 0,

x  - t\vec{}1 will lie on the boundary of the cone. If x  - t\vec{}1 is a vector of eigenvalues of a
matrix M in \scrS n,n - 1, then x is a vector of eigenvalues of M + tI, also in \scrS n,n - 1.

Lemma 6.1. If x \in H(enn - 1) and x has a negative entry, then all other entries of
x are strictly positive.

Proof. By Theorem 1.1 in [27], we have that x \in H(enn - 1) if and only if

X = diag(x1, . . . , xn - 1) + xn
\vec{}1n - 1

\vec{}1\intercal n - 1 \succeq 0.

Here, we use \vec{}1n - 1 to denote the all ones vector in n - 1 dimensions for emphasis.
By permuting the coordinates, we can assume that xn is an entry so that xn < 0.

Then, we have that the diagonal entries of X are nonnegative, so for i \not = n,

xi + xn \geq 0.

So, xi \geq  - xn > 0, concluding the theorem.

Thus, if x lies on the boundary, we will consider two cases: either all entries of x
are nonnegative, or exactly one entry of x is negative and others are positive. If all
entries of x are nonnegative, then there is a PSD matrix whose vector of eigenvalues
is x and, in particular, a matrix in \scrS n,n - 1 with these eigenvalues.

If x lies on the boundary and exactly one entry of x is negative, then consider

enn - 1(x) =
\sum 
i\in [n]

\prod 
j\in [n]\setminus i

xj =

\left(  \prod 
j\in [n]

xj

\right)  \sum 
i\in [n]

1

xi
= 0,

which is well defined since in the previous lemma, we showed that all entries of x are
nonzero. Thus,

\sum 
i\in [n]

1
xi

= 0.

Now, we can apply the Schur--Horn theorem (Theorem 4.2), which implies that
there is a matrix L whose diagonal entries are all zeros and whose eigenvalues are
\{ 1
xi
\} . In particular, L is invertible, so let M = L - 1. Since all of the diagonal entries

D
ow

nl
oa

de
d 

07
/2

1/
22

 to
 1

88
.9

2.
13

9.
72

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

480 G. BLEKHERMAN, S. S. DEY, K. SHU, AND S. SUN

of L are 0, all of the (n - 1)\times (n - 1) minors of M are zero by Cramer's rule for the
diagonal entries of the inverse matrix. Also note that x has (n  - 1) positive entries,
so by eigenvalue interlacing, all of the (n - 1)\times (n - 1) minors of M have at most 1
nonpositive eigenvalue. Now, simply by noting that they all have 0 as an eigenvalue,
this in particular implies that all (n  - 1) \times (n  - 1) minors of M have nonnegative
eigenvalues and hence are PSD. Thus, M is a matrix in \scrS n,n - 1 with the desired
eigenvalues.

7. Proof of the structure theorem for \bfscrS \bfitn ,\bfitk .

7.1. Proof roadmap. Given a matrix in \scrS n,k, which is nonsingular and locally
singular---we will abbreviate by saying that M is an NLS matrix.

We show Theorem 2.8 in three steps. We first prove base cases n  - k = 2 and
k = 3 and then we use double induction on n  - k and k to prove the statement for
general k. For the base case n  - k = 2, there is a very interesting step of taking the
inverse of a given NLS matrix and using some facts about the structure of the inverse
matrix.

The inductive step for this argument relies on some observations about Schur
complements. The Schur complement of a symmetric matrix M with respect to a
nonzero diagonal entry Mii is defined to be the (n - 1)\times (n - 1) matrix

M \setminus \{ i\} = M | [n]\setminus \{ i\}  - 
1

Mii

\~Mi
\~M\top 
i ,

where \~Mi is obtained from the ith column of M after removing the ith entry.
Now, we recall some facts for matrices M with strictly positive diagonal en-

tries [32].
\bullet Schur complements preserve PSD-ness. M is PSD if and only if M \setminus \{ i\} 

is PSD.
\bullet Schur complements preserve singularness. M is nonsingular if and only
if M \setminus \{ i\} is nonsingular.

\bullet Schur complements commute with taking submatrices. If i /\in S, then
(M \setminus \{ i\} )| S = (M | S\cup \{ i\} ) \setminus \{ i\} .

The previous three properties imply the following: a matrix in \scrS n,k is NLS if and
only if for each i \in [n], M \setminus \{ i\} is in \scrS n - 1,k - 1 and NLS.

7.2. Structure theorem when \bfitk = \bfitn  - 2. LetM be a matrix in \scrS n,n - 2, which
is NLS. Observe that NLS matrices in \scrS n,n - 2 must have strictly positive diagonal
entries. If any diagonal entry is zero, then since 2\times 2 minors of M are nonnegative,
an entire row and column of M are filled with zeros, and then M is singular, which
is a contradiction.

As a base case when n = 4, consider an NLS matrix M \in \scrS 4,2. We can perform
a diagonal congruence transformation to obtain a matrix \~M such that all of the
diagonal entries of \~M are 1, and since all 2 \times 2 minors of M are zero, we see that
all off-diagonal entries of \~M are \pm 1. There are 6 off-diagonal entries, so there are 64
distinct possibilities for locally singular matrices, up to diagonal congruence. All of
these 64 matrices are either singular or congruent to G(4, 2), which can be checked
using direct computation.

Lemma 7.1. Let M \in \scrS n,n - 2 be an NLS matrix. Then the following hold:
1. det(M) < 0.
2. All (n - 1)\times (n - 1) principal minors of M are strictly negative.
3. All (n - 3)\times (n - 3) principal minors of M are strictly positive.
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Proof. We prove these facts by inducting on n, with the base case \scrS 4,2 following
from direct checking of the 64 cases above. For the inductive step we take the Schur
complement of an NLS matrix M with respect to a diagonal entry. Observe that a
diagonal entry of the Schur complement cannot be zero.

Otherwise the whole row of the Schur complement must be zero as all 2 \times 2
minors are nonnegative, and this is a contradiction since M is nonsingular, and Schur
complements preserve nonsingularity. Since taking Schur complements with respect
to a positive diagonal entry preserves the property of being NLS, preserves the signs
of determinants, and commutes with the operation of taking submatrices, all three
above statements follow by induction.

Now we are ready to prove the main theorem of this section.

Theorem 7.2. Let M \in \scrS n,n - 2 be an NLS matrix. Then M is diagonally con-
gruent to G(n, n - 2).

Proof. Let M \in \scrS n,n - 2 be an NLS matrix, and consider the inverse matrix M - 1.
Using Lemma 7.1 and Theorem 4.4 and what we know about principal minors of M ,
we have the following:

1. All diagonal entries of M - 1 are strictly positive.
2. All 2\times 2 principal minors of M - 1 are zero.
3. All 3\times 3 principal minors of M - 1 are strictly negative.

Observe that (1) and (2) together imply that all off-diagonal entries of M - 1 are
nonzero. We conjugate M - 1 by a diagonal matrix D given by D11 =  - 1/

\sqrt{} 
(M - 1)11

and Dii = sgn(M1i)/
\sqrt{} 
(M - 1)ii. to obtain matrix T with 1's on the diagonal and  - 1's

in first row and column other than the (1, 1) entry. By Theorem 4.4, all 2\times 2 principal
minors of T are zero, so its off-diagonal entries must be \pm 1.

Now for all distinct i, j \not = 1, we consider the principal submatrix with rows and

columns indexed by \{ 1, i, j\} . It has form (
1  - 1  - 1
 - 1 1 x
 - 1 x 1

), where x is either 1 or  - 1. Since

this submatrix has negative determinant, we must have x =  - 1. Thus T is G(n, 2),
and M - 1 is diagonally congruent to G(n, 2).

Finally, notice that inverting a matrix sends diagonally congruent matrices to
diagonally congruent matrices and that for n \geq 4,

G(n, 2) - 1 =
n - 3

2(n - 2)
G(n, n - 2).

Thus, we have shown that M is diagonally congruent to G(n, n - 2), as desired.

7.3. Structure theorem for \bfitk = 3. In this section we prove the structure
theorem for k = 3.

Theorem 7.3. Let M \in \scrS n,3 with n \geq 5 be an NLS matrix. Then M is diagonally
congruent to G(n, 3).

Our proof proceeds by induction on n. As a base case, note that the result holds
for \scrS 5,3 by Theorem 7.2.

To finish the induction we need the following lemma.

Lemma 7.4. If M is a nonsingular symmetric matrix, then either one of its (n - 
1) \times (n  - 1) principal minors is nonzero, or one of its (n  - 2) \times (n  - 2) principal
minors is nonzero.

Proof. Let M be a nonsingular matrix, and consider M - 1. If all of the principal
(n - 1)\times (n - 1) minors of M are zero, then by Theorem 4.4 all of the diagonal entries
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of M - 1 are 0. If, in addition, all (n  - 2) \times (n  - 2) principal minors of M are zero,
then all 2 \times 2 minors of M - 1 are zero, and then M - 1 is the zero matrix, which is a
contradiction.

Now for an inductive hypothesis, assume that for 5 \leq m < n, any NLS M \in \scrS m,3

is diagonally congruent to G(m, 3). Fix n, and let M \in \scrS n,3 be any NLS matrix. If
the submatrix of M given by Lemma 7.4 has size at least 5, then it must be diagonally
congruent to G(n  - 1, 3) or G(n  - 2, 3) due to the inductive hypothesis. We divide
the remaining proof into three cases:

1. n \geq 6, and there exists an (n  - 1) \times (n  - 1) submatrix of M that is diago-
nally congruent to G(n - 1, 3). Then after permutation and suitable diagonal
congruence we may assume

M =

\biggl( 
G(n - 1, 3) v

v\top 1

\biggr) 
for some vector v \in \BbbR n - 1.
Let M \prime be any 5\times 5 principal submatrix of M which includes index n. Then
M \prime must have the form

M \prime =

\left(      
1  - 1

2  - 1
2  - 1

2 v1
 - 1

2 1  - 1
2  - 1

2 v2
 - 1

2  - 1
2 1  - 1

2 v3
 - 1

2  - 1
2  - 1

2 1 v4
v1 v2 v3 v4 1

\right)      .

If we look at the 3\times 3 submatrix corresponding to entries \{ i, j, 5\} , we get\left(  1  - 1
2 vi

 - 1
2 1 vj

vi vj 1

\right)  .

The determinant of this matrix is

(7.1)
3

4
 - v2i  - vivj  - v2j .

Because all 3\times 3 submatrices of M \prime are singular, this determinant must equal
0 for all i, j \in \{ 1, 2, 3, 4\} . Notice that this is a quadratic equation in vi and
vj . If we fix a value for v1, then (7.1) implies that the remaining three vi can
take on at most 2 other values (which only depend on v1). By the pigeonhole
principle, at least two of these vi must be equal. After permuting entries we
may assume v2 = v3. Plugging this into (7.1), we see that either v2 = v3 = 1

2
or v2 = v3 =  - 1

2 . In the first case we may conjugate M \prime by diag(1, 1, 1, 1, - 1).
Therefore we may assume v2 = v3 =  - 1

2 .
Now, we can consider (7.1) for the cases when i = 2 and j = 1 or i = 2 and
j = 4. Because we assume v2 =  - 1

2 , (7.1) implies that

3

4
 - v22  - v1v2  - v21 =  - (v1  - 1)

\biggl( 
v1 +

1

2

\biggr) 
and

3

4
 - v22  - v2v4  - v24 =  - (v4  - 1)

\biggl( 
v4 +

1

2

\biggr) 
.
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We then get that both v1 and v4 are either 1 or  - 1
2 . They cannot both be 1;

otherwise the equation fails for i = 1, j = 4. Therefore at least one of them
must be  - 1

2 , and after permuting entries we may assume v1 =  - 1
2 .

Summarizing the above, we see that M \prime can only take on two values up to
diagonal congruence and permutation: either M \prime = G(5, 3), or

M \prime =

\left(      
1  - 1

2  - 1
2  - 1

2  - 1
2

 - 1
2 1  - 1

2  - 1
2  - 1

2
 - 1

2  - 1
2 1  - 1

2  - 1
2

 - 1
2  - 1

2  - 1
2 1 1

 - 1
2  - 1

2  - 1
2 1 1

\right)      .

Now, because this holds for all 5\times 5 submatrices of M , it is clear that v must
have the properties that all entries of v are either  - 1

2 or 1 and that at most
one entry of v can be 1. If the ith entry of v is 1, then notice that rows i and
row n of M are the same, meaning that M is singular, a contradiction. We
conclude that all entries of v are  - 1

2 , and we have shown that M is diagonally
congruent to G(n, 3).

2. n \geq 7, and there exists an (n - 2)\times (n - 2) submatrix of M which is nonsin-
gular. By induction, this implies that this submatrix is diagonally congruent
to G(n - 2, 3). Then after permutation and suitable diagonal congruence we
may assume

M =

\left(  G(n - 2, 3) v w
v\top 1 x
w\top x 1

\right)  .

If either v or w has all entries  - 1
2 , then M has an (n - 1)\times (n - 1) principal

submatrix equal to G
\bigl( 
(n - 1), 3

\bigr) 
, and we are back to the previous case.

Upon considering any 5 \times 5 principal submatrix of M that has exactly one
index from \{ n  - 1, n\} , and using observations from the previous case, we
may assume v and w to both have exactly one entry that is 1, with the
remaining entries being  - 1

2 , and x is some scalar number. There are two
cases of interest: v and w have the 1 entry either in the same position or in
different positions.
If they are both in the same place, then without loss of generality, let us
assume that they are in position (n - 2). Now, if we look at the 3 \times 3 block
corresponding to entries \{ n  - 2, n  - 1, n\} , then we will see the 3 \times 3 ma-
trix \left(  1 1 1

1 1 x
1 x 1

\right)  .

The determinant of this matrix is  - (x - 1)2. We can see that if this matrix
is singular, then x must in fact be equal to 1, and so we see that the last 3
rows of M are all the same, implying M is singular. Now, suppose that v and
w have these 1 entries in two different positions. Then we see that there is a
3\times 3 submatrix of the form \left(  1 1  - 1

2
1 1 x
 - 1

2 x 1

\right)  .
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The determinant of this matrix is 1 + x  - x2  - 1
4  - 1 =  - (x + 1

2 )
2, and we

must then have x =  - 1
2 . In this case, we see that the (n  - 2) and (n  - 3)

rows of M are equal, and so M is singular. In other words, if M \in \scrS n,3 is
locally singular, and M is nonsingular, and some (n  - 2) \times (n  - 2) minor of
M is diagonally congruent to G(n - 2, 3), then M is diagonally congruent to
G(n, 3).

3. n = 6, and all (n - 1)\times (n - 1) principal minors of M are zero. Then using
Theorem 4.4, all diagonal entries of M - 1 are zero. Since M \in \scrS 6,3 is NLS,
again using Theorem 4.4, we also see that all 3\times 3 minors of M - 1 are zero.
Any 3\times 3 submatrix of M - 1 must be of the form\left[  0 a b

a 0 c
b c 0

\right]  ,

which has determinant 2abc. Since the determinant must be 0, this means
that there cannot be any 3\times 3 submatrix ofM - 1 where all off-diagonal entries
are nonzero. Now we define an edge coloring on K6, the complete graph with
6 vertices, as follows. An edge (i, j) is colored red if (M - 1)ij = 0 and blue
otherwise. Our previous result shows that there cannot be any blue trian-
gles in this colored graph. Therefore, using the fact that the Ramsey number
R(3, 3) is at most 6 [12], there must exist a red triangle.
In other words, there must exist an identically zero 3 \times 3 submatrix within
M - 1. After permuting rows and columns we may assume its index to be
\{ 1, 2, 3\} . Now consider the submatrix of M - 1 indexed by \{ 1, 2, 3, 4, 5\} . The
span of first three rows is at most two dimensional, so this submatrix is sin-
gular. Using Theorem 4.4 we get M66 = 0. But this is a contradiction since
all diagonal entries of M must be nonzero.

7.4. Structure theorem in general. We have shown the structure theorem in
the cases when k = 3 or n - k = 2. Now we use induction to prove the general case.

Theorem 7.5. Fix integers n \geq 5 and 3 \leq k \leq n  - 2. Let M \in \scrS n,k be NLS.
Then M is diagonally congruent to G(n, k).

Proof. We will use induction. The base cases are when k = 3 or k = n  - 2, and
they are already proven. These include all cases when n = 5 or n = 6.

For induction, fix n \geq 7 and 3 < k < n - 2. Assume the theorem statement holds
for (n  - 1, k) and (n  - 1, k  - 1). Let M \in \scrS n,k be NLS. The Schur complement of
M with respect to any diagonal entry is NLS in \scrS n - 1,k - 1 and is therefore diagonally
congruent to G(n  - 1, k  - 1). Because all (n  - 2) \times (n  - 2) principal submatrices of
G(n  - 1, k  - 1) are nonsingular for k < n  - 1, all of the (n  - 2) \times (n  - 2) minors of
the Schur complement of M are nonsingular. This implies that all of (n - 1)\times (n - 1)
minors of M are nonsingular, since Schur complements preserve the property of being
singular.

Thus, if we consider any (n  - 1) \times (n  - 1) principal submatrix of M , we see
that it is NLS in \scrS n - 1,k, and by our inductive hypothesis, all (n  - 1) \times (n  - 1)
submatrices of M are diagonally congruent to G(n  - 1, k). This in particular
shows that all entries of M must be nonzero, and all diagonal entries strictly
positive.

Let D\prime be a nonsingular diagonal matrix so that DM | \{ 1,...,n - 1\} D = G(n - 1, k).
Since we may freely choose between D\prime and  - D\prime , without loss of generality we may
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assume D\prime 
11 is negative. Let c = sgn(M1n)\surd 

Mnn
(where sgn(x) is  - 1 if x is negative, 1 if x

is positive, and sgn(0) = 0). We then have\biggl[ 
D\prime 0
0 c

\biggr] 
M

\biggl[ 
D\prime 0
0 c

\biggr] 
= M \prime =

\biggl[ 
G(n - 1, k) v

v\top 1

\biggr] 
for some vector v, and we know v1 < 0. Our goal now is to show that all entries of v
must be  - 1

k - 1 , and M is therefore diagonally congruent to G(n, k).
Consider any size n  - 1 principal submatrix of M \prime containing columns 1 and

n. It is diagonally congruent to G(n  - 1, k), so there exists diagonal matrix D =
diag(d1, . . . , dn) such that

D

\biggl[ 
G(n - 2, k) \^v

\^v\top 1

\biggr] 
D = G(n - 1, k),

where \^v is obtained from v by truncating one entry other than the first coordinate,
and \^v1 < 0. We may also choose d1 > 0. Now comparing diagonal entries of both
sides we get d2i = 1 for all i. Now for all i > 1 the (1, i) entry on both sides is negative,
so did1 > 0 for all i > 1. This shows in fact D = I, and all entries of \^v are  - 1

k - 1 .
Now varying over all possible choices of principal submatrices containing columns 1
and n, we see all entries of v must be  - 1

k - 1 . This concludes the proof.

8. Eigenvalues of locally singular matrices in \bfscrS \bffour ,\bftwo . In the previous section,
we found that all locally singular matrices in \scrS 4,2 are either singular or congruent to
G(n, k). In this section, we consider the eigenvalues of NLS matrices in \scrS 4,2.

In general, we may ask the following question: what are the possible eigenvalues
of a matrix of the form DG(n, k)D, where D is a nonsingular diagonal matrix? We
know thatDG(n, k)D is locally singular and in \scrS n,k, which implies that its eigenvalues
lie on the boundary of H(enk ).

Furthermore, by Sylvester's law of inertia, for any nonsingular diagonal matrix
D, DG(n, k)D has exactly one negative eigenvalue, and the remainder are positive.
Hence, if \lambda is the eigenvalue vector of a DG(n, k)D, then \lambda has exactly one negative
entry. We conjecture that this is in fact sufficient for \lambda to be the vector of eigenvalues
for an NLS matrix in \scrS n,k.

Conjecture 8.1. If \lambda \in H(enk ), e
n
k (\lambda ) = 0, and \lambda has at most 1 negative entry,

then \lambda is a vector of eigenvalues for DG(n, k)D for some diagonal matrix D.

As evidence for this conjecture, we will give a computational proof of the following
theorem.

Theorem 8.2. If \lambda \in H(e42) lies on the boundary of the hyperbolicity cone of e42
and \lambda has exactly 1 negative entry, then \lambda is an eigenvalue vector of some matrix in
\scrS 4,2.

We prove this by converting the question into a question about real-rooted polyno-
mials. We should think of these as being the characteristic polynomials of certain types
of symmetric matrices, and these characteristic polynomials completely characterize
their eigenvalues. We defer the proofs of these characterizations to the appendix.

We say that a univariate polynomial of degree 4, p = a0+a1x+a2x
2+a3x

3+x4,
has good roots if it is real rooted, a0 < 0, a2 = 0, and a3 \leq 0.

Lemma 8.3. A real-rooted polynomial p has good roots if and only if p has no zero
roots and exactly one negative root and the roots of p lie on the boundary of H(e42).
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We then say that a polynomial p = a0+a1x+a2x
2+a3x

3+x4 is almost-nonnegative
rooted if there is some k \in \BbbR so that the polynomial q = a0

 - 16 +
a1

 - 4x+kx2+a3x
3+x4

has nonnegative real roots.

Lemma 8.4. p is almost-nonnegative rooted if and only if there is some nonsin-
gular diagonal matrix D so that p is the characteristic polynomial of DG(4, 2)D.

Now, Theorem 8.2 is easily seen to be equivalent to the following lemma.

Lemma 8.5. A polynomial p has good roots if and only if it is almost-nonnegative
rooted.

We will prove Lemma 8.5 precisely in the appendix but sketch the ideas here. In
principle, Lemma 8.5 is a statement in the first order theory of real closed fields. That
is, it can expressed entirely in terms of universal and existential quantifiers applied
to real polynomial inequalities. Such questions are well known to be answerable
algorithmically through quantifier elimination techniques. The first such algorithm
for deciding such statements was found by Tarksi and Seidenberg [5], and further
developments in this field can be found, for example, in [5]. We used the quantifier
elimination methods in Mathematica [16] to solve this problem.

The main technical difficulty in applying these quantifier elimination methods
is reducing the number of variables needed to express the inequalities so that the
problem becomes tractable on a computer. For this purpose, we prove a number of
polynomial inequalities in the coefficients of a degree 4 univariate polynomial which
imply both good-rootedness and almost-real-rootedness in the appendix. Once these
polynomial inequalities have been proven, the problem can be directly solved by a
computer.

Appendix A. Proofs of results in section 8. We first prove the charac-
terization of the eigenvalues of matrices diagonally congruent to G(4, 2) in terms of
characteristic polynomials.

Proof of Lemma 8.3. Suppose that p(x) = (x - r1)(x - r2)(x - r3)(x - r4) so that
the roots of p are r1, r2, r3, r4.

Note that the condition that a2 \geq 0, a3 \leq 0 is equivalent to the condition that
e42(r1, r2, r3, r4), e

4
1(r1, r2, r3, r4) \geq 0. These inequalities are equivalent to the con-

dition that (r1, r2, r3, r4) \in H(e42) [13]. Once we know that (r1, r2, r3, r4) \in H(e42),
a2 = e42(r1, r2, r3, r4) = 0 is equivalent to the condition that (r1, r2, r3, r4) lies on the
boundary of the hyperbolicity cone.

Every (r1, r2, r3, r4) \in H(e42) has at most 2 negative entries, and if there were
exactly 2 negative negative entries, then r1r2r3r4 > 0 (it cannot be the case that there
are two negative entries and a zero entry by interlacing). Therefore, the condition
that a0 < 0 is equivalent to there being at most 1 negative entry in (r1, r2, r3, r4).

Proof of Lemma 8.4. The characteristic polynomial of the matrix DG(4, 2)D is,
by definition,

p(\lambda ) = det(DG(4, 2)D  - I\lambda ) =

4\sum 
i=0

\sum 
S\subseteq [n],| S| =i

( - 1)i det
\bigl( 
(DG(4, 2)D)| S

\bigr) 
\lambda 4 - i.

Now, note that because D is diagonal,

det
\bigl( 
(DG(4, 2)D)| S

\bigr) 
= det(D| S)2 det(G(4, 2)| S).
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Also, because G(n, k) is symmetric with respect to permutations of the coordinates,
det(G(n, k)| S) only depends on the size of S. So, we have that

p(\lambda ) =

4\sum 
i=0

det(G(4, 2)| [i])
\sum 

S\subseteq [n],| S| =i

( - 1)i det
\bigl( 
(D)2| S

\bigr) 
\lambda 4 - i.

Now, we simply compute

det(G(4, 2)| \{ 1\} ) = 1,

det(G(4, 2)| \{ 1,2\} ) = 0,

det(G(4, 2)| \{ 1,2,3\} ) =  - 4,

det(G(4, 2)| \{ 1,2,3,4\} ) =  - 16.

Now, consider the polynomial

q(\lambda ) =

4\sum 
i=0

\sum 
S\subseteq [n],| S| =i

( - 1)i det
\bigl( 
(D)2| S

\bigr) 
\lambda i = b0 + b1\lambda + b2\lambda 

2 + b3\lambda 
3 + \lambda 4.

This is equal to the characteristic polynomial of the matrix D2. As D2 is a diagonal
matrix with nonnegative real entries, its eigenvalues are nonnegative. Moreover, if q
is a polynomial with nonnegative real roots, then there is a diagonal matrix D so that
q is its characteristic polynomial.

Finally, note that from our above characterization of the coefficients of p,

p(\lambda ) =  - 16b0 + - 4b1\lambda + b3\lambda 
3 + \lambda 4.

On the other hand, if p has almost-nonnegative roots, then we can construct the
desired D from the roots of q; then DG(n, k)D will have the desired eigenvalues.

We now prove a number of polynomial inequalities which are equivalent to the
good-rooted and almost-real-rooted conditions.

Lemma A.1. p = a0 + a1x - x3 + x4 has good roots if and only if a0 < 0 and

 - 4a31  - 27a41  - 6a21a0  - 27a20  - 192a1a
2
0 + 256a30 \geq 0.

Proof. This polynomial  - 4a31  - 27a41  - 6a21a0  - 27a20  - 192a1a
2
0 + 256a30 is the

discriminant of p, which is nonnegative if and only if the number of real roots of p is
a multiple of 4 or p has a double root.

If p has 4 nonreal roots, say r1, r2, r3, r4, then they must come in conjugate pairs,
so that, say, r1 = \=r2 and r3 = \=r4, which would imply that then

a0 = r1r2r3r4 = | r1| 2| r3| 2

is nonnegative, a contradiction.
Similarly, if p has a double root, say r3 = r4, and a pair of complex conjugate

roots, say r1 = \=r2, then we see that

a0 = r23| r1| 2 \geq 0,

which is a contradiction.
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Lemma A.2. p = a0 + a1x - x3 + x4 has almost-nonnegative roots if and only if
a0 < 0, a1 < 0, and there is k > 0 so that the following 4 inequalities are satisfied:

\Bigl( 
 - 27a41

256
 - 9a31k

32
+

a31
16

 - 9

16
a21a0k +

3a21a0
128

 - a21k
3

4
+

a21k
2

16
+

3a1a
2
0

16

 - 5

4
a1a0k

2 +
9a1a0k

32
 - a30

16
 - a20k

2

2
+

9a20k

16
 - 27a20

256
 - a0k

4 +
a0k

3

4

\Bigr) 
\geq 0,

\Bigl( 27a41
256

+
9a31k

32
+

a31
8

+
45

128
a21a0k  - 9a21a0

128
+

a21k
3

4
+

45a21k
2

16
+ a21k+

37a21
8

 - 9a1a
2
0

128
+

11

16
a1a0k

2  - 43a1a0k

32
 - 53a1a0

32
+ 9a1k

3 +
27a1k

2
 - 

3a1 +
a30
64

+
3a20k

2

16
+

23a20k

128
+

77a20
256

+
a0k

4

2
+

27a0k
3

8
 - 3a0k

2 +
3a0k

8
 - 

3a0
8

+ 8k5  - 2k4 + 16k3  - 4k2
\Bigr) 
\leq 0,

\Bigl( 
 - 3a31

16
+

3a21a0
64

 - 19a21k
2

16
 - a21k  - 17a21

16
+

11a1a0k

32
+

17a1a0
32

 - 

9a1k
3

2
 - a1k

2 + 3a1k  - 15a1
2

 - 3a20k

32
 - 17a20

256
 - 5a0k

3

4
+

9a0k
2

8
 - 

11a0k

8
+

21a0
8

 - 4k5 + k4  - 16k3 + 33k2  - 38k + 9
\Bigr) 
\geq 0,

\biggl( 
 - 3a21

16
 - 3a1k +

5a1
2

+
3a0k

8
 - 5a0

8
+ 2k3  - 11k2 + 12k  - 7

\biggr) 
\leq 0.

Proof. The classical results that we need about real-rooted univariate polynomi-
als, such as the Newton identities and the Hermite--Sylvester conditions, can be found
at [4, section 3.1].

If we have the sign conditions on the coefficients, a0 < 0, a1 < 0, k > 0, then the
polynomial q = a0

 - 16 + a1

 - 4x + kx2  - x3 + x4 has coefficients which alternate in sign.
If q is real rooted, then we can apply Descartes' rule of signs to conclude that q has
nonnegative real roots.

The remaining inequalities cut out the space of real-rooted polynomials. This
follows from the Hermite--Sylvester criterion for the polynomial having real roots. It
states that if we let mk =

\sum 4
i=1 r

k
i , where r1, r2, r3, r4 are the roots of q, then p has

nonnegative real roots if and only if the 4\times 4 matrix M given by

Mij = mi+j

is PSD.
We can then use the Newton identities to determine the mk in terms of a0, a1,

and k.
Once M has been computed, the 4 polynomials above are the 4 coefficients of the

characteristic polynomial of M . M being PSD is equivalent to these 4 polynomials
alternating in sign, which results in the four inequalities listed.
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Proof of Lemma 8.5. We want to show that for all a0 and a1 satisfying the con-
ditions of Lemma A.1, there exists k satisfying the conditions of Lemma A.2.

We are now at the point where we can directly apply any quantifier elimination
algorithm to solve this problem, say the one included in Mathematica [16]. The results
of this computation show that the lemma holds.

Acknowledgments. We wish to thank the reviewers for their valuable comments
which improved the paper and simplified some proofs.
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