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TROPICALIZATION OF GRAPH PROFILES
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Abstract. A graph profile records all possible densities of a fixed finite set of
graphs. Profiles can be extremely complicated; for instance the full profile of
any triple of connected graphs is not known, and little is known about hyper-
graph profiles. We introduce the tropicalization of graph and hypergraph pro-
files. Tropicalization is a well-studied operation in algebraic geometry, which
replaces a variety (the set of real or complex solutions to a finite set of algebraic
equations) with its “combinatorial shadow”. We prove that the tropicaliza-
tion of a graph profile is a closed convex cone, which still captures interesting
combinatorial information. We explicitly compute these tropicalizations for
arbitrary sets of complete and star hypergraphs. We show they are rational
polyhedral cones even though the corresponding profiles are not even known
to be semialgebraic in some of these cases. We then use tropicalization to
prove strong restrictions on the power of the sums of squares method, equiv-
alently Cauchy-Schwarz calculus, to test (which is weaker than certification)
the validity of graph density inequalities. In particular, we show that sums of
squares cannot test simple binomial graph density inequalities, or even their
approximations. Small concrete examples of such inequalities are presented,
and include the famous Blakley-Roy inequalities for paths of odd length. As a

consequence, these simple inequalities cannot be written as a rational sum of
squares of graph densities.

1. Introduction

An important tool in the study of very large graphs is to randomly sample a fixed
number of small subgraphs. This methodology goes under various names such as
property testing [12] and subgraph sampling [22, Section 1.3.1], and the sampling
statistics are in terms of densities of the subgraphs in the given graph. There are
various notions of densities. In this paper we focus on homomorphism densities, but
we say a few words at the very end on consequences for other densities. A graph
G has vertex set V (G) and edge set E(G), and is assumed to be simple, without
loops or multiple edges. The homomorphism density of a graph H in a graph G,
denoted by t(H;G), is the probability that a random map from V (H) to V (G) is
a graph homomorphism, i.e., it maps every edge of H to an edge of G.

The graph profile of a collection of connected graphs U = {C1, . . . , Cs}, denoted
as GU , is the closure of the set of all vectors (t(C1;G), t(C2;G), . . . , t(Cs;G)) as G

varies over all graphs. For example, the graph profile of U =
{

,
}

is the
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well-known set in [0, 1]2 shown in Figure 1 (slightly distorted to better show its
features) [31].
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Figure 1. The graph profile of edge and triangle

Graph profiles are extremely complicated sets and they have been fully under-
stood in very few cases. The study of graph profiles was initiated in [8], where
it was shown that a graph profile is a closed full-dimensional subset of [0, 1]s

for an arbitrary s-tuple of connected graphs. However to this day, there is no
triple of connected graphs for which the graph profile is fully known. For pairs

of graphs, the profile GU for U = { ,Kn} where Kn denotes the complete graph

on n vertices was determined first for n = 3 in [31], for n = 4 in [27], and for a

general n in [33]. Determining the profile of { , H} where H is an arbitrary bi-

partite graph would involve resolving the famous Sidorenko conjecture which says

t(H;G) ≥ t( ;G)|E(H)|. Despite considerable attention, this conjecture is only

known for some classes of bipartite graphs [6,7,19,34]. Some two-dimensional pro-

jections of GU where U = { , , } were described in [11,17]. As is evident

from Figure 1, graph profiles are not necessarily convex or semialgebraic sets.
In this paper we introduce the tropicalization of graph profiles. Tropicalization

is a very well-studied operation in real and complex algebraic geometry, which
replaces a variety (the set of real or complex solutions to a finite collection of
algebraic equations) with its “combinatorial shadow” [24, 25]. Tropicalization of
real semialgebraic sets has not been explored in as much detail [2, 3, 35]. As we
describe below, while tropicalization loses a lot of information about a graph profile,
it also keeps many of its interesting combinatorial properties.

1.1. Tropicalization of graph profiles. The first set of results in this paper
shows that even though GU can be very complicated [16], its tropicalization de-
noted as trop(GU ) is, relatively speaking, rather simple. For a set S ⊆ Rs

≥0, let

log(S) denote the image of S ∩ Rs
>0 under the map v �→ (loge v1, . . . , loge vs). The

tropicalization of S, also known as its logarithmic limit set, is

trop(S) = lim
t→0

log 1
t
(S).

It was shown in [2] that trop(S) is a closed cone, but it is not necessarily convex.
We prove in Theorem 2.4 that trop(GU ) is a closed convex cone that coincides
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with the closure of the conical hull of loge(GU ). This result extends beyond graph
profiles to hypergraph profiles in Theorem 3.2, and in fact, to any set that has the
Hadamard property, namely that if u,v are in the set then so is their coordinate-wise
Hadamard product.

Hypergraph profiles. In Section 3 we compute the tropicalization of an arbitrary k-
tuple of complete graphs (and complete uniform hypergraphs) [Theorem 3.3], and
an arbitrary k-tuple of star graphs (and uniform star hypergraphs) [Theorem 3.6].
Both tropicalizations are rational polyhedral cones. This is in sharp contrast to
the true profile of even any triple of such graphs being quite out of reach at the
moment.

Binomial graph density inequalities. The cone trop(GU ) provides a perfect frame-
work in which to study pure binomial graph density inequalities of the form t(H1;G)
≥ t(H2;G) whereH1 andH2 are graphs whose connected components are contained
in U = {C1, . . . , Cs}. Under the log map, the inequality t(H1;G) ≥ t(H2;G) be-
comes a linear inequality in the densities of its connected components. The extreme
rays of the dual cone trop(GU )

∗ generate all of the pure binomial inequalities valid

on GU . As mentioned already, for a pair U = { , H} where H is bipartite, trop(GU )

captures the Sidorenko conjecture forH. In this case, trop(GU ) is a two-dimensional
cone in R2

≤0, and one of its extreme rays for arbitrary H is determined in [4]. De-
termining the other would resolve the Sidorenko conjecture.

1.2. Tropicalization and sums of squares. Our next set of results uses tropical-
ization to show strong limitations for the sums of squares (sos) method, also known
as Cauchy-Schwarz calculus [10, 14, 22, 30, 32], to prove graph density inequalities.

A finite R-linear combination of graphs H1, . . . , Hs, a =
∑

αiHi, is called
a graph combination. The evaluation of a graph combination a on a graph G
is a(G) =

∑
αit(Hi;G), and a is said to be nonnegative, written as a ≥ 0, if∑

αit(Hi;G) ≥ 0 for every G. Equivalently, a ≥ 0 on the graph profile GU where
U = {C1, . . . , Cm}, where C1, . . . , Cm are the connected components of H1, . . . ,
Hs. A graph combination a is a sum of squares (sos) if a =

∑
[[a2j ]] where aj is a

graph combination of partially labeled graphs.
A natural certificate of nonnegativity of a graph combination is a sos expression

for it, and semidefinite programming can be used to search for a sos expression. It
was shown in [23] that every true inequality between homomorphism densities is a
limit of Cauchy-Schwarz (sos) inequalities. Problem 17 in [21] asked whether every
nonnegative graph combination is a sos and in particular, whether the Blakley-Roy

inequalities, Pk ≥ k, where Pk is a path of odd length k, can be certified by sos.

Problem 21 in [21] asked whether every nonnegative graph combination a can be
multiplied by a combination of the form (1 + b) where b is sos so that the product
is sos. This would certify the nonnegativity of a.

It was shown in [15] that the problem of verifying the validity of a polynomial
inequality (or equivalently of a linear inequality) between homomorphism densities
is undecidable. Moreover, they gave explicit examples of nonnegative graph com-
binations that are not sos answering the first part of Problem 17 in [21]. The class
of graph combinations that become sos after multiplication with an sos were called
rational sums of squares in [15] after Hilbert’s 17th problem. The undecidability
result was used to show that there exist nonnegative graph combinations that are
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not rational sos, thus also solving Problem 21, although no explicit example of such
graph combinations was presented. In [5], we found small explicit graph density
inequalities that cannot be written as a sos, and also do not become sos after mul-
tiplication by expressions of the form 1 + b where b is sos. A concrete instance of

our results is the family of Blakley-Roy inequalities, Pk ≥ k, for odd k, answering

Problem 21 and the second part of Problem 17 in [21].
We introduce a new notion of sos-testable graph combinations, which are more

general than sums of squares and rational sums of squares. Roughly speaking, sos-
testable graph combinations correspond to graph combinations whose nonnegativity
can be recognized by sums of squares, although there is no explicit certificate of
nonnegativity. We find large families of pure binomial graph density inequalities
that are not sos-testable, and even their pure binomial approximations remain not
sos-testable. These families include Blakley-Roy inequalities for odd paths.

Sos profiles and sos-testable functions. For a fixed positive integer d, define the
d-sos-profile, denoted as Sd, to be the set of all points on which all sos graph com-
binations

∑
[[a2j ]], with all aj having at most d edges in their constituent graphs,

are nonnegative. Let the (U , d)-sos profile SU,d be the projection on Sd onto the
graphs in U . We prove that Sd is a basic, closed semialgebraic set, and that its trop-
icalization trop(Sd) is a rational polyhedral cone described explicitly in Theorem
4.12.

A graph combination a is sos-testable if it is nonnegative on Sd for some d. Sos-
testable functions do not have to come with an explicit certificate of nonnegativity
on an sos-profile. However, in principle, since Sd is a semialgebraic set, nonnegativ-
ity of a graph combination on Sd can be verified via real quantifier elimination. We
show in Theorem 4.16 that if a graph combination a becomes sos-testable after mul-
tiplication by an sos-testable graph combination b, then a was already sos-testable.
The class of sos-testable functions includes sums of squares and also rational sums
of squares, but is quite likely significantly larger. It is not clear at this point whether
even rational sos is a bigger class than just sos.

Limitations of sos. In Section 5 we exhibit concrete families of binomial graph
density inequalities that are not sos-testable, even approximately (Theorem 5.1).
Namely, if H and H are two graphs with the same number of edges where H is
a trivial square (see Section 5 for details) in which every vertex has degree p or
p + 1, and the maximum degree in H is at most p + 1, then H − H is not sos-

testable. An example of such a binomial inequality would be − 3 ≥ 0 (and

in fact all Blakley-Roy inequalities for odd paths). Even more, H
k −Hk+1 is not

sos-testable for k ≥ 2|E(H)|+ 1. In particular, 7 − 24 is not sos-testable and

thus cannot be written as a rational sos. The existence of non-sos-testable graph
density inequalities follows from the undecidability result in [15]. However, they do
not provide explicit examples, and our non-approximation results are new.

Nonnegative graph combinations admit a Positivstellensatz: any graph combi-
nation strictly positive on a graph profile GU is a sos [23, 26]. It follows from this
that the graph profile GU is the intersection of the (U , d)-sos profiles for all d:

GU =
⋂
d

S(U,d).
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Perhaps surprisingly, tropicalizations of graph and sos-profiles behave rather differ-
ently in that trop(S(U,d)) need not approach trop(GU) as d → ∞. This is because
tropicalizations of graph and sos-profiles only depend on an arbitrarily small neigh-
borhood of the origin in the original set by Lemma 2.2, and sets may approach each
other, while their neighborhoods of the origin do not, see for instance Example 2.3.
This phenomenon plays an important role in our ability to use tropicalizations to
find non-sos-testable functions. It enables us to find graph density inequalities that
are not valid on any d-sos-profile while being valid on GU .

1.3. Open questions. We now state some open questions raised by our results.
All tropicalizations of graph profiles computed in Section 3 are rational polyhedral
cones. Therefore it is natural to ask the following:

Question 1.1. Is trop(GU ) a polyhedral cone for any collection U of connected
graphs? If yes, then is it necessarily a rational polyhedral cone?

It was shown in [15] that the problem of deciding the validity of a polynomial in-
equality (or equivalently of a linear inequality) between homomorphism densities is
undecidable. This is equivalent to saying that verifying the validity of a polynomial
inequality on a graph profile is undecidable. Tropicalizations of graph profiles only
carry information about pure binomial inequalities, and tropicalizations appear to
be simpler than the full profile. Therefore we ask the following:

Question 1.2. Given two (not necessarily connected) graphs G1 and G2 is the
question of whether G1 − G2 ≥ 0 is a valid homomorphism density inequality
decidable?

Question 1.2 is equivalent to understanding whether a given integer (or rational)
point lies in the dual cone trop(GU )

∗, where U is the set of connected components
of G1 and G2.

1.4. Organization of this paper. In Section 2 we study the tropicalization
trop(S) of a set S ⊆ Rs

≥0 with the Hadamard property. We prove in Lemma 2.2 that

trop(S) is a closed convex cone that coincides with the closure of the conical hull of
loge(S) and that if the all-ones vector is present in S, then trop(S) also coincides
with the closure of the convex hull of loge(S). Theorem 2.4 applies these results to
graph profiles, proving that trop(GU ) is a closed convex cone that coincides with
both the conical and convex hull of log(GU ).

Lemma 2.2 can also be applied to hypergraph profiles (Theorem 3.2). In Sec-
tion 3 we compute the tropicalizations of the profiles of an arbitrary number of hy-
pergraphs from two families – complete hypergraphs and star hypergraphs. Both
examples yield rational polyhedral cones that can be described explicitly. Their
actual profiles are currently unknown.

We introduce the d-sos-profile Sd in Section 4 and prove that it is a basic closed
semialgebraic set. Theorem 4.12 proves that trop(Sd) is a rational polyhedral cone
whose inequalities can be described explicitly by the 2 × 2 principal minors of a
symbolic matrix. Graph profiles are contained in sos-profiles. This section also
introduces the notion of sos-testable graph density inequalities. We prove in The-
orem 4.16 that if b and ab are sos-testable then so is a. In particular, if a is not
sos-testable it is neither a sos nor a rational sos (Corollary 4.17).

In Section 5 we find explicit families of pure binomial inequalities that are not
sos-testable, even approximately.
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2. Tropicalization of graph profiles

Definition 2.1. Let U = {C1, . . . , Cs} be a collection of connected graphs. The
graph-profile of U , denoted as GU , is the closure of the set of vectors
(t(C1;G), t(C2;G), · · · , t(Cs;G)) as G varies over all unlabeled graphs.

For any U , the graph profile GU is contained in [0, 1]s. They are highly compli-
cated objects and very few of them are known explicitly. Note from Figure 1 that
neither the graph profile, nor its convex hull, may be semialgebraic.

In this section we use tropical geometry to pass from the complicated graph
profile GU to its tropicalization, which as we will see is a cone, and hence much
easier to understand.

Let log : Rs
>0 → Rs be defined as log(v) := (loge(v1), . . . , loge(vs)). If we need

to change the base of the log from e to α then we will explicitly write logα. For a
set S ⊆ Rs

≥0 we define log(S) := log(S ∩Rs
>0). For any set S ⊆ R≥0 and τ ∈ (0, 1)

consider

log 1
τ
(S) = −1

loge τ
loge(S).

The tropicalization of S, which is also called the logarithmic limit set of S, is
trop(S) := lim

τ→0
log 1

τ
(S).

By [2, Proposition 2.2], trop(S) is a closed cone in Rs. A working definition of what
it means for a point y to lie in trop(S) is that for a sequence τk ∈ (0, ε) indexed
by k ∈ N converging to 0 (equivalently, any such sequence), there exists a sequence
y(k) ∈ S ∩ Rs

>0 such that log 1
τk

y(k) → y as τk → 0 [2, Proposition 2.1]. In other

words, trop(S) consists of all accumulation points under the map log1/τk applied
to S ∩Rs

>0 for all possible choices of sequences of bases τk. Note that since the log
map is only defined on positive points, log 1

τk

y(k) can exist only if y(k) ∈ Rs
>0. For

sets S ⊆ Rs
≥0 such that S = cl(S ∩Rs

>0), trop(S) does not lose information carried
by the points with zero coordinates in S. The Hadamard product of v,w ∈ Rs

is defined to be v · w = (v1w1, . . . , vsws). We say that a set S ⊆ Rs
≥0 has the

Hadamard property if for any two vectors v,w ∈ S, v ·w ∈ S. For a vector v and
a positive integer k, define the kth power of v to be vk := (vk1 , . . . , v

k
s ).

Lemma 2.2. Suppose S ⊆ Rs
≥0 has the Hadamard property. Then

(1) trop(S) is the closure of the union of all the rays from the origin through
points in log(S).

(2) trop(S) is a closed convex cone and trop(S) = cl(cone(log(S))), where
cone(·) denotes the conical hull.

(3) If 1 ∈ S, trop(S) = cl(conv(log(S))).
(4) If S ⊆ [0, 1]s and S = cl(S ∩ [0, 1)s), then for any ε > 0, trop(S) is

determined by the nonempty neighborhood S ∩ B(0, ε) of S, where B(0, ε)
is the ball with center 0 and radius ε.

Proof.

(1) We first show that trop(S) is contained in the closure of the union of all the
rays from the origin through points in log(S). Suppose y ∈ trop(S). Then
there exist sequences y(k) ∈ S ∩ Rs

>0 and τk ∈ (0, ε) such that as τk → 0,

log 1
τk

y(k) =
−1

log τk
logy(k) → y.
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Since logy(k) ∈ log(S) and −1
log τk

> 0, we get that log 1
τk

y(k) is in the

union of all the rays from the origin through points in log(S) for all k, and
hence, y is in their closure.

For the other inclusion, we want to show that, for any v ∈ S, the ray
generated by log(v) is in trop(S). Since trop(S) is a cone and changing
bases just rescales log(v), it suffices to show that loge(v) ∈ trop(S). Note
that loge(v) = logek(v

k) for any k ∈ N and since S has the Hadamard
property, vk is also in S for all positive integers k. Thus there are sequences
τk := 1

ek
and v(k) := vk where τk → 0 and log 1

τk

(v(k)) = loge(v), and

so loge(v) ∈ trop(S). Since trop(S) is closed, we can conclude that the
closure of the union of all the rays from the origin through points in log(S)
is contained in trop(S).

(2) We already know that trop(S) is closed. We now show that it is a convex
cone. By (1), it suffices to show that for any log(v), log(w) ∈ log(S),
α log(v) + β log(w) ∈ trop(S) for any α, β ≥ 0. We can assume that
α, β ∈ Q since trop(S) is closed, and so we can further assume that α, β
have the same denominator, say α = a1

b and β = a2

b where a1, a2, b ∈ N.
From (1), we only need to show that a1 log(v) + a2 log(w) ∈ trop(S). This
is equal to log(va1 ·wa2) which, by the Hadamard property, is contained in
log(S), and, from (1), thus also in the tropicalization.

From (1), we know that trop(S) is contained in the closure of the union
of all the rays from the origin through points in log(S), which is con-
tained in cl(cone(log(S))). To show the reverse inclusion, by (1), we know
trop(S) ⊇ log(S), and since trop(S) is a closed convex cone, trop(S) ⊇
cl(cone(log(S))), and the result holds.

(3) If 1 ∈ S, then 0 = log 1 ∈ log(S). We already saw that all positive integer
multiples of a point in log(S) are also in log(S). Together these facts imply
that cl(conv(log(S))) = cl(cone(log(S))) = trop(S).

(4) Since trop(S) is a closed convex cone, it is fully described by the linear
inequalities that are valid on it. A linear inequality a�y ≥ b�y valid on
log(S) corresponds to the binomial inequality xa ≥ xb on S ∩ Rs

>0. Here
we are setting yi = log(xi). Therefore, to prove the claim it suffices to
argue that if a binomial inequality is valid on a small neighborhood of the
origin in S ∩ Rs

>0 then it is in fact valid on all of S ∩ Rs
>0. Suppose there

is some binomial inequality xa ≥ xb that is valid on the neighborhood and
v ∈ S ∩Rs

>0 violates it. Without loss of generality, we can assume that all
components of v are less than 1. Then there is some large enough positive
integer k for which vk lies in the neighborhood we considered. If va < vb

then we also have (vk)a < (vk)b which is a contradiction. Thus trop(S) is
determined by the behavior of S near the origin. �

Note that even though two sets might converge, their tropicalizations might not
as seen in Example 2.3. This example also highlights the role of the neighborhood
of the origin as in Lemma 2.2(4).

Example 2.3. Consider the two sets in Figure 2. On the left is a triangle and on
the right a slight modification of the triangle into a quadrilateral with new vertex
(0, ε). The neighborhood of the origin is different for the two sets. Observe that
S = limε→0 Sε as is clear from Figure 2. On the other hand, their tropicalizations,
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1

1

1

ε

1

Figure 2. The sets S (left) and Sε (right)

seen in Figure 3, do not, i.e., trop(S) 
= limε→0 trop(Sε) since the neighborhood of
the origin is different in sets S and Sε for any ε > 0.

Figure 3. The tropicalizations of S (left) and Sε (right)

We now apply these results to the graph profile GU which is known to be a
connected and full-dimensional set [8]. Moreover, it is known that every v ∈ GU
is arbitrarily close to (t(C1;G), . . . , t(Cs;G)) for some graph G. As we will see
in the proof of Theorem 4.16, one can argue that every neighborhood of v has a
full-dimensional ball containing v that is contained in GU . Therefore, there is a
positive point in GU arbitrarily close to v, and no information is lost by passing to
log(GU ). Also, since GU is contained in [0, 1]s, log(GU ) and trop(GU ) lie in Rs

≤0.

Theorem 2.4. For the graph profile GU ,

trop(GU ) = cl(cone(log(GU ))) = cl(conv(log(GU ))) ⊆ Rs
≤0.

Further, for any ε > 0, trop(GU ) is determined by the nonempty neighborhood
GU ∩B(0, ε) where B(0, ε) is the ball with center 0 and radius ε.

Proof. By Lemma 2.2 we just need to show that GU has the Hadamard property and
contains 1. Equation 5.30 in [22] implies that t(Ci;G)t(Ci;G

′) = t(Ci;G×G′) where
G×G′ is the categorical product ofG andG′. Therefore, if (t(C1;G), . . . , t(Cs;G)) ∈
GU and (t(C1;G

′), . . . , t(Cs;G
′))∈GU , then (t(C1;G)t(C1;G

′), . . . , t(Cs;G)t(Cs;G
′))

∈ GU .
For the sequence of complete graphs Kn, (t(C;Kn) : C ∈ U) → 1 as n → ∞

which implies that 0 = log(1) lies in the closure of the convex hull of log(GU ). �

Theorem 2.4 implies that we obtain a great simplification in structure when we
pass from the graph profile GU to its tropicalization, trop(GU ), which is a closed
convex cone. A natural next question is the following:
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Question 2.5. Is trop(GU ) a polyhedral cone for any collection U of connected
graphs? If yes, then is it necessarily a rational polyhedral cone?

If U contains two graphs, then trop(S) is indeed a polyhedral cone with two
extreme rays since it is a two-dimensional cone. Could the generators of the extreme
rays be non-rational? No graph profile for three graphs is known. Is there a graph
profile for three graphs for which trop(S) is not polyhedral?

Example 2.6. For U =
{

,
}
, we saw the graph profile GU in Figure 1.

Figure 4. The tropicalization of the graph profile of an edge and a triangle

The curve bounding the upper part of the profile is 3 ≥ 2 which stands

for the density inequality t( 3;G) ≥ t( 2;G), or equivalently, t( ;G) ≥
t( ;G) for all unlabeled graphs G. Moreover, we know that ≤ 1. Let

y1 := log and y2 := log . Then the above binomial inequalities correspond

under the log map to the linear inequalities

3y1 − 2y2 ≥ 0 and y1 ≤ 0

which form the cone generated by the rays (−2,−3) and (0,−1) in R2
≤0 as shown

in Figure 4. In Section 3, we will see that this cone is indeed trop(GU ).

Remark 2.7. Note that trop(GU ) can be understood as an object recording all
possible orders of growths of densities, i.e., recording whether there exists a sequence
of graphs converging to that order of growth.

3. Explicit tropicalization of cliques and stars

In this section, we explicitly compute trop(GU ) for a finite collection U from
two hypergraph families, cliques and stars. In both cases we will see that the
tropicalizations are rational polyhedral simplicial cones.

Let K
(r)
p be the complete r-uniform hypergraph on p vertices, i.e., the graph on

p vertices where every set of r vertices forms a (hyper)edge. When r = 2, K
(2)
p is

simply the complete graph on p vertices. In Section 3.1, we describe trop(GU ) when

U = {K(r)
r ,K

(r)
r+1, . . . ,K

(r)
l } is the collection of complete r-uniform hypergraphs for

any r ≥ 2 and l ≥ r.
Let S(r)(b, c) denote the r-uniform hypergraph with b edges all of which intersect

in some set of c vertices, and nowhere else. We call such graphs, stars with b
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branches, and we call the intersection of all the edges the center. For example,
S(2)(b, 1) = K1,b, the complete bipartite graph with parts of size 1 and b. Note

that S(r)(b, c) has b(r − c) + c vertices. In Section 3.2, we describe trop(GU ) when
U = {S(r)(1, c), S(r)(2, c), . . . , S(r)(l, c)} for any r ≥ 2, c ≤ r and b ≥ 1.

We begin by showing that Theorem 2.4 also holds for r-uniform hypergraphs.
We first define what we mean by the product of two hypergraphs.

Definition 3.1. Let G1 and G2 be two r-uniform hypergraphs. The direct product
of G1 and G2 is G1 ×G2 where V (G1 ×G2) = {uv : u ∈ V (G1) and v ∈ V (G2)},
and

E(G1 ×G2) = {{u1v1, u2v2, . . . , urvr} : {u1, . . . , ur} ∈ E(G1)

and {v1, . . . , vr} ∈ E(G2)} .

Note that any pair of edges {u1, . . . , ur} ∈ E(G1) and {v1, . . . , vr} ∈ E(G2) gives
rise to r! different edges in E(G1 ×G2).

Theorem 3.2. For an r-uniform hypergraph profile GU , where |U| = s,

trop(GU ) = cl(cone(log(GU ))) = cl(conv(log(GU ))) ⊆ Rs
≤0.

Further, for any ε > 0, trop(GU ) is determined by the nonempty neighborhood
GU ∩B(0, ε) where B(0, ε) is the ball with center 0 and radius ε.

Proof. We first show that GU has the Hadamard property, i.e., that

t(H;G)t(H;G′) = t(H;G×G′)

for all r-uniform hypergraphs H,G,G′. Since the total number of maps from
V (H) to V (G × G′) is (|V (G)||V (G′)|)|V (H)|, the denominators on both sides
of the equation are the same. For homomorphisms ϕ : V (H) → V (G) and
ϕ′ : V (H) → V (G′), the map ψ : V (H) → V (G×G′) such that ψ(v) �→ ϕ(v)ϕ′(v)
is also a homomorphism. Conversely, for a homomorphism ψ : V (H) → V (G) ×
V (G′), the projections ϕ = ψG : V (H) → V (G) and ϕ′ = ψG′ : V (H) →
V (G′) onto the two components V (G) and V (G′) are homomorphisms. Thus,
the numerators on both sides of the equation are also the same. Therefore, if
(t(C1;G), . . . , t(Cs;G)) ∈ GU and (t(C1;G

′), . . . , t(Cs;G
′)) ∈ GU , then we have that

(t(C1;G)t(C1;G
′), . . . , t(Cs;G)t(Cs;G

′)) ∈ GU .
We now show that GU contains 1. For the sequence of complete r-uniform

hypergraphs K
(r)
n , (t(C;K

(r)
n ) : C ∈ U) → 1 as n → ∞ which implies that

0 = log(1) lies in the closure of the convex hull of log(GU).
The statement of the theorem now follows from Lemma 2.2. �

3.1. Tropicalization of hypergraph clique profiles. Consider the family U =

{K(r)
r ,K

(r)
r+1, . . . ,K

(r)
l } of complete hypergraphs for some r ≥ 2 and l ≥ r. Observe

that both GU and trop(GU ) lie in Rl−r+1 where the ith coordinate corresponds to

the graph K
(r)
r+i−1 for any 1 ≤ i ≤ l− r+1. In Theorem 3.3, we describe the facets

and extreme rays of trop(GU ). For any y ∈ Rl−r+1, denote by y
K

(r)
i

the coordinate

of y indexed by K
(r)
i for r ≤ i ≤ l. Also, define 1

K
(r)
i

for some r ≤ i ≤ l to be the

point in Rl−r+1 with 1 in the coordinate labeled by K
(r)
i and 0 otherwise.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

TROPICALIZATION OF GRAPH PROFILES 6291

Theorem 3.3. Let U = {K(r)
r ,K

(r)
r+1, . . . ,K

(r)
l }, then

trop(GU)=

{
y∈Rl−r+1 :

y
K

(r)
r

≤0,

(r+i)y
K

(r)
r+i−1

−(r+i−1)y
K

(r)
r+i

≥0 ∀ 1≤ i≤ l − r

}
.

Moreover, the extreme rays of trop(GU ) are

ui = −
l−r+1∑
j=i

(r + j − 1)1
K

(r)
r+j−1

for 1 ≤ i ≤ l − r + 1.

Proof. Let C be the cone on the right hand side of the equation in the theorem.

First observe that t(K
(r)
r , G) ≤ 1 is a valid inequality for all graphs G and thus

the inequality y
K

(r)
r

≤ 0 is valid for trop(GU ). The Kruskal-Katona theorem [18,20]

(see also [17]) in the context of graph homomorphism densities of complete graphs

implies that for any integers r ≤ p < q,
(
t(K

(r)
p , G)

)q
−
(
t(K

(r)
q , G)

)p
≥ 0 is

valid for each graph G. This binomial inequality for GU implies that the inequality
qy

K
(r)
p

− py
K

(r)
q

≥ 0 is valid for trop(GU ) for each r ≤ p < q. Using the inequalities

for each r ≤ p ≤ l − 1 and q = p+ 1, we obtain that all the inequalities describing
C are valid for trop(GU ). Thus trop(GU ) ⊆ C.

Before we prove the other containment, we show that extreme rays of C are as
claimed in the theorem.

Lemma 3.4. The extreme rays of C are ui = −
∑l−r+1

j=i (r + j − 1)1
K

(r)
r+j−1

for

i ∈ {1, . . . , l − r + 1}.

Proof. We have C = {y ∈ Rl−r+1 : My ≥ 0} where

M :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 · · · 0 0 0
(r + 1) −r 0 0 0 · · · 0 0 0

0 (r + 2) −(r + 1) 0 0 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · (l − 1) −(l − 2) 0
0 0 0 0 0 · · · 0 l −(l − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Since M is lower triangular square matrix of size l− r+1, with non-zero diagonal,
it is invertible. The candidate extreme rays can be obtained by setting a subset
of l − r constraints at equality or equivalently, all but one of the constraints at
equality. Let M−i denote the matrix obtained after removing the ith row of M .
Then a simple check shows that solutions M−iy = 0 are exactly {λ · ui : λ ∈ R}.
Since ui ∈ C, we obtain that it is an extreme ray. Since these are all the candidate
extreme rays, we have the lemma. �

To prove C ⊆ trop(GU ), it is enough to show that the extreme rays of C are
contained in trop(GU ) as shown in Lemma 3.5.

Lemma 3.5. The vectors ui are in trop(GU) for every i ∈ {1, . . . , l − r + 1}.

Proof. Let T
(r)
m,k be an r-uniform hypergraph on m vertices partitioned into k parts

as equal in size as possible where every r vertices coming from r different parts form
an edge (when r = 2, this graph is the Turán graph on m vertices with k parts). If
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k < r, then T
(r)
m,k is the empty graph on m vertices. Note that T

(r)
m,k contains cliques

of size k (and less), but no clique of size k + 1 (or more).
Fix some i ∈ {1, . . . , l−r+1}. For any α ∈ (0, 1) such that αn ∈ N, consider the

hypergraph G where αn vertices form a clique and where the remaining (1 − α)n

vertices form a T
(r)
(1−α)n,r+i−2 graph (see Figure 5). Note that t

(
K

(r)
j ;G

)
= αj +

(r+i−2)!(1−α)j

(r+i−2−j)!(r+i−2)j +O
(
1
n

)
for any r ≤ j ≤ r+i−2 (since cliques of those sizes can be

found both in the αn-clique and in T
(r)
(1−α)n,r+i−2) and that t

(
K

(r)
j ;G

)
= αj+O

(
1
n

)
for any r + i − 1 ≤ j ≤ l (since cliques of those size can only be found in the αn

clique of G). For instance, to see the latter, note that t
(
K

(r)
j ;G

)
=

(αn
j )j!
nj for any

r + i− 1 ≤ j ≤ l.

αn
(1− α)n

Figure 5. G when i = 3, r = 2

Now consider the vector v ∈ Rl+r−1 such that vh =

(
log(t(K

(r)
r+h−1;G))

logα

)
for each

1 ≤ h ≤ l − r + 1.As α → 0 and n → ∞, we have vh → 0 for all 1 ≤ h ≤ i− 1 and
vh → (r + h − 1) for i ≤ h ≤ l − r + 1. Since this limit point is exactly ui and in
trop(GU ), we have the lemma. �

This completes the proof of Theorem 3.3. �

Note that one can find trop(GU ′) for U ′ ⊂ U by projecting down trop(GU ) on
the appropriate coordinates. Moreover, a consequence of Theorem 3.3 is that any
valid binomial inequality for GU is implied by the Kruskal-Katona inequalities and

t(K
(r)
r ;G) ≤ 1.

3.2. Tropicalization of star hypergraph profiles. We now give the tropicaliza-
tion of a collection of generalized stars {S(r)(1, c), S(r)(2, c), . . . , S(r)(l, c)}. For any
y ∈ Rl, denote by yS(r)(b,c) the coordinate of y indexed by S(r)(b, c) for 1 ≤ b ≤ l.

Also, define 1S(r)(b,c) for some 1 ≤ b ≤ l to be the point in Rl with 1 in the
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coordinate labeled by S(r)(b, c) and 0 otherwise. Finally, let dv1,v2,...,vk = |{e ∈
E(G)|v1, v2, . . . , vk ∈ e}| be the (common) degree of a set of vertices v1, . . . , vk.

Theorem 3.6. Let U = {S(r)(1, c), S(r)(2, c), . . . , S(r)(l, c)}, then

trop(GU ) =
{
y ∈ Rl : a�b y ≥ 0, ∀ 1 ≤ b ≤ l

}
,

where

a�1 y = −2yS(r)(1,c) + yS(r)(2,c),

a�b y = yS(r)(b−1,c) − 2yS(r)(b,c) + yS(r)(b+1,c) for 2 ≤ b ≤ l − 1, and

a�l y = yS(r)(l−1,c) − yS(r)(l,c).

Moreover, the extreme rays of trop(GU ) are u1, . . . ,ul where

ub = −
b∑

j=1

j1S(r)(j,c) −
l∑

j=b+1

b1S(r)(j,c)

for 1 ≤ b ≤ l.

Proof. To calculate the homomorphism density of S(r)(b, c) in some graph G with
n vertices, we first note that there are nb(r−c)+c maps from V (S(r)(b, c)) to V (G).
We first decide to which c distinct vertices v1, v2, . . . , vc ∈ V (G) to send the center
and in which of c! different ways to do so. Then each of the b edges of S(r)(b, c)
can be sent to any of the dv1,v2,...,vc edges containing v1, v2, . . . , vc in G. For each
of the b edges, there are (r − c)! different orders to send the vertices in that edge
that are not in the center to some chosen edge in dv1,v2,...,vc . Thus, for any b ≥ 1,
1 ≤ c ≤ r − 1 and r ≥ 2, we have that

t(S(r)(b, c);G) =
c!
∑

1≤v1<v2<...<vc≤n((r − c)!dv1,v2,...,vc)
b

nb(r−c)+c

=
c!

nc

∑
1≤v1<v2<...<vc≤n

(
(r − c)!dv1,v2,...,vc

nr−c

)b

.

Let δv1,v2,...,vc =
(r−c)!dv1,v2,...,vc

nr−c . Consider the uniform measure on δ1,2,...,c, . . . ,
δn−c+1,n−c+2,...,n ∈ [0, 1]. The bth moment of this measure is∑

1≤v1<v2<...<vc≤n δ
b
v1,v2,...,vc(

n
c

) = t(S(r)(b, c);G) +O

(
1

n

)
.

This connection allows us to write down binomial inequalities that are valid on
(t(S(r)(b, c);G) : b = 1, . . . , l). They are of the form

m2 ≥ m2
1, mb−1mb+1 ≥ m2

b , b = 2, . . . , l − 1, ml−1 ≥ ml.

These inequalities follow from Hölder’s inequality [13, Theorem 18]. These binomial
inequalities imply that the a�b y ≥ 0 are valid for trop(GU ). Thus if we let

C = {y ∈ Rl : a�b y ≥ 0, ∀ 1 ≤ b ≤ l},
we have trop(GU ) ⊆ C. As in Theorem 3.3, we first characterize the extreme rays
of C and then show that they are in trop(GU ) to complete the proof.

Lemma 3.7. The extreme rays of the cone C are exactly ub for 1 ≤ b ≤ l.
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Proof. Observe that C = {y ∈ Rl : Ay ≥ 0} where

A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 0 0 · · · 0 0
1 −2 1 0 0 · · · 0 0
0 1 −2 1 0 · · · 0 0
0 0 1 −2 1 · · · 0 0
0 0 0 1 −2 · · · 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · 1 0
0 0 0 0 0 · · · −2 1
0 0 0 0 0 · · · 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the bth row of A is ab. Since A ∈ Rl×l, the candidate extreme rays of C are
obtained by setting l−1 of the defining constraints a�b y ≥ 0 to equality. Since there
are exactly l constraints, it implies there are at most l extreme rays. Observe that
ui = (−1,−2, . . . ,−b,−b, . . . ,−b) satisfies all but the bth constraint at equality.
Since ub ∈ C, it is an extreme ray for each 1 ≤ b ≤ l. �

We will now show that C ⊆ trop(GU ) by showing that um ∈ trop(GU ) for 1 ≤
m ≤ l. This is done by exhibiting a family of graphs {Gn} for each extreme ray
um for which

(log(t(S(r)(b, c);Gn)) : b = 1, . . . , l)

limits to this extreme ray.

Lemma 3.8. The extreme rays of C are in trop(GU ), and hence C = trop(GU ).

Proof. We say G is k-regular if dv1,v2,...,vc = k for some k ∈ N for every v1, v2, . . . ,
vc ∈ V (G). Moreover, by edge density of an r-uniform hypergraph H on n vertices,

we will mean the homomorphism density of an edge in H which is r!|E(H)|
nr .

Consider an r-uniform hypergraph G
(r)
n,ρ on n vertices constructed as follows:

(1−α)n vertices form a k-regular graph with edge density ρ and the remaining αn
vertices form a clique. Call the subgraph formed by the clique A, and the subgraph
formed by the regular part B. Furthermore, any c vertices in A and any r − c
vertices in B also form an edge. The parameter α will be chosen later. Also, note

that k = ((1−α)n)r−cρ
(r−c)! + O(nr−c−1). This can be seen by adding the degrees of all

sets of c vertices in B, and seeing that each edge gets counted
(
r
c

)
times that way.

Thus,

k
(
(1−α)n

c

)(
r
c

) = |E(B)| = ρ((1− α)n)r

r!
,

yielding the desired relation between k and ρ.
Every set of c distinct vertices v1, v2, . . . , vc ∈ A has degree dv1,v2,...,vc =(

n−c
r−c

)
since that set of vertices forms an edge with any r − c distinct vertices in

G
(r)
n,ρ different from it. Every set of c distinct vertices v1, v2, . . . , vc ∈ B has

degree k = ((1−α)n)r−cρ
(r−c)! + O(nr−c−1) from edges fully in B and, if r − c ≥ c, then(

(1−α)n−c
r−2c

)(
αn
c

)
gets added to that for edges going between B and A. Finally every

set of c distinct vertices where i of them come from A and c− i come from B where
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max{1, 2c− r} ≤ i ≤ c− 1 has degree
(
αn
c−i

)(
((1−α)n
r−2c+i

)
. Thus,

t(S(r)(b, c);G(r)
n,ρ)

=
c!

nc

[(
αn

c

)(
(r − c)!

(
n−c
r−c

)
nr−c

)b

+

(
(1− α)n

c

)(
(r − c)!

nr−c
·
(
((1− α)n)r−cρ

(r − c)!
+O(nr−c−1)

+

(
(1− α)n− c

r − 2c

)(
αn

c

)))b

+
c−1∑

i=max{1,2c−r}

(
αn

i

)(
n− αn

c− i

)(
(r − c)!

(
αn
c−i

)(
(1−α)n
r−2c+i

)
nr−c

)b ]
,

where the second and third lines respectively come from sending the center of
S(r)(b, c) to A and B. The fourth line comes from sending i vertices of the center
of S(r)(b, c) to A, and the other c− i vertices to the B.

As n → ∞, this goes to

αc + (1− α)c
(
(1− α)r−cρ+

(r − c)!

(r − 2c)!
(1− α)r−2cαc

)b

+

c−1∑
i=max{1,2c−r}

c!

i!(c− i)!
αi(1− α)c−i

(
(r − c)!αc−i(1− α)r−2c+i

(c− i)!(r − 2c+ i)!

)b

.

If we choose α = ρ
m
c , with ρ << 1 then the lowest degree part of t(S(r)(b, c);G

(r)
n,ρ)

is ρb + ρm. If m < b, then ρm dominates and if m ≥ b, then ρb dominates. Thus

limn→∞,ρ→0
log t(S(r)(b,c);G(r)

n,ρ)

log 1
ρ

equals −b if b ≤ m and −m if b ≥ m. Thus this

vector, (−1,−2, . . . ,−m,−m. . . ,−m) = um ∈ trop(GU ) as claimed. �

This completes the proof of the containment of C ⊆ trop(GU ) and thus Theorem
3.6 holds. �

Note that one can find trop(GU ′) for U ′ ⊂ U by projecting down trop(GU ) on the
appropriate coordinates. Moreover, it follows that any valid binomial inequality for
GU is implied by moment inequalities.

4. Sums of squares profiles and their tropicalizations

In this section we introduce sos-profiles which are semialgebraic sets that contain
graph profiles. The main result of this section is Theorem 4.12 which shows that the
tropicalization of any sos-profile is a rational polyhedral cone that can be described
explicitly. We will use this description in Section 5 to show strong limitations of
sums of squares in recognizing graph density inequalities.

4.1. A general framework. Let M be a symmetric matrix filled with monomi-
als in the finite set of variables x1, . . . , xs for which no 2 × 2-principal minor is
identically zero. For a point v ∈ Rs

≥0, let M(v) denote the matrix obtained by
evaluating each entry of M at v, and consider the set

SM := {v ∈ Rs
≥0 : M(v) � 0}.
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Also consider the superset of SM

S2×2
M := {v ∈ Rs

≥0 : all 2× 2 principal minors of M(v) are nonnegative}.

Both SM and S2×2
M are (closed) semialgebraic sets in Rs

≥0, and they both have the

Hadamard property. Indeed, if v,w ∈ Rs
≥0 and M(v) � 0 and M(w) � 0 then

their Hadamard product which is M(v ·w) is also positive semidefinite. Therefore,
SM has the Hadamard property. If v,w ∈ Rs

≥0 ∩S2×2
M , then for any 2× 2 principal

minor xaxb −x2c of M , we have that va+b ≥ v2c and wa+b ≥ w2c. Therefore, we
also have va+bwa+b ≥ v2cw2c, or equivalently, (v ·w)a+b ≥ (v ·w)2c. Therefore,
S2×2
M has the Hadamard property.

Lemma 4.1.

(1) The set log(S2×2
M ) is a polyhedral cone in Rs.

(2) trop(S2×2
M ) = log(S2×2

M ).

Proof.

(1) A point y ∈ log(S2×2
M ) if and only if y = log(v) for some v ∈ S2×2

M ∩
Rs

>0. A 2 × 2 principal minor of M evaluated at v ∈ Rs
>0 is of the form

vavb − v2c. For a v ∈ Rs
>0, v

a+b ≥ v2c if and only if
∑s

i=1(ai + bi −
2ci) log(vi) ≥ 0. Thus log(S2×2

M ) is the polyhedral cone in Rs defined by
the linear inequalities

∑s
i=1(ai + bi − 2ci)yi ≥ 0 obtained from the 2 × 2

principal minors of M .
(2) We already showed that S2×2

M has the Hadamard property. Since log(S2×2
M )

is a polyhedral cone, it coincides with the closure of both its cone hull and
convex hull, and so by Lemma 2.2, trop(S2×2

M ) = log(S2×2
M ). �

Corollary 4.2. The dual cone, trop(S2×2
M )∗ ⊂ Rs, is the rational polyhedral cone

generated by the vectors{
a+ b− 2c :

(
xa xc

xc xb

)
is a 2× 2 principal submatrix of M

}
.

Lemma 4.3. trop(SM ) = cl(conv(log(SM ))).

Proof. The all-ones matrix M(1) is positive semidefinite and hence 1 ∈ SM . The
result now follows from SM having the Hadamard property and Lemma 2.2. �

Theorem 4.4. Let M be a symmetric matrix filled with monomials in x1, . . . , xs

such that no 2× 2 minor of M is identically 0. Suppose also that S2×2
M has interior

in Rs
>0. Then trop(SM ) = trop(S2×2

M ).

Proof. Since SM ⊆ S2×2
M we have that

trop(SM ) = cl(conv(log(SM )) ⊆ cl(conv(log(S2×2
M )) = trop(S2×2

M ).

To show the reverse containment, we use the following strategy. Pick a v ∈
int(S2×2

M ), or equivalently, log(v) ∈ int(log(S2×2
M )) = int(trop(S2×2

M )). Then show
that for a large enough positive integer k, k log(v) lies in log(SM ) ⊆ trop(SM ).
Since trop(SM ) is a cone, it must follow that log(v) ∈ trop(SM ). Thus we have
that int(trop(S2×2

M )) ⊆ trop(SM ) which means that trop(S2×2
M ) ⊆ trop(SM ) since

the tropicalizations are closed sets.
Consider log(v) in the interior of log(S2×2

M ). Then v lies in the interior of S2×2
M

and all 2×2 principal minors ofM(v) are strictly positive. Since log(S2×2
M ) is a cone,
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for any k > 0 and integer, k log(v) = log(vk) lies in log(S2×2
M ). We will now argue

that if k is large enough then vk is also in SM or equivalently, that all principal
minors ofM(vk) are positive. Recall that no 2×2 principal minor ofM is identically
zero. A 2×2 principal minor ofM(vk), namely vk(a+b)−vk(2c) = (va+b)k−(v2c)k,
is positive since va+b > −v2c. Now consider an l × l principal minor of M(vk),
and a term T in the Laplace expansion of its determinant indexed by a nonidentity
permutation. Replace every non-diagonal entry in T from position (i, j), i 
= j by
the product of the square roots of the diagonal entries in positions (i, i) and (j, j) in
this l× l principal minor. Let T ′ denote the modification of T obtained by replacing
all non-diagonal terms in T as above. Since all 2× 2 minors of M(vk) are positive,
we get that T ′ > T . Note that T ′ is the product of diagonal entries in the l × l
principal minor we are considering. Since there are only finitely many terms in the
Laplace expansion of the determinant of the l× l principal minor, we can choose k
large enough to ensure that T ′ is so much bigger than the other terms making the
entire determinant positive. �

Example 4.5. We now give an example to illustrate the necessity of the condition
that no 2× 2 principal minor of M should be identically zero. Consider the matrix⎛

⎝ x x2 x2

x2 x3 x2

x2 x2 1

⎞
⎠

in which the upper left 2×2 minor is identically 0. The values of x for which all 2×2
principal minors are nonnegative is precisely 0 ≤ x ≤ 1. Therefore, S2×2

M = [0, 1]

and trop(S2×2
M ) = R≤0. The determinant of this matrix is −(x− 1)2x5, so the only

values that make the matrix positive semidefinite are x = 0 and x = 1. Therefore,
trop(SM ) is the origin which is strictly contained in trop(S2×2

M ).

The main take away from what we have so far is that even though SM might be
strictly contained in S2×2

M , their tropicalizations agree and form a polyhedral cone
with an explicit inequality description given by the 2× 2 principal minors of M .

4.2. Specialization to graphs. We now specialize the above results to the case of
graphs. For this we begin with a few definitions about the gluing algebra of graphs,
the reader is referred to Lovász [22] for a broader exposition. A graph is partially
labeled if a subset of its vertices are labeled with elements of N := {1, 2, 3, . . .}
such that no vertex receives more than one label. If no vertices of H are labeled
then H is unlabeled. Let A denote the vector space of all formal finite R-linear
combinations of partially labeled graphs without isolated vertices, including the
empty graph with no vertices which we denote as 1. We call an element a =

∑
αiHi

of A a graph combination, each αiHi a term of a, and each Hi a constituent graph
of a. Let A∅ denote the subspace of A spanned by unlabeled graphs. We view
elements a ∈ A∅ as functions that can be evaluated on unlabeled graphs G via
homomorphism densities, namely t(a;G) =

∑
αit(Hi;G). An element a =

∑
αiHi

of A∅ is called nonnegative if
∑

αit(Hi;G) ≥ 0 for all graphs G.
The vector space A has a product defined as follows. For two labeled graphs H1

and H2, form the new labeled graph H1H2 by gluing together the vertices in the
two graphs with the same label, and keeping only one copy of any edge that may
have doubled in the process. Equipped with this product, A becomes an R-algebra
with the empty graph 1 as its multiplicative identity. The algebra A admits a
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simple linear map into A∅ that removes the labels in a graph combination to create
a graph combination of unlabeled graphs. We call this map unlabeling and denote
it by [[·]]. A sum of squares (sos) in A∅ is a finite sum of unlabeled squares of graph
combinations ai ∈ A, namely,

∑
[[a2i ]]. A sum of squares is a nonnegative graph

combination.
A d-sos graph combination is an sos a =

∑
[[a2j ]] where each constituent graph in

aj is partially labeled and has at most d edges. This means that every constituent
graph of a has at most 2d edges. For a fixed d ∈ N, it follows from results of [29]
(see also [28]) that any d-sos graph combination can be written using only finitely
many, say �(d), labels. Let Bd denote the set containing the empty graph 1 with
no vertices, and all partially labeled graphs with labels 1, . . . , �(d), and at most d
edges and no isolated vertices. Define

Vd = {[[ab]] connected : a, b ∈ Bd}\{1}.
A d-sos graph combination is a sum of squares of graph combinations in the span of
Bd. i.e., if a =

∑
[[a2j ]] is d-sos then aj ∈ span(Bd). Also, any term in a d-sos graph

combination a is a monomial in the elements of Vd (including constant terms) and
each constituent graph in a has at most 2d edges.

Definition 4.6.

(1) The d-sos-profile, denoted Sd, is the set of all v ∈ Rs
≥0 such that a(v) ≥ 0

for all d-sos graph combinations a and where s = |Vd|.
(2) The (U , d)-sos-profile denoted as SU,d is the projection of Sd on coordinates

corresponding to graphs in U .

Let Md be the moment matrix of size |Bd| × |Bd| which is defined as the matrix
with rows and columns indexed by the graphs in Bd and whose (A,B)-entry is
[[AB]]. Such a matrix is called a connection matrix in [22]. Every entry in Md is a
monomial in the elements of Vd (including 1) and the corresponding graph has at
most 2d edges. Further, the entries of Md and the monomials that appear in d-sos
graph combinations are the same.

Lemma 4.7. The d-sos-profile Sd = {v ∈ Rs
≥0 : Md(v) � 0} = SMd

.

Proof. For any Q � 0, 〈Md, Q〉 is a d-sos graph combination
∑

j [[a
2
j ]] since aj ∈

span(Bd). Conversely, any d-sos graph combination can be written as 〈Md, Q〉 for
some Q � 0. Therefore, v ∈ Rs

≥0 lies in Sd if and only if 〈Md(v), Q〉 ≥ 0 for all

Q � 0 which happens if and only if Md(v) � 0. �
Lemma 4.7 shows that the sos-profile Sd is a semialgebraic set in Rs

≥0 since the

condition Md(v) � 0 is equivalent to the (finitely many) principal minors of Md(v)
being nonnegative, and each such minor is a polynomial in the elements of Vd.

We now note the connection between the graph profile GVd
and the d-sos-profile

Sd. Recall that GVd
is the closure of all points (t(C;G) : C ∈ Vd) as G varies over

all unlabeled graphs. Tautologically, GVd
is also the set of all points in Rs

≥0 on which

all nonnegative graph combinations in the polynomial ring R[Vd] are nonnegative.
Since there is no bound to the number of edges in the constituent graphs of such
nonnegative graph combinations, the profile GVd

may not be semialgebraic, and as
mentioned in the introduction, the profile of edge and triangle is not semialgebraic.
A d-sos graph combination is also a nonnegative graph combination in R[Vd], but
one in which the constituent graphs cannot have more than 2d edges. Therefore,
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we immediately get that the graph profile GVd
is contained in Sd. Indeed, if v ∈

Rs
≥0∩GVd

, then vv� = Md(v) � 0. If we are given a specific set of finite connected
graphs U , then U ⊆ Vd for d large enough. Certainly, any finite connected graph
H ∈ U can be written as the symmetrized product of two partially labeled finite
graphs, namely the empty graph and an unlabeled copy of H itself, which is in Vd

for any d ≥ |E(H)|. We then have that GU is a projection of the graph profile GVd
,

and contained in the (U , d)-sos-profile SU,d.

Example 4.8. Consider the graph profile GU for U = { , } from Figure 1.

We will show that (0.7, 0.12) is not in GU . We know that GU is contained in SU,d

for all d ≥ 2.
From Lemma 4.7, Sd contains all the points v that make Md(v) � 0. To show

that (0.7, 0.12) 
∈ GU , we can instead prove (0.7, 0.12) 
∈ SU,2 by observing that any

point v ∈ Rs where the component is 0.7 and the component is 0.12 is such

that M2(v) 
� 0. Indeed, consider the principal submatrix of M2 corresponding to
the graphs

1
,

2
,

1

2
, 1
2 3 ,

2
1 3 ∈ B2 :⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The bottom 3× 3 principal minor and the top 2× 2 principal minor,

det

⎛
⎜⎝

⎞
⎟⎠ and det

( )
,

yield that −2 3+0.94 2−0.01008 ≥ 0 and 2−0.74 ≥ 0 when = 0.7

and = 0.12. However, there is no value of in [0, 1] that satisfies both
inequalities. Thus the point (0.7, 0.12) 
∈ SU,2.

Alternatively, to show that (0.7, 0.12) 
∈ GU , we could have shown that (0.7, 0.12)

∈ SU,3 by thinking about S3 as the set of points that evaluate nonnegatively on all
3-sos graph combinations. As seen in [22], the Goodman bound can be written as
a 3-sos combination:

[[(
2

3
− 2

1 3 − 3
1 2

+ 1
2 3 )

2]] + [[(
1 − 2

)2]] = − 2 + ,

so −2 + ≥ 0 is a valid inequality for S3 and SU,3. Since 0.12−2·0.72+0.7 <

0, (0.7, 0.12) 
∈ SU,3.
Finally, we note that SU,3 strictly contains GU in this case, that is, there are

points v such that M3(v) � 0, but such that the projection of v on the coordinates
corresponding to graphs in GU is not in GU . It was shown in [28] that one needs

sums of squares of arbitrarily high degree to carve out GU when U = { , }.
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Lemma 4.7 suggests that we may be able to apply Theorem 4.4 to Sd. The first
hurdle is that some principal minors of Md might be identically zero. For example,

the principal minor with rows (columns) indexed by and is 2 2 −
= 0.

Say that two partially labeled graphs are isomorphic if they are isomorphic as
labeled graphs. In particular, two isomorphic labeled graphs have the same labels.

Lemma 4.9. A 2 × 2-principal minor in Md is identically zero if and only if
the corresponding rows (columns) correspond to two graphs with isomorphic labeled
components.

Proof. Consider a 2 × 2-principal minor in Md corresponding to the rows and
columns indexed by H1 and H2 where the labels of H1 and H2 (if any) are contained
in some finite set L. The minor is thus equal to [[H2

1 ]][[H
2
2 ]] − [[H1H2]][[H1H2]].

We now show that this expression is a sum of squares. Let H̃i be the same graph
as Hi for i ∈ {1, 2} but where any label l becomes l+ |L|. Note that the label sets

of Hi and H̃j do not intersect for i, j ∈ {1, 2}, that [[H2
i ]] = [[H̃2

i ]] for i ∈ {1, 2}
and [[H1H2]] = [[H̃1H̃2]]. Thus the minor is equal to

1

2
[[(H1H̃2 − H̃1H2)

2]] =
1

2
[[H2

1 H̃
2
2 − 2H1H2H̃1H̃2 + H̃2

1H
2
2 ]]

=
1

2

(
[[H2

1 ]][[H̃
2
2 ]]− 2[[H1H2]][[H̃1H̃2]] + [[H̃2

1 ]][[H
2
2 ]]
)

=
1

2

(
[[H2

1 ]][[H
2
2 ]]− 2[[H1H2]][[H1H2]] + [[H2

1 ]][[H
2
2 ]]
)

as desired. Indeed, to go from the first to the second line, one simply needs to note
that the symmetrization of products of graphs that have no labels in common is
equal to the product of the symmetrization of those graphs.

Thus, if the minor is identically zero, [[(H1H̃2− H̃1H2)
2]] = 0. From Lemma 2.3

of [5], the only way this can be so is if H1H̃2 = H̃1H2. Let H1 = H l
1H

u
1 and H2 =

H l
2H

u
2 where H l

i is the graph Hi restricted to components that contain at least one
label, and Hu

i is the graph Hi restricted to components that are unlabeled. Then

H̃i = H̃ l
iH

u
i . Thus, H1H̃2 = H̃1H2 is equivalent to H l

1H
u
1 H̃

l
2H

u
2 = H̃ l

1H
u
1H

l
2H

u
2

which is equivalent to H l
1H̃

l
2 = H̃ l

1H
l
2.

SupposeH1 andH2 are two graphs where the labeled components are isomorphic,
i.e., H l

1 = H l
2. Note that this includes the case when both H1 and H2 are fully

unlabeled. Observe that H̃ l
1 = H̃ l

2. Thus, H l
1H̃

l
2 = H̃ l

1H
l
2 and the corresponding

2× 2-minor is identically zero.
Suppose now that the labeled components of H1 and H2 are not isomorphic,

i.e., H l
1 
= H l

2 and H̃ l
1 
= H̃ l

2. (Note that this implies that at least one of those two
graphs contain a label, otherwise, their labeled parts would be the same.) Moreover,

note that H̃ l
1 
= H l

2 and H l
1 
= H̃ l

2 as the labels come from non-intersecting label

sets. Thus it is impossible that H l
1H̃

l
2 = H̃ l

1H
l
2, and the corresponding 2× 2-minor

cannot be identically zero. �
To avoid 2 × 2 principal minors that are identically 0 in Md, we restrict Bd

to B̃d, the subset containing the empty graph 1, and all partially labeled graphs
without unlabeled connected components and isolated vertices. Every graph in B̃d

still has at most d edges. Furthermore, let M̃d be the moment matrix for B̃d. Then
Corollary 4.10 follows from Lemma 4.9.
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Corollary 4.10. No 2× 2-principal minor in the symmetric matrix M̃d is identi-
cally zero.

We now replace Md with M̃d in Lemma 4.7.

Lemma 4.11. The d-sos-profile Sd coincides with SM̃d
= {v ∈ Rs

≥0 : M̃d(v) �
0}.

Proof. By Lemma 4.7 it suffices to argue that for v ≥ 0, M̃d(v) � 0 if and only

if Md(v) � 0. Since M̃d is a principal submatrix of Md, Md(v) � 0 implies

M̃d(v) � 0.
Consider a graph F = FuF l where Fu is unlabeled and every component in F l

has at least one label. Then the row of Md indexed by F is (Fu[[F lH]] : H ∈
Bd). Therefore the corresponding row of Md(v) is (Fu(v)[[F lH]](v) : H ∈ Bd).
This means that every term in a principal minor of Md(v) (expanded in terms of
permutations) involving the row indexed by F contains the common factor Fu(v)

which is nonnegative. Factoring this out, we obtain a principal minor of M̃d(v).

Thus if M̃d(v) � 0 then Md(v) � 0. �

The second requirement in Theorem 4.4 is that SM̃2×2
d

has an interior. By

Lemma 4.7, GVd
⊆ Sd ⊆ SM̃2×2

d
and since GVd

has an interior [8] so do Sd and

SM̃2×2
d

. We can now apply Theorem 4.4.

Theorem 4.12. The d-sos-profile Sd is a basic semialgebraic set in Rs
≥0 containing

the graph profile GVd
, and its tropicalization, trop(Sd), is the rational polyhedral

cone log(S2×2

M̃d
).

Corollary 4.13. The (U , d)-sos-profile SU,d is a semialgebraic set containing the
graph profile GU for all d. Its tropicalization, trop(SU,d), is the projection of the

rational polyhedral cone log(S2×2

M̃d
) onto the coordinates indexed by U . In particular,

trop(SU,d) is also a rational polyhedral cone.

Example 4.14. Let d = 1. Then V1 = { , } is the set of all unlabeled

connected graphs that can be obtained as a product of two partially labeled graphs
with at most one edge. The 1-sos-profile S1 is the set of all v ∈ R2

≥0 that evaluate

nonnegatively on all 1-sos polynomials in R[ , ]. The graph profile GV1
is

shown in Figure 6. The lower bound consists of dn-regular graphs with d ∈ [0, 1].
The upper bound on the right consists of a clique on αn vertices for some α ∈ [ 12 , 1],
and the upper bound on the left consists of the complement of such graphs [1].

We will show that trop(GV1
) = trop(S1).

Consider B̃1 = {1, 1
,

2
,

1

2
}. Then

M̃1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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Figure 6. The graph profile of V1

After removing redundancies, the six 2×2 principal minors of M̃1 yield the following
two inequalities:

− 2 ≥ 0 and − ≥ 0.

Therefore, log(SM̃2×2
1

) = trop(S1) is the cone generated by the rays (−1,−1) and

(−1,−2). As we saw in the star example of Section 3.2, this cone coincides with

trop(GV1
) when V1 = { , }.

4.3. Sos-testable graph combinations. We now introduce the notion of an sos-
testable graph combination which plays an important role in Section 5.

Definition 4.15. A graph combination a is sos-testable if a ≥ 0 on a d-sos-profile
Sd for some d.

Theorem 4.16. Let a, b, c be graph combinations such that b 
= 0 and c are sos-
testable. If ab = c then a is sos-testable.

Proof. Let U = {F1, . . . , Fk} be the set of connected components of graphs in a,
b and c. There exist d1, d2 ∈ N such that b is nonnegative on SU,d1

and c is
nonnegative on SU,d2

. Let d = max{d1, d2}. We will prove that a ≥ 0 on SU,d

making it sos-testable.
We first argue that every neighborhood of 1 has a ball contained in GU , i.e., for

every r > 0 there exists an r̃ > 0, and w ∈ R|U| such that B(w, r̃) ⊆ GU ∩B(1, r).
Here B(w, r̃) denotes the closed ball of radius r̃ around w. From [9, Theorem
1], we have that there exists z ∈ R|U| and ε > 0 such that B(z, ε) ⊆ GU . Thus,
for every y ∈ B(z, ε) there exists a sequence of graphs G1, . . . , Gn, . . . , where
|V (Gn)| = n, such that limn→∞(t(F1;Gn), . . . , t(Fk;Gn)) = y. Now fix r > 0.
Then consider the graph sequence Hn which consists of Gδn along with a disjoint
copy of K(1−δ)n for each n, where δ > 0 will be fixed later and we ignore integrality

issues with δn. For an Fi, we have t(Fi, Hn) = (1 − δ)|V (Fi)| + δ|V (Fi)|t(Fi, Gδn).
Thus limn→∞ t(Fi, Hn) = (1− δ)|V (Fi)| + δ|V (Fi)|yi. Let φ : R|U| → R|U| denote the
map where

φ(y) =
(
(1− δ)|V (F1)| + δ|V (F1)|y1, . . . , (1− δ)|V (Fk)| + δ|V (Fk)|yk

)
.

By construction, φ(y) ∈ GU . If we set δ = r
maxi |V (Fi)| then (1 − δ)|V (Fi)| ≥

1 − δ|V (Fi)| ≥ 1 − r. Thus φ(y) ≥ 1 − r and φ(y) ∈ B(1, r). Therefore, we
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have φ(B(z, ε)) ⊆ GU ∩ B(1, r). Moreover, the Jacobian of φ is just the diagonal
matrix with ith diagonal entry δ|V (Fi)| and thus has a non-zero determinant. Thus
φ(B(z, ε)) is full-dimensional and contains a ball B(w, r̃) for some w ∈ RU , r̃ > 0.
Therefore, we have B(w, r̃) ⊆ GU ∩B(1, r) as claimed.

Now suppose there exists x ∈ SU,d such that a(x) < 0. Since SU,d has the
Hadamard property and GU ⊂ SU,d, we see that any neighborhood of x in SU,d

also contains a closed ball by applying the Hadamard property to x and the closed
ball in the neighborhood of 1. Since a(x) < 0 and a is polynomial function in
the coordinates indexed by U , and therefore continuous, it follows that there exists
x̃ ∈ SU,d such that a(x̃) < 0 and a closed ball B around x̃ is contained in SU,d.
Since b and c are sos-testable, we have b(u), c(u) ≥ 0 for all u ∈ B. Moreover, since
b 
= 0, there exists x̂ ∈ B such that a(x̂) < 0 and b(x̂) > 0. Then we have ab(x̂) < 0
while c(x̂) ≥ 0 which is a contradiction. �
Corollary 4.17. If a graph combination a is not sos-testable, it is not a rational
sos.

Proof. For the sake of contradiction, suppose a is a rational sos, i.e., a = c
b where

b 
= 0 and b and c are sos. Then we have ab = c. Moreover, b and c are sos-testable
since they are sos. Thus a must also be sos-testable from Theorem 4.16 which is a
contradiction. �

5. Limitations of sums of squares

In this section we will use the d-sos-profile Sd and the (U , d)-sos-profile SU,d de-
fined in Section 4 to show that there are simple binomial graph density inequalities
that are not sos-testable. This means that sums of squares do not recognize these
inequalities.

Following [5], we call an unlabeled graph H, a trivial square, if whenever H =

[[F 2]] then F must be a fully labeled copy of H. For example, is a trivial
square.

Theorem 5.1. Let H and H be two graphs with the same number of edges where
the former is a trivial square in which every vertex has degree p or p+ 1 for some
integer p ≥ 1, and the degree of any vertex in H is at most p + 1. Then for any

k ≥ 2|E(H)| + 1, the inequality H
k −Hk+1 ≥ 0 is not sos-testable. In particular,

k − 3(k+1) is not sos-testable for k ≥ 7.

One can also show that k − 3k+1 is not sos-testable, for k big enough, by

using a similar strategy as the one described below. Theorem 5.1 has Corollary 5.2.

Corollary 5.2. Let H and H be two graphs with the same number of edges where
the former is a trivial square in which every vertex has degree p or p+ 1 for some
integer p ≥ 1, and the degree of any vertex in H is at most p+ 1. Then H −H is

not sos-testable and cannot be written as a rational sos. In particular, − 3 is

not sos-testable and cannot be written as a rational sos.

Proof. Observe that if H −H is sos-testable then H
k −Hk is sos-testable for every

integer k ≥ 1. Furthermore, H
k −Hk+1 is also sos-testable for every integer k ≥ 1

since graph densities lie in [0, 1]. Therefore, if H and H satisfy the conditions of
Theorem 5.1, H−H is not sos-testable. By Corollary 4.17 we then have that H−H
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is not a rational sos. For the last claim, observe that H = and H = 3 satisfies

the conditions of Theorem 5.1. �

Before we prove Theorem 5.1 we make a few definitions. Recall that every term
in a d-sos graph combination is a constant times a monomial in the elements of
Vd. Therefore, the coordinates of vectors in both Sd and trop(Sd) are indexed by
graphs in Vd, and |Vd| = s. In what follows we will assume that we have fixed an
ordering of the elements of Vd. For any x ∈ Rs and H ∈ Vd, denote by xH the
coordinate of x indexed by H. Also, define 1H to be the point in tropical space
with 1 in the coordinate labeled by H and 0 otherwise, the indicator vector of H.

Definition 5.3. Let G be an unlabeled graph with factorization G = Cα1
1 · · ·Cαs

s

into connected unlabeled graphs Ci ∈ Vd. Define α(G) to be the point in tropical
space recording the exponents in the factorization of G:

α(G) =

s∑
i=1

αi1Gi
.

Example 5.4. Consider V1 = { , }. Then α( 3) = (3, 0), α( 2) =

(2, 1).

Definition 5.5. For a pair of partially labeled graphs A,B, define

m(A,B) = α([[A2]][[B2]])−α([[AB]]2).

Example 5.6. Consider A =
1

2 3

4
and B =

1

2 3

4
. Then

[[A2]] = 2, [[B2]] = and [[AB]] = .

So

m(A,B) = 1 + 1 − 2 · 1 .

Proof strategy for Theorem 5.1. We need to show that for every d ≥ 1, the
inequality

(5.1) (H
k −Hk+1)(x) ≥ 0

is not valid for Sd. Suppose (5.1) is not valid, then for each fixed d ≥ 1, we have

a point z ∈ trop(Sd) such that 〈z,α(H
k
) − α(Hk+1)〉 < 0. Since trop(Sd) =

cl(conv(log(Sd))) and the inequality is strict, we can assume that z ∈ log(Sd). This
means there exists x ∈ Sd such that zC = log(xC) for all C ∈ Vd. Exponentiating,

we get that (H
k −Hk+1)(x) < 0. Since for each d ≥ 1 there is such a x and z, it

follows that H
k −Hk+1 is not sos-testable and we are done.

Thus our task is to show that (5.1) is not a valid constraint for trop(Sd). For the

sake of contradiction, assume it is valid for some d, or equivalently that α(H
k
) −

α(Hk+1) is in the dual cone to trop(Sd) = log(S2×2

M̃d
). By Corollary 4.2, the dual

cone is generated by the vectors {m(A,B) : A,B ∈ B̃d}. Thus

(5.2) α(H
k
)−α(Hk+1) =

∑
A,B∈B̃d

λA,Bm(A,B),
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where λA,B ≥ 0. We will now proceed in steps to derive a contradiction.

We first exhibit a point y ∈ trop(Sd) such that 〈y,α(H
k
)− α(Hk+1)〉 is small.

We prove this via Lemma 5.8 and Lemma 5.9.

Definition 5.7. For an unlabeled graph F , let δi(F ) be the degree of vertex i.
Define L(F ) :=

∑
g(δi(F )) where g : R≥0 → R≤0 such that g(0) = 0, g is non-

increasing and g is convex.

Lemma 5.8. The point y = (L(C))C∈Vd
lies in trop(Sd).

Proof. Since the dual cone to trop(Sd) is spanned by {m(A,B) : A,B ∈ B̃d}, it
is enough to check that 〈y,m(A,B)〉 ≥ 0 for all A,B ∈ B̃d. We look carefully at
〈y,m(A,B)〉.

Since yC = L(C) =
∑

g(δi(C)), it suffices to understand the contribution of
different types of vertices to 〈y,m(A,B)〉. An unlabeled vertex of A (resp. B) of
degree d leads to two vertices in A2 (resp. B2) both of degree d, and one vertex of
degree d in AB. Such a vertex contributes g(d)+ g(d)− 2g(d) = 0 to 〈y,m(A,B)〉.

If a label is used in only one graph, say in A, and the vertex with this label has
s fully labeled edges and t partially labeled edges, then in AB we get a vertex of
degree s + t, while in A2 we get a vertex of degree s + 2t and this vertex has no
impact on B2. The total contribution of such a vertex is thus g(s+2t)− 2g(s+ t).
Note that s + 2t ≤ 2(s + t) so g(s + 2t) ≥ g(2(s + t)) ≥ 2g(s + t) where the
first inequality follows since g is non-increasing and the second follows from the
convexity of g and g(0) = 0.

The last case is if a label is used in both graphs. Suppose that in A it is adjacent
to t1 partially labeled edges, s1 fully labeled edges that are also in B and u1 fully
labeled edges that are not in B. Similarly, suppose that this vertex in B is adjacent
to t2 partially labeled edges, s2 fully labeled edges that are also in A and u2 fully
labeled edges that are not in A. Note that, by definition, s1 = s2. Then in A2 we
get a vertex with degree 2t1+s1+u1, and in B2, a vertex with degree 2t2+s2+u2.
In AB, we get a vertex of degree t1 + t2 + s1 + u1 + u2. The total contribution of
such a vertex to 〈y,m(A,B)〉 is thus
g(2t1 + s1 + u1) + g(2t2 + s1 + u2)− 2g(t1 + t2 + s1 + u1 + u2)

≥ 2g(t1 + t2 + s1 + u1/2 + u2/2)− 2g(t1 + t2 + s1 + u1 + u2) ≥ 0.

�
From now on, we let g be given by g(m) = −m for 0 ≤ m ≤ p + 3

2 and

g(m) = −(p + 3
2 ) for m > p + 3

2 . Note that g(0) = 0, and g is convex and non-
increasing. This g has the following effect on L(F ) for an unlabeled graph F : if
the maximum degree of a vertex in F is p+ 1, then g(δi(F )) = −δi(F ) and hence
L(F ) =

∑
g(δi(F )) = −2|E(F )|.

Lemma 5.9. We have 〈y,α(H
k
)−α(Hk+1)〉 = |E(H)|.

Proof. By definition of H and H, both have the same number of edges, and each

vertex has degree at most p + 1. Therefore, 〈y,α(H
k
)〉 = −2k|E(H)|. Similarly,

〈y,α(Hk+1)〉 = −2(k + 1)|E(H)|, and the result holds. �

We know that any connected component of H is a trivial square and that each
appears only once in H since H is a trivial square. Since H and H are distinct,
there must exist a connected component C in H not in H .
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Lemma 5.10. For every A,B ∈ B̃d such that the Cth coordinate of m(A,B) is pos-
itive, 〈y,m(A,B)〉 ≥ 1

2 (zA + zB) > 0 where zA is the number of fully labeled copies
of C that appear in A but not in AB, and zB is the number of fully labeled copies of
C that appear in B but not in AB. Moreover, we also have 〈1C ,m(A,B)〉 ≤ zA+zB.

Proof. If the Cth component ofm(A,B) is positive, then this means that [[A2]][[B2]]
must contain at least one copy of C. Since C is a trivial square, at least A or B
must contain either an unlabeled copy of C or a fully labeled copy of C.

Suppose A contains lA fully labeled copies of C that appear in AB but not in B,
and similarly, suppose B contains lB fully labeled copies of C that appear in AB
but not in A. Suppose there are lAB fully labeled copies of C that appear in both
A and B (and thus also in AB). Suppose there are zA fully labeled copies of C that
appear in A that do not appear in AB, and similarly, zB fully labeled copies of C
that appear in B but not in AB. Finally, suppose A and B respectively contain
uA and uB unlabeled copies of C. Then the Cth component of α([[A2]][[B2]]) is
lA+ lAB + zA+2uA+ lB + lAB + zB +2uB and the Cth component of α([[AB]]2) is
2(lA+lAB+lB+uA+uB). Thus the Cth component of m(A,B) is zA+zB−lA−lB,
and we have 〈1C ,m(A,B)〉 ≤ zA + zB proving the second claim in the lemma.

To complete the proof of the first claim, we can assume that zA + zB ≥ 1 since
the Cth component of m(A,B) is assumed to be strictly positive. Without loss
of generality, assume zA ≥ 1, i.e., there is a fully labeled copy of C in A, say Cl

with labels 1, 2, . . . , r, that does not appear in AB. For this to be the case, B
must contain at least some labeled vertex b ∈ {1, 2, . . . , r} that is adjacent to some
partially or fully labeled edge not in Cl.

Recall that from Lemma 5.8, 〈y,m(A,B)〉 ≥ 0 and it can be obtained as a sum
of contributions of different vertices separately, each of which is nonnegative. We
show that b will contribute at least 1

2 to 〈y,m(A,B)〉.
Indeed, in A, we know that b is adjacent to t1 = 0 partially labeled edges

and suppose it is adjacent to s1 fully labeled edges that are also in B and u1

fully labeled edges that are not in B, where s1 + t1 ∈ {p, p + 1} by definition of
H. Further, in B, suppose b is adjacent to t2 partially labeled edges, s2 = s1
fully labeled edges that are also in A and u2 fully labeled edges that are not in
A. We know that t2 + u2 ≥ 1. Note that this implies that b in AB will always
contribute at least one more edge than in A. So the contribution of b to 〈y,m(A,B)〉
is at least g(2t1 + s1 + u1) + g(2t2 + s1 + u2) − 2g(t1 + t2 + s1 + u1 + u2) =
g(s1 + u1) + g(2t2 + s1 + u2)− 2g(t2 + s1 + u1 + u2). Let’s consider a few cases.

Either b in B is adjacent to at least p+ 2 edges, i.e., 2t2 + s1 + u2 ≥ p+ 2 and
g(2t2+ s1+u2) = −(p+ 3

2 ), but b in AB is adjacent to at most p+1 edges. In that
case, b in A can only be adjacent to p edges, i.e., s1+u1 = p since u2+ t2 ≥ 1. So b
in AB is adjacent to exactly p+ 1 edges and the contribution of b to 〈y,m(A,B)〉
is −p− (p+ 3

2 )− 2(−(p+ 1)) = 1
2 .

If b in B is adjacent to at least p+2 edges and b in AB is also adjacent to at least
p+2 edges, then the contribution is at least −(p+1)− (p+ 3

2 )− 2(−(p+ 3
2 )) =

1
2 .

Otherwise, if b in B is adjacent to at most p+1 edges and b in A is adjacent to p
edge, then b in AB is adjacent to at least p+1 edges, so the contribution is at least
−p− (p+1)− 2(−(p+1)) = 1. On the other hand, if b in B is adjacent to at most
p + 1 edges and b in A is adjacent to p + 1 edges, then b in AB is adjacent to at
least p+2 edges, so the contribution is at least −(p+1)− (p+1)−2(−(p+ 3

2 )) = 1.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

TROPICALIZATION OF GRAPH PROFILES 6307

Finally, we know that every other vertex of Cl in A contributes at least zero.
Thus the contribution of Cl to 〈y,m(A,B)〉 is at least 1

2 .
Note that the same argument holds for every one of the zA + zB fully labeled

copies of C in A or B that do not appear in AB. Thus, we get a total contribution
of at least 1

2 (zA + zB) to 〈y,m(A,B)〉. �

Example 5.11. Consider C = which is a connected component of H =

but not H = 3. Here p + 1 = 2, and so g(1) = −1, g(2) = −2 and g(3) = −2.5.

We saw that

if A =
1

2 3

4
and B =

1

2 3

4
, then m(A,B) = 1 + 1 − 2 · 1 .

The component indexed by C in m(A,B) is positive, and

y = −6, y = −9.5 and y = −8.

Thus, as proved in Lemma 5.10,

〈y,m(A,B)〉 = −6− 9.5− 2(−8) = 0.5 > 0.

Proof of Theorem 5.1. We will contradict Equation (5.2) by a simple counting ar-
gument.

Let C be a connected component of H that does not appear in H . Equating the
coordinate indexed by C on both sides of Equation (5.2), we get

k ≤
∑

(A,B)∈I+

λAB〈m(A,B),1C〉,

where I+ indexes the pairs (A,B) such that A,B ∈ B̃d and 〈1C ,m(A,B)〉 > 0.
From Lemma 5.10, we know that 〈1C ,m(A,B)〉 ≤ zA + zB , so

k ≤
∑

(A,B)∈I+

λAB(zA + zB).

Recall that 〈y,α(H
k
)−α(Hk+1)〉 = |E(H)| from Lemma 5.9, so

|E(H)| =
〈
y,

∑
A,B∈B̃d

λABm(A,B)

〉

≥
∑

(A,B)∈I+

λAB〈y,m(A,B)〉

≥
∑

(A,B)∈I+

λAB · 1
2
(zA + zB)

≥ 1

2
k,

where the second line follows from the first because 〈y,m(A,B)〉 ≥ 0 and λAB ≥ 0

for all A,B ∈ B̃d; the third follows from the second by Lemma 5.10; and the last
implication follows from

∑
(A,B)∈I+ λAB(zA+zB) ≥ k. Therefore, if Equation (5.2)

holds, then k ≤ 2|E(H)|. This implies that if k ≥ 2|E(H)| + 1 as assumed in
Theorem 5.1, then Equation (5.2) cannot hold, completing the proof of the theorem.

�
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From the third section of [5], we know that the existence of a sos certificate in the
gluing algebra we presented here is equivalent to the existence of a sos certificate
in Lovász-Szegedy’s gluing algebra [23], Hatami-Norine’s gluing algebra [15] and
Razborov’s flag algebra [30]. Since the existence of a rational sos certificate for
some graph combination a relies on the existence of two sos b and c such that
ab = c, we get Corollary 5.12.

Corollary 5.12. The binomial graph combinations H
k−Hk+1 for k ≥ 2|E(H)|+1,

and H−H, satisfying the conditions in Theorem 5.1 are not rational sos in Lovász-
Szegedy’s gluing algebra, Hatami-Norine’s gluing algebra or Razborov’s flag algebra.

Note that H −H needs to be translated to induced densities first in the case of
Razborov’s flag algebra.
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