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Many important problems in extremal combinatorics can be
stated as proving a pure binomial inequality in graph ho-
momorphism numbers, i.e., proving that hom(H1, G)a1 · · ·
hom(Hk, G)ak ≥ hom(Hk+1, G)ak+1 · · · hom(Hm, G)am holds 
for some fixed graphs H1, . . . , Hm and all graphs G. One 
prominent example is Sidorenko’s conjecture. For a fixed col-
lection of graphs U = {H1, . . . , Hm}, the exponent vectors of 
valid pure binomial inequalities in graphs of U form a con-
vex cone. We compute this cone for several families of graphs 
including complete graphs, even cycles, stars and paths; the 
latter is the most interesting and intricate case that we com-
pute. In all of these cases, we observe a tantalizing polyhedral-
ity phenomenon: the cone of valid pure binomial inequalities 
is actually rational polyhedral, and therefore all valid pure bi-
nomial inequalities can be generated from the finite collection 
of exponent vectors of the extreme rays. Using the work of 
Kopparty and Rossman ([17]), we show that the cone of valid 
inequalities is indeed rational polyhedral when all graphs Hi

are series-parallel and chordal, and we conjecture that polyhe-
drality holds for any finite collection U . We demonstrate that 
the polyhedrality phenomenon also occurs in matroids and 
simplicial complexes. Our description of the inequalities for 
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paths involves a generalization of the Erdős-Simonovits con-
jecture recently proved in its original form in [29] and a new 
family of inequalities not observed previously. We also solve 
an open problem of Kopparty and Rossman on the homomor-
phism domination exponent of paths. One of our main tools is 
tropicalization, a well-known technique in complex algebraic 
geometry, first applied in extremal combinatorics in [3]. We 
prove several results about tropicalizations which may be of 
independent interest.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The number of homomorphisms from a graph H to a graph G, denoted by hom(H; G), 
is the number of maps from V (H) to V (G) that yield a graph homomorphism, i.e., that 
map every edge of H to an edge of G. Many important problems and results in extremal 
graph theory can be framed as certifying the validity of polynomial inequalities in the 
number of graph homomorphisms which are valid on all graphs. We use Pk to denote a 
path with k edges and Km for the complete graph on m vertices; note that P0 = K1 and 
P1 = K2. We will often use H as a short-hand for hom(H; G) for the purposes of writing 
inequalities. By Hk, we denote both hom(H; G)k and hom(k disjoint copies of H; G) as 
they are equal. For example, the Goodman bound [10] (which implies Mantel’s theorem 
[22]) states that K1K3 ≥ 2K2

2 − K2K
2
1 and can be derived from P0P2 ≥ P 2

1 , and 
Sidorenko’s conjecture [30] can be stated as P 2|E(H)|−|V (H)|

0 · H ≥ P
|E(H)|
1 , for any 

bipartite graph H.
Instead of homomorphism numbers, many papers consider homomorphism densities

where t(H; G) := hom(H;G)
|V (G)||V (H)| is the probability that a random map from V (H) to V (G)

yields a graph homomorphism. Understanding all s-tuples of numbers that can occur as 
either homomorphism numbers or densities for a fixed collection U = {U1, . . . , Us} is an 
extremely complicated problem. We will call the set of all s-tuples the number (resp. 
density) profile of the collection U . To the best of our knowledge, full descriptions of 
all s-tuples are only known for pairs of graphs, and even then in a very limited number 
of cases. For instance an important result of Razborov ([27]) completely describes the 
density profile of U = {K2, K3} (see picture on the left of Fig. 1). This was extended 
by Nikiforov to U = {K2, K4} in [26], and generalized by Reiher to U = {K2, Kn}
[28]. Understanding all s-tuples is essentially equivalent to understanding all polynomial 
inequalities in homomorphism densities or numbers which are valid on all graphs. It is 
known that the problem of checking whether a polynomial expression in either numbers 
or densities is nonnegative on all graphs is undecidable [14,12].

A pure binomial inequality has the form xα ≥ xβ where x = (x1, . . . , xs) ∈ Rs
≥0

with α, β ∈ Rs
≥0, and it is equivalent to a linear inequality in logarithms: 〈α, logx〉 ≥

〈β, logx〉. This inequality holds regardless of the base of the logarithm. Tropicalization
provides a base-independent way of studying the image of the logarithm map. It is a 
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Fig. 1. The density profile of an edge and triangle, and its tropicalization.

well-known technique in complex algebraic geometry and it was first applied to graph 
homomorphism problems in [3]. Instead of trying to understand the validity of a single 
pure binomial inequality, or a family of such inequalities, tropicalization allows us to 
analyze all valid pure binomial inequalities for a finite collection of graphs.

While extremely complicated, both homomorphisms numbers and density s-tuples are 
closed under coordinatewise (Hadamard) multiplication. This implies that the logarith-
mic image is closed under addition, and tropicalization of any set closed under Hadamard 
multiplication is a closed, convex cone. Therefore analyzing binomial inequalities that 
are valid on an s-tuple of graphs appears to be a significantly simpler problem. For in-
stance, for any pair of graphs, the tropicalization of its number or density profile is a 
2-dimensional closed convex cone, so it is defined by two inequalities. (See the right side 
of Fig. 1 for the tropicalization of the density profile of {K2, K3}.)

In particular, there seems to be a hidden polyhedrality phenomenon: tropicalizations 
that we are able to compute are always rational polyhedral cones, i.e., cones that can 
be written as {z ∈ Rn|Az ≥ 0} where A ∈ Qm×n. Dually, this allows us to generate all 
binomial inequalities for a fixed U from a finite collection of binomial inequalities. This 
polyhedrality phenomenon is not limited to graphs and counting homomorphisms, we 
also find it in simplicial complexes and matroids. We stress that understanding binomial 
inequalities in graph homomorphism numbers is far from simple, for instance, despite 
some considerable amount of attention and progress, the Sidorenko conjecture remains 
open [30,21,31,16,5,4]. Another interesting example of a binomial inequality is the Erdős-
Simonovits conjecture on paths which states that P 2v−2w

0 ·P 2w+1
2v+1 ≥ P 2v+1

2w+1 for any w < v, 
and which was recently solved in [29].

We start with an illustrative example, which demonstrates the type of results that we 
can prove:

Example 1.1. Consider the collection of even cycles C4, C6, . . . , C2k. The following pure 
binomial inequalities hold for even cycles:

log-convexity: C2m−2C2m+2 ≥ C2
2m, 3 ≤ m ≤ k,
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non-decreasing: C2m−2 ≤ C2m, 3 ≤ m ≤ k,

log-sublinear growth: Cm
2m−2 ≥ Cm−1

2m , 3 ≤ m ≤ k.

Moreover, any pure binomial inequality in even cycles can be deduced in a finite way 
from the above inequalities, by exponentiating these inequalities and multiplying them 
together. For example, C3

4C
2
10 ≥ C4

8 is implied by the inequalities above, namely C6C10 ≥
C2

8 and C3
4 ≥ C2

6 , since they can be combined as C3
4C

2
10 ≥ C2

6C
2
10 ≥ C4

8 . �

We compute all pure binomial inequalities in homomorphism numbers for several nat-
ural collections of graphs, including paths, complete graphs, star graphs, even cycles and 
(separately) odd cycles. In all these cases, we observe the same tantalizing phenomenon: 
similarly to Example 1.1, all pure binomial inequalities can be deduced from a finite 
collection of pure binomial inequalities. This was observed in some of these families for 
density inequalities in [3], but the statements for homomorphism numbers are strictly 
more general.

Building on the work of Kopparty and Rossman [17], we show the following:

Theorem 1.2. Let U be a finite collection of chordal series-parallel graphs. Then there 
exists a finite collection of binomial inequalities, such that any pure binomial inequality 
in the graphs of U can be deduced in a finite way from this finite collection.

We conjecture that this polyhedrality phenomenon holds for any finite collection of 
graphs (see Conjecture 2.14 for a precise formulation). The most complicated case we are 
able to completely understand is the full characterization of pure binomial inequalities 
in paths. Here, instead of indexing paths by their number of edges as before, it is more 
intuitive to index them by the number of vertices. We let Qu be a path with u vertices.

Theorem 1.3. The following inequalities hold for homomorphism numbers of paths into 
any graph G with no isolated vertices:

log-convexity between odd paths:

Qc−b
a Qb−a

c ≥ Qc−a
b , 0 ≤ a ≤ b ≤ c, and a, c odd, (1.1)

log-convexity for odd and even paths, even middle:

Qc−b
a Qb−a

c ≥ Qc−a
b , a ≤ b ≤ c, a odd, b, c even, (1.2)

“weak convexity” for odd and even path, odd middle:

Q
c
2
aQc ≥ Q

c
2
b , a ≤ b ≤ c, a, b odd, c even, (1.3)

non-decreasing: Qa ≤ Qb, a ≤ b, (1.4)

log-subadditivity: QaQb ≤ Qa+b. (1.5)
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Moreover, any pure binomial inequality in paths can be deduced in a finite way from the 
above inequalities. In particular, for a binomial inequality where the largest path has v
vertices, only inequalities involving paths on at most 2v vertices need to be considered.

Remark 1.4. We prove a more general version of this theorem where we consider inequal-
ities valid for any graph (instead of graphs with no isolated vertices), but restricting to 
the slightly simpler case of no isolated vertices avoids some slightly technical inequali-
ties, which do not contribute additional insight into the big picture. Note that inequality 
(1.2) is a generalization of the Erdős-Simonovits inequality (which is restricted to the 
case when a = 1), while inequality (1.3) is a new inequality, which we have not found in 
the literature.

Some of the proofs for the validity of inequalities in Theorem 1.3 are based on the 
work in [17]. Our global approach of analyzing all binomial inequalities between several 
paths allows us to solve the following open problem for the homomorphism domination 
exponent of any two paths that was posed in that paper: find the largest cm,n so that 
Qm ≥ Q

cm,n
n is a valid inequality for a general m and n.

Theorem 1.5. The largest cm,n so that Qm ≥ Q
cm,n
n is a valid inequality is

cm,n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m
n+1 when m is even and n is odd and m ≤ n
km−(m−1)

k(n−1)+2k−n when m and n are both even and m ≤ n
m
n when m is odd and m ≤ n

1 when m ≥ n

where k is the smallest integer such that k · m ≥ n. Note that the last two lines were 
already proven in [17]. Our contribution is the first two lines.

Pure binomial inequalities in path homomorphism numbers have a long history and 
often go under the name of “walks in graphs”. Besides the Erdős-Simonovits conjecture 
and its solution and the results of Kopparty and Rossman, Lagarias, Mazo, Shepp and 
McKay showed in [19] that P0P2a+2b ≥ P2a+bPb. In [6], Dress and Gutman showed 
that P2aP2b ≥ P 2

a+b. In [32], Hemmecke, Kosub, Mayr, Täubig and Weihmann general-
ized all previous listed inequalities by certifying the following two types of inequalities: 
P2aP2(a+b+c) ≥ P2a+cP2(a+b)+c and P2l+pkP

k−1
2l ≥ P k

2l+p. Note that pure binomial in-
equalities in path numbers are also related to spectral properties of the graph, such as 
the spectral radius [25]. A related interesting question of what can be said about graphs 
that have the same path homomorphism numbers for all paths was addressed in [7].

We develop new techniques for analyzing tropicalizations. Some of our results mirror 
results from “tropical convexity”, but as we will explain, there is a slight difference in 
setup, which forces us to provide proofs. We believe that some of our tropicalization 
results are of independent interest.
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We now discuss some definitions to make certain concepts more precise and state some 
important results more formally. We also discuss the proof strategies that we use.

1.1. Definitions, results and proof strategies

The number graph profile of a collection of connected graphs U = {H1, . . . , Hs}, 
denoted as NU , is the set of all vectors (hom(H1; G), hom(H2; G), . . . , hom(Hs; G)) as 
G varies over all graphs. The density graph profile of U , denoted as GU , is the closure 
of all vectors (t(H1; G), t(H2; G), . . . , t(Hs; G)) as G varies over all graphs. For any U , 
the density graph profile GU is contained in [0, 1]s and the number graph profile NU
is contained in Ns. We say that a subset S of Rs has the Hadamard property if S is 
closed under coordinatewise (Hadamard) multiplication. By considering tensor product 
of graphs, it is easy to see that both the numbers and density profiles have the Hadamard 
property.

Pure binomial inequalities in homomorphism numbers are more general than pure 
binomial inequalities in densities. Any valid inequality for the density graph profile GU
corresponds to a valid inequality for the number graph profile NU ′ where U ′ is the union of 
U and the one vertex graph P0. Indeed, one can multiply the densities by |V (G)| to a high 
enough power to cancel out all denominators, and thus obtain an inequality involving 
homomorphism numbers where different terms are multiplied by |V (G)| to different 
powers. Since hom(P0; G) = |V (G)| this is an equivalent inequality in homomorphism 
numbers. Note that such an inequality must have the same number of vertices in each 
term, which doesn’t need to be true for inequalities for the number graph profile. In this 
paper, we will only consider number graph profiles, which we hereafter sometimes refer 
to simply as profiles or graph profiles.

Let log : Rs
>0 → Rs be defined as log(v) := (loge(v1), . . . , loge(vs)). If we need to 

change the base of the log from e to α, then we will explicitly write logα. For a set 
S ⊆ Rs

≥0, we define log(S) := log(S ∩Rs
>0). The tropicalization of S, which is also called 

the logarithmic limit set of S, is defined to be:

trop(S) := lim
τ→∞

logτ (S).

In [3, Lemma 2.2], it was shown that if S ⊆ Rs
≥0 has the Hadamard property, then 

trop(S) is a closed convex cone, and moreover the tropicalization of S is equal to the 
closure of the conical hull of log(S), and so trop(NU ) = cl(cone(log(NU ))). The extreme 
rays of the dual cone trop(NU )∗ generate all of the pure binomial inequalities valid on 
NU .

Note that trop(NU ) ⊆ Rs
≥0 since NU∩Rs

>0 contains only points where every coordinate 
is at least one. We show in Proposition 2.4 that we do not add any spurious binomial 
inequalities by removing points with zero coordinates from NU , except for adding the 
pure binomial inequalities that every coordinate is at least one.



G. Blekherman, A. Raymond / Advances in Mathematics 407 (2022) 108561 7
Another nice property of trop(NU ) is that it is max-closed: if (x1, . . . , xs), (y1, . . . , ys) ∈
trop(NU ), then (max{x1, y1}, . . . , max{xs, ys}) ∈ trop(NU ). In Theorem 2.9, we use 
this property to show that the only pure binomial inequalities needed to fully describe 
trop(NU ) have the form Hα1

1 · · ·Hαs
s ≥ Hβ

j for some α1, . . . , αs, β ≥ 0 and j ∈ [s].
Given a subset S ∈ Rs

≥0, the double hull of S is the smallest closed and max-closed 
convex cone containing S. A cone is said to be polyhedral if it is the conical hull of a 
finite set of rays. It follows from Corollary 2.8 that the double hull of a polyhedral cone is 
polyhedral, and we show that a closed and max-closed convex cone in Rs

≥0 is the double 
hull of its doubly extreme rays in Theorem 2.13.

In Section 2.1, we compute trop(NU ) for different classes of graphs and also for sim-
plicial complexes and matroids. Our strategy is to first find a proposed H-description 
of the tropicalization. We certify that all of the inequalities of the H-description come 
from valid pure binomial inequalities on the profile NU . Certification can be done via 
the sums of squares method, using AM-GM or Hölder’s inequality, or using the tools 
presented in [17]. This shows that the cone defined by the H-description contains the 
tropicalization trop(NU ).

To show that the cone defined by the H-description is contained in the trop-
icalization, we use different techniques. In the simplest cases, e.g., for the den-
sity cases done in [3] and some cases in this paper, we find all extreme rays of 
the cone defined by the H-description and show that all these rays are realiz-
able. An extreme ray r is realizable if there exists a graph G or a sequence of 
graphs Gn on n vertices such that α(log hom(H1; G), . . . , log hom(Hs; G)) = r or 
α(log hom(H1; Gn), . . . , log hom(Hs; Gn)) → r as n → ∞ respectively for some con-
stant α ∈ R≥0. These sequences of graphs often arise by constructing blow-up graphs 
defined in Section 3.2, and taking tensor powers and disjoint unions of the blow-up 
graphs.

In some cases, the set of doubly extreme rays of the cone defined by the H-description 
is significantly simpler that the set of all extreme rays. After finding the doubly extreme 
rays, we verify that they are realizable and that their double hull contains the cone 
defined by the H-description. An example of this strategy is the case of even cycles in 
Theorem 2.15.

The most challenging case is when we consider the path profile: U = {P0, P1, . . . ,
P2n+1}. We do not give an explicit H-description of the tropicalization of the path 
profile. Instead we construct a lifted representation by using inequalities involving larger 
paths.

Theorem 1.6. Let U := {P0, P1, . . . , P2n+1}, yi := log(hom(Pi; G)), and

C :=
{
y = (y0, y1, y2, . . . , y4n+3) ∈ R4n+4|

y2u − 2y2u+1 + y2u+2 ≥ 0 ∀0 ≤ u ≤ 2n

y2u − 2y2u+2 + y2u+4 ≥ 0 ∀0 ≤ u ≤ 2n− 1
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−y2u + y2u+1 ≥ 0 ∀1 ≤ u ≤ 2n + 1

y2u+1 + y2v+1 − y2u+2v+3 ≥ 0 ∀0 ≤ u ≤ v

such that u + v ≤ 2n

2y2u − (2v + 1 − 2u)y2v−1 + (2v − 1 − 2u)y2v+1 ≥ 0 ∀0 ≤ u < v − 1,

v ≤ 2n + 1

(u + 1)y2u−2 − (u + 1)y2u + y2u+1 ≥ 0 ∀1 ≤ u ≤ 2n + 1

y1 − 2y2 + y4 ≥ 0

y1 − (2v + 1)y2v−1 + (2v − 1)y2v+1 ≥ 0 ∀2 ≤ v ≤ 2n + 1

−y1 + y2 ≥ 0
}
.

Further, let proj2n+1(C) = {(y0, y1, . . . , y2n+1)|(y0, y1, . . . , y4n+3) ∈ C}. Then 
proj2n+1(C) = trop(NU ).

Remark 1.7. Note that the defining inequalities of the lift cone C are of a special simple 
form. They involve at most three variables and exactly one variable appears with a 
negative sign. The fact that there is at most one variable occurring with a negative sign is 
a consequence of max-closedness of tropicalizations of number profiles (see Corollary 2.9). 
We do not have an explanation for why there are at most two variables occurring with 
a positive sign. In fact, if we consider the H-description of the actual tropicalization, 
instead of the lifted representation, then we find inequalities involving more than three 
variables.

We certify that all of the inequalities involved in defining C above come from valid 
pure binomial inequalities in Section 4. In the process we generalize the Erdős-Simonovits 
conjecture and find a previously unknown family of inequalities.

The most technical part of the paper is showing that the cone proj2n+1(C) is contained 
in the tropilicalization trop(NU2n+1). We were not able to find a simple description of 
the extreme rays or doubly extreme rays of proj2n+1(C). Instead in Section 5 we build 
a larger collection of rays whose double hull contains proj2n+1(C) and show that all of 
these are realizable.

1.2. Organization of the paper

In Section 2, we discuss properties of tropicalizations and the double hull. We compute 
trop(NU ) when U is a collection of even cycles, odd cycles, stars, complete graphs, 
simplicial complexes and matroids in Section 2.1. Section 3 describes ideas and results 
from [17] that we need in the sequel. In Section 4, we prove pure binomial inequalities 
involving paths, and give among other things a proof of the Erdős-Simonovits conjecture 
that was first proved by Sağlam, as well as a generalization of the inequalities involved in 
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that conjecture. In Section 5, we compute trop(NU ) when U = {P0, P1, . . . , P2n+1}. We 
end the paper with applications of our complete description of trop(NU ) in Section 6. 
We compute the homomorphism domination exponent for any two paths in Section 6.1, 
a question that was posed in [17].

2. Properties of tropicalizations

Some theorems in this section have direct counterparts in tropical convexity. Tropical 
convexity studies max-closed sets in Rs under the additional assumption that a set S has 
the vector �1 = (1, 1, . . . , 1) in the linearity space: �1 ∈ S and if x ∈ S, then x+λ�1 ∈ S for 
all λ ∈ R. Tropically convex sets, i.e., max-closed sets with �1 in the linearity space, are 
usually studied in the tropical projective space, which is Rs modulo the span of �1. We 
show that many of the theorems from tropical convexity also hold for cones contained in 
the nonnegative orthant Rs

≥0. The results about double hulls and doubly extreme rays are 
new, and we think they are of independent interest. All results in this section also have 
equivalent formulations for cones contained in Rs

≤0, which is useful for tropicalizations 
of density profiles; it is important that all coordinates have the same sign.

Definition 2.1. For vectors x, y ∈ Rs, we let x ⊕ y denote their tropical sum:

x ⊕ y = (max{x1, y1}, . . . ,max{xs, ys}).

We call a set S ⊆ Rs max-closed if for any x, y ∈ S we have x ⊕ y ∈ S.

It turns out that tropicalizations of graph profiles have this property.

Lemma 2.2. Let S ⊂ Zs
≥0 be a semiring under coordinatewise addition and coordinatewise 

(Hadamard) multiplication. Then trop(S) is a max-closed convex cone.

Proof. The fact that trop(S) is a convex cone equal to cl(cone(log(S))) follows from 
Lemma 2.2 in [3] since S is closed under Hadamard multiplication. We now show that 
trop(S) is max-closed, that is, for any x, y ∈ trop(S), we want to show that x ⊕ y ∈
trop(S). Since trop(S) = cl(cone(log(S))), it suffices to consider x = αx′ and y = βy′

for some x′, y′ ∈ log(S) and α, β ∈ R≥0. We can assume that α, β ∈ Q≥0 since trop(S)
is closed, and so we can further assume that α, β have the same denominator, say α =
a1
b and β = a2

b where a1, a2, b ∈ N. Since trop(S) is a cone, it suffices to show that 
a1x′ ⊕ a2y′ ∈ trop(S). Since x′, y′ ∈ log(S), we have x′ = log(v) and y′ = log(w) for 
some v, w ∈ S. Observe that va1l + wa2l ∈ S for any l ∈ N since S is closed under 
coordinatewise addition and Hadamard multiplication. Further, note that

log(va1l + wa2l) → log(va1) ⊕ log(wa2) = a1x′ ⊕ a2y′

l
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as l → ∞. Therefore, a1x′⊕a2y′ ∈ trop(S) since log(va1l+wa2l)
l ∈ trop(S) for every l and 

trop(S) is closed. Hence, trop(S) is max-closed. �
Corollary 2.3. Let U = {H1, . . . , Hs} be a finite collection of connected graphs. Then 
trop(NU ) is a max-closed convex cone.

Proof. It is well known that hom(Hi; G1) · hom(Hi; G2) = hom(Hi; G1 × G2) and 
hom(Hi; G1) +hom(Hi; G2) = hom(Hi; G1G2) where G1 ×G2 is the categorical product 
of G1 and G2, and G1G2 is the disjoint union of G1 and G2. Thus NU is closed un-
der coordinatewise addition and Hadamard multiplication, and so the previous Lemma 
applies. �

For any cone C ∈ Rd, the dual cone of C is defined as C∗ := {a ∈ Rd|〈a, y〉 ≥
0 for all y ∈ C}. The extreme rays of C become the facet normals of C∗ and vice-versa. 
As we mentioned in the introduction, the dual cone to trop(S) essentially encodes the 
valid pure binomial inequalities on S. We now make this precise.

Proposition 2.4. Let S ⊂ Zs
≥0 be a semiring under coordinatewise addition and coor-

dinatewise multiplication such that S is not contained in a coordinate hyperplane. Let 
α ∈ trop(S)∗. Write α = α+ − α− where α+, α− ∈ Rs

≥0 are the positive and negative 
parts of α. If α− �= �0, then xα+ ≥ xα− is a valid binomial inequality on S.

Proof. Since α ∈ trop(S)∗, we have 〈α+, y〉 ≥ 〈α−, y〉 for all y ∈ log(S). Therefore, 
xα+ ≥ xα− is a valid binomial inequality for all positive points in S. Since S is not 
contained in a coordinate hyperplane and S is closed under addition, we see that S
contains a strictly positive point a. Suppose that bα+ < bα− for some b ∈ S. Consider 
bk + a ∈ S which is a strictly positive point. For a sufficiently large k, we see that 
(bk + a)α+ < (bk + a)α− , which is a contradiction. �
Remark 2.5. Observe that if α− = 0, then this corresponds to a pure binomial inequality 
xα1

1 . . . xαs
s ≥ 1 with αi ≥ 0. This inequality is valid on all points of S with non-zero 

coordinates, but may fail if S has a point with a zero coordinate. Note that all such 
inequalities are generated from inequalities xi ≥ 1 for 1 ≤ i ≤ s. We remark that even 
though xi ≥ 1 may fail to hold on S, a slight perturbation x1+ε

i ≥ xε
i is valid on S.

We call a set S ⊆ Rs a cone if S is closed under multiplication by nonnegative scalars. 
Note that a cone does not have to be convex.

For i ∈ {1, . . . , s}, let Qi be the orthant of Rs consisting of all points where the i-
th coordinate is nonpositive and the rest are nonnegative. The corresponding result in 
tropical convexity is known as the tropical Farkas Lemma [8,11]:
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Lemma 2.6. Let S ⊂ Rs
≥0 be a cone and let

M =
s⋂

i=1
(S + Qi),

where + denotes Minkowski addition. Then M is a max-closed cone contained in Rs
≥0, 

and it is the smallest max-closed cone containing S.

Proof. It is clear that M is a cone contained in the nonnegative orthant. We claim that 
x ∈ M if and only if there exist y1, . . . , ys ∈ S such that x = ⊕s

i=1yi. We first show 
that if x ∈ M, then there exist y1, . . . , ys ∈ S such that x = ⊕s

i=1yi. Observe that for 
all i ∈ [s], we have x = ui + pi where ui ∈ S and pi ∈ Qi. Let xj , uij and pij be the 
jth coordinate of x, ui and pi respectively. Thus, we have that xj = uij + pij for all 
i, j ∈ [s]. Note that pii ≤ 0 and pij ≥ 0 for all j �= i. Thus, xi = uii + pii implies that 
xi ≤ uii for all i ∈ [s]. Similarly, xj = uij +pij implies that xj ≥ uij for all i, j ∈ [s] such 
that i �= j. This shows that x lies inside the box defined by the following inequalities: 
max{uij |j �= i} ≤ xi ≤ uii for all i ∈ [s].

We would like x to be the maximum corner of that box, i.e., we would like that 
xi = uii for all i. We claim that if this is not the case, we can build a new box that still 
contains x and for which x is in the maximum corner. Indeed, suppose that xi < uii for 
some particular i. Then replace ui with u′

i := λui so that xi = λuii =: u′
ii. Certainly 

u′
i ∈ S since S is a cone. Furthermore, there exists a point p′

i ∈ Qi such that x = u′
i+p′

i, 
namely p′ii := 0 and p′ij := pij + (1 − λ)uij ≥ pij ≥ 0 since λ < 1. Let I ⊂ [s] be the 
set of indices for which xi = uii. By replacing ui by u′

i for all i ∈ [s] \ I we obtain a 
new box where x is in the maximum corner. Thus, x can be seen as the coordinatewise 
maximum of ui for all i ∈ I and u′

i for all i ∈ [s]\I.
We now show the converse. Let y1, . . . , ys ∈ S and let x = ⊕s

i=1yi. Then for all 
j ∈ [s], the jth coordinate of x is equal to the jth coordinate of some yi. Therefore, 
x ∈ S + Qi for all i ∈ [s], and thus x ∈ M.

To show that M is max-closed, let a, b ∈ M. Then a = ⊕s
i=1yi and b = ⊕2s

i=s+1yi

with yi ∈ S. Therefore, a ⊕ b = ⊕2s
i=1yi and a ⊕ b ∈ M. Furthermore, we showed that 

any point of M is a tropical sum of points from S, and therefore M is the smallest 
max-closed set containing S. �

We immediately obtain the following corollary.

Corollary 2.7. Let S ⊂ Rs
≥0 be a convex cone. The max-closure of S is a convex cone.

For a convex cone S ⊂ Rs, let S∗ denote its dual cone with respect to the standard 
inner product.
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Corollary 2.8. Let S ⊂ Rs
≥0 be a max-closed convex cone. Then

S∗ =
s∑

i=1
(S∗ ∩Qi),

where 
∑

denotes Minkowski addition.

Proof. We know from Lemma 2.6 that S =
⋂s

i=1(S+Qi). The rest follows from standard 
results in convexity. The dual cone of an intersection of cones is equal to the Minkowski 
sum of the dual cones, so we have: S∗ = ⊕s

i=1(S + Qi)∗. The dual cone of Minkowski 
sum of cones is the intersection of dual cones, so we have S∗ = ⊕s

i=1(S∗ ∩ Q∗
i ). Finally, 

the cone Qi is self-dual: Q∗
i = Qi for all i, and the desired conclusion follows. �

We now prove an important structural result on extreme rays of dual cones to tropi-
calization of graph profiles.

Corollary 2.9. Any extreme ray of the dual cone trop(NU )∗ is spanned by a vector with 
at most one negative coordinate.

Proof. Since trop(NU ) is a max-closed convex cone contained in Rs
≥0 we can apply 

Corollary 2.8. It follows that an extreme ray of trop(NU )∗ is also an extreme ray of one 
of the intersections trop(NU )∗ ∩ Qi and is therefore spanned by a vector with at most 
one negative coordinate. �
Definition 2.10. Let S ⊂ Rs

≥0 be a cone. We define the double hull of S to be the smallest 
max-closed convex cone containing S and denote it by dh(S).

We see from Corollary 2.7 that the double hull of S is the max-closure of the convex 
hull of S.

Definition 2.11. We call a point p ∈ S max-extreme if whenever p = x⊕y with x, y ∈ S, 
then p = x or p = y. It is easy to see that p is max-extreme if and only if any point on 
the ray spanned by p is also max-extreme in S.

Let S ⊂ Rs
≥0 be a closed convex cone. We say that p ∈ S spans a doubly extreme ray

of S if p spans an extreme ray of S and p is max-extreme.

Theorem 2.12. Let S ⊆ Rs
≥0 be a closed and max-closed cone. Then S is equal to the 

max-closure of its max-extreme rays.

Proof. Let p ∈ S. Observe that for i ∈ {1, . . . , s}, the subset Si of S consisting of points 
that are coordinatewise less than or equal to p and with i-th coordinate equal to pi is 
compact. For each i ∈ {1, . . . , s}, construct points yi as follows: yii = pi and yi is a 
lexicographically minimal point of Si, which means that yi1 ≤ x1 for all x ∈ Si and 
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if yi1 = x1 then yi2 ≤ x2, and so on. We claim that yi are max-extreme points of S. 
Suppose that yi = v ⊕ w. Then yii = vi or yii = wi, and then we must have yi = v or 
yi = w. Thus yi is max-extreme and we have p = ⊕s

i=1yi. �
Theorem 2.13. Let S ⊆ Rs

≥0 be a closed convex cone that is also max-closed. Then S is 
equal to the double hull of its doubly extreme rays.

Proof. It is clear that S contains the double hull of its doubly extreme rays. To show 
the other inclusion, by Theorem 2.12, it suffices to show that any max-extreme point of 
S is contained in the conical hull of doubly extreme rays of S.

Let p �= 0 be a max-extreme point of S. Then p lies on the boundary of S, and 
therefore p lies in the relative interior of a proper face F of S, namely the minimal 
face containing p. We claim that any point v ∈ F is max-extreme. Suppose not, then 
v = x ⊕ y, with x, y �= v, and we can write p = λv + (1 − λ)w for some w ∈ F and 
0 < λ < 1. Therefore p = (λx + (1 − λ)w) ⊕ (λy + (1 − λ)w), and since x, y �= v we see 
that p is not max-extreme, which is a contradiction.

Therefore, we see that extreme rays of F are doubly extreme rays of S since they are 
max-extreme and since they are also extreme rays of S. Thus, any max-extreme point is in 
the convex hull of doubly extreme rays of S, and we may conclude by Theorem 2.12. �
2.1. Some examples of tropicalizations

We illustrate the previous properties with some relatively simple examples. In general, 
to show that the tropicalization is equal to some cone C, we proceed in two steps. We 
show that the tropicalization is contained in C by proving that the inequalities defining C
are valid for the tropicalization. Then we show that C is contained in the tropicalization 
by proving that the extreme rays or doubly extreme rays of C are contained in the 
tropicalization. We note that to realize a particular ray of C, we sometimes show that 
a family of realizable rays converge to the desired ray (which is sufficient since we take 
the closure), and in other cases, we directly realize the desired ray. In Section 5, we 
find the tropicalization of a more complicated example, namely when U contains all 
paths up to a certain length. We note that the tropicalizations in all our examples are 
rational polyhedral cones, including the general case of chordal series-parallel graphs of 
Theorem 3.2, which leads us to make the conjecture below. Moreover, we compute the 
tropicalization for an example (matroids) without the Hadamard property where we also 
observe polyhedrality.

Conjecture 2.14. Let U be a finite collection of finite connected simple graphs. Then 
trop(NU ) is a rational polyhedral cone.

We first prove the example of even cycles presented in the introduction. Our proof 
strategy involves the double hull to give an example of how it can be used.
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Theorem 2.15. Let U = {C4, C6, C8, . . . C2m}. Then

trop(NU ) =

⎧⎪⎨
⎪⎩

y ∈ Rm−1| y2i−2 − 2y2i + y2i+2 ≥ 0 ∀ 3 ≤ i ≤ m− 1
−y4 + y6 ≥ 0
m · y2m−2 − (m− 1) · y2m ≥ 0

⎫⎪⎬
⎪⎭ .

The set trop(NU ) is the double hull of the following two doubly extreme rays: �1 and 
(2, 3, 4, . . . , m).

Proof. Let QU be the cone on the righthand side of the equation in the theorem.
Claim 1: We have that trop(NU ) ⊆ QU .
The inequality C2i ≥ C2i−2 for any i ≥ 2 holds since there is a surjective homo-

morphism from C2i to C2i−2. Now, let AG be the adjacency matrix of a graph G on 
n vertices. Recall that the entry (v1, v2) of Ai

G is the number of walks of length i be-
tween the vertices v1 and v2 of G, and so, in particular, the entry (v, v) of Ai

G is the 
number of walks of length i starting and ending at some vertex v. This means that 
hom(C2i; G) = tr(A2i

G) which in turn is equal to λ2i
1 + . . . + λ2i

n , where λ1, . . . , λn are 
the eigenvalues of AG. Then C2i−2C2i+2 ≥ C2

2i and Ci
2i−2 ≥ Ci−1

2i can be viewed as 
inequalities for �2p norms of real vectors. The second inequality is thus simply stating 
that ||λ||2i ≥ ||λ||2i−2 where λ = (λ1, . . . , λn), and the other follows from an application 
of Hölder’s inequality: ||λi−1||2||λi+1||2 ≥ ||λi−1 · λi+1||1 where λu = (λu

1 , . . . , λ
u
n).

These binomial inequalities for NU imply the linear inequalities y2i−2−2y2i+y2i+2 ≥ 0, 
−y2i−2 + y2i ≥ 0 and i · y2i−2 − (i − 1) · y2i ≥ 0 for trop(NU ). Thus trop(NU ) ⊆ QU .

Claim 2: The rays (1, 1, . . . , 1) and (2, 3, 4, . . . , m) are in trop(NU ).
First note that (1, 1, . . . , 1) ∈ trop(NU ). Indeed, since hom(C2i, K2) = 2 for all 2 ≤

i ≤ m, we have that (log 2, . . . , log 2) is in the tropicalization. Since the tropicalization 
is a closed convex cone, this is equivalent to saying that the ray (1, . . . , 1) is in the 
tropicalization. Moreover, note that (2, 3, 4, . . . , m) ∈ trop(NU ) since log hom(C2i,Kn)

logn → 2i
as n → ∞. Note that (1, . . . , 1) comes from the realization corresponding to a single 
finite graph, whereas (2, 3, 4, . . . , m) comes from building a family of realizable rays that 
converge to it.

Claim 3: We have that QU ⊆ dh(cone((1, 1, . . . , 1), (2, 3, 4, . . . , m))), and so QU ⊆
trop(NU ).

Let S = cone((1, 1 . . . , 1), (2, 3, 4, . . . , m)) and let D := dh(S). From Corollary 2.8, we 
know that D∗ =

∑m
i=2 S∗∩Q2i where Q2i is the orthant of Rm−1 consisting of all points 

where the coordinate corresponding to y2i is nonpositive, and all other coordinates are 
nonnegative, and where 

∑
denotes the Minkowski sum. Therefore, the set of extreme 

rays of D∗ is contained in the union of extreme rays of S∗ ∩ Q2i for i ∈ {2, 3, . . . , m}. 
Note that the extreme rays of D∗ correspond to linear inequalities for D.

The cone S∗∩Q2i is defined by m +1 inequalities, and at least m −2 of them must be 
tight to form an extreme ray. Let’s consider various possibilities for which inequalities 
are tight.
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Consider a ray r = (r4, r6, . . . , r2m) of S∗∩Q2i with m −2 tight inequalities including 
the two inequalities corresponding to (1, 1, . . . , 1) and (2, 3, . . . , m). Then there must be 
at least m − 4 inequalities of Q2i that are tight, which implies that there are at most 
three coordinates of r that are non-zero, say r2i, r2j and r2k where i < j < k. Then we 
know r2i+r2j +r2k = 0 and ir2i+jr2j +kr2k = 0. Without loss of generality, this implies 
that r2i = k − j, r2j = i − k, r2k = j − i, and r2l = 0 for all l ∈ {2, 3, . . . , m}\{i, j, k}.

If j = i + 1 and k = j + 1, then those rays correspond exactly to the inequalities 
y2j−2 − 2y2j + y2j+2 ≥ 0 for all 3 ≤ j ≤ m − 1. The general rays obtained are redundant 
since (k − j)y2i + (i − k)y2j + (j − i)y2k ≥ 0 can be written as the following conic 
combination of the previous case:

j−1∑
u=i

(k − j) · (u− i + 1) · (y2i − 2y2i+2 + y2i+4 ≥ 0)

+
k−2∑
u=j

(j − i) · (k − 1 − u) · (y2i − 2y2i+2 + y2i+4 ≥ 0).

Now consider a ray r = (r4, r6, . . . , r2m) of S∗ ∩ Q2i with m − 2 tight inequalities 
including the inequality corresponding to (1, 1, . . . , 1), but not (2, 3, . . . , m). Then there 
must be at least m − 3 inequalities of Q2i that are tight, which implies that there are 
at most two coordinates of r that are non-zero, say r2i and r2j where i < j. Then we 
know r2i + r2j = 0 and ir2i + jr2j > 0. Without loss of generality, this implies that 
r2i = −1, r2j = 1, and r2k = 0 for all k ∈ {2, 3, . . . , m}\{i, j}. If i = 2 and j = 3, then 
this corresponds to the inequality −y4 + y6 ≥ 0. The other rays are redundant since 
−y2j−2 + y2j ≥ 0 for any 4 ≤ j ≤ m can be written as the following conic combination:

j−1∑
l=3

(y2l−2 − 2y2l + y2l+2 ≥ 0)

+(−y4 + y6 ≥ 0),

which implies that −y2i + y2j ≥ 0 for all i < j.
Now consider a ray r = (r4, r6, . . . , r2m) of S∗ ∩ Q2i with m − 2 tight inequalities 

including the inequality corresponding to (2, 3, . . . , m), but not (1, 1, . . . , 1). Then there 
must be at least m − 3 inequalities of Q2i that are tight, which implies that there are at 
most two coordinates of r that are non-zero, say r2i and r2j where i < j. Then we know 
ir2i + jr2j = 0 and r2i + r2j > 0. Without loss of generality, this implies that r2i = j, 
r2j = −i, and r2k = 0 for all k ∈ {2, 3, . . . , m}\{i, j}. If i = m − 1 and j = m, then this 
corresponds to the inequality my2m−2 − (m − 1)ym ≥ 0. The other rays are redundant 
since (i + 1)y2i − iy2i+2 ≥ 0 for any 2 ≤ i ≤ m − 2 can be written as the following conic 
combination:
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m−1∑
l=i+1

j·(y2l−2 − 2y2l + y2l+2 ≥ 0)

+(my2m−2 − (m− 1)ym ≥ 0).

Note that this implies that jy2i − iy2j ≥ 0 for any 2 ≤ i < j ≤ m since it can be written 
as a conic combination of the previous inequalities:

j−1∑
l=i

i · j
l(l + 1)((l + 1)y2l − ly2l+2 ≥ 0).

Finally, consider a ray r = (r4, r6, . . . , r2m) of S∗ ∩Q2i tight with m − 2 inequalities 
where neither inequalities corresponding to (2, 3, . . . , m) or (1, 1, . . . , 1) are tight. Then 
there is at most one coordinate of r that is non-zero, so without loss of generality, r = e2i
for some 2 ≤ i ≤ m. This corresponds to inequalities stating the nonnegativity of each 
inequality. Since we’ve already seen that rays are non-decreasing, the only potentially 
non-redundant inequality would be y4 ≥ 0, however, it is redundant as it can be written 
as

m∑
j=3

j·(y2j−2 − 2y2j + y2j+2 ≥ 0)

+2·(−y4 + y6 ≥ 0)

+(my2m−2 − (m− 1)y2m ≥ 0).

Thus QU ⊆ dh(cone((1, 1, . . . , 1), (2, 3, 4, . . . , m))), and we know dh(cone((1, 1, . . . , 1),
(2, 3, 4, . . . , m))) ⊆ trop(NU ) because (1, 1, . . . , 1) and (2, 3, 4, . . . , m) are in trop(NU ) by 
the previous claim, so we obtain that QU ⊆ trop(NU ). �

We now do the same for odd cycles.

Theorem 2.16. Let U = {C3, C5, C7, . . . C2m+1}. Then

trop(NU ) =
{

y ∈ Rm| y3 ≥ 0
−y2i−1 + y2i+1 ≥ 0 2 ≤ i ≤ m

}
.

The set trop(NU ) is the double hull of the following doubly extreme rays: (0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, . . . ,

1) for 1 ≤ i ≤ m.

Proof. Let QU be the cone on the righthand side of the equation in the theorem.
Claim 1: We have that trop(NU ) ⊆ QU .
The inequality C2i−1 ≥ C2i+1 for any i ≥ 2 holds because there is a surjective homo-

morphism from C2i+1 to C2i−1. These binomial inequalities for NU imply the defining 
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inequalities for QU , and so they are valid on trop(NU ). Moreover, since trop(NU ) ⊆ Rm
≥0, 

we have that y3 ≥ 0 is a valid inequality for trop(NU ). Thus trop(NU ) ⊆ QU .
Claim 2: The extreme rays of QU are ri = (r1, . . . , rm) for 1 ≤ i ≤ m where

rj =
{

0 if j < i,

1 if j ≥ i.

Observe that QU = {y ∈ Rm|Ay ≥ 0} where

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 0 0
−1 1 0 0 . . . 0 0 0
0 −1 1 0 . . . 0 0 0
0 0 −1 1 . . . 0 0 0

. . .
0 0 0 0 . . . −1 1 0
0 0 0 0 . . . 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where the ith row of A is ai. Since A ∈ Rm×m, the candidate extreme rays of QU are 
obtained by setting m − 1 of the defining constraints a�

i y ≥ 0 to equality. Since there 
are exactly m constraints, it implies there are at most m extreme rays. Observe that

ri = (0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, . . . , 1)

satisfies all but the ith constraint at equality. Since ri ∈ QU , it is an extreme ray for 
each 1 ≤ i ≤ m.

Claim 3: The extreme rays of QU are in trop(NU ), and hence QU = trop(NU ).
To realize ri, let Gn be the graph with the disjoint union of n (2i + 1)-cycles and 

one 3-cycle. Then as n → ∞, log hom(C2j+1;Gn)
logn → 1 if j ≥ i, and log hom(C2j+1;Gn)

logn → 0 if 
j < i. Note that the 3-cycle is present so that the number of homomorphisms from C2j+1
to Gn is not zero for 1 ≤ j < i. Indeed, recall that trop(NU ) = cl(cone(log(NU ))) where 
log(NU ) = log(NU ∩ Rm

>0), which is why we need to ensure that all our homomorphism 
numbers are positive.

Claim 4: The rays ri are doubly extreme for 1 ≤ i ≤ m.
First note that any ray in trop(NU ) must be non-decreasing and nonnegative.
Assume that ri is not max-extreme for some i. Then there exists t := (t3, t5, . . . , t2m+1)

and t′ := (t′3, t′5, . . . , t′2m+1), both in trop(NU ), such that t ⊕ t′ = ri and neither t or 
t′ is ri. Since t, t′ ∈ trop(NU ), we know that t2j+1, t′2j+1 ≥ 0 for every 1 ≤ j ≤ m, 
which implies that t2j+1 = t′2j+1 = 0 for every 1 ≤ j ≤ i − 1. We also know that 
t2j+1 ⊕ t′2j+1 = 1 for every i ≤ j ≤ m, so max{t2j+1, t′2j+1} = 1 and t2j+1, t′2j+1 ≤ 1
for every i ≤ j ≤ m. Without loss of generality, assume t2i+1 = 1. Then t2j+1 = 1 for 
i ≤ j ≤ m since t2j−1 ≤ t2j+1 for every 2 ≤ j ≤ m because t ∈ trop(NU ), and each entry 
is bounded above by 1. Thus, t = ri, a contradiction. �
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We call a tree on k + 1 vertices where one vertex is connected to all the other k
vertices a star with k branches and denote it by Sk. In [3], we computed trop(GU ) when 
U is a collection of stars. As explained in the introduction, NU is more general than GU , 
and we see here that trop(NU ) is indeed slightly more complicated than trop(GU ). In 
particular, the inequalities S2 ≥ S1 and Sm

m−1 ≥ Sm−1
m for NU do not have any equivalent 

inequalities for homomorphism densities.

Theorem 2.17. Let U = {S0, S1, . . . , Sm} where Si is the star graph with i branches. Then

trop(NU ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y ∈ Rm+1| −y1 + y2 ≥ 0
yi−1 − 2yi + yi+1 ≥ 0 ∀1 ≤ i ≤ m− 1
y0 + ym−1 − ym ≥ 0
m · ym−1 − (m− 1) · ym ≥ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

The set trop(NU ) is the double hull of the following doubly extreme rays: �1, 
(1, 0, 0, . . . , 0), (1, 1, 2, 3, . . . , m), and (1, 2, 3, 4, . . . , m + 1).

Proof. Let QU be the cone on the righthand side of the equation in the theorem.
Claim 1: We have that trop(NU ) ⊆ QU .
Let G be a graph on n vertices with degree sequence d = (d1, . . . , dn). Then 

hom(Si; G) = di1 + · · ·+ din = ||d||ii. For m = 0, we define 00 = 1. The above inequalities 
are known inequalities (e.g., Hölder inequalities) for �p norms of real nonnegative vectors 
applied to the degree sequence d.

Claim 2: The extreme rays of QU are (1, 0, . . . , 0), (1, 2, 3, 4, . . . , m + 1), ri =
(r0, r1, . . . , rm) for 2 ≤ i ≤ m where

rj =
{

i if j ≤ i,

j if j ≥ i,

and si = (s0, s1, . . . , sm) for 1 ≤ i ≤ m − 1 where

sj =
{

i + j(i− 1) = (i− 1)(j + 1) + 1 if j ≤ i,

i + i(i− 1) + (j − i)i = ij if j ≥ i.

In other words,

r2 = (2, 2, 2, 3, 4, 5, . . . ,m− 1,m),

r3 = (3, 3, 3, 3, 4, 5, . . . ,m− 1,m),

r4 = (4, 4, 4, 4, 4, 5, . . . ,m− 1,m),
...

rm = (m,m,m,m,m,m, . . . ,m,m),
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and

s1 = (1, 1, 2, 3, 4, 5, . . . ,m− 1,m),

s2 = (2, 3, 4, 6, 8, 10, . . . , 2(m− 1), 2m),

s3 = (3, 5, 7, 9, 12, 15, . . . , 3(m− 1), 3m),
...

sm−1 = (m− 1, 2m− 3, 3m− 5, 4m− 7, 5m− 9, 6m− 11, . . . , (m− 1)2, (m− 1)m).

Observe that QU = {y ∈ Rm+1|Ay ≥ 0} where

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1 0 0 . . . 0 0 0
1 −2 1 0 0 . . . 0 0 0
0 1 −2 1 0 . . . 0 0 0
0 0 1 −2 1 . . . 0 0 0

. . .
0 0 0 0 0 . . . 1 −2 1
1 0 0 0 0 . . . 0 1 −1
0 0 0 0 0 . . . 0 m −(m− 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the ith row of A is ai. The rows of A are indexed by 1 through m + 2 and the 
columns of A are indexed by 0 through m. Since A ∈ R(m+2)×(m+1), the extreme ray 
candidates of QU are obtained by setting m of the defining constraints a�

i y ≥ 0 to 
equality.

Let’s first check that the vectors in the claim are indeed extreme rays. Certainly, all 
of them satisfy all inequalities. Moreover, (1, 0, . . . , 0) is tight with all inequalities except 
the second and the (m + 1)th ones, and (1, 2, 3, . . . , m + 1) with all but the first and 
(m + 2)th one. Note that ri for 2 ≤ i ≤ m − 1 is tight with all inequalities except 
the (i + 1)th and (m + 1)th, rm is tight with all inequalities except the (m + 1)th and 
(m + 2)th, and si is tight with all except for the first and (i + 1)th ones. We still need 
to show that no other extreme ray exists.

We first show that there exists no extreme ray such that a�
1 y = 0 and a�

m+1y = 0. 
Consider a point z = (z0, z1, . . . , zm) ∈ QU such that zm = zm−1 + z0 and such that 
z1 = z2. From a�

2 y ≥ 0 and the assumption that z1 = z2, we know that z0 ≥ z2, and from 
a�
m+2y ≥ 0 and the assumption that zm = zm−1+z0, we get that zm−1 ≥ (m −1)z0. Thus, 

the average gap zi+1 − zi for 2 ≤ i ≤ m − 2 is zm−1−z2
m−3 ≥ (m−1)z0−z0

m−3 = m−2
m−3z0 > z0. 

This implies there exists 2 ≤ j ≤ m − 2 such that zj+1 − zj > z0. Let j∗ be the 
biggest such index. Then zj∗+1 − zj∗ > z0 and zj∗+2 − zj∗+1 ≤ z0, which implies that 
zj∗ − 2zj∗+1 + zj∗+2 < 0, a contradiction to z ∈ QU . Therefore, any extreme ray must 
be such that a�

1 y > 0 or a�
m+1y > 0 or both. The rays we have listed are the ones where 

exactly one of those two inequalities holds.
Let’s finally check that there is no extreme ray where a�

1 y > 0 and a�
m+1y > 0. If 

there was, say z, then all other inequalities would have to be tight. In particular, this 
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means that zi − zi−1 = z2 − z1 =: k where k > 0 (because of a�
1 y > 0) for every 

1 ≤ i ≤ m because of the tight log-convexity inequalities. Moreover, since zm−1 =
z1 + (m − 2)k, zm = z1 + (m − 1)k and the last inequality is tight, we have that 
m(z1 + (m − 2))k = (m − 1)(z1 + (m − 1)k) which implies that k = z1, i.e., z2 = 2z1. 
Thus, z0 + zm−1 − zm = 0 + (m − 1)z1 − mz1 < 0. So there is no extreme ray where 
a�

1 y > 0 and a�
m+1y > 0.

Claim 3: The extreme rays of QU are in trop(NU ), and hence QU = trop(NU ).
We realize (1, 1, . . . , 1) and (1, 2, 3, 4, . . . , m + 1) in a similar fashion to the even cy-

cles case. Note that hom(Si, K2) = 2 for every 0 ≤ i ≤ m, and so (log 2, . . . , log 2) ∈
trop(NU ), and since we know that trop(NU ) is a closed convex cone, we have that 
(1, 1, . . . , 1) ∈ trop(NU ). We also have that (1, 2, 3, 4, . . . , m + 1) ∈ trop(NU ) since 
log hom(Si;Kn)

logn → i + 1 as n → ∞. We also have that (1, 0, 0, . . . , 0) is realizable, for 
example with a graph G on n vertices as n → ∞ containing a single edge. Indeed, 
hom(S0; G) = n and hom(Si; G) = 2 for every 1 ≤ i ≤ m. So log hom(S0;G)

logn = 1 and 
log hom(Si;G)

logn → 0 as n → ∞ for 1 ≤ i ≤ m.
Moreover, note that log hom(Si,Sn)

logn → i as n → ∞ for i ≥ 1, and log hom(S0,Sn)
logn → 1, 

so (1, 1, 2, 3, 4, . . . , m) ∈ trop(NU ) as well. Observe that ri = (1, 1, 2, 3, . . . , m) ⊕ i ·
(1, 1, . . . , 1), and si = i · (1, 1, 2, 3, . . . , m) ⊕ ((i − 1) · (1, 2, 3, . . . , m + 1) + (1, 1, 1, . . . , 1)). 
This implies that trop(NU ) is the double hull of �1, (1, 0, 0, . . . , 0), (1, 1, 2, 3, . . . , m), and 
(1, 2, 3, 4, . . . , m + 1).

Claim 4: The rays �1, (1, 0, 0, . . . , 0), (1, 1, 2, 3, . . . , m), and (1, 2, 3, 4, . . . , m + 1) are 
doubly extreme.

First note that yi ≤ yi+1 for every 1 ≤ i ≤ m − 1 since it can be written as the 
following linear combination:

i∑
j=2

(yj−1 − 2yj + yj+1 ≥ 0)

+(−y1 + y2 ≥ 0).

So any ray in trop(NU ) is non-decreasing after the first component. Also, observe that 
iyi−1 − (i − 1)yi ≥ 0 for every 2 ≤ i ≤ m since it can be written as the following linear 
combination:

m−1∑
j=i

j·(yj−1 − 2yj + yj+1 ≥ 0)

+(mym−1 − (m− 1)ym ≥ 0).

Moreover, yi ≥ 0 for every 0 ≤ i ≤ m since we know trop(NU ) ⊂ Rm+1
≥0 .

Now let r = (r0, r1, . . . , rm) and r′ = (r′0, r′1, . . . , r′m), both in trop(NU ).
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Suppose that r ⊕ r′ = (1, 0, 0, . . . , 0). Then since ri, r′i ≥ 0, we have that ri = r′i = 0
for all 1 ≤ i ≤ m. Moreover, we know that r0 ⊕ r′0 = 1. Without loss of generality, let 
r0 = 1. Then r = (1, 0, 0, . . . , 0), and so (1, 0, 0, . . . , 0) is max-extreme.

Suppose that r ⊕r′ = �1. Without loss of generality, assume r1 = 1 since we know that 
r1 ⊕ r′1 = 1. Then ri = 1 for all 1 ≤ i ≤ m since r is non-decreasing after r1 because 
it is in trop(NU ). Finally, we know that r0 ≤ 1 since r0 ⊕ r′0 = 1, and r0 ≥ 1 since 
r0 − 2r1 + r2 = r0 − 1 ≥ 0 since r ∈ trop(NU ). Thus r0 = 1, and so r = �1, which implies 
that �1 is max-extreme.

Suppose that r ⊕ r′ = (1, 1, 2, 3, . . . , m). Without loss of generality, assume rm = m

since rm ⊕ r′m = m. We know that i · ri−1 − (i − 1)ri ≥ 0 for all 2 ≤ i ≤ m since 
r ∈ trop(NU ). If there exists i such that this is a strict inequality, let i∗ be the greatest 
such i. Then ri∗−1 > i∗ − 1 which is a contradiction to ri∗−1 ⊕ r′i∗−1 = i∗ − 1. So 
this implies that ri = i for all 1 ≤ i ≤ m. Additionally, we have that r0 ≥ 1 because 
r0+rm−1−rm = r0−1 ≥ 0 since r ∈ trop(NU ). We also know that r0 ≤ 1 since r0⊕r′0 = 1. 
Thus r0 = 1, and r = (1, 1, 2, 3, . . . , m), and so (1, 1, 2, 3, . . . , m) is max-extreme.

Finally, suppose that r ⊕ r′ = (1, 2, 3, . . . , m + 1). Without loss of generality, assume 
rm = m +1 since rm⊕r′m = m +1. Since r ∈ trop(NU ), we know that r0 +rm−1−rm ≥ 0
which implies that r0 + rm−1 ≥ m + 1. Since r0 ≤ 1 and rm−1 ≤ m because r0 ⊕ r′0 = 1
and rm−1 ⊕ r′m−1 = m, we have that r0 = 1 and rm−1 = m. Suppose that rj+1 = j + 2
and rj = j + 1 for some 1 ≤ j ≤ m − 1. Then since rj−1 − 2rj + rj+1 = rj−1 − j ≥ 0
because r ∈ trop(NU ), we have that rj−1 ≥ j. Moreover, since rj−1 ⊕ r′j−1 = j, we 
know that rj−1 ≤ j. Thus, rj−1 = j, and by induction, we get that ri = i + 1 for all 
0 ≤ i ≤ m + 1, and so that r = (1, 2, 3, . . . , m + 1). Therefore, (1, 2, 3, . . . , m + 1) is 
max-extreme. �

On the other hand, the tropicalization of homomorphism numbers for complete graphs 
is not more complicated than the one for graph densities presented in [3]. We still go 
through it as it will be helpful to understand the tropicalization of simplicial complexes 
afterwards.

Theorem 2.18. Let U = {K1, . . . , Km} where Ki is a complete graph on i vertices. Then

trop(NU ) =
{

y ∈ Rm| i · yi−1 − (i− 1) · yi ≥ 0 2 ≤ i ≤ m

ym ≥ 0

}
.

The set trop(NU ) is the double hull of the following doubly extreme rays: ri =
(1, 2, . . . , i, 0, . . . , 0) for 1 ≤ i ≤ m.

Proof. Let QU be the cone on the righthand side of the equation in the theorem.
Claim 1: We have that trop(NU ) ⊆ QU .
The Kruskal-Katona theorem [18,15] implies that Kq

p − Kp
q ≥ 0 for any 2 ≤ p < q, 

and it is also clear that K2
1 ≥ K2. These binomial inequalities for NU imply the defining 
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inequalities for QU , and so they are valid on trop(NU ). Further, ym ≥ 0 is a valid 
inequality for trop(NU ) since trop(NU ) ⊆ Rm

≥0. Thus trop(NU ) ⊆ QU .
Claim 2: The extreme rays of QU are ri = (r1, . . . , rm) for 1 ≤ i ≤ m where

rj =
{

j if j ≤ i,

0 if j > i.

Observe that QU = {y ∈ Rm|Ay ≥ 0} where

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 . . . 0 0 0
0 3 −2 0 . . . 0 0 0
0 0 4 −3 . . . 0 0 0

. . .
0 0 0 0 . . . m− 1 −(m− 2) 0
0 0 0 0 . . . 0 m −(m− 1)
0 0 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the ith row of A is ai. Since A ∈ Rm×m, the extreme ray candidates of QU are 
obtained by setting m − 1 of the defining constraints a�

i y ≥ 0 to equality. Since there 
are exactly m constraints, it implies there are at most m extreme rays. Observe that 
ri = (1, 2, . . . , i, 0, . . . , 0) satisfies all but the ith constraint at equality. Since ri ∈ QU , it 
is an extreme ray for each 1 ≤ i ≤ m.

Claim 3: The extreme rays of QU are in trop(NU ), and hence QU = trop(NU ).
To realize ri, let Gn be an i-partite complete graph where each part has ni vertices 

(i.e., a Turán graph) with a disjoint copy of Km. Then as n → ∞, log hom(Kj ;Gn)
logn → j if 

j ≤ i and log hom(Kj ;Gn)
logn → 0 if j > i.

Claim 4: The rays ri for 1 ≤ i ≤ m are doubly extreme.
Let t = (t1, . . . , tm) and t′ = (t′1, . . . , t′m), both in trop(NU ), and suppose that t ⊕t′ =

ri for some 1 ≤ i ≤ m. Since t and t′ are in trop(NU ), tj , t′j ≥ 0 for every 1 ≤ j ≤ m. 
Thus since tj ⊕ t′j = 0 for i + 1 ≤ j ≤ m, we have that tj = t′j = 0 for all i + 1 ≤ j ≤ m. 
Now, without loss of generality, assume that ti = i since ti ⊕ t′i = i. Since t ∈ trop(NU ), 
we know that jtj−1 − (j − 1)tj ≥ 0 for every 2 ≤ j ≤ m. If there exists 2 ≤ j ≤ i such 
that jtj−1 − (j − 1)tj > 0, let j∗ be the greatest such j. Then tj∗−1 > j − 1, and so 
tj∗−1 ⊕ t′j∗−1 �= j∗ − 1, a contradiction. Thus, jtj−1 − (j − 1)tj = 0 for every 2 ≤ j ≤ i, 
and t = ri, which implies that ri is max-extreme. �

Polyhedrality also shows up when tropicalizing counts other combinatorial structures 
as we show in the following examples about simplicial complexes and matroids.

Let S1 and S2 be simplicial complexes on [m] and [n].
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Definition 2.19.

• Let S1 ⊗S2 be a simplicial complex on [m] × [n] as follows: F ⊂ [m] × [n] is a k-face 
of S1 ⊗ S2 if and only if the projection πm(F ) is a k-face of S1 and the projection 
πn(F ) is a k-face of S2.

• For a simplicial complex S, define the scaled f -vector fS as follows: the kth entry, 
denoted as fk, records the number of k-faces of S multiplied by k!.

Lemma 2.20. We have that fS⊗T = fS · fT where · is the Hadamard product.

Proof. First, observe that the kth entry of fS · fT is k!k!sktk where sk is the number of 
k-faces in S and tk is the number of k-faces in T . So we need to show that the number of 
k-faces in S ⊗ T is equal to k!sktk. This is true since for each of the sktk pairs of k-faces 
in S and T (with one coming from S and one coming from T ), we get a k-face of S ⊗ T

by matching the k elements of the k-face of S and the k elements of the k-face of T that 
we are considering, and there are k! (perfect) matchings. �

Fix some m ∈ N and let S = {fS = (f0, f1, . . . , fm) ∈ Zm
≥0 | S is a simplicial complex}. 

Then the tropicalization of S is the tropicalization of the complete graph profile.

Theorem 2.21. We have that

trop(S) =
{

y ∈ Rm| (i + 1) · yi−1 − i · yi ≥ 0 1 ≤ i ≤ m

ym ≥ 0

}
.

The set trop(S) is the double hull of the following doubly extreme rays: ri =
(1, 2, . . . , i + 1, 0, . . . , 0) for 0 ≤ i ≤ m.

Proof. Note that the H-description of the tropicalization trop(S) is the same as the 
description of the tropicalization complete graph profile in Theorem 2.18 (with the in-
dexing shifted by 1 to account for the fact that f0 counts the number of vertices which 
were previously indexed by 1). The vector of homomorphism numbers from complete 
graphs into a graph G is the same as the scaled f -vector of the clique complex of G. It 
follows that trop(S) contains the tropicalization of the complete graph profile. Therefore 
it suffices to verify that the inequalities of the H-description correspond to valid binomial 
inequalities on S. The Kruskal-Katona theorem [18,15] implies that fq

p−1 − fp
q−1 ≥ 0 for 

any 2 ≤ p < q for any simplicial complex, and it is also clear that f2
0 ≥ f1 and fm ≥ 1

since we tropicalize only simplicial complexes that have at least one m-face. �
We now look at a particular type of simplicial complexes: the independence complex of 

a matroid M , i.e., the collection of subsets of the ground set of M that are independent. 
Even though the scaled f -vectors of the independence complexes of matroids do not have 
the Hadamard property, we still show that its tropicalization is polyhedral. The proof 
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differs from previous examples since we do not know a priori that the tropicalization is 
a closed convex cone.

Theorem 2.22. Let Fm ∈ Nm+1 consist of all possible first m + 1 entries of scaled f -
vectors of matroids. Then

trop(Fm) =

⎧⎪⎨
⎪⎩

y ∈ Rm+1| 2y0 − y1 ≥ 0
−yi−1 + 2yi − yi+1 ≥ 0 1 ≤ i ≤ m− 1
−ym−1 + ym ≥ 0

⎫⎪⎬
⎪⎭ .

Proof. Let Q be the cone on the righthand side of the equation in the theorem.
Claim 1: We have that trop(Fm) ⊆ Q.
The first inequality comes from the fact that f2

0 ≥ f1 which follows from the fact 
that the number of independent sets containing two elements is bounded above by the 
square of the number of independent sets containing one element. The second version 
of Mason’s Conjecture [23] which was proven in [13] states that I2

k ≥ k+1
k Ik−1Ik+1

where Ik is the number of independent sets of size k. That inequality is equivalent to 
(k!Ik)2 ≥ (k−1)!Ik−1(k+1)!Ik+1, which in our notation can be written as fk−1fk+1 ≤ f2

k , 
i.e., that the entries of the scaled f -vector are a log-concave sequence. These log-concavity 
inequalities imply the next m − 1 inequalities of Q. The last inequality comes from the 
fact that every (k − 1)-face is contained in a k-face (since fk �= 0 for vectors that we 
tropicalize), and every k-face leads to at most k distinct (k−1)-faces. So trop(Fm) ⊆ QU .

Claim 2: A point is in Q if and only if it has the following shape: (a0, a0 + a1, a0 +
a1 + a2, . . . , a0 + a1 + . . . + am) for some real numbers a0 ≥ a1 ≥ . . . ≥ am ≥ 0.

Certainly, every point (a0, a0 + a1, a0 + a1 + a2, . . . , a0 + a1 + . . . + am) for any real 
numbers a0 ≥ a1 ≥ . . . ≥ am ≥ 0 satisfies the defining inequalities of Q, and thus such 
points are in Q.

For the other direction, first note that yj ≥ yj−1 is a true inequality for Q for every 1 ≤
j ≤ m since it can be written as the following conic combination of defining inequalities 
of Q:

m−1∑
k=j

(−yk−1 + 2yk − yk+1 ≥ 0)

+(−ym−1 + ym ≥ 0),

and so, points in Q are non-decreasing, and so certainly any point has the form (a0, a0 +
a1, a0 + a1 + a2, . . . , a0 + a1 + . . . + am) for some real numbers a0, a1, . . . , am ≥ 0

Since −yi−1 + 2yi − yi+1 =
∑i−1

k=0 ak − 2 
∑i

k=0 ak +
∑i+1

k=0 = ai − ai+1 ≥ 0, we have 
that ai ≥ ai+1 for every 1 ≤ i ≤ m − 1. Finally, since 2y0 − y1 = 2a0 − (a0 + a1) ≥ 0, we 
also have that a0 ≥ a1.

Claim 3: We have that Q ⊆ trop(Fm), and hence Q = trop(Fm).
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Consider the point (a0, a0+a1, a0+a1+a2, . . . , a0+a1+. . .+am) for some real numbers 
a0 ≥ a1 ≥ . . . ≥ am ≥ 0. Further, consider the partition matroid M = (E, I) where E =
E0∪E1∪E2∪. . .∪Em, |Ei| = �nai� and I = {S ⊆ E : |S ∩ Ei| ≤ 1 ∀i ∈ {0, 1, 2, . . . ,m}}. 
As n → ∞, the scaled f -vector for this partition matroid is such that

fi =
∑

T⊆{0,1,2,...,m}:
|T |=i+1

i!
∏
k∈T

nak

since one can take at most one element from each of the Ek’s and one needs to pick 
i + 1 elements. Taking the log of the scaled f -vector thus yields a positive multiple of 
(a0, a0 + a1, a0 + a1 + a2, . . . , a0 + a1 + . . . + am) in the limit (since m is finite and ∑j

i=0 ai ≥
∑

i∈U ai for any U ⊆ {0, 1, 2, . . . , m} and |U | = j+1 for any 0 ≤ j ≤ m), and 
so each point of Q is in trop(Fm). �
Remark 2.23. Note that some of the defining inequalities of the tropicalization of the 
matroid profile have more than one negative term. Therefore by Corollary 2.9 we see that 
the matroid profile is not max-closed (this is also not hard to show directly). However, 
we still observe the same polyhedrality phenomenon.

3. Results of Kopparty and Rossman

In this section, we go over some ideas introduced by Kopparty and Rossman in [17]
which we use in our proofs in the next sections to compute the tropicalization of the 
number profile for paths. The results of Kopparty and Rossman also allow us to provide 
more evidence for Conjecture 2.14.

3.1. A theorem by Kopparty-Rossman and its implication for the polyhedrality 
conjecture

The concept of homomorphism domination exponent was introduced in [17], though 
the idea behind it had been central to many problems in extremal graph theory for a long 
time. Let the homomorphism domination exponent of a pair of graphs F1 and F2, denoted 
by HDE(F1; F2), be the maximum value of c such that hom(F1; G) ≥ hom(F2; G)c for 
every graph G. For example, Sidorenko’s conjecture states that HDE(P 2|E(H)|−|V (H)|

0 ·
H; P1) = |E(H)| for any bipartite graph H. The Erdős-Simonovits conjecture was equiv-
alent to showing that HDE(P k−t

0 P t
k; Pt) = k for any k ≥ t where both k and t are odd.

In [17], Kopparty and Rossman showed that HDE(F1; F2) can be found by solving a 
linear program when F1 is chordal, i.e., does not contain a cycle of length four or more as 
an induced subgraph, and F2 is series-parallel, i.e., if F2 is a subgraph of a chordal graph 
with clique number at most 3. Since this is the case when F1 and F2 are unions of paths, 
this result will be very useful to us in the next sections to compute the tropicalization 
of the number profile of paths. We now recall their results.
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Let Hom(F1; F2) be the set of homomorphisms from F1 to F2, and let P(F2) be the 
polytope consisting of normalized F2-polymatroidal functions:

P(F2) =
{
p ∈ R2|V (F2)| | p(∅) = 0

p(V (F2)) = 1

p(A) ≤ p(B) ∀ A ⊆ B ⊆ V (F2)

p(A ∩B) + p(A ∪B) ≤ p(A) + p(B) ∀ A,B ⊆ V (F2)

p(A ∩B) + p(A ∪B) = p(A) + p(B) ∀ A,B ⊆ V (F2)

such that A ∩B

separates A\B

and B\A
}
.

In the definition above, A ∩ B is said to separate A\B and B\A if there is no path in 
F2 going from a vertex in A\B to a vertex in B\A.

Theorem 3.1 (Kopparty-Rossman, 2011). Let F1 be a chordal graph and let F2 be a 
series-parallel graph. Then

HDE(F1;F2) = min
p∈P(F2)

max
ϕ∈Hom(F1;F2)

∑
S⊆MaxCliques(F1)

−(−1)|S|p(ϕ(∩S))

where MaxCliques(F1) is the set of maximal cliques of F1 and ∩S is the intersection of 
the maximal cliques in S.

To lighten the notation, we let

cϕ,F1(p) =
∑

S⊆MaxCliques(F1)

−(−1)|S| · p(ϕ(∩S)).

We combine the Kopparty-Rossman linear program with Corollary 2.9 to show that 
trop(NU ) is a rational polyhedral cone when U = {H1, . . . , Hs} contains only graphs 
that are chordal and series-parallel.

Theorem 3.2. For any family U consisting of finitely many chordal series-parallel graphs, 
trop(NU ) is a rational polyhedral cone.

Proof. From Corollary 2.9, we know that it suffices to understand valid binomial in-
equalities for NU of the form Hα1

1 · · ·Hαj−1
j−1 H

αj+1
j+1 · · ·Hαs

s ≥ Hβ
j for some j ∈ [s], and 

αi ≥ 0 for each i ∈ [s]\{j}. By taking logarithms, these binomial inequalities become 
linear inequalities of the form 

∑
i∈[s]\{j} αi log(hom(Hi; G)) − β log(hom(Hj ; G)) ≥ 0
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valid on trop(NU ). Observe that for nonnegative integers αi, the largest β such that the 
inequality Hα1

1 · · ·Hαj−1
j−1 H

αj+1
j+1 · · ·Hαs

s ≥ Hβ
j is valid on NU satisfies

β = HDE(Hα1
1 · · ·Hαj−1

j−1 H
αj+1
j+1 · · ·Hαs

s ;Hj).

It suffices for us to show that for nonnegative integers αi, the optimal β is computed 
via an extended rational linear program, which also linearly incorporates the integer 
exponents αi in the objective. Our desired result follows immediately from this, via 
approximation of exponents αi by rational numbers. Without loss of generality we may 
assume that j = 1.

Let F be the disjoint union of H2, . . . , Hs. Construct the polytope P̄(H1) as follows. 
For every point p = (p1, . . . , p2|V (H1)|) ∈ P(H1) and every ϕ ∈ Hom(F ; H1), create 
a point (v1, . . . , v2|V (H1)| , cϕ,F (p)), and let P̄(H1) be the convex hull of these points. 
Taking the upper hull of P̄(H1) and projecting down, we obtain a regular subdivision of 
P(H1) that we call Psubdiv(H1). Denote the regions of Psubdiv(H1) by Pi(H1) for i ∈ [k].

Observe that each region Pi(H1) is associated to a homomorphism ϕi such that, for 
any point p ∈ Pi(H1), cϕi,F (p) ≥ cϕ,F (p) for all ϕ ∈ Hom(F ; H1). Note that when 
computing HDE(F ; H1) we are allowed to choose different homomorphisms to H1 on 
different copies of Hi contained in F1 := Hα2

2 · · ·Hαs
s . However, the optimal choice leads 

to choosing one homomorphism and repeating it αi times. Accordingly, for a homomor-
phism ϕ : F → H1 and α = (α2, . . . , αs) ∈ Ns−1, let α · ϕ be the homomorphism from 
F1 to H1 such that every copy of the component Hi is sent to H1 in the way determined 
by ϕ. Then

HDE(F1;H1) = min
i∈[k]

min
p∈Pi(H1)

cα·ϕi,F1(p).

This gives us the desired rational linear program and therefore when U contains only 
chordal series-parallel graphs, trop(NU ) is a rational polyhedral cone. �
3.2. Blow-up construction

We now present a few properties of a blow-up construction introduced in [17] that 
gives one direction of Theorem 3.1 (≤) and which will allow us to construct some rays 
in the tropicalization of the number profile of paths later on. We explain their ideas only 
for paths as this is the only case that we need.

Definition 3.3. Let P be a path of length 2f + 1 where V (P ) = {0, 1, . . . , 2f + 1} and 
E(P ) = {{i, i +1}|0 ≤ i ≤ 2f}. Let p : V (P ) +E(P ) → R≥0 be a weight function on the 
vertices and edges of P such that max{p({v}), p({w})} ≤ p({v, w}) ≤ p({v}) + p({w})
for every {v, w} ∈ E(P ). For every m ∈ N, create a blow-up of P , called Bm. Let 
V (Bm) := {(v, a) : v ∈ V (P ), a ∈ [mp({v})]}, i.e., for every vertex v ∈ V (P ), construct 
a stable set with mp({v}) vertices. Edges are chosen arbitrarily in a way so that each 
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vertex (v, a) is adjacent to mp({v,v+1})−p({v}) vertices in the stable set corresponding to 
vertex v + 1 of P (if 0 ≤ v ≤ 2f) and to mp({v−1,v})−p({v}) vertices in the stable set 
corresponding to vertex v − 1 of P (if 1 ≤ v ≤ 2f + 1). So there are mp({v,v+1}) edges 
between the stable sets corresponding to vertex v and v + 1 of P for every 0 ≤ v ≤ 2f . 
Note that it might not be possible to construct a graph with exactly those edges for 
every m, but it will always be possible to do so as m → ∞.

Just as in [17], homomorphism numbers from any path with i edges, Pi, to Bm can 
be directly calculated from the weighted path P . We repeat this here for completeness. 
Given a homomorphism ϕ : Pi → P , define Homϕ to be the set of homomorphisms from 
Pi to Bm that send the vertices of Pi to the stable sets of Bm (which correspond to 
vertices of P ) according to the homomorphism ϕ.

Homϕ := {ϑ ∈ Hom(Pi;Bm) | there exists kj ∈ [mp({ϕ(j)})] such that ϑ(j) = (ϕ(j), kj)

for all 0 ≤ j ≤ i}.

Further, let homϕ = | Homϕ |. For a homomorphism ϕ : Pi → P , we define p(ϕ) as

p(ϕ) :=
i−1∑
j=0

p({ϕ(j), ϕ(j + 1)}) −
i−1∑
j=1

p({ϕ(j)}).

Lemma 3.4. Let ϕ : Pi → P be a homomorphism. As m → ∞, we have that

(1) homϕ = mp(ϕ), and
(2) hom(Pi; Bm) =

∑
ϕ∈Hom(Pi;P ) homϕ.

Proof. We count the number of homomorphisms in Homϕ. Vertex 0 has mp({ϕ(0)}) ver-
tices that it can be sent to. If p({ϕ(0), ϕ(1)}) = p({ϕ(0)}) + p({ϕ(1)}), then there 
are mp({ϕ(1)}) choices for where vertex 1 gets mapped to since it means that the 
stable sets corresponding to ϕ(0) and ϕ(1) form a complete bipartite graph in Bm. 
However, if there are fewer edges, the degree of each vertex in the part correspond-
ing to 0, and thus the number of choices for where vertex 1 gets sent to, will be 
mp({ϕ(1)})−(p({ϕ(0)})+p({ϕ(1)})−p({ϕ(0),ϕ(1)})) = m−p({ϕ(0)})+p({ϕ(0),ϕ(1)}). More generally, 
the degree of each vertex in the stable set of Bm corresponding to vertex j in Pi, and 
thus the number of choices for where vertex j+1 goes, is m−p({ϕ(j)})+p({ϕ(j),ϕ(j+1)}). So 
the total number of homomorphisms in Homϕ is

mp({ϕ(0)}) ·m−p({ϕ(0)})+p({ϕ(0),ϕ(1)}) ·m−p({ϕ(1)})+p({ϕ(1),ϕ(2)})

· · ·m−p({ϕ(i−1)})+p({ϕ(i−1),ϕ(i)}) = mp(ϕ)

To see that hom(Pi; Bm) =
∑

ϕ∈Hom(Pi;P ) homϕ, it suffices to note that the Homϕ’s 
partition Hom(Pi; Bm). �
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Corollary 3.5. As m → ∞, log(hom(Pi;Bm))
logm → p(ϕ∗) where ϕ∗ = arg max

ϕ∈Hom(Pi;P )
{p(ϕ)}.

Proof. From the previous lemma, we have that hom(Pi; Bm) = O(mp(ϕ∗)), and so

lim
m→∞

log(hom(Pi;Bm))
log(m) = p(ϕ∗). �

Therefore to calculate homomorphism numbers from any path Pi to Bm with m large, 
it suffices to find which weighed homomorphisms are maximal, an observation that we 
will use in the next sections.

4. Valid binomial inequalities involving paths

The rest of the paper focuses on calculating the tropicalization of the number profile 
for paths and discussing its consequences. This turns out to be much more intricate than 
the examples that were given in Section 2.1.

In this section, we derive some pure binomial inequalities involving paths, including 
some that were previously known and others that we prove here. In some cases, we 
use the results of Kopparty and Rossman introduced in the previous section to do so. 
These binomial inequalities will be necessary to describe the tropicalization of the number 
profile for paths in the next section. In particular, in Section 4.1, we prove a generalization 
of the Erdős-Simonovits conjecture. We proved the original conjecture in [2], unaware of 
the earlier proof by Sağlam in [29] using different techniques. In Section 4.2, we prove a 
different type of inequality for paths, which is also necessary for describing the number 
profile; to the best of our knowledge, this inequality is new. Finally, in 4.3, we go over 
some inequalities involving paths that are simpler and/or that were previously known, 
and that are necessary to describe the number profile.

4.1. A generalization of the Erdős-Simonovits conjecture

In [2], we explained how the Erdős-Simonovits conjecture, which stated that 
P 2v−2w

0 P 2w+1
2v+1 ≥ P 2v+1

2w+1 for any w < v, is equivalent to proving the validity of P 2
0P

2v−1
2v+1 ≥

P 2v+1
2v−1 . Here, we show a more general inequality P 2v−2w

2u P 2w+1−2u
2v+1 ≥ P 2v+1−2u

2w+1 for any 
v > w > u (see Lemma 5.6) by first showing that P 2

2uP
2v−1−2u
2v+1 ≥ P 2v+1−2u

2v−1 for any 
0 ≤ u < v − 1. These last inequalities are necessary to describe the tropicalization of 
the number profile of paths; the rest of the inequalities in Lemma 5.6 are derived from 
them. Note that the case when u = 0 yields the original Erdős-Simonovits conjecture.

Let V (Pk) = {0, 1, 2, . . . , k}, and let E(Pk) = {{i, i + 1}|i ∈ {0, 1, 2, . . . , k}}. Lemma 
2.5 of [17] implies that for any p ∈ P(Pk) we have

p(V (Pk)) =
∑

p({i, i + 1}) −
∑

p({i}).

{i,i+1}∈E(Pk) i∈{1,...,k−1}
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See Lemma 2.2 of [2] for details.

Theorem 4.1. We have that HDE(P 2
2uP

2v−1−2u
2v+1 ; P2v−1) = 2v + 1 − 2u.

Proof. We assume that u ≥ 1. (For the case when u = 0, see our proof in [2].) We 
first show that HDE(P 2

2uP
2v−1−2u
2v+1 ; P2v−1) ≤ 2v + 1 − 2u. For i ∈ {0, 1, 2, . . . , 2v − 1}

and S ⊆ {0, 1, 2, . . . , 2v − 1}, let pi ∈ R22v be such that pi(S) = 1 if S contains i, and 
pi(S) = 0 otherwise. It’s easy to check that pi ∈ P(P2v−1). Let p∗ be the average of the 
pi’s, i.e., p∗ = 1

2v
∑

i∈{0,1,2,...,2v−1} pi. In particular, for the sets of size one and two that 
contribute to the sum below (since no three maximal cliques of P 2

2uP
2v−1−2u
2v+1 intersect), 

this means that p∗({i}) = 1
2v for any i ∈ {0, 1, 2, . . . , 2v − 1}, and p∗({i, i + 1}) = 2

2v
for any i ∈ {0, . . . , 2v − 2}. Since p∗ is a convex combination of the pi’s, we see that 
p∗ ∈ P(P2v−1). For any homomorphism ϕ from P 2

2uP
2v−1−2u
2v+1 to P2v−1, we have:

∑
S⊆MaxCliques(P 2

2uP
2v−1−2u
2v+1 )

− (−1)|S|p∗(ϕ(∩S))

= 2 · (2u · 2
2v − (2u− 1) · 1

2v )

+ (2v − 1 − 2u) · ((2v + 1) · 2
2v − 2v · 1

2v )

= 2v − 2u + 1,

which implies that the optimal value of the linear program is at most 2v − 2u + 1.
We now show that HDE(P 2

2uP
2v−1−2u
2v+1 ; P2v−1) ≥ 2v+1 −2u. For u +1 ≤ i ≤ 2v−1 −u

let ϕi be the homomorphism from P2v+1 to P2v−1 such that ϕi(j) = j for all 0 ≤ j ≤ i, 
and ϕi(j) = j − 2 for all i + 1 ≤ i ≤ 2v + 1. In other words, every edge of P2v−1
is visited by P2v+1 once, except for {i − 1, i} which is visited three times. Let ϑ0 be 
the homomorphism from P2u to P2v−1 such that ϑ0(j) = j for all 0 ≤ j ≤ u and 
ϑ0(j) = 2u − j for all u ≤ j ≤ 2u. Symmetrically, let ϑ2v−1 be the homomorphism from 
P2u to P2v−1 such that ϑ2v−1(j) = 2v−1 −j for 0 ≤ j ≤ u and ϑ2v−1(j) = 2v−1 −(2u −j)
for all u ≤ j ≤ 2u.

Let ψ be the homomorphism from P 2
2uP

2v−1−2u
2v+1 to P2v−1 such that one copy of P2u

gets sent to P2v−1 via ϑ0 and the other copy of P2u via ϑ2v−1, and the i-th copy of P2v+1
is mapped to P2v−1 via ϕi for u + 1 ≤ i ≤ 2v − 1 − u. This matches the fact that there 
are 2v − 2u − 1 copies of P2v+1. See Fig. 2 for an example when u = 2 and v = 4.

Now for any p ∈ P(P2v−1), we compute
∑

S⊆MaxCliques(P 2
2uP

2v−1−2u
2v+1 )

−(−1)|S|p(ψ(∩S)).

Again, observe that only sets S of size one or two contribute to the sum above since no 
three maximal cliques of P 2

2uP
2v−1−2u
2v+1 intersect. Every edge {i, i + 1} where u ≤ i ≤
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Fig. 2. How ψ sends P 2
4 P

3
9 to P7.

2v− 1 −u of P2v−1 is covered by an image of an edge of P2v+1 via ψ exactly 2v− 2u + 1
times. Every edge {i, i +1} where 0 ≤ i < u or 2v−1 −u < i ≤ 2v−2 of P2v−1 is covered 
by an image of an edge of P2v+1 via ψ exactly 2v− 2u − 1 times, and by an image of an 
edge of P2u twice, for a total of 2v − 2u + 1. Every vertex i for u + 1 ≤ i ≤ 2v − 2 − u

of P2v−1 is covered by an image of an inner (non-end) vertex of P2v+1 via ψ exactly 
2v − 2u + 1 times. Vertices u and 2v − 1 − u of P2v−1 are covered by an image of an 
inner vertex of P2v+1 via ψ exactly 2v − 2u times, and by an image of an inner vertex 
of P2u once, for a total of 2v − 2u + 1 times. Finally, vertices i for 1 ≤ i ≤ u − 1 and 
2v−u ≤ i ≤ 2v−2 are covered by an image of an inner vertex of P2v+1 exactly 2v−2u −1
times and by an image of an inner vertex of P2u exactly 2 times via ψ, for a total of 
2v− 2u + 1 times. Note that each inner vertex of some copy of P2v+1 (respectively P2u) 
is the intersection of two maximal cliques (i.e., edges) of P2v+1 (respectively P2u), and 
thus the coefficient will be negative. Finally, the end vertices of P2v−1 are not covered 
by the image of any inner vertices of P2u or P2v+1 via ψ, and thus get a coefficient of 0. 
Accordingly, we have

∑
S⊆MaxCliques(P 2

2uP
2v−1−2u
2v+1 )

−(−1)|S|p(ψ(∩S))

= (2v − 2u + 1)

⎛
⎝ ∑

{i,i+1}∈E(P2v−1)

p({i, i + 1}) −
∑

i∈{1,...,2v−2}
p({i})

⎞
⎠

= (2v − 2u + 1)p(V (P2v−1))

= 2v − 2u + 1.



32 G. Blekherman, A. Raymond / Advances in Mathematics 407 (2022) 108561
The third line follows from p(V (P2v−1)) = 1 since p ∈ P(P2v−1). Therefore, for 
every p ∈ P(P2v−1), there is a homomorphism that yields 2v − 2u + 1, so we see that 
HDE(P 2

2uP
2v−1−2u
2v+1 ; P2v−1) ≥ 2v+1 −2u. This proves that HDE(P 2

2uP
2v−1−2u
2v+1 ; P2v−1) =

2v + 1 − 2u. �
4.2. New inequality involving paths

Another inequality that is important for describing the tropicalization, and which we 
could not find in the literature is the following: Pu+1

2u−2P2u+1 ≥ Pu+1
2u . Our proof is similar 

to the generalized Erdős-Simonovits inequalities of the previous subsection.

Theorem 4.2. We have that HDE(Pu+1
2u−2P2u+1; P2u) = u + 1.

Proof. We first show that HDE(Pu+1
2u−2P2u+1; P2u) ≤ u + 1. Let p∗ be as in the previous 

proof. For any homomorphism ϕ from Pu+1
2u−2P2u+1 to P2u,

∑
S⊆MaxCliques(Pu+1

2u−2P2u+1)

−(−1)|S|p∗(ϕ(∩S))

= (u + 1)((2u− 2) · 2
2u + 1 − (2u− 3) · 1

2u + 1) + 1 · ((2u + 1) · 2
2u + 1 − 2u · 1

2u + 1)

= u + 1,

which implies that the optimal value of the linear program is at most u + 1.
We now need to show that HDE(Pu+1

2u−2P2u+1; P2u) ≥ u +1. Actually, we instead show 
that

HDE(P 2u+2
2u−2P

2
2u+1;P2u) ≥ 2u + 2

which is equivalent. Let ϑ0 be the homomorphism from P2u−2 to P2u such that ϑ0(j) = j

for all 0 ≤ j ≤ u − 1 and ϑ0(j) = 2u − 2 − j for all u − 1 ≤ j ≤ 2u − 2. Symmetrically, let 
ϑ2u be the homomorphism from P2u−2 to P2u such that ϑ2u(j) = 2u −j for 0 ≤ j ≤ u −1
and ϑ2u(j) = 2u − (2u − 2 − j) for all u − 1 ≤ j ≤ 2u − 2. Furthermore, let ϕu−1 be 
the homomorphism from P2u+1 to P2u that sends the vertices of P2u+1 to u − 1 and 
u in an alternating fashion. Similarly, let ϕu be the homomorphism from P2u+1 to P2u
that sends the vertices of P2u+1 to u and u + 1 in an alternating fashion. Let ψ be the 
homomorphism from Pu+1

2u−2P2u+1 to P2u such that u + 1 copies of P2u−2 get sent to P2u
via ϑ0 and the other u + 1 copies of P2u via ϑ2u, and one copy of P2u+1 gets sent to P2u
via ϕu−1, and the other copy via ϕu. See Fig. 3 for an example when u = 3.

Now for any p ∈ P(P2u), we compute
∑

S⊆MaxCliques(P 2u+2P 2 )

−(−1)|S|p(ψ(∩S)).

2u−2 2u+1
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Fig. 3. How ψ sends P 8
4 P

2
7 to P6.

Observe that only sets S of size one or two contribute in the above sum since no three 
maximal cliques of P 2

2uP
2v−1−2u
2v+1 intersect. Every edge {i, i + 1} where 0 ≤ i ≤ u − 2 or 

u +1 ≤ 2u −1 of P2u is covered by an image of an edge of P2u−2 via ψ exactly 2 times for 
each of u +1 copies of P2u−2 for a total of 2(u +1). The edges {u −1, u} and {u, u +1} of 
P2u are each covered by an image of an edge of P2u+1 via ψ exactly 2u + 1 times. Every 
vertex i for 1 ≤ i ≤ u − 2 of P2u is covered by an image of an inner (non-end) vertex 
of P2u−2 via ψ exactly 2 times for each of u + 1 copies of P2u−2 for a total of 2(u + 1). 
Vertices u − 1 and u + 1 of P2u are covered by an image of an inner vertex of P2u−2
via ψ exactly one time for each of u + 1 copies, and by an image of an inner vertex of 
P2u+1 u times, for a total of 2u + 1. Finally, vertex u is covered by an image of an inner 
vertex of P2u+1 exactly u times for each of two copies, for a total of 2u times. Note that 
each inner vertex of some copy of P2u−2 (respectively P2u+1) is the intersection of two 
maximal cliques (i.e., edges) of P2u−2 (respectively P2u+1), and thus the coefficient will 
be negative. Finally, the end vertices of P2u are not covered by the image of any inner 
vertices of P2u−2 or P2u+1 via ψ, and thus get a coefficient of 0. Accordingly, we have

∑
S⊆MaxCliques(P 2u+2

2u−2P
2
2u+1)

−(−1)|S|p(ψ(∩S))

=2(u + 1)

⎛
⎝ ∑

{i,i+1}∈E(P2u)

p({i, i + 1}) −
∑

i∈{1,...,2v−2}
p({i})

⎞
⎠

− p({u− 1, u}) − p({u, u + 1}) + p({u− 1}) + 2p({u}) + p({u + 1})

=2(u + 1)p(V (P2u)) − p({u− 1, u}) − p({u, u + 1}) + p({u− 1})

+ 2p({u}) + p({u + 1})

=2(u + 1) − p({u− 1, u}) − p({u, u + 1}) + p({u− 1}) + 2p({u}) + p({u + 1})
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≥2(u + 1).

The third line follows from p(V (P2u)) = 1 since p ∈ P(P2u). Similarly, the fourth 
line follows from p ∈ P(P2u) because we know that p({u − 1}) + p({u}) ≥ p({u − 1, u})
and p({u}) + p({u + 1}) ≥ p({u, u + 1}). Therefore, for every p ∈ P(P2u), there is an 
homomorphism that yields at least 2(u + 1), so we see that HDE(P 2u+2

2u−2P
2
2u+1; P2u) ≥

2(u + 1). This proves that HDE(Pu+1
2u−2P2u+1; P2u) = u + 1. �

4.3. Other important inequalities for paths

We now present other inequalities that are important for understanding the trop-
icalization of the number profile for paths. In [6], Dress and Gutman showed that 
P2aP2b ≥ P 2

a+b. One way to prove this is to observe that it can be obtained from the 
2 × 2 minor of the moment matrix with rows and columns indexed by a path of length 
a and b, each with an end vertex labeled 1.

One type of binomial inequality that follows from the definition of homomorphism 
numbers is Pu ≤ Pu+1 for u ≥ 1. Indeed, for any homomorphism ϕ from Pu to some 
graph G (assuming there exists at least one), there exists a homomorphism ϕ′ : Pu+1 → G

be such that ϕ′(j) = ϕ(j) for all 0 ≤ j ≤ u and ϕ′(u + 1) = ϕ(k − 1).
The final type of inequalities we need are inclusion inequalities P2u+1P2v+1 ≥

P2u+2v+3. These follow more or less from the definition of homomorphism numbers: 
as stated in Lemma 2.2(e) from [17], if there exists a surjective homomorphism from F
onto G, then F ≥ G. Here, let ψ : P2u+1P2v+1 → P2u+2v+3 be the homomorphism such 
that ψ(i) = i for all i ∈ V (P2u+1), and ψ(i) = i +2u +2 for all i ∈ V (P2v+1). This covers 
all the vertices of P2u+2v+3, so P2u+1P2v+1 ≥ P2u+2v+3.

If we want to only describe binomial inequalities in homomorphism numbers of paths 
that are extremal for homomorphisms into graphs with no isolated vertices, the inequali-
ties we have discussed would suffice. However, since we would like to also consider target 
graphs with isolated vertices, we need the following variation for binomial inequalities 
that contain P0 on the larger side of the inequality. If P a

0 P
b
v ≥ P c

w is a valid inequality 
for some a, b, c ≥ 0, then P a

1 P
b
v ≥ P c

w is also valid. Indeed, this is clear for any graph 
G such that hom(P1; G) ≥ hom(P0; G): in that case, P a

1 P
b
v ≥ P a

0 P
b
v ≥ P c

w is valid on 
such graphs. Now consider some graph G such that hom(P1; G) < hom(P0; G). Then 
G must contain some isolated vertices. Let G = G′ ∪ S where S consists of all the iso-
lated vertices of G. Then note that hom(Pi; G) = hom(Pi; G′) for all i ≥ 1, and that 
hom(P1; G′) ≥ hom(P0; G′). Moreover, we know that P a

0 P
b
v ≥ P c

w is a valid inequality 
for any graph, including G′, so hom(P0; G′)a hom(Pv; G′)b ≥ hom(Pw; G′)c. Therefore, 
we have that

hom(P1;G)a hom(Pv;G)b = hom(P1;G′)a hom(Pv;G′)b

≥ hom(P0;G′)a hom(Pv;G′)b

≥ hom(Pw;G′)c
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= hom(Pw;G)c

as desired, so P a
1 P

b
v ≥ P a

0 P
b
v ≥ P c

w is valid for all graphs.

5. Tropicalization of path profile

Let U2n+1 = {P0, P1, . . . , P2n+1}. In this section, we describe trop(NU2n+1). We show 
that the pure binomial inequalities discussed in the previous section can be used to 
characterize trop(NU2n+1). However, unlike in previous examples, we need to consider 
binomial inequalities involving larger paths. Indeed, we need to consider binomial in-
equalities in paths of length up to 4n + 3. Let yi := logPi for 0 ≤ i ≤ 4n + 3. Consider 
the cone C in variables y0, . . . , y4n+3 whose inequalities come from taking the log of some 
of the inequalities mentioned in the previous section:

C =
{
y = (y0, y1, y2, . . . , y4n+3) ∈ R4n+4|

y2u − 2y2u+1 + y2u+2 ≥ 0, 0 ≤ u ≤ 2n, (5.1)

y2u − 2y2u+2 + y2u+4 ≥ 0, 0 ≤ u ≤ 2n− 1, (5.2)

−y2u + y2u+1 ≥ 0, 1 ≤ u ≤ 2n + 1, (5.3)

y2u+1 + y2v+1 − y2u+2v+3 ≥ 0, 0 ≤ u ≤ v such that

2u + 2v + 3 ≤ 4n + 3,

(5.4)

2y2u − (2v + 1 − 2u)y2v−1 + (2v − 1 − 2u)y2v+1 ≥ 0, 0 ≤ u < v − 1,

v ≤ 2n + 1, (5.5)

(u + 1)y2u−2 − (u + 1)y2u + y2u+1 ≥ 0, 1 ≤ u ≤ 2n + 1, (5.6)

y1 − 2y2 + y4 ≥ 0, (5.7)

2y1 − (2v + 1)y2v−1 + (2v − 1)y2v+1 ≥ 0, 2 ≤ v ≤ 2n + 1, (5.8)

−y1 + y2 ≥ 0
}
. (5.9)

Let proj2n+1(C) = {(r0, r1, . . . , r2n+1) | (r0, r1, . . . , r4n+3) ∈ C}. Our overarching goal 
is to show that proj2n+1(C) = trop(NU2n+1). Therefore, C gives us a lifted representation
of trop(NU2n+1). The inequality description of trop(NU2n+1) only using the inequalities 
in paths of length at most 2n + 1 seems to be more complicated.

Using results of Section 4, we quickly show that trop(NU2n+1) is contained in 
proj2n+1(C):

Theorem 5.1. We have that trop(NU2n+1) ⊆ proj2n+1(C).

Proof. We show that every inequality of C corresponds to the logarithm of a valid 
binomial inequality for NU4n+3 . Inequalities
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• (5.1) come from the Dress-Gutman inequalities when (a, b) = (u, u + 1),
• (5.2) come from the Dress-Gutman inequalities when (a, b) = (u, u + 2),
• (5.3) come from Pu ≤ Pu+1 for u ≥ 1,
• (5.4) come from the inclusion inequalities discussed in 4.3,
• (5.5) come from the generalized Erdős-Simonovits inequalities we certified in 4.1,
• (5.6) come from new inequalities we certified in 4.2,

Inequalities (5.7), (5.8), and (5.9) are the variations of inequalities containing P0
on the lefthand side discussed in Section 4.3. Indeed, inequality (5.7) is the variation 
for P0P4 ≥ P 2

2 from (5.2), inequalities (5.8) are the variation for Erdős-Simonovits 
inequalities of (5.5) with u = 0, and inequality (5.9) is the variation for P0P2 ≥ P 2

1 of 
(5.1). We thus proved that trop(NU2n+1) ⊆ proj2n+1(C). �

It remains to show that trop(NU2n+1) ⊇ proj2n+1(C). In Section 5.1, we prove that 
certain inequalities are valid on proj2n+1(C), which will help proving the results in further 
sections. Then in Section 5.2, we construct a family of rays R that lies in trop(NU2n+1). 
Finally, in Section 5.3, we show that proj2n+1(C) is contained in the double hull of R, 
and thus trop(NU2n+1) = proj2n+1(C).

5.1. Valid inequalities on proj2n+1(C)

The following inequalities will be useful later on. Note that though all of these in-
equalities are in variables y0, y1, . . . , y2n+1, they are built from the defining inequalities 
of C that involve variables up to y4n+3. Note that each new (linear) inequality we prove 
to be valid on proj2n+1(C) corresponds to a valid binomial inequality for NU2n+1 given 
that we have already shown that trop(NU2n+1) ⊆ proj2n+1(C).

Lemma 5.2. Let u, v ∈ N such that u ≤ v
2 and v ≤ 2n + 1. Then

vy2u − 2uyv ≥ 0

is a valid inequality for C and proj2n+1(C), and equivalently

P v
2u ≥ P 2u

v

is a valid inequality in graph homomorphism numbers.

Proof. First note that if v is even, then it is sufficient to do it for the case when 2u = v−2. 
Indeed, that case implies that for some u′, v′ such that 2u′ < v′ − 2, we have

y2u′

y ′
= y2u′

y ′
· y2u′+2

y ′
· · · yv′−2

y′
≥ u′

u′ + 1 · u
′ + 1

u′ + 2 · · ·
v′−2

2
v′ = u′

v′

v 2u +2 2u +4 v 2 2
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as desired. We thus now show that when v is even and 2u = v − 2, the inequality 
vyv−2 − (v − 2)yv ≥ 0 holds on C since one can easily check that it can be written as 
the following conic combination of defining inequalities of C:

2(yv−2 − 2yv−1 + yv ≥ 0)

+
v−3∑

w= v
2−1

(2v − 4 − 2w)(y2w − 2y2w+2 + y2w+4 ≥ 0)

+2(−y2v−2 + y2v−1 ≥ 0)

+2(2yv−1 − y2v−1 ≥ 0).

Indeed, note that these are all valid inequalities for C, namely inequalities of type 
(5.1), (5.2), (5.3) and (5.4), since no variable past y4n+3 is used (in fact, the largest 
subscript of a variable involved in the conic combination is 4n − 1 which appears in the 
third and fourth row if v = 2n).

Similarly, if v is odd, it is sufficient to do the case when 2u = v − 1. Indeed that case 
together with the even case implies that for some u′, v′ such that 2u′ < v′ − 1, we have

y2u′

yv′
= y2u′

yv′−1
· yv′−1

yv′
≥ 2u′

v′ − 1 · v
′ − 1
v′

= 2u′

v′

as desired. We thus now show that when v is odd and 2u = v − 1, the inequality 
vyv−1−(v−1)yv ≥ 0 holds on C since it can be written as the following conic combination 
of defining inequalities of C:

(v + 1
2 )(yv−1 − 2yv + yv+1 ≥ 0)

+
v−2∑

w= v−1
2

(v − 1 − w)(y2w − 2y2w+2 + y2w+4 ≥ 0)

+(−y2v + y2v+1 ≥ 0)

+(2yv − y2v+1 ≥ 0).

Indeed, note that these are still the same valid inequalities for C as in the even case, 
and again no variable past y4n+3 is used; here the largest subscript of a variable involved 
in the conic combination is actually 4n + 3, which appears in the third and fourth rows 
if v = 2n + 1.

Moreover, note that this implies that vy2u − 2uyv ≥ 0 is also a valid inequality for 
proj2n+1(C) for every u ≤ v

2 and v ≤ 2n + 1 since such inequalities do not involve 
variables past y2n+1. �
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Lemma 5.3. Let u, v ∈ N such that u ≤ �v−1
2 � and v ≤ 2n + 1. Then

(v − 2u− 1)y2u − (v − 2u)y2u+1 + yv ≥ 0

is a valid inequality on C and proj2n+1(C), and equivalently,

P v−2u−1
2u Pv ≥ P v−2u

2u+1

is a valid inequality in graph homomorphism numbers.

Proof. When v is odd, one can see (v − 2u − 1)y2u − (v − 2u)y2u+1 + yv ≥ 0 is valid on 
C since it is the following conic combination of defining inequalities of C:

v−1
2∑

w=u+1

v − 2u
(2w + 1 − 2u)(2w − 1 − 2u) (2y2u − (2w + 1 − 2u)y2w−1

+ (2w − 1 − 2u)y2w+1 ≥ 0).

Indeed, these are inequalities of type (5.5) for C and no variable past y4n+3 is used; 
that variable occurs when v = 2n + 1 and w = v−1

2 . Moreover, note that

v−1
2∑

w=u+1

1
(2w + 1 − 2u)(2w − 1 − 2u) =

v−2u−1
2∑

w=1

(
w

2w − 1 − w + 1
2(w + 1) − 1

)

= 1 − v − 2u + 1
2(v − 2u) = v − 2u− 1

2(v − 2u)

by canceling like terms. Therefore, the coefficient for y2u is 2(v−2u)v−2u−1
2(v−2u) = v−2u −1.

Similarly, when v is even, we have the following conic combination

v
2−2∑
w=u

(v2 − w − 1)(y2w − 2y2w+2 + y2w+4 ≥ 0)

+(v2 − u)(y2u − 2y2u+1 + y2u+2 ≥ 0)

yielding (v−2u −1)y2u−(v−2u)y2u+1+yv ≥ 0 as desired. Here, note that the inequalities 
in the conic combination are of type (5.2) and (5.1) for C, and the yi’s involved are such 
that i ≤ 4n < 4n + 3.

Moreover, note that this implies that (v − 2u − 1)y2u − (v − 2u)y2u+1 + yv ≥ 0 is 
also a valid inequality for proj2n+1(C) for every u ≤ �v−1

2 � and v ≤ 2n + 1 since such 
inequalities do not involve variables past y2n+1. �
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Lemma 5.4. Let t, u, v ∈ N such that t ≤ �v
2�, u ≤ �v−1

2 � and v ≤ 2n + 1. Then

(v − 2t)y2u+1 + 2(u + 1)y2t − 2(u + 1)yv ≥ 0

is a valid inequality for C and proj2n+1(C), and equivalently,

P v−2t
2u+1P

2(u+1)
2t ≥ P 2(u+1)

v

is a valid inequality in graph homomorphism numbers.

Proof. When v is even, (v−2t)y2u+1 +2(u +1)y2t−2(u +1)yv ≥ 0 can be written as the 
following conic combination of defining inequalities of C of type (5.6), (5.2) and (5.4):

v − 2t
w̄ + 1 ((v2 + 1)yv̄−2 − (v2 + 1)yv̄ + yv̄+1 ≥ 0)

+
v
2−2∑
w=t

2(u + 1)(w − t + 1)(y2w − 2y2w+2 + y2w+4 ≥ 0)

+
v̄
2−2∑

w= v
2−1

2(u + 1)(v2 − t)(y2w − 2y2w+2 + y2w+4 ≥ 0)

+
w̄∑

w=1

v − 2t
w̄ + 1 (y2u+1 + y2wu+2w−1 − y2u+2w+2uw+1 ≥ 0)

where w̄ := min{w ∈ N|2u + 2w + 2uw ≥ v} and v̄ := 2u + 2w̄ + 2uw̄. To see that these 
are indeed all valid inequalities for C, we need to show that there is no yi involved such 
that i > 4n +3. First observe that w̄ = � v−2u

2(1+u)�. Then a quick check reveals that v̄ ≤ 2v. 
The most worrisome variable in the conic combination is y2u+2w+2uw+1 when w = w̄, 
which is equal to yv̄+1 (which also appears in the first row), and given that v̄ ≤ 2v ≤ 4n, 
the inequalities involve no variable past y4n+3.

Now, to see that the conic combination yields the desired inequality, note that odd 
coordinates only appear in the last row except for yv̄+1 which appears also in the first 
row. Looking at y2u+1, it appears twice in the bottom row when w = 1, and once for every 
w ∈ {2, . . . , w̄}, and each time with a coefficient of v−2t

w̄+1 . So the coefficient for y2u+1 is 
(w̄+1) · v−2t

w̄+1 = v−2t as desired. Now note that 2(w+1)u +2(w+1) −1 = 2u +2w+2uw+1, 
so other odd coordinates in the last row cancel themselves out for subsequent w’s, except 
for y2u+2w̄+2uw̄+1 which only appears with a coefficient of −v−2t

w̄+1 when w = w̄. However, 
as explained before, since 2u + 2w̄ + 2uw̄ + 1 = v̄ + 1, it also appears in the first row 
with a coefficient of v−2t

w̄+1 which thus means that the coefficient for y2u+2w̄+2uw̄+1 in the 
total is zero as desired.

It’s easy to check that the coefficients of most even coordinates cancel out. The only 
slightly complicated cases are yv−2 that appears in the second row both when w = v −3
2
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and w = v
2 − 2 as well as in the third row when w = v

2 − 1, yv̄−2 that appears in the first 
row as well as in the third row when w = v̄

2 − 3 and w = v̄
2 − 2, and yv̄ which appears 

in the first row as well as in the third row when w = v̄
2 − 2. Finally, y2t only appears in 

the second row when w = t and yields a coefficient of 2(u + 1) as desired, yv appears in 
the second row when w = v

2 − 2 and in the third row when w is either v2 − 1 or v2 , for a 
total coefficient of −2(u + 1) also as desired.

When v is odd, we do the same thing in two different cases. In the first case, we 
assume that 0 ≤ u ≤ t − 1:

(v − 2t)(y2u+1 + yv−2u−2 − yv ≥ 0)

+
v−1
2∑

w= v−2u−1
2

v − 2t
(2w + 1 − 2t)(2w − 1 − 2t) (2y2t − (2w + 1 − 2t)y2w−1

+ (2w − 1 − 2t)y2w+1 ≥ 0).

Here it is easy to see that no variables involved are past y4n+3, and this is thus a conic 
combination of inequalities of type (5.4) and (5.5) of C. In the second case, we assume 
that t ≤ u, and have a conic combination of inequalities of type (5.4) and (5.5) again:

(v − 2t)(2y2u+1 − y4u+3 ≥ 0)

+
v−1
2∑

w=u+1

(v − 2t)(2u− 2t + 1)
(2w + 1 − 2t)(2w − 1 − 2t) (2y2t − (2w + 1 − 2t)y2w−1

+ (2w − 1 − 2t)y2w+1 ≥ 0)

+
2u+1∑

w= v+1
2

(4u + 3 − 2t)(v − 2t)
(2w + 1 − 2t)(2w − 1 − 2t) (2y2t − (2w + 1 − 2t)y2w−1

+ (2w − 1 − 2t)y2w+1 ≥ 0).

Here again it is easy to see that no variables involved are past y4n+3.
Finally, note that this implies that (v− 2t)y2u+1 +2(u +1)y2t− 2(u +1)yv ≥ 0 is also 

a valid inequality for proj2n+1(C) for every t ≤ �v
2�, u ≤ �v−1

2 � and v ≤ 2n + 1 since 
such inequalities do not involve variables past y2n+1. �
Lemma 5.5. Let 0 ≤ u < v ≤ n. Then

(2v + 1)y2u − (2u + 1)y2v ≥ 0

is a valid inequality on C and proj2n+1(C), and equivalently,

P 2v+1
2u ≥ P 2u+1

2v
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is a valid inequality in graph homomorphism numbers.

Proof. We first show the case when u = v − 1, i.e., we show that (2v + 1)y2v−2 −
(2v − 1)y2v ≥ 0. This inequality holds because it can be written as the following conic 
combination of inequalities of types (5.4), (5.1), (5.2), and (5.6) for C:

1 · (2y2v−1 − y4v−1 ≥ 0)

+1 · (y2v−2 − 2y2v−1 + y2v ≥ 0)

+
2v−3∑

w=v−1
2v(y2w − 2y2w+2 + y2w+4 ≥ 0)

+1 · (2vy4v−4 − 2vy4v−2 + 1y4v−1 ≥ 0).

Observe that it is easy to see that no variables involved are past y4n+3. Now note that 
this implies that for a general u < v, we have that

y2u

y2v
= y2u

y2u+2
· y2u+2

y2u+4
· · · y2v−4

y2v−2
· y2v−2

y2v

≥ 2u + 1
2u + 3 · 2u + 3

2u + 5 · · · 2i− 3
2i− 1 · 2i− 1

2i + 1

= 2u + 1
2v + 1

as desired.
Finally, note that this implies that (2v + 1)y2u − (2u + 1)y2v ≥ 0 is also a valid 

inequality for proj2n+1(C) for every 0 ≤ u < v ≤ n since such inequalities do not involve 
variables past y2n+1. �
Lemma 5.6. Let 0 ≤ u < v, l ≥ 0, v + l ≤ n. Then

2(l + 1)y2u − (2v + 2l + 1 − 2u)y2v−1 + (2v − 1 − 2u)y2(v+l)+1 ≥ 0

is a valid inequality for C and proj2n+1(C), and equivalently,

P
2(l+1)
2u P 2v−1−2u

2(v+l)+1 ≥ P 2v+2l+1−2u
2v−1

is a valid inequality in graph homomorphism numbers.

Proof. This broader generalization of the Erdős-Simonovits inequalities can be obtained 
as a conic combination from the first generalization of those same inequalities, i.e., in-
equalities of type (5.5) for C:
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v+l∑
w=v

(2v − 1 − 2u)(2v + 2l + 1 − 2u)
(2w + 1 − 2u)(2w − 1 − 2u)

(
2y2u − (2w + 1 − 2u)y2w−1 + (2w − 1 − 2u)y2w+1

≥ 0
)
.

Indeed, it’s easy to check that no variable past y4n+3 is used in this conic combination. 
To see that we get the desired inequality, note that the coefficient for y2u is

2(2v − 1 − 2u)(2v + 2l + 1 − 2u)
v+l−u∑
z=v−u

1
(2z − 1)(2z + 1)

=2(2v − 1 − 2u)(2v + 2l + 1 − 2u)
(

v+l−u∑
z=1

1
(2z − 1)(2z + 1) −

v−u−1∑
z=1

1
(2z − 1)(2z + 1)

)

=2(2v − 1 − 2u)(2v + 2l + 1 − 2u)
(

v + l − u

2v + 2l − 2u + 1 − v − u− 1
2v − 2u− 1

)
=2(l + 1).

The other coefficients are simple to check. Finally, note that this implies that 2(l +
1)y2u − (2v + 2l + 1 − 2u)y2v−1 + (2v − 1 − 2u)y2(v+l)+1 ≥ 0 is also a valid inequality 
for proj2n+1(C) for every 0 ≤ u < v, l ≥ 0, and v + l ≤ n since such inequalities do not 
involve variables past y2n+1. �
5.2. Construction of some rays in trop(NU2n+1)

We use the blow-up construction introduced in Section 3.2 to construct some rays of 
trop(NU2n+1) using the function p defined below. Recall from Section 3.2 that calculating 
the number of homomorphisms from some path Pi to the blow-up comes down to finding 
which homomorphisms weighed with p are maximal within the original graph.

Definition 5.7. Let P be a path of length 2f + 1 where f ≤ n and with vertex set 
V (P ) = {0, 1, 2, . . . , 2f + 1}, and edge set E(P ) = {{0, 1}, {1, 2}, . . . , {2f, 2f + 1}}. Let 
b ≥ s ≥ 0 and d = (d0, d1, . . . , df , 0, . . . , 0) ∈ Rn+1 be such that

(1) dv ≥ 0 for all v ≥ 0,
(2) d0 = b − s,
(3) d0 + . . . + du ≥ dv−u + . . . + dv for all 0 ≤ u < v,
(4) du = df−u for all u < t,
(5) du = 0 for all t + 1 ≤ u ≤ f − t − 1,
(6) dt ≥ df−t ≥ 0,
(7) 2 

∑f
v=1 dv ≤ s,

(8) s ≥ d0 if t = 0,
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Fig. 4. Weights p when f = 6, b = 34, s = 30, d = (4, 3, 3, 0, 1, 3, 4, 0, . . . , 0).

where t is the largest index such that t ≤ f
2 and dt > 0. Define p := pb,s,d : V (P ) ∪

E(P ) → R to be such that

• p({0}) = b,
• p({1}) = b − s = d0,
• p({2u + 1}) = d0 + 2 

∑u
v=1 dv for all 1 ≤ u ≤ � f−1

2 �,
• p({2u}) = s − d0 − 2 

∑u−1
v=1 dv for all 1 ≤ u ≤ � f

2 �,
• p({2f + 1 − u}) = p({u}) for all 0 ≤ u ≤ f ,
• p({2u, 2u + 1}) = s + du for all 0 ≤ u ≤ � f−1

2 �,
• p({2u − 1, 2u}) = s for all 1 ≤ u ≤ � f−1

2 �,
• p({f, f + 1}) = s + d f

2
− dt + df−t if f is even,

• p({f, f + 1}) = p({f}) + p({f + 1}) − dt + df−t if f is odd,
• p({2f − u, 2f + 1 − u}) = p({u, u + 1}) for all 0 ≤ u ≤ f − 1.

Note that all weights are nonnegative, which is straightforward to check in most 
cases given that b ≥ s ≥ 0 and dv ≥ 0 for all v ≥ 0. For p({f, f + 1}) when f is 
even, nonnegativity follows from the fact that s ≥ 2 

∑f
v=1 dv and dt is contained in 

that sum. When f is odd, the nonnegativity of p({f, f + 1}) follows from the fact that 
p({f}) +p({f +1}) = 2d0 +2 

∑ f−1
2

v=1 dv, and dt is again contained in that sum. The most 
ambiguous case is p({2u}). We know that 2 

∑f
v=1 dv ≤ s, and if t > 0, then d0 = df , 

so d0 + 2 
∑u−1

v=1 dv ≤ 2 
∑f

v=1 dv ≤ s, and thus p({2u}) = s − d0 − 2 
∑u−1

v=1 dv ≥ 0 for 
1 ≤ u ≤ � f

2 �. If t = 0, then p({2u}) ≥ 0 as well since s ≥ d0.

Example 5.8. Let n ≥ f = 6, b = 34, s = 30, d = (4, 3, 3, 0, 1, 3, 4, 0, . . . , 0) ∈ Rn+1. Then 
the weights p on the vertices and edges of P13 are given in Fig. 4.

We show below how this weighted path yields the ray in R2n+2

(34, 34, 64, 67, 94, 100, 124, 130, 154, 161, 184, 194, 214, 228, 244, 258, 274, 288,

. . . , 30n, 30n + 14).

Note that the ray settles into a (30k, 30k+14)-double-arithmetic progression starting at 
entries 2f and 2f + 1, i.e., at 214 and 228. �

Since they are nonnegative, the weights p on vertices and edges give us a way to create 
a blow-up graph Bm for P2f+1 for which the number of homomorphisms from Pi to the 

blow-up graph is O(mb+ i
2 s) if i is even and O(m� i

2 
s+
∑� i

2 �
v=0 dv ) if i is odd.
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Theorem 5.9. As m → ∞, the ray (log(hom(P0; Bm)), log(hom(P1; Bm)), . . . ,
log(hom(P2n+1; Bm))) converges to r = (r0, . . . , r2n+1) where ri = b + i

2s if i is even and 

ri = i+1
2 s +

∑ i−1
2

j=0 dv if i is odd for 0 ≤ i ≤ 2n + 1.

Proof. Let P again denote the path of length 2f+1 and fix some i between 0 and 2n +1. 
Recall from the proof of Lemma 3.4 that we can think of p(ϕ) for some homomorphism 
ϕ : Pi → P as

p({ϕ(0)}) + (−p({ϕ(0)}) + p({ϕ(0), ϕ(1)})) + (−p({ϕ(1)}) + p({ϕ(1), ϕ(2)}))

+ . . . + (−p({ϕ(i− 1)}) + p({ϕ(i− 1), ϕ(i)})).

We call −p({ϕ(j)}) + p({ϕ(j), ϕ(j + 1)}) the weight associated to the step going from 
ϕ(j) to ϕ(j + 1).

First observe that the weight of going from left to right and from right to left (not 
necessarily one right after the other) over any edge besides {f, f +1} is s. Indeed, for an 
edge {2u, 2u + 1} such that 2u < f , we have that −p({2u}) + p({2u, 2u + 1}) − p({2u +
1}) + p({2u, 2u + 1}) = −(s − d0 − 2 

∑u−1
v=1 dv) − (d0 + 2 

∑u
v=1 dv) + 2(s + du) = s. 

For an edge {2u − 1, 2u} such that 2u − 1 < f , we have that −p({2u − 1}) + p({2u −
1, 2u}) − p({2u}) + p({2u − 1, 2u}) = −(d0 + 2 

∑u−1
v=1 dv) − (s − d0 − 2 

∑u−1
v=1 dv) + 2s =

s. By symmetry, edges to the right of the middle edge {f, f + 1} will have the same 
property. Moreover, the weight of going from left to right and from right to left over 
{f, f + 1} is at most s. Indeed, if f is even and 0 < t < f − t, we get 2d0 + 4 

∑t
v=1 dv −

2dt + 2df−t = 2d0 + 2 
∑t

v=1 dv + 2 
∑f−1

v=f−t dv = 2 
∑f

v=1 dv ≤ s by assumption. If 
t = 0, we get 2df = 2 

∑f
v=1 df ≤ s by assumption. If f is even and t = f − t, we 

get 2d0 + 4 
∑ f−2

2
v=1 dv + d f

2
= 2 

∑f
v=1 dv − d f

2
≤ s by assumption. Finally, if f is odd, 

2d0 + 4 
∑ f−1

2
v=1 dv − 2dt + 2df−t = 2 

∑f
v=1 dv − 2dt + 2df−t ≤ s by assumption.

Now consider the edges of P that are covered an odd number of times by ϕ(Pi). Look 
at the subgraph formed by these edges, and observe that it must be connected and is thus 
a path, say Pj , with vertices w, w+1, . . . , w+j and edges {w, w+1}, . . . , {w+j−1, w+j}. 
Note that i and j have the same parity since we are forgetting about edges that are 
covered an even number of times by Pi. Without loss of generality because of symmetry, 
assume that w ≤ f . Observe that ϕ(0) ∈ {w, w + j}, and we can also assume without 
loss of generality that ϕ(0) = w. Thus

p(ϕ(Pi)) ≤
j−1∑
k=0

p({w + k,w + k + 1}) −
j−1∑
k=1

p({w + k}) + i− j

2 · s.

When j is odd, Pj has an even number of vertices, and in particular, an even number of 
internal vertices. We partition the internal vertices in groups of two consecutive vertices 
with the edge in between. That is, we observe that
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j−1∑
k=0

p({w + k,w + k + 1}) −
j−1∑
k=1

p({w + k})

=
∑

k∈{1,3,...,j−2}
(−p({w + k}) − p({w + k + 1}) + p({w + k,w + k + 1}))

+
∑

k∈{0,2,...,j−1}
p({w + k,w + k + 1}).

Let’s first consider the case when w is even. Then −p({w+k}) −p({w+k+1}) +p({w+
k, w+k+1}) = 0 for all k ∈ {1, 3, . . . , j− 2} except if f is odd, where −p({f}) − p({f +
1}) + p({f, f + 1}) contributes −dt + df−t. Moreover, p({w + k, w + k + 1}) = s + dw+k

2
for all k ∈ {0, 2, . . . , j−1} except when w+k = 2(f − t), when the contribution is s +dt, 
and when f is even, when −p({f}) − p({f + 1}) + p({f, f + 1}) contributes s − dt +
df−t + d f

2
. Note that d f

2
= 0 if t < f − t. Therefore, Pj contributes j+1

2 s +
∑w+j−1

2
v=w

2
dv

if Pj ends either at f or before or at 2(f − t) + 1 or after. Otherwise, Pj contributes 
j+1
2 s +

∑w+j−1
2

v=w
2

dv − dt + df−t + d f
2
.

Let’s now consider the case when w is odd. Then −p({w+k}) −p({w+k+1}) +p({w+
k, w + k + 1}) = −du for all k ∈ {1, 3, . . . , j − 2} except when w + k = 2(f − t), when 
the contribution is −dt, and when f is even and the contribution of −p({f}) − p({f +
1}) + p({f, f + 1}) is −s + 2 

∑f
v=1 dv − d f

2
+ dt − df−t ≤ dt − df−t − d f

2
. Furthermore, 

p({w + k, w + k + 1}) = s for all k ∈ {0, 2, . . . , j − 1} except when f is odd and the 
contribution of p({f, f + 1}) is 2 

∑f
v=1 dv − df−t + dt ≤ s − df−t + dt. So it is clear that 

the contribution of Pj is always bigger when w is even.
Thus, when i and j are odd, the maximum p(ϕ(Pi)) can be is at most i+1

2 s +
∑ i−1

2
v=0 dv

because of property (3) of d in Definition 5.7. Note that this is tight. Indeed, if i ≤ 2t +1, 
we can take ϕ : Pi → P such that ϕ(l) = l for all 0 ≤ l ≤ i. If 2t + 3 ≤ i ≤ 2(f − t) − 1, 
let ϕ be such that ϕ(l) = l for all 0 ≤ l ≤ 2t + 1, ϕ(l) = 2t for all 2t + 2 ≤ l ≤ i even, 
and ϕ(l) = 2t + 1 for all 2t + 1 ≤ l ≤ i odd. If 2(f − t) + 1 ≤ l ≤ 2f + 1, let ϕ(l) = l for 
all 0 ≤ l ≤ i. Finally, if i ≥ 2f + 3, let ϕ be such that ϕ(l) = l for all 0 ≤ l ≤ 2f + 1, 
ϕ(l) = 2f for all 2f + 2 ≤ l ≤ i even, and ϕ(l) = 2f + 1 for all 2f + 1 ≤ l ≤ i odd.

We now consider the case when j and i are even (where Pj is still the subgraph of 
Pi whose edges are covered an odd number of times). Here, instead of partitioning the 
internal vertices in groups of consecutive pairs, we partition the edges in a similar way. 
Consider the weight associated to going forward by two steps from j to j + 1 to j + 2
that do not go over the edge {f, f + 1}:

−p({j}) + p({j, j + 1})
−p({j + 1}) + p({j + 1, j + 2})

j = 2u and 2u, 2u + 1, 2u + 2 ≤ f s− du
j = 2u− 1 and 2u− 1, 2u, 2u + 1 ≤ f s + du
j = 2u and 2u, 2u + 1, 2u + 2 ≥ f s− df−u

j = 2u− 1 and 2u− 1, 2u, 2u + 1 ≥ f s + d
f−u
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Similarly, look at the weight associated to going forward by two steps from j to j + 1
to j + 2 that does go over the edge {f, f + 1}:

−p({j}) + p({j, j + 1})
−p({j + 1}) + p({j + 1, j + 2})

j = f and f is even 2d0 + 4
∑ f−2

2
v=1 dv + d f

2
− dt + df−t

j = f − 1 and f is even s + d f
2
− dt + df−t

j = f and f is odd s + d f−1
2

− dt + df−t

j = f − 1 and f is odd 2d0 + 4
∑ f−3

2
v=1 dv + 3d f−1

2
− dt + df−t

Note that 2d0 +4 
∑ f−2

2
v=1 dv + d f

2
− dt + df−t = 2 

∑f
v=1 dv − d f

2
+ dt − df−t ≤ s − d f

2
+

dt − df−t.
We will show that the homomorphism ϕ∗ such that ϕ∗(k) = 0 if k is even, and 

ϕ∗(k) = 1 if k is odd, is maximal. Note that p(ϕ∗(Pi)) = b + i
2s.

If w is even, note that any two steps starting on an even vertex adds at most s if 
none of these steps go over {f, f + 1}. In such cases p(ϕ(Pi)) ≤ ϕ(0) + j

2 · s + i−j
2 · s =

p({ϕ(0)}) + i
2 · s ≤ b + i

s since p({0}) ≥ p({2u}) for all u. If we go over {f, f + 1} with 
f even, the contribution of that double step, 2 

∑f
v=1 dv − d f

2
+ dt − df−t can be more 

than s, so we need to be a bit more careful. Adding up, we get

s− d0 − 2
u−1∑
v=1

dv + j − 2
2 s−

f−2
2∑

v=u

dv −
2u+j−2

2∑
v= f+2

2

df−v + 2
f∑

v=1
dv − d f

2
+ dt − df−t + i− j

2 s

≤ i

2s + 2
f∑

v=1
dv + dt − d0

≤ i

2s + b.

where the second line follows from the fact that all dv’s are nonnegative, and the third 
line because dt ≤ d0, 2 

∑f
v=1 dv ≤ s, and b = d0 + s. Similarly, if we go over {f, f + 1}

with f odd, the contribution of that particular double step can be more than s, so we 
need to look at the total contribution a bit more carefully. Again, adding up, we get

j − 2
2 s−

f−3
2∑

v=u

dv −
2u+j−2

2∑
v= f+1

2

df−v + 2d0 + 4
f−3

2∑
v=1

dv + 3d f−1
2

− dt + df−t + s− d0

− 2
u−1∑

dv + i− j

2 s

v=1
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= i

2s + 2
f∑

v=1
dv︸ ︷︷ ︸

≤s

−d0 + dt︸ ︷︷ ︸
≤0

−
f−3

2∑
v=1

dv −
2u+j+2

2∑
v= f+1

2

dv −
u−1∑
v=1

dv − 2d f+1
2

− df−t

︸ ︷︷ ︸
≤0

+d f−1
2︸ ︷︷ ︸

≤d0

≤ i

2s + s + d0

≤ i

2s + b

If w is odd, then p({ϕ(0)}) = d0 + 2 
∑w−1

2
v=1 dv ≤ s

2 . If Pj does not contain {f, f + 1}, ∑j−1
k=0 p({w + k, w + k + 1}) −

∑j−1
k=1 p({w + k}) = j

2 · s +
∑w−1+2j

2
v=w+1

2
dv. So

p(ϕ(Pi)) ≤ d0 + 2
w−1+2j

2∑
v=1

dv + j

2 · s + i− j

2 · s

≤ d0 + s + i

2 · s ≤ b + i

2 · s.

If Pj contains {f, f +1}, note that the two steps containing {f, f +1} that start on an 
odd vertex all contribute at most s except if f is even and t = f

2 or if f is odd and t = f−1
2 . 

In both of those cases, we add s + d� f
2 �

. Note that d� f
2 �

does not appear in the weight of 
any other double step. Therefore, we have that p(ϕ(Pi)) ≤ d0+2 

∑f
v=1 dv+ j

2 ·s +
i−j
2 ·s ≤

d0 + s + i
2 · s ≤ b + i

2s.
So in both cases, we have that p(ϕ(Pi)) ≤ b + i

2s for any homomorphism ϕ : Pi → P

when i is even, and we’ve already shown that this maximum is attainable through ϕ∗. �
Definition 5.10. Consider the family of rays 

⋃
0≤s≤b Rs,b where (r0, r1, . . . , r2n+1) =: r ∈

Rs,b if

(1) r2i = is + b for all 0 ≤ i ≤ n where b ≥ s ≥ 0, and
(2) r2i+1 = (i + 1)s +

∑i
v=0 dv for all 0 ≤ i ≤ n where d := (d0, d1, . . . , df , 0, . . . , 0) ∈

Rn+1 is such that
(a) dv ≥ 0 for all 0 ≤ v ≤ n,
(b) d0 = b − s,
(c) d0 + . . . + du ≥ dv−u + . . . + dv for any 0 ≤ u < v ≤ n,
(d) du = df−u for all 0 ≤ u < t,
(e) du = 0 for all t + 1 ≤ u ≤ f − t − 1,
(f) dt ≥ df−t ≥ 0,
(g) 2 

∑f
v=1 dv ≤ s,

where t is the largest index such that t ≤ f
2 and dt > 0. Note that here we do not 

require that s ≥ d0 if t = 0 as before.
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Corollary 5.11. The rays Rs,b with 0 ≤ s ≤ b are contained in trop(NU2n+1), i.e.,⋃
0≤s≤b

Rs,b ⊆ trop(NU2n+1).

Proof. If t > 0 or t = 0 and s ≥ d0, this follows directly from the blow-up construction in 
Theorem 5.9. The only case that needs more thought is if t = 0 and s < d0. So consider 
a ray r ∈ Rs,b associated to d = (d0, 0, . . . , 0, df ) where 2df ≤ s < d0.

First note that (1, 1, . . . , 1) ∈ trop(NU2n+1). Indeed, since hom(Pi; P1) = 2 for all i ≥ 0, 
(log 2, . . . , log 2) ∈ trop(NU2n+1), and since trop(NU2n+1) is a closed convex cone, we have 
that (1, 1, . . . , 1) is also contained in trop(NU2n+1). Let r′ ∈ Rs,b−d0+df

be associated with 
d′ = (df , 0, . . . , 0, df ). Note that b − d0 + df ≥ s since df ≥ 0, and d′0 = df ≤ s, so we 
know that r′ ∈ trop(NU2n+1). Now observe that r′ + (d0 − df ) · (1, 1, . . . , 1) = r. Since r
is a conic combination of rays in trop(NU2n+1), r is also in trop(NU2n+1). �

We now build a bigger family of rays R̄s,b such that 
⋃

0≤s≤b Rs,b ⊂
⋃

0≤s≤b R̄s,b ⊆
trop(NU2n+1) where we remove the “almost symmetric” requirement on d, i.e., where we 
remove the previous properties (d), (e) and (f) of Definition 5.10.

Definition 5.12. Consider the family of rays 
⋃

0≤s≤b R̄s,b where (r0, r1, . . . , r2n+1) =: r ∈
R̄s,b if

(1) r2i = is + b for all 0 ≤ i ≤ n where b ≥ s ≥ 0, and
(2) r2i+1 = (i + 1)s +

∑i
v=0 dv for all 0 ≤ i ≤ n where d := (d0, d1, . . . , df , 0, . . . , 0) ∈

Rn+1 is such that
(a) dv ≥ 0 for all 0 ≤ v ≤ n,
(b) d0 = b − s,
(c) d0 + . . . + du ≥ dv−u + . . . + dv for any 0 ≤ u < v ≤ n,
(d) 2 

∑f
v=1 dv ≤ s,

We show that these new rays are in the max closure of the rays in Rs,b. We first give 
an example to give some insight of why this is true.

Example 5.13. Suppose 2n +1 = 13 and consider the ray r ∈ R̄30,34\R30,34 associated to 
d = (4, 3, 2, 1, 2, 4, 0), i.e., r = (34, 34, 64, 67, 94, 99, 124, 130, 154, 162, 184, 196, 214, 226). 
Now look at the rays r0, . . . , r5 ∈ R30,34 associated to d0 = (4, 0, 0, 0, 0, 0, 0), d1 =
(4, 3, 0, 0, 0, 0, 0), d2 = (4, 1, 4, 0, 0, 0, 0), d3 = (4, 1, 1, 4, 0, 0, 0), d4 = (4, 3, 0, 1, 4, 0, 0), 
d5 = (4, 3, 2, 0, 3, 4, 0), namely

(34, 34, 64, 64, 94, 94, 124, 124, 154, 154, 184, 184, 214, 214)

(34, 34, 64, 67, 94, 97, 124, 127, 154, 157, 184, 187, 214, 217)

(34, 34, 64, 65, 94, 99, 124, 129, 154, 159, 184, 189, 214, 219)
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(34, 34, 64, 65, 94, 96, 124, 130, 154, 160, 184, 190, 214, 220)

(34, 34, 64, 67, 94, 97, 124, 128, 154, 162, 184, 192, 214, 222)

(34, 34, 64, 67, 94, 99, 124, 129, 154, 162, 184, 196, 214, 226).

Note that the sum of the first j < i entries in di is at most the sum of the first j entries 
in d, and that the sum of all entries in di is equal to the sum of the first i entries of d. 
Thus r2i+1 is equal to the (2i + 1)st component of ri, and it is greater or equal to the 
ith component of rj for any j. Moreover, the even entries of r and ri are the same for 
all i. Thus r is in the max closure of the ri’s. �

More generally, given a ray r ∈ R̄s,b associated to some vector d, we first show that 
turning the last non-zero coordinate of d into zero yields a ray that is also in R̄s,b. That 
will allow us to proceed recursively. We then only need to show that there exists a ray 
r′ ∈ Rs,b where r′i ≤ ri for all 0 ≤ i ≤ 2f − 1, and r′i = ri for all 2f ≤ i ≤ 2n + 1.

Lemma 5.14. Consider r ∈ R̄s,b associated with some sequence d = (d0, d1, . . . , df , 0,
. . . , 0) ∈ Rn+1. Then there is a ray r′ ∈ R̄s,b associated to d′ where d′v = dv for all 
v ∈ {0, 1, 2, . . . , n}\{f} and d′f = 0. In particular, r′v = rv for all v ≤ 2f , and r′v ≤ rv
for all 2f + 1 ≤ v ≤ 2n + 1.

Proof. Certainly, properties (a), (b), and (d) in Definition 5.12 still hold for d′. We 
only need to show that 

∑u
w=0 d

′
w ≥

∑v
w=v−u d

′
w for all 0 ≤ u < v ≤ n. Without loss 

of generality, we can assume that u < v − u. Certainly, we know that 
∑u

w=0 dw ≥∑v
w=v−u dw since r ∈ R̄s,b. If df is not involved at all in either sum, then those two 

expressions remain unchanged, and we are done. If it is involved in the righthand side, 
then

u∑
w=0

d′w =
u∑

w=0
dw ≥

v∑
w=v−u

dw ≥
v∑

w=v−u

dw − df =
v∑

w=v−u

d′w.

Finally, if df is involved in the lefthand side, then the righthand side is zero since 
u < v − u and df was the last non-zero entry of d, and since 

∑u
w=0 d

′
w ≥ 0, we are 

done. �
Lemma 5.15. For any ray r ∈ R̄s,b associated to some sequence d = (d0, d1, . . . , df , 0, . . . ,
0) ∈ Rn+1, there exists a ray r′ ∈ Rs,b such that ri ≥ r′i for all 0 ≤ i ≤ 2f − 1 and 
ri = r′i for all 2f ≤ i ≤ 2n + 1.

Proof. Let T :=
∑f

w=0 dw and let t be the smallest index such that 
∑t

w=0 dw ≥ T
2 . Note 

that t ≤ f
2 since we know that 

∑� f
2 �

w=0 dw ≥
∑f

w=� f
2 �

dw.
Let d′ ∈ Rn+1 be such that d′w = dw for 0 ≤ w ≤ t, d′w = df−w for f − t +1 ≤ w ≤ f , 

d′f−t = T − 2 
∑t−1

w=0 dw − dt (which is at most dt by the definition of t), and d′w = 0
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otherwise. Note that properties (a), (b), (d), (e), (f), (g) from Definition 5.10 hold for 
d′.

Clearly, 
∑f

w=0 dw =
∑f

w=0 d
′
w = T . We now show that 

∑u
w=0 dw ≥

∑u
w=0 d

′
w. If 

u ≤ f − t − 1, then this follows from the definition of d′. Let’s now consider the case 
when u ≥ f − t. Certainly we know that 

∑f−u−1
w=0 dw ≥

∑f
w=u+1 dw. Moreover, we have 

that 
∑f

w=u+1 d
′
w =

∑f−u−1
w=0 dw, so we have

f∑
w=u+1

d′w ≥
f∑

w=u+1
dw

T −
f∑

w=u+1
dw ≥ T −

f∑
w=u+1

d′w

f∑
w=0

dw −
f∑

w=u+1
dw ≥

f∑
w=0

d′w −
f∑

w=u+1
d′w

u∑
w=0

dw ≥
u∑

w=0
d′w

as desired.
We now show that property (c) from Definition 5.10 also holds for d′, that is, that ∑u
w=0 d

′
w ≥

∑v
w=v−u d

′
w for all 0 ≤ u < v ≤ 2n + 1. Without loss of generality, assume 

that u < v−u. Moreover, observe that if we do not have that u −v ≤ t < f − t ≤ v, then 
the righthand side will correspond to adding up a subsequence of vector d, and so the 
inequality must hold since the number of non-zero dw’s in the lefthand side is greater or 
equal to the number of non-zero dw’s in the righthand side.

So assume that u − v ≤ t < f − t ≤ v. This implies that 
∑u

w=0 d
′
w =

∑u
w=0 dw since 

u < t. Moreover,

v∑
w=v−u

d′w =
v∑

w=0
d′w −

v−u−1∑
w=0

d′w

≤
v∑

w=0
dw −

v−u−1∑
w=0

dw

=
v∑

w=v−u

dw

≤
u∑

w=0
dw

=
u∑

w=0
d′w
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where the second line follows from the fact that we have already shown that 
∑v

w=0 d
′
w ≤∑v

w=0 dw and 
∑v−u−1

w=0 dw =
∑v−u−1

w=0 d′w since v − u − 1 < t.
So the ray r′ associated to d′ is in Rs,b, and ri ≥ r′i for all 0 ≤ i ≤ 2f − 1 and ri = r′i

for all 2f ≤ i ≤ 2n + 1. �
Theorem 5.16. The rays R̄s,b with 0 ≤ s ≤ b are contained in trop(NU2n+1):⋃

0≤s≤b

R̄s,b ⊆ trop(NU2n+1).

Proof. Consider any ray r ∈ R̄s,b. From Lemma 5.15, there exists a ray r′ ∈ Rs,b such 
that rv ≥ r′v for all 0 ≤ v ≤ 2f − 1 and rv = r′v for all 2f ≤ v ≤ 2n + 1. From 
Lemma 5.14, there is a ray r∗ ∈ R̄s,b with sequence d∗ = (d0, d1, . . . , df−1, 0, 0, 0, . . .)
such that r∗v = rv for all 0 ≤ v ≤ 2f and r∗v ≤ rv for all 2f + 1 ≤ v ≤ 2n + 1. 
Now again from Lemma 5.15, we can find a ray r′′ ∈ Rs,b such that r∗v ≥ r′′v for all 
0 ≤ v ≤ 2f − 3 and r∗v = r′′v for all 2f − 2 ≤ v ≤ 2n + 1. Note that this implies 
that r′′v = rv for v ∈ {2f − 2, 2f − 1}. Keeping doing this recursively, we obtain a 
set of vectors in Rs,b whose max closure is exactly r. Since we know trop(NU2n+1) is 
closed under max closure, and that 

⋃
0≤s≤b Rs,b ⊆ trop(NU2n+1), we also have that ⋃

0≤s≤b R̄s,b ⊆ trop(NU2n+1). �
We now build an even bigger family of rays in trop(NU2n+1) by relaxing the criterion 

that b − s = d0.

Definition 5.17. Consider the family of rays 
⋃
R∗

s,b where the union is over pairs s, b ≥ 0
such that b − s ≤ d0 ≤ 2b−s

2 where (r0, r1, . . . , r2n+1) =: r ∈ R∗
s,b if

(1) r2i = is + b for all 0 ≤ i ≤ n for some b, s ≥ 0, and
(2) r2i+1 = (i + 1)s +

∑i
v=0 dv for all 0 ≤ i ≤ n where d := (d0, d1, . . . , df , 0, . . . , 0) ∈

Rn+1 is such that
(a) dv ≥ 0 for all v ≥ 0
(b) d0 + . . . + du ≥ dv−u + . . . + dv for any 0 ≤ u ≤ v ≤ n

(c) 2 
∑f

v=1 dv ≤ s

Let

R := (1, 0, 0, . . . , 0) ∪
⋃

s,b≥0:
b−s≤d0≤ 2b−s

2

R∗
s,b.

Theorem 5.18. The family of rays R is contained in trop(NU2n+1):

R ⊆ trop(NU2n+1).
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Proof. First note that (1, 0, 0, . . . , 0) is in trop(NU2n+1) since it can be realized by a graph 
on m vertices with exactly one edge as m → ∞. Now consider a ray r ∈ R∗

s,b for some 
b, s ≥ 0 associated to d where b − s ≤ d0 ≤ 2b−s

2 . Then r can be written as the conic 
combination of d0 + s − b times (1, 2, 3, 4, . . . , 2n + 2) and one times the ray r′, where 
r′ ∈ R̄2b−s−2d0,2b−s−d0 with d′ := d. Note that d′0 = d0 = 2b − s − d0 − (2b − s − 2d0)
as desired. Thus, any ray r ∈ R∗

s,b is in the double hull of 
⋃

0≤k≤b R̄s,b, and so R ⊆
trop(NU2n+1). �
5.3. Double hull of R is proj2n+1(C)

For any ray spanned by r = (r0, r1, . . . , r2n+1) ∈ proj2n+1(C), we construct rays 
r′l ∈ R for all 0 ≤ l ≤ 2n +1 such that every coordinate of r′l is at most the corresponding 
coordinate of r and the l-th coordinate of r′l is equal to rl. Therefore we have r = ⊕2n+1

l=1 r′l
and proj2n+1(C) ⊆ trop(NU2n+1). We split the construction into in two parts: first when 
l is odd, and then when l is even.

Definition 5.19 (r′l when l is odd). Given r = (r0, r1, . . . , r2n+1) ∈ proj2n+1(C) and 
0 ≤ l ≤ 2n + 1 such that l = 2i + 1, let r′l = (r′0, r′1, . . . , r′2n+1) be as follows.

Let

s′ = max
0≤j≤i

{
2(r2i+1 − r2j)
2i + 1 − 2j

}

and

j′ = arg max
0≤j≤i

{
2(r2i+1 − r2j)
2i + 1 − 2j

}
.

We now give some geometric intuition behind the above definitions. We can think of 
r = (r0, . . . , r2n+1) ∈ proj2n+1(C) as a function from {0, 1, . . . , 2n + 1} to R sending i
to ri. Consider the graph of this function in R2. If we look at the slopes of the lines 
between pairs of points in the graph, we see that s′ is the maximal slope involving the 
point (2i + 1, r2i+1) and a point (2j, r2j) with 2j < 2i + 1, and j′ is the index where the 
maximal slope occurs. We are going to use the slope s′ when building our new sequence 
r′l = (r′0, r′1, . . . , r′2n+1).

Let d′ = (d′0, d′1, . . . , d′n) ∈ Rn+1 where

d′0 = min
0≤u≤i

{r2u+1 − (u + 1)s′}

and

d′v = min
v≤u≤i

{r2u+1 − (u + 1)s′} −
v−1∑

d′w

w=0
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for all 0 < v ≤ i. Let d′v = 0 for all i < v ≤ n. Here the entries d′v for v ≥ 1 are giving 
us the difference of the deviation of one odd entry from the arithmetic sequence defined 
by even entries compared to the previous odd entry.

Let r′2v = r2j′ + (v − j′)s′ for all 0 ≤ v ≤ n so that all even points are on the same 
line with slope s′. Note that s′ is the slope between even entries, so the step size is 2, 
i.e., s′ is double the slope we would use for all entries. Let b′ := r′0 and f ′ := i. Let

r′2v+1 = (v + 1)s′ +
v∑

w=0
d′w

for any 0 ≤ v ≤ n.

Example 5.20. Let 2n + 1 = 21, l = 13, and

r = (14, 14, 24, 24, 34, 35, 44, 45, 55, 55, 66, 66, 77, 79, 88, 89, 99, 99, 110, 110, 121, 121).

We have that s′ = max{10, 10, 10, 10, 9.6, 8.6, 4} = 10 and j′ can be chosen to be 
either 0, 1, 2 or 3. Let’s now compute a vector recording r2u+1 − (u + 1)s′ for each 
0 ≤ u ≤ i: (4, 4, 5, 5, 5, 6, 9). So d′ = (4, 0, 1, 0, 0, 1, 3, 0, 0, 0, 0). Finally, this allows us to 
compute

r′13 = (14, 14, 24, 24, 34, 35, 44, 45, 54, 55, 64, 66, 74, 79, 84, 89, 94, 99, 104, 109, 114, 119).

Observe that r′13 is such that r′13 = r13 and r′v ≤ rv for all 0 ≤ v ≤ 21, and such that 
the even entries of r′ form an arithmetic sequence. �

Example 5.21. Let 2n + 1 = 17, l = 15, and

r = (16, 16, 24, 25, 32, 32, 40, 40, 49, 49, 58, 58, 67, 67, 76, 79, 85, 88).

We have s′ = max{8.4, 8.461538, 8.54, 8.6, 8.571428, 8.4, 8, 6} = 8.6, and j′ = 3. 
Computing the vector recording r2u+1 − (u + 1)s′ for each 0 ≤ u ≤ i, we get 
(7.3, 7.6, 6, 5.3, 5.6, 6, 6.3, 9.6), thus yielding d′ = (5.3, 0, 0, 0, 0.3, 0.3, 0.3, 3.3, 0). We thus 
obtain

r′15 = (14, 14, 22.6, 22.6, 31.3, 31.3, 40, 40, 48.6, 49, 57.3, 58, 66, 67, 74.6, 79, 83.3, 87.6).

Observe again that r′15 is such that r′15 = r15 and r′v ≤ rv for all 0 ≤ v ≤ 17, and such 
that the even entries of r′ form an arithmetic sequence. �

We first show through the next three lemmas a few important properties of r′l:

• another way to compute d′v for some 0 < v ≤ i is minv≤u≤i{r2u+1 − (u + 1)s′} −
minv−1≤u≤i{r2u+1 − (u + 1)s′},
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• if d′v+1 > 0, then r′2v+1 = r2v+1, i.e., showing that certain components of r and r′l
must be equal, and

• r′l and r are equal in the lth coordinate, and rl is upper bounded by r in all coordi-
nates.

Lemma 5.22. We have that d′v = minv≤u≤i{r2u+1−(u +1)s′} −minv−1≤u≤i{r2u+1−(u +
1)s′} for all 0 < v ≤ i.

Proof. From Definition 5.19, we know that d′v = minv≤u≤i{r2u+1−(u +1)s′} −
∑v−1

w=0 d
′
w

for all 0 < v ≤ i. This implies that 
∑v

w=0 d
′
w = minv≤u≤i{r2u+1 − (u + 1)s′} for all 

0 < v ≤ i as well as when v = 0 by definition of d′0. We thus also have that 
∑v−1

w=0 d
′
w =

minv−1≤u≤i{r2u+1 − (u + 1)s′} for all 0 < v ≤ i. So d′v =
∑v

w=0 d
′
w −

∑v−1
w=0 d

′
w =

minv≤u≤i{r2u+1 − (u + 1)s′} − minv−1≤u≤i{r2u+1 − (u + 1)s′} for all 0 < v ≤ i as 
desired. �
Lemma 5.23. If d′v+1 > 0, then r′2v+1 = r2v+1.

Proof. From Lemma 5.22, we know that d′v+1 = minv+1≤u≤i{r2u+1 − (u + 1)s′} −
minv≤u≤i{r2u+1 − (u + 1)s′}. So if d′v+1 > 0, this implies that minv+1≤u≤i{r2u+1 −
(u + 1)s′} > minv≤u≤i{r2u+1 − (u + 1)s′}, and so minv≤u≤i{r2u+1 − (u + 1)s′} =
r2v+1 − (v + 1)s′. By the construction of d′v in Definition 5.19, we thus know that 
d′v = r2v+1 − (v + 1)s′ −

∑v−1
w=0 d

′
w. Furthermore, by the construction of r′2v+1 in Defini-

tion 5.19, we have that

r′2v+1 = (v + 1)s′ +
v∑

w=0
d′w = (v + 1)s′ +

v−1∑
w=0

d′w + d′v

= (v + 1)s′ +
v−1∑
w=0

d′w + r2v+1 − (v + 1)s′ −
v−1∑
w=0

d′w = r2v+1

as desired. �
Lemma 5.24. Given r = (r0, r1, . . . , r2n+1) ∈ proj2n+1(C) and r′l = (r′0, r′1, . . . , r′2n+1) for 
some l = 2i + 1, we have r′v ≤ rv for all 0 ≤ v ≤ 2n + 1 and rl = r′l.

Proof. Claim 1: We have that r′2v ≤ r2v for all 0 ≤ v ≤ j′.
Since r ∈ proj2n+1(C), by inequalities (5.2) for C, we know that r2u+4 − r2u+2 ≥

r2u+2 − r2u for any 0 ≤ u ≤ n − 2. In particular, this means that r2j′ − r2j′−2 ≥
r2u − r2u−2 for all 0 ≤ u ≤ j′. Now observe that by definition of s′ and j′, s′ =
2(r2i+1−r2j′ )

2i+1−2j′ ≥ 2(r2i+1−r2j′−2)
2i+1−(2j′−2) which is equivalent of (2i + 1 − (2j′ − 2))(r2i+1 − r2j′) ≥

(2i + 1 − 2j′)(r2i+1 − r2j′−2), which in turn is equivalent to 
2(r2i+1−r2j′ )

2i+1−2j′ ≥ r2j′ − r2j′−2. 
So we get that s′ ≥ r2j′ − r2j′−2 which implies that s′ ≥ r2u − r2u−2 for all 0 ≤ u ≤ j′. 
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Together with the fact that r′2v = r′2j′ − (j′ − v)s′ = r2j′ − (j′ − v)s′ by definition, this 
implies that r′2v ≤ r2v for all 0 ≤ v ≤ j′.

Claim 2: We have that r′2v ≤ r2v for all j′ ≤ v ≤ n.
We first show that s′ ≤ r2j′+2 − r2j′ . Let’s first assume that i > j′. Then

s′ = 2(r2i+1 − r2j′)
2i + 1 − 2j′ ≥ 2(r2i+1 − r2j′+2)

2i + 1 − (2j′ + 2)

by the definition of s′ and j′, which is equivalent to

2(r2i+1 − r2j′)
2i + 1 − 2j′ ≤ r2j′+2 − r2j′ ,

as desired. Since r ∈ proj2n+1(C), by inequalities (5.2) for C, we get that s′ ≤ r2j′+2 −
r2j′ ≤ r2u+2− r2u for all j′ ≤ u ≤ n. Together with the fact that r′2v = r′2j′ +(v− j′)s′ =
r2j + (v − j′)s′ by definition, this implies that r′2v ≤ r2v for all v ≥ j′.

Finally we consider the case when j′ = i. Then s′ = 2(r2i+1 − r2i). Therefore, by 
inequalities (5.1) for C, we know that s′ ≤ r2i+2 − r2i, and by the same argument as 
before, we have that r′2v ≤ r2v for all v ≥ j′.

Claim 3: We have that r′2v+1 ≤ r2v+1 for all i ≤ v ≤ n.
First note that, by Definition 5.19,

r′2v+1 = (v + 1)s′ +
v∑

w=0
d′w = (v + 1)s′ +

i∑
w=0

d′w

= (i + 1)s′ +
i∑

w=0
d′w + (v − i)s′ = r′2i+1 + (v − i)s′ = r2i+1 + (v − i)s′.

Thus showing that r′2v+1 ≤ r2v+1 is equivalent to showing that

(2i + 1 − 2j′)r2v+1 − (2v + 1 − 2j′)r2i+1 + 2(v − i)r2j′ ≥ 0.

From our biggest generalization of the Erdős-Simonovits inequalities in Lemma 5.6, we 
know that this inequality holds since r ∈ proj2n+1(C).

Claim 4: We have that r′2v+1 ≤ r2v+1 for all 0 ≤ v < i.
This holds by the construction of d′ and r′2v+1 in Definition 5.19. Indeed, when v = 0, 

we have

r′1 = s′ + min
0≤u<i

{r2u+1 − (u + 1)s′} ≤ s′ + r1 − s′ = r1.

For any 1 ≤ v < i, we have

r′2v+1 = (v + 1)s′ +
v∑

d′w

w=0
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= (v + 1)s′ +
v−1∑
w=0

d′w + min
v≤u<i

{r2u+1 − (u + 1)s′} −
v−1∑
w=0

d′w

≤ (v + 1)s′ + r2v+1 − (v + 1)s′ = r2v+1.

Claim 5: We have that r′2i+1 = r2i+1.
Note that by the construction of d′i in Definition 5.19, we have that d′i =

mini≤u≤i{r2u+1− (u +1)s′} −
∑i−1

w=0 d
′
w, which implies that 

∑i
w=0 d

′
w = r2i+1− (i +1)s′. 

Thus, by the construction of r′2v+1 in Definition 5.19, we have that r′2i+1 = (i + 1)s′ +
r2i+1 − (i + 1)s′ = r2i+1. �

We now show that the points r′l are in R when l is odd, and thus in trop(NU2n+1).

Theorem 5.25. Let r ∈ proj2n+1(C) such that r1 ≥ r0 and fix 0 ≤ l ≤ 2n + 1 such that 
l = 2i + 1. Then r′l is in R.

Proof. We show that all properties of rays in R hold for r′l.

Claim 1: We have that s′ ≥ 0.
By the construction of s′ in Definition 5.19, s′ = max0≤j≤i

{
2(r2i+1−r2j)

2i+1−2j

}
. The denom-

inator is trivially nonnegative, and we claim the numerator is also nonnegative. Indeed, 
since r ∈ proj2n+1(C), we know that r2j+1 ≥ r2j for all 1 ≤ j ≤ n from inequalities (5.3) 
for C. Moreover, combining inequalities (5.1) and (5.3) for C yields that r2j+2 ≥ r2j+1
for all 0 ≤ u ≤ n − 1. Finally, we assumed that r1 ≥ r0. Thus r2i+1 − r2j ≥ 0 for any 
0 ≤ j ≤ i, and so s′ ≥ 0.

Claim 2: We have that b′ ≥ 0.
By the construction of b′ in Definition 5.19, we need to show that r2j′ − j′s′ ≥ 0. By 

the definition of s′, this is equivalent to showing that (2i + 1)r2j′ − 2j′r2i+1 ≥ 0, which 
we know holds by Lemma 5.2.

Claim 3: We have that d′0 ≥ b′ − s′.
By the constructions of d′0 and b′ in Definition 5.19, we want to show that 

min0≤u≤i{r2u+1 − (u + 1)s′} ≥ r2j′ − j′s′ − s′ which is equivalent to showing that 
r2u+1−(u +1)s′ ≥ r2j′−(j′+1)s′ for all 0 ≤ u ≤ i. By the definition of s′, this is equivalent 
to showing that (2i +1 −2j)r2u+1+2(j′−u)r2i+1−(l−2u)r2j′ ≥ 0 for all 0 ≤ u ≤ i. Note 

that, from the definition of s′ and j′, we already know that 2(r2i+1−r2j′ )
2i+1−2j′ ≥ 2(r2i+1−r2u)

2i+1−2u for 
all 0 ≤ u ≤ i, which is equivalent to (2i +1 −2j′)r2u+2(j′−u)r2i+1−(2i +1 −2u)r2j′ ≥ 0. 
Since r ∈ proj2n+1(C), r2u+1 ≥ r2u for every 0 ≤ u ≤ i by inequalities of type (5.3) for 
C, and thus the result holds.

Claim 4: We have that d′0 ≤ 2b′−s′

2 .
By the construction of d′0 in Definition 5.19, we want to show that min0≤u≤i{r2u+1 −

(u + 1)s′} ≤ 2b′−s′

2 . It is thus sufficient to find any u such that 0 ≤ u ≤ i and r2u+1 −
(u +1)s′ ≤ 2b′−s′ . Set u = j′; we want to show that 2r2j′+1 −2(j′ +1)s′ ≤ 2b′− s′. Then 
2
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plugging in the expressions for s′ and b′ in Definition 5.19, this is equivalent to showing 
that r2i+1 + (2i − 2j′)r2j′ − (2i + 1 − 2j′)r2j′+1 ≥ 0, which follows from Lemma 5.3.

Claim 5: We have that d′v ≥ 0 for all 0 ≤ v ≤ n.
By Lemma 5.22 and by the construction of d′0 in Definition 5.19, it suffices to show 

that r2u+1 − (u + 1)s′ ≥ 0 for all 0 ≤ u ≤ i, which, by the definition of s′, is equivalent 
to showing that (2i + 1 − 2j′)r2u+1 + 2(u + 1)r2j′ − 2(u + 1)r2i+1 ≥ 0 for all 0 ≤ u ≤ i. 
This holds by Lemma 5.4.

Claim 6: We have that 
∑u

w=0 d
′
w ≥

∑v
w=v−u d

′
w for all 0 ≤ u < v ≤ n.

First note that showing 
∑u

w=0 d
′
w ≥

∑v
w=v−u d

′
w is equivalent to showing (u + 1)s′ +∑u

w=0 d
′
w + (v− u)s′ +

∑v−u−1
w=0 d′w ≥ (v + 1)s′ +

∑v
w=0 d

′
w. This in turn is equivalent to 

showing that r′2u+1 + r′2(v−u−1)+1 ≥ r′2v+1. Renaming indices, we can show instead that 
r′2u+1 + r′2v+1 ≥ r′2(u+v+1)+1.

For any 0 ≤ u < i, let ū be the smallest index such that ū ≥ u and d′ū+1 > 0. Then 
observe that

r′2ū+1 = (ū + 1)s′ +
ū∑

w=0
d′w

= (u + 1)s′ + (ū− u)s′ +
u∑

w=0
d′w +

ū∑
w=u+1

d′w

= r′2u+1 + (ū− u)s′

= r2u+1 + (ū− u)s′

where the third line follows from the fact that 
∑ū

w=u+1 d
′
w = 0 by definition of ū, and 

where the last line follows from the observation in Lemma 5.23 that since d′ū+1 > 0, we 
know that r′2ū+1 = r2ū+1. Thus

r′2u+1 + r′2v+1 = r2ū+1 − (ū− u)s′ + r2v̄+1 − (v̄ − v)s′

≥ r2(ū+v̄+1)+1 − (ū− u)s′ − (v̄ − v)s′

≥ r′2(ū+v̄+1)+1 − (ū− u)s′ − (v̄ − v)s′

≥ r′2(u+v+1)+1

where the first line holds by the definition of ū and v̄, the second because r ∈ proj2n+1(C)
and inequalities of type (5.4) for C, the third because r′w ≤ rw for every w ≥ 0 by 
Lemma 5.24, and the last one because r′2w+1−r′2w−1 ≥ s′ for every w in our construction.

Claim 7: We have that 2 
∑f ′

v=1 d
′
v ≤ s′.

Note that by the construction of r′2v+1 in Definition 5.19, we have that

i∑
d′w = r2i+1 − (i + 1)s′.
w=0
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We have already shown that r′2i+1 = r2i+1 in Lemma 5.24. Moreover, by the definition 
of r′2v in Definition 5.19, we know that r′2i = r2j′ + (i − j′)s′. Thus

r′2i+1 − r′2i −
s′

2 = r2i+1 − r2j′ −
(i− j) · 2 · (r2i+1 − r2j′)

2i + 1 − 2j′ − r2i+1 − r2j′

2i + 1 − 2j′ = 0.

In other words, s
′

2 = r′2i+1 − r′2i. We also know that r′2i+1 − r′2i = (i + 1)s′ +
∑i

w=0 d
′
w −

(b′ + is′). So

s′

2 = −b′ +
i∑

w=0
d′w + s′

b′ − s′

2 − d′0 =
i∑

w=1
d′w

s′

2 ≥
i∑

w=1
d′w

where the last line follows from the fact that b′ ≤ d′0 + s′ from Claim 3. �
We now give a similar definition and prove similar results for even l.

Definition 5.26 (rl when l is even). Given r = (r0, r1, . . . , r2n+1) ∈ proj2n+1(C) and 
0 ≤ l ≤ 2n + 1 such that l = 2i, let r′l = (r′0, r′1, . . . , r′2n+1) be as follows.

Let

s′ = max
0≤j≤i

{
r2i − r2j
i− j

}

and

j′ = arg max
0≤j≤i

{
r2i − r2j
i− j

}
.

Here s′ is the maximal slope involving the point l and a point 2j before it, and j′ is the 
index where the maximal slope occurs. We are going to use the slope s′ when building 
our alternative sequence r′l = (r′0, r′1, . . . , r′2n+1).

Let r′2v = r2j′ + (v − j′)s′ for all 0 ≤ v ≤ n so that all even points are on the same 
line with slope s′. Let b′ := r′0

Let d′ = (d′0, 0, . . . , 0) ∈ Rn + 1 where d′0 = b′ − s′ if b′ > s′ and d′0 = 0 is b′ ≤ s′. Let

r′2v+1 = (v + 1)s′ + d′0

for any 0 ≤ v ≤ n.



G. Blekherman, A. Raymond / Advances in Mathematics 407 (2022) 108561 59
Example 5.27. Let 2n + 1 = 21, l = 14, and

r = (14, 14, 24, 24, 34, 35, 44, 45, 55, 55, 66, 66, 77, 79, 88, 89, 99, 99, 110, 110, 121, 121).

Then s′ = 10, b′ = 14, d′ = (4, 0, 0, 0, . . . , 0), and

r′14 = (11, 11, 22, 22, 33, 33, 44, 44, 55, 55, 66, 66, 77, 77, 88, 88, 99, 99, 110, 110, 121, 121).

�

Example 5.28. Let 2n + 1 = 15, l = 12, and

r = (11, 11, 19, 20, 27, 30, 36, 40, 45, 50, 55, 60, 65, 70, 75, 80).

Then s′ = 10, b′ = 5, d′ = (0, 0, . . . , 0), and

r′12 = (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80). �

Lemma 5.29. Given r = (r0, r1, . . . , r2n+1) ∈ proj2n+1(C) and r′l = (r′0, r′1, . . . , r′2n+1) for 
some even l = 2i, r′v ≤ rv for all 0 ≤ v ≤ 2n + 1 and rl = r′l.

Proof. Claim 1: We have that r′2i = r2i.
By Definition 5.26, we have

r′2i − r2i = r2j′ + (i− j′)s′ − r2i

= r2j′ + (i− j′) (r2i − r2j′)
i− j′

− r2i

= 0.

Claim 2: We have that r′2v ≤ r2v for all 0 ≤ v ≤ j′.
Since r ∈ proj2n+1(C), by inequalities (5.2) for C, we know that r2j′ − r2j′−2 ≥

r2u − r2u−2 for all 0 ≤ u ≤ j′. Now observe that by the construction of s′ and j′ in 
Definition 5.26, s′ = r2i−r2j′

i−j′ ≥ r2i−r2j′−2
i−(j′−1) which is equivalent to (i −(j′−1))(r2i−r2j′) ≥

(i − j′)(r2i − r2j′−2), which in turn is equivalent to 
r2i−r2j′

i−j′ ≥ r2j′ − r2j′−2. So we get 
that s′ ≥ r2j′ − r2j′−2 which implies that s′ ≥ r2u − r2u−2 for all u ≤ j′. Together with 
the fact that r′2v = r′2j′ − (j′ − v)s′ = r2j′ − (j′ − v)s′ by definition, this implies that 
r′2v ≤ r2v for all 0 ≤ v ≤ j′.

Claim 3: We have that r′2v ≤ r2v for all j′ ≤ v ≤ n.
We first show that s′ ≤ r2j′+2 − r2j′ . Let’s first assume that j′ < i. Then

r2i − r2j′
′ ≥ r2i − r2j′+2

′
i− j i− (j + 1)
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by the construction of s′ and j′ in Definition 5.26 which is equivalent to

r2i − r2j′

i− j′
≤ r2j′+2 − r2j′ ,

as desired. Thus s′ ≤ r2u+2 − r2u for all u ≥ j′. Together with the fact that r′2v =
r′2j′ + (v − j′)s′ = r2j + (v − j′)s′ by the construction of r′2v in Definition 5.26, this 
implies that r′2v ≤ r2v for all v ≥ j′.

Finally we consider the case when j′ = i. Then s′ = 0, and so r′2v = r2i for all v ≥ j′. 
Since r ∈ proj2n+1(C), by combining inequalities of types (5.1) and (5.3) for C, we know 
r2v ≥ r2i for every v ≥ j′, and so we again have that r′2v ≤ r2v.

Claim 4: We have that r′2v+1 ≤ r2v+1 for all 0 ≤ v ≤ n.
By Definition 5.26, if b′ > s′, then d′ = (b′−s′, 0, . . . , 0) and r′2v+1 = (v+1)s′+b′−s′ =

b′ + vs′ = r′2v for every 0 ≤ v ≤ n. We’ve already shown that r′2v ≤ r2v. Moreover, since 
r ∈ proj2n+1(C), by inequalities of type (5.3), r2v ≤ r2v+1. Therefore, the result holds.

If b′ ≤ s′, then d′ = (0, 0, . . . , 0) and r′2v+1 = (v + 1)s′ for all 0 ≤ v ≤ n. So we want 
to show that

(v + 1)(r2i − r2j′)
i− j′

≤ r2v+1,

which is equivalent to showing that

(v + 1)r2j′ − (v + 1)r2i + (i− j′)r2v+1 ≥ 0.

The case when 0 ≤ v ≤ i − 1 is covered by Lemma 5.4. It remains to show that this 
inequality also holds when i ≤ v ≤ n. It does since it can be written as the following 
conic combination of inequalities (5.5) and (5.2) for C which hold since r ∈ proj2n+1(C):

(i− j′)((v + 1)r2v−2 − (v + 1)r2v + r2v+1 ≥ 0)

+
min{i−1,v−2}∑

w=j′

(w − j′ + 1)(v + 1)(r2w − 2r2w+2 + r2w+4 ≥ 0)

+
v−2∑
w=i

(i− j′)(v + 1)(r2w − 2r2w+2 + r2w+4 ≥ 0).

Note that if v ∈ {i, i + 1}, then the last row disappears. By collecting terms, one can 
check that r2j′ appears v+1 times, r2i′ appears −(v+1) times, and r2v+1 appears i − j′

times. �
Theorem 5.30. Let r ∈ proj2n+1(C) such that r1 ≥ r0 and fix 0 ≤ l ≤ 2n + 1 such that 
l = 2i. Then r′l is in R.
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Proof. We show that all properties of rays in R hold for r′l.

Claim 1: We have that s′ ≥ 0.
By the construction of s′ in Definition 5.26, s′ = max0≤j≤i

{
r2i−r2j

i−j

}
. Since r ∈

proj2n+1(C), we know that r2i ≥ r2j for all 0 ≤ j ≤ i since from type (3) inequalities, 
r2u+1 ≥ r2u for all 1 ≤ u ≤ n, and combining type (1) and type (3) inequalities yields 
that r2u+2 ≥ r2u+1 for all 1 ≤ u ≤ n − 1. Finally, we assumed that r1 ≥ r0.

Claim 2: We have that b′ ≥ 0.
By the construction of b′ in Definition 5.26, we need to show that r2j′ − j′s′ ≥ 0. By 

the definition of s′, this is equivalent to showing that ir2j′ − j′r2i ≥ 0, which we know 
holds by Lemma 5.2.

Claim 3: We have that d′0 ≥ b′ − s′.
If b′ > s′, then d′0 = b′−s′ and the inequality thus holds. If b′ ≤ s′, then d′0 = 0 ≥ b′−s′

as desired.

Claim 4: We have that d′0 ≤ 2b′−s′

2 .
If b′ > s′, then d′0 = b′ − s′, and since s′ ≥ 0, we have that d′0 ≤ 2b′−s′

2 . If b′ ≤ s′, 
then d′0 = 0 and so, by the construction of b′ in Definition 5.26, we need to show that 
r2j′ − j′s′ − s′

2 ≥ 0 which, by the construction for s′, is equivalent to showing that

(2i + 1)r2j′ − (2j′ + 1)r2i ≥ 0,

which we know holds from Lemma 5.5.

Claim 5: We have that d′v ≥ 0 for all 0 ≤ v ≤ n.
This is clear from the construction d′ in Definition 5.26.

Claim 6: We have that 
∑u

v=0 d
′
v ≥

∑w
v=w−u d

′
v.

Again, this is clear by the construction of d′ in Definition 5.26.

Claim 7: We have that 2 
∑f ′

v=1 d
′
v ≤ s′.

Note that the lefthand side is 0 by our construction of d′ in Definition 5.26, and we’ve 
already shown that s′ ≥ 0 in Claim 1. �
Theorem 5.31. Let r ∈ proj2n+1(C) such that r1 ≥ r0. Then r is in the max closure of 
rays r′l for 0 ≤ l ≤ 2n + 1. Moreover, this implies that r ∈ trop(NU2n+1).

Proof. This follows from that fact that rl is equal to the lth component of r′l, and that all 
the other components of the latter are smaller or equal to the corresponding components 
of r. Thus, taking the tropical sum of all r′l yields exactly r, i.e., r = ⊕2n+1

l=0 r′l. Since 
we have shown that each r′l ∈ R and since we know that the double hull of R is in 
trop(NU2n+1), it follows that r ∈ trop(NU2n+1). �
Lemma 5.32. Let r = (r0, r1, . . . , r2n+1) ∈ proj2n+1(C) such that r1 < r0. Then r ∈
trop(NU2n+1)
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Proof. First observe that the ray r∗ = (r∗0 , r∗1 , r∗2 , r∗3 , . . . , r∗2n+1) := (r1, r1, r2, r3, . . . ,
r2n+1) ∈ proj2n+1(C) as well. Indeed, any inequality involving y0 is still valid: r∗0 −2r∗1 +
r∗2 = −r1 + r2 ≥ 0 by (9), r∗0 − 2r∗2 + r∗4 = r1 − 2r2 + r4 by (7), and 2r∗0 − (2v+1)r∗2v−1 +
(2v − 1)r∗2v+1 = 2r1 − (2v + 1)r2v−1 + (2v − 1)r2v+1 ≥ 0 for all 2 ≤ u ≤ n by (8). All 
other inequalities did not change, and so they are still valid as well given that r was in 
proj2n+1(C). By Theorem 5.31, r∗ ∈ trop(NU2n+1).

Now observe that (r0, r1, r1, r1, . . . , r1) ∈ trop(NU2n+1) as it can be obtained as a conic 
combination of (1, 0, 0, . . . , 0) and (1, 1, 1, . . . , 1) which are both in trop(NU2n+1), namely

(r0, r1, r1, r1, . . . , r1) = (r0 − r1) · (1, 0, 0, . . . , 0) + r1 · (1, 1, 1, . . . , 1).

Finally, observe that r = (r1, r1, r2, r3, . . . , r2n+1) ⊕(r0, r1, r1, r1, . . . , r1). Indeed, since 
r ∈ proj2n+1(C), inequality (5.9) for C tells us that r1 ≤ r2, combining inequalities of 
types (5.1) and (5.3) yields −r2u+1 + r2u+2 ≥ 0 for all 1 ≤ u ≤ n − 1, and we also have 
−r2u + r2u+1 ≥ 0 for all 1 ≤ u ≤ n from inequalities of type (5.3). Therefore, r1 ≤ rv
for 1 ≤ v ≤ 2n + 1. Since r is in the max closure of two rays that are in trop(NU2n+1), 
r ∈ trop(NU2n+1). �

Thus we have shown that proj2n+1(C) = trop(NU2n+1).

6. Applications

6.1. HDE of two paths

Recall that HDE(F1; F2) denotes the maximum value of c such that

hom(F1;G) ≥ hom(F2;G)c

for every graph G. In [17], Kopparty and Rossman show that HDE(Pv, Pw) = 1 when 
v ≥ w and HDE(Pv, Pw) = v+1

w+1 when v ≤ w and v is even. The case when v ≤ w and 
v is odd is open in general, though in the same paper, Kopparty and Rossman showed 
that HDE(P1, Pw) = 1

�w+1
2 
 and that

HDE(P3, P4u+i−1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
u if i = 0,

2
2u+1 if i = 1,

4u+1
4u2+3u+1 if i = 2,

1
u+1 if i = 3.

Since hom(Pv; G) ≥ hom(Pw; G)c is a binomial inequality, we know it has to be implied 
by the defining inequalities of the tropicalization of the path profile. Using results from 
the previous sections, we prove the following theorem which computes HDE(Pv, Pw)
when v ≤ w and v is odd, thus resolving the problem of finding a closed expression for 
HDE(Pv, Pw) for all v and w. This implies Theorem 1.5 from the introduction.
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Theorem 6.1. We have that

HDE(Pv, Pw) = v + 1
w + 2 ,

when v is odd and w is even with v ≤ w, and

HDE(Pv, Pw) = k(v + 1) − v

kw + 2k − w − 1 ,

when v and w are both odd, v ≤ w, and where k is the smallest integer such that 
k(v + 1) ≥ w + 1.

Note that unlike the statement of Kopparty-Rossman for P3 and Pn there are in fact 
only two cases, depending on the parity of w and their result can be reformulated in this 
way. We split the proof into two cases, based on the parity of w and start with even w
first.

Lemma 6.2. We have that P j+1
2i+1 ≥ P i+1

2j when 2i + 1 ≤ 2j. In particular, this implies 
that HDE(P2i+1, P2j) ≥ i+1

j+1 when 2i + 1 ≤ 2j.

Proof. This is equivalent to showing that (j+1)y2i+1−(i +1)y2j ≥ 0 where yv = log(Pv).
We first note that

(i + 1)y2i + y2i+1 − (i + 1)y2i+2 ≥ 0

since it can be written as the following conic combination of inequalities for C of type 
(5.2), (5.6), and (5.4):

2i−1∑
v=i

(i + 1)(y2v − 2y2v+2 + y2v+4 ≥ 0)

+1
2((2i + 2)y4i − (2i + 2)y4i+2 + y4i+3 ≥ 0)

+1
2(2y2i+1 − y4i+3 ≥ 0).

Moreover, note that

y2i+1 + (i + 1)y2l−2 − (i + 1)y2l ≥ 0

for any l ≥ i + 2 since it can be written as the following linear conic combination of 
inequalities of type (5.2) and a general inclusion inequality described in Section 4.3:



64 G. Blekherman, A. Raymond / Advances in Mathematics 407 (2022) 108561
i+l−2∑
v=l−1

(i + l − v − 1)(y2v − y2v+2 + y2v+4 ≥ 0)

+(y2i+1 + y2l−2 − y2i+2l ≥ 0).

Taking a conic combination of the previous two types of inequalities

((i + 1)y2i + y2i+1 − (i + 1)y2i+2 ≥ 0)

+
j∑

l=i+2

(y2i+1 + (i + 1)y2l−2 − (i + 1)y2l ≥ 0),

we obtain

(i + 1)y2i + (j − i)y2i+1 − (i + 1)y2j ≥ 0.

Finally, since y2i+1 ≥ y2i by inequalities of type (5.3), this last inequality implies that 
(j + 1)y2i+1 ≥ (i + 1)y2j . �
Lemma 6.3. We have that HDE(P2i+1, P2j) ≤ i+1

j+1 when 2i + 1 ≤ 2j.

Proof. Recall the blow-up graph introduced in Section 3.2. For every m ∈ N, we create a 
blow-up of P2j called Bm. We let p({v, v+1}) = 1

j+1 for 0 ≤ v ≤ 2j−1 and p({v}) = 1
j+1

if 0 ≤ v ≤ 2j is even, and p({v}) = 0 if 1 ≤ v ≤ 2j − 1 is odd. As m → ∞, we will 
get hom(P2i+1, Bm) → (2i + 1) 1

j+1 − i 1
j+1 = i+1

j+1 since any homomorphism from P2i+1
to the weighed version of P2j gives exactly i+1

j+1 . Similarly, as m → ∞, hom(P2j , Bm) →
(2j) 1

j+1 − (j − 1) 1
j+1 = j+1

j+1 since the maximum of any homomorphism from P2j to the 

weighed version of P2j is j+1
j+1 (here taking the maximum over homomorphisms is not 

extraneous, as a homomorphism that sends endpoints of P2j to an even vertex of P2j
gives only j

j+1 ).
So since hom(P2i+1, Bm) → i+1

j+1 and hom(P2j , Bm) → 1 as m → ∞, HDE(P2i+1,

P2j) ≤ i+1
j+1 . �

This finishes the proof of the even w case of Theorem 6.1 and we now deal with the 
case of odd w.

Lemma 6.4. We have that P kw+2k−w−1
v ≥ P

k(v+1)−v
w when v and w are both odd, v ≤ w, 

and where k is the smallest integer such that k(v + 1) ≥ w + 1.

Proof. The above inequality following immediately from combining three inequalities we 
have already seen:

P k
v ≥ Pk(v+1)−1, Pv ≥ Pv−1, P

k(v+1)−w−1
v−1 Pw−v+1 ≥ P k(v+1)−v

w .
k(v+1)−1
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The first two inequalities are just inclusion inequalities. Although the last inequality 
looks complicated, it is just our generalization of Erdős-Simonovits (since v− 1 is even) 
presented in Lemma 5.6. �
Lemma 6.5. We have that HDE(Pv, Pw) ≤ k(v+1)−v

kw+2k−w−1 when v and w are both odd, v ≤ w, 
and where k is the smallest integer such that k(v + 1) ≥ w + 1.

Proof. Let s = 2(k − 1), b = 2k − 1, and d = (d0, d1, . . .) where

du =
{

1 if u ≡ 0 mod v+1
2 and u ≤ (k − 1) (v+1)

2
0 otherwise.

Note that the ray r built from this b, s, d is in Rs,b and is thus realizable. Observe that 
2 · (k − 1) (v+1)

2 + 1 ≤ w so long as l > 0, which we know is true since if l = 0, then 
w = (k−1)(v+1), and since (v+1) is even and thus w is even, we reach a contradiction.

We have that

rv = v + 1
2 s +

v−1∑
u=0

2du = v + 1
2 · (2k − 2) + 1 = k(v + 1) − v,

and

rw = w + 1
2 s +

w−1
2∑

u=0
du = (w + 1)(k − 1) + k = kw + 2k − w − 1.

So we know there exists a blow-up graph Bm for which, as m → ∞, log(hom(Pv, Bm)) →
k(v+1) −v and log(hom(Pw, Bm)) → kw+2k−w−1, so HDE(Pv, Pw) ≤ k(v+1)−v

kw+2k−w−1 . �
This finishes the proof of Theorem 6.1.

6.2. Previously known inequalities

Binomial inequalities between numbers of homomorphisms of paths have been studied 
for a long time. The following inequality

P k−1
0 Pk ≥ P k

1

was proven in various articles [1], [20], [24] and [9]. Lagarias, Mazo, Shepp and McKay 
showed in [19] that

P0P2a+2b ≥ P2a+bPb.

In [6], Dress and Gutman showed that
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P2aP2b ≥ P 2
a+b.

In [32], Hemmecke, Kosub, Mayr, Täubig and Weihmann generalized all previous listed 
inequalities by certifying the following two types of inequalities:

P2aP2(a+b+c) ≥ P2a+cP2(a+b)+c

and

P2l+pkP
k−1
2l ≥ P k

2l+p.

Our results show that all of these inequalities (and any other true binomial inequality 
involving paths) are implied by the binomial inequalities defining C. We show here how 
the two most general inequalities can be recovered.

As was seen in the previous section, it is more convenient to check the validity of a 
binomial inequality for NU by checking the validity of the corresponding linear inequality 
for trop(NU ). There, we simply need to show that this linear inequality can be written 
as a conic combination of the defining inequalities for trop(NU ). If there is no such conic 
combination, then the original pure binomial inequality is not valid for NU . Finding such 
a conic combination can be done via a linear program. Indeed, suppose one wants to check 
whether 

∏
i∈I1

Pαi
i ≥

∏
i∈I2

P βi

i is a valid inequality, where I1, I2 ⊆ {0, 1, 2, . . . , 2n + 1}
for some n ∈ N. This is equivalent to checking that 

∑
i∈I1

αiyi −
∑

i∈I2
βiyi ≥ 0 on 

trop(NUn
). Thus one can simply minimize 

∑
i∈I1

αiyi −
∑

i∈I2
βiyi over the cone C

given at the beginning of Section 5. If the optimal value is 0, then the inequality is 
valid, and the dual solution gives the conic combination of inequalities of C that yields ∑

i∈I1
αiyi −

∑
i∈I2

βiyi ≥ 0. Otherwise, the inequality is not valid.
We now show that P2aP2(a+b+c) ≥ P2a+cP2(a+b)+c can indeed be recovered in that 

way. Indeed, the conic combination

a+� c
2 �−1∑

i=a

(i + 1 − a) · (y2i − 2y2i+2 + y2i+4 ≥ 0)

[
+1

2 · (y2a+c−1 − 2y2a+c + y2a+c+1 ≥ 0)
]

+
a+b+� c

2 �−2∑
i=a+� c

2 �

c

2 · (y2i − 2y2i+2 + y2i+4 ≥ 0)

[
+1

2 · (y2(a+b)+c−1 − 2y2(a+b)+c + y2(a+b)+c+1 ≥ 0)
]

+
a+b+c−2∑

i=a+b+� c
2 �

(a + b + 2c′ − 1 − i) · (y2i − 2y2i+2 + y2i+4 ≥ 0),
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where the lines in brackets are present only if c is odd, yields y2a − y2a+c − y2(a+b)+c +
y2(a+b+c) ≥ 0 as desired. So P2aP2(a+b+c) ≥ P2a+cP2(a+b)+c can be recovered only with 
the binomials of the form P2vP2v+4 ≥ P 2

2v+2 when c is even, and P2vP2v+4 ≥ P 2
2v+2 with 

P2vP2v+2 ≥ P 2
2v+1 when c is odd.

For P2l+pkP
k−1
2l ≥ P k

2l+p, if pk is even, this can again be recovered only with the bino-
mials of the form P2vP2v+4 ≥ P 2

2v+2 and P2vP2v+2 ≥ P 2
2v+1 since the conic combination

l+� p
2 
−2∑
i=l

(l + 1 − i)(k − 1) · (y2i − 2y2i+2 + y2i+4 ≥ 0)

[
+k

2 · (y2l+p−1 − 2y2l+p + y2l+p+1 ≥ 0)
]

+
l+ pk

2 −2∑
i=l+� p

2 
−1

(l + p

2k − 1 − i) · (y2i − 2y2i+2 + y2i+4 ≥ 0),

where the line in brackets is present only if p is odd, yields (k−1)y2l−ky2l+p+y2l+pk ≥ 0
as desired. Otherwise, if p and k are both odd, P2l+pkP

k−1
2l ≥ P k

2l+p can be retrieved 
from the generalized Erdős-Simonovits inequalities. Indeed, the conic combination

2l+pk−1
2∑

i= 2l+p+1
2

kp

(2i + 1 − 2l)(2i− 1 − 2l) · (y2l − (2i + 1 − 2l)y2i−1 + (2i− 1 − 2l)y2i+1 ≥ 0)

yields (k − 1)y2l − ky2l+p + y2l+pk ≥ 0 as desired.
To the best of our knowledge for a parametrized family of valid binomial inequali-

ties for NU , there does not necessarily exist a nice unified parametrized family of conic 
combinations that gives certificates for the entire family. One may have to find several 
different families of parameterized certificates. Moreover, a natural inequality may re-
quire a complicated conic combination of the extremal inequalities that, though maybe 
not as natural, can be certified more easily.
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